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Abstract—Cyber-Physical Systems (CPS) interact closely with
their surroundings. They are directly impacted by their physical
and operational environment, adjacent systems, user inter-
actions, regulatory codes, and the underlying development
process. Both the requirements and design are highly depen-
dent upon assumptions made about the surrounding world,
and therefore environmental assumptions must be carefully
documented, and their correctness validated as part of the
iterative requirements and design process. Prior work exploring
environmental assumptions has focused on projects adopting
formal methods or building safety assurance cases. However,
we emphasize the important role of environmental assumptions
in a less formal software development process, characterized
by natural language requirements, iterative design, and robust
testing, where formal methods are either absent or used for only
parts of the specification. In this paper, we present a prelimi-
nary case study for dynamically computing the safe minimum
separation distance between two small Uncrewed Aerial Systems
based on drone characteristics and environmental conditions.
In contrast to prior community case studies, such as the mine
pump problem, patient monitoring system, and train control
system, we provide several concrete examples of environmental
assumptions, and then show how they are iteratively validated
at various stages of the requirements and design process, using
a combination of simulations, field-collected data, and runtime
monitoring.

Index Terms—requirements, environmental assumptions,
small unmanned aerial systems, UAV, case-study

I. INTRODUCTION

Cyber-Physical Systems (CPS) are strongly dependent
upon their surrounding environments, including their con-
currently executing software components, regulatory de-
pendencies, user interactions, and physical devices, such as
sensors [1], [2], [3]. It is therefore important for developers
to clearly document their assumptions about the operating
environment [4]. Failure to do so can lead to unwanted
behaviors, with numerous prior incident reports pointing
to the role of missing or inadequate assumptions as key
contributing factors [2]. For example, the U.S. National
Research Council cited an example of the 1993 Airbus
incident in which the plane failed to brake upon landing,
at least partially due to the invalid assumption that “lack
of compression always accompanies being airborne” [3].
In this case, the plane hydroplaned on the icy runway,
compression never occurred, and as a result the system

mistakenly believed the plane to be airborne, and failed to
apply the brakes.

Environmental assumptions are generally classified into
six groups [5]. These include (1) physical environment as-
sumptions, which are expected to hold invariantly (e.g., “If
the drone is flying’ it is not ‘on the ground’.); (2) operational
environment assumptions that describe the operational
environment surrounding the system, (e.g., “There is no
interference from other wireless devices in the area.”); (3)
adjacent system assumptions describing behavior of inter-
acting adjacent systems, (e.g., “The aircraft is controlled
with the mRo Control zero autopilot at a rate of 480 Hz.");
(4) user interface assumptions describing users and their
behavior (e.g., “The operator will place the RC transmitter’s
throttle in the neutral position prior to take-off”; (5) regu-
latory assumptions describing the way regulations, laws, or
standards affect the system or related components (e.g., “All
flights must be operated under FAA Part 107 regulations.”)
and finally (6) development process assumptions describing
policies or procedures impacting the development and/or
operation of the system, (e.g., “All features are validated in
simulation prior to queuing them for field tests”).

In some scenarios, a single requirement may depend
on multiple environmental assumptions, creating a com-
plex space for specifying, analyzing, and validating both
the requirements and their underlying assumptions [6].
We therefore introduce the term ‘environmentally complex
requirement’ to describe a requirement that relies on mul-
tiple, inter-dependent environmental assumptions. Unlike
basic safety requirements, which might depend on relatively
stable and predictable environmental conditions, environ-
mentally complex requirements involve a broader range of
variables that interact in complex ways. These requirements
must be analyzed and validated in ways that accommodate
increased complexity and inter-dependencies, so that they
can operate reliably under a variety of unpredictable envi-
ronmental conditions.

In constructing the case study, we followed a robust
engineering approach, supported by our domain experi-
ence, to systematically reason about factors that impact
separation distance between small Uncrewed Arial Systems
(sUAS), therefore deriving the requirements and assump-
tions laid out in this paper. As depicted in Figure 1, starting
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Fig. 1. Steps for deconstructing an environmentally complex requirement
into derived requirements and their associated environmental assump-
tions, and subsequently for validating assumptions and requirements.

with an environmentally complex requirement we followed
standard requirements engineering practices to refine it
into derived requirements (Task 1), explore design solu-
tions (Task 2), and simultaneously identify and document
environmental assumptions (Task 3) and dependencies of
the design on those assumptions (Task 4). As these depen-
dencies were recognized, we investigated the assumptions
through a combination of techniques that included use
of empirical models, simulations, and unit-level field tests
(Tasks 5-6), with the goal of reducing uncertainty in order
to design an effective solution that encompassed appropri-
ate tolerance levels. Finally we validated the system level
requirements through simulations (Task 7) and monitored
field deployments (Task 8) to build confidence that despite
any remaining uncertainties, our solution would maintain
a safe separation distance between sUAS at all times and
that no assumptions were violated.

The remainder of the paper is structured as follows.
Section II describes the multi-vehicle sUAS platform that
provides the context for our case study. It also describes
a single environmentally complex requirement and its
derivatives which serve as the focus of our paper. Section
III describes associated environmental assumptions and
their preliminary validation, while Section IV takes a more
holistic view to validating the high-level requirement within
the context of the broader set of assumptions. Sections V
and VI then discuss threats to validity and related research,
while Section VII summarizes the paper’s contributions and
discusses future work.

II. CASE EXAMPLE: MAINTAINING MINIMUM SEPARATION
DISTANCE BETWEEN SUAS

Our case example focuses upon computing the safe
minimum separation distance between sUAS at runtime,
considering individual drone characteristics and current
environmental conditions.

A. DroneResponse Platform

The context of our example, is our own real-world
DroneResponse system [7], [8] which provides a robust,
multi-vehicle, platform for sUAS that operate PX4 autopilot
firmware [9] using the MAVROS communication protocol
[10]. The DroneResponse platform, shown in action in
Figure 2, includes a ground control station (GCS), hosting
microservices and Graphical User Interfaces (GUIs), while
each sUAS has its own onboard compute capabilities hosted
on a Jetson Xavier NX running Drone Response’s proprietary
control software called ‘DR-Onboard. All communication
between drones and GCS components is via MQTT over
mesh-radio.

In this multi-vehicle application, it is critical that sUAS
flying in a shared airspace do not collide with one an-
other. There are many different approaches for maintaining
minimum separation. Our current approach, delegates this
responsibility to a centralized air-leasing system, hosted
as a Microservice on the GCS. The air-leaser authorizes
requests for the use of the airspace. It maintains a global
minimum separation distance between all pairs of sUAS
and is designed to accommodate worst-case aerodynamics
(e.g., increasing stopping distance), extreme wind condi-
tions, slow reflexes, and worst-case geolocation, based on
GPS and other sensor data. However, this approach means
that drones are separated by large distances and often suffer
from lengthy delays as they wait for their desired airspace
to open up.

B. An Environmentally Complex Requirement & Derivatives

For convenience we refer to each sUAS as a drone
throughout the remainder of the paper, and start by spec-
ifying a single system-level, functional requirement.

Functional Requirement (R1): When in flight, drone
d shall continually compute the minimum_separation
_distance with each neighboring drone d’ within its
Region of Interest (ROI).

The minimum separation distance required between two
drones must account for intrinsic and extrinsic uncertain-

Fig. 2.
tonomously in close vicinity to one another, requiring safe minimum
separation distances to be maintained at all times.

Using the DroneResponse platform, multiple sUAS fly au-



ties related to each drone’s navigation and positioning. We
have identified four factors as primary determinants for
establishing the size of an operational buffer. These include
(a) geolocation uncertainty, (b) stopping distance, (c) wind
conditions, and (d) the projected distance that a drone
might travel between status messages. This leads to the
following definition:

Apuffer = dgeo + dstop + dwind + dproj (D

Here, dgeo encompasses the margins required to address
geolocation uncertainties, dsop represents the distance nec-
essary for drone d to come to a complete stop in non-windy
conditions, dyinq reflects the additional distance needed to
compensate for worst-case wind-induced deviations, and
dproj Tepresents the distance that a drone is projected to
travel during interval P.

Throughout the remainder of this paper we also refer
to drone d’, which we treat as a black box representing
either a drone using the DroneResponse platform or an
external drone. In either case, d’' is expected to comply
with global airspace regulations concerning behaviors such
as broadcasting current status and subsequent mitigation
efforts in event of airspace breach. The minimum safety
distance required for safe operations between drones d
and d', as perceived by drone d, is thus the sum of
their individual operational buffers, adjusted by a comfort
tolerance factor. This is expressed as:

dsafe = Aputier(d, P) + dputer(d', L) + tolerance )

where dyyster (d, P) is the operation buffer for drone d, fac-
toring in the standard broadcast period P, and dyyter(d’, L)
is the operational buffer for drone d’ computed by d, given
the data broadcast by d' and adjusted for L = P+ Teom.
Here, L denotes the total effective interval that accounts
for both the broadcast period and communication latency
Tcom- This adjustment to the equation acknowledges that
the broadcasted information from drone d’ is rendered
stale by an additional time factor of Tcom. Moreover, in
this context, drones d and d’ symbolize the sets of pa-
rameters—such as velocity and position—outlined in our
broadcasting requirement.

Given these factors we decompose our top level re-
quirement (R1) into a set of derived requirements (DR1-
DR5). The first requirement addresses the geolocation of
the current drone d and the geolocation of d’' from the
perspective of d.

(DR1): For each drone d, the autopilot shall
periodically ascertain its geolocation and the
geolocation of each neighboring drone d’, ensuring
at least a 99% confidence level that each drone is
positioned within a specified 3D region around its
computed coordinates.

We next specify a requirement associated with the drone’s
required stopping distance in non-windy conditions as:

(DR2): For each drone d, the autopilot shall period-
ically compute its maximum stopping distance
and the maximum stopping distance of each
neighboring drone d’, in non-windy conditions, given
their current velocity.

For computing additional stopping distances due to wind
conditions we consider the tradeoffs associated with the
challenge of measuring wind velocity and direction during
flight at various altitudes and locations, the volatility of
the wind gusts, complexity of computing relative wind
direction versus the drone’s direction of travel, and limited
onboard computational resources. Therefore, we assume
worst case scenario of the projected maximum wind-gusts
and a tailwind leading to the following:

(DR3): For each drone d, and each neighboring drone
d' of d, the autopilot shall consider the drone’s addi-
tional stopping distance introduced by the maximum
projected tailwind.

Additionally, we account for any change in geolocation
during the status update interval, considering communica-
tion latency from a neighboring drone’s status updates as
depicted in Eq. 2.

(DR4): For each drone d, the autopilot shall compute
its distance projected to travel, and the
distance projected to travel of each neigh-
boring drone d’, between status updates, given their
current velocity.

Finally, as discussed in Section IV, an absolute minimum
separation distance, which we refer to as the comfort
distance between each drone must be assured even in worst
case scenarios.

(DR5): For each drone d, and each neighboring drone
d’, there shall exist a minimum separation distance that
must never be violated.

ITI. INVESTIGATING ENVIRONMENTAL ASSUMPTIONS

Given the dependencies that requirements exhibit upon
environmental assumptions [11], [12] , our next step in-
volves identifying and documenting a set of relevant as-
sumptions labeled as Al - AN. Further, because incorrect
assumptions can lead to unsafe solutions; we evaluate the
evidence supporting each assumption and its associated
degree of certainty or uncertainty. For assumptions with
high degrees of uncertainty, we aim to systematically re-
duce the uncertainty using techniques such as examining
manufacture’s claims and their supporting documentation,
creating empirical models, running simulations, and/or
collecting and analyzing field data.

A. System-wide Operational Regulations

We start by considering regulations that impact the
overall operation of the sUAS platform, as these may have



a cross-cutting impact upon multiple requirements. The
first two operational regulations serve a dual role, first as
requirements for drones operating on the DroneResponse
platform and therefore under our own control, and second
as regulatory assumptions for all other drones operating
in the airspace. These regulations specify the timing for
broadcasting messages between drones and for computing
minimum separation distances. By consensus, any drone
entering the shared airspace is required to comply with
these regulations.

REGI / Al. Regulatory: Every drone d operating in the
shared airspace broadcasts a status message at fixed
intervals, denoted as period P. The status message
includes the drone’s current position, velocity, heading,
acceleration, and accuracy in its geolocation.

REG2 / A2. Regulatory: Each drone d computes its
required safety distance from drone d’ upon receipt
of the status message sent from d'.

An additional environmental assumption impacts the
freshness of the status message at the time it is broadcasted
by drone d. We document it as follows:

A3. Adjacent System: The onboard software, which
broadcasts status messages, receives updates from its
associated flight controller sufficiently frequently that
the delay between obtaining a status update and broad-
casting to other drones is negligible.

Finally, we document one further assumption related to
the health of the drone between consecutive broadcasts.
This is documented as follows:

A4. Adjacent System: Drones maintain operational
safety between consecutive broadcasts and thus all
minimum safety calculations are valid until the follow-
ing status update.

While it is inevitable that drones will occasionally ex-
perience failures, these failures are handled by raising
an alert that triggers a failsafe mechanism. This scenario
is outside the scope of the current paper; however, we
document an assumption based on the underlying premise
that the broadcasting period is sufficiently small, meaning
that failures can be ignored until such time as an alert is
raised and the drone transitions to a failsafe mode.

These assumptions describe communication protocols
for the shared airspace and set the stage for each drone
to quantify a safety buffer between itself and drone d’ at
interval P triggered by the receipt of a status update from
d'. We now examine four of our five derived requirements
(DR1-DR4), each of which is associated with a unique factor
described in Eq. 1 for computing safe distance. As discussed
in Section IV, we refer to derived requirement DR5 as an
emergent requirement, which is expected to be satisfied as

a result of meeting requirements DR1-DR4 and adding a
sufficient tolerance level as depicted in Eq. 2.

B. Geolocation Uncertainty (DRI1)

We start by considering the factors associated with ge-
olocation uncertainty. Inaccuracies in a drone’s geoloca-
tion arise due to errors in satellite signal delays, atmo-
spheric conditions, multipath effects, and signal interfer-
ence, alongside challenges posed by dynamic environmen-
tal factors and hardware limitations. Therefore, in order to
reflect a drone’s position inaccuracies, we represent the
drone’s location as being within a 3D bounded region
of space rather than at a pinpoint location. This region
provides a three-dimensional ‘container’ that reflects the
uncertainty of the drone’s position. To systematically an-
alyze geolocation uncertainty, we start with the following
environmental assumption, supported by the MAVLink doc-
umentation for interfacing with PX4 [13].

Most sUAS, including our PX4-based flight controllers
utilize Extended Kalman Filters (EKF) to aggregate data into
a fused global data structure for both horizontal and vertical
positioning. They also report pos_horiz_accuracy defined
as ‘Horizontal position 1-STD accuracy relative to the EKF
local origin’ [14], which indicates the estimated accuracy
of the drone’s horizontal position as calculated by the EKE
with a 68% confidence level that the drone’s true horizontal
position is within this reported range from the EKF’s local
origin point. By multiplying the pos_horiz_accuracy by
the Z-score corresponding to 99% confidence in a normal
distribution (= 2.576), we effectively scale the horizontal
error margin. This adjusts the base of a cylinder on the
horizontal plane, within which we can be 99% confident
of the drone’s location. Similarly, vertical accuracy can be
scaled to define the vertical height of the cylinder, providing
a three-dimensional spatial region for the drone’s probable
location. Thus to account for geolocation uncertainty in
our minimum safety distance calculation, we define the
following equation:

_ / 2 2
dgeo = 2.576 x O oriz T Overt 3)

where Oporiz and overy are the horizontal and vertical
position 1-STD accuracy relative to the EKF origin, respec-
tively. Three related environmental assumptions, supported
by MAVLink [15] and PX4 [9] documentation are as follows:

A5. Adjacent System: The EKF reports the estimated lat-
itude and longitude of the drone, along with a distance
representing a 68% probability that the drone’s actual
location is within this distance from the estimated
coordinates.

A6. Adjacent System: The EKF reports the estimated
altitude of the drone, along with a height representing a
68% probability that the drone’s actual altitude is within
this distance from the estimated altitude.



A7. Adjacent System: Errors in the horizontal position
(latitude & longitude) and vertical position (altitude)
as computed by the flight-controller, follow a normal
distribution where Z-score corresponds to 99% = 2.576

We initially trust these assumptions, but recognize that
they need to be validated in the field through designing and
executing a series of tests with specific physical drones.

C. Stopping Distance without wind (DR2)

We define the stopping distance of a drone as the total
distance the drone travels from the moment it decides
to stop, until the point where it comes to a complete
halt. Excluding environmental perturbations like wind, this
distance consists of two main constituents: the reaction
distance dreaction and the braking distance dpraking. We
therefore consider each of these in turn.

- Reaction Distance: The reaction distance, given by dreaction,
represents the distance the drone covers during reaction
time. As previously stated in Regulation REG1 (and Assump-
tion Al), each drone reports its status at intervals marked
by P =t — tp. During these time intervals, the drone is
unlikely to be stationary, and therefore we need to consider
the upper-bound on its potential movement. Specifically,
we consider the velocity increase over period P as v, =
Vo + Gmax X P, where amax represents the drone’s maximum
acceleration capacity and vy is the velocity at the beginning
of the interval. Therefore, the reaction distance is defined
as dreaction = V1 X Treaction Where Treaction iS the interval
between receiving a stop signal and initiating deceleration.
Under upper-bound considerations, we assume Tieaction
immediately trails P, hence Tieaction = f2 — t1. Further, we
specify one additional assumption:

A8. Operational Environment. All drones flying in the
shared airspace operate autonomously.

Given this assumption we do not need to include oper-
ator response time, and therefore Tieaction iS solely deter-
mined by system latency.

In Eq. 2, we showed that the safe separation distance
included two buffer calculations. In the case of drone d the
period over which the buffer is computed is p, whereas,
for drone d’, as discussed in Section II-B, the period
is effectively L to account for staleness in the reported
parameters. Communication latency, Tcom can often be
determined from the specifications provided in the doc-
umentation of communication devices. In our case study,
we utilize Doodle Labs Smart Radio — RM-2450, which
uses an ultra-reliable Low Latency Channel. Messages are
currently transmitted between drones via the GCS, thus, we
document the following assumptions related to latency:

A9. Adjacent System: Status messages are transmitted
over Doodle Labs Smart Radio — RM-2450 using an
ultra-reliable Low Latency Channel with message la-
tency of 3-30 ms. Messages take two hops creating a
total transmission latency of 6-60 ms.

Al0. Adjacent System: Environmental factors such as
signal interference or communication delays beyond
the established latency T.om are negligible or within
controllable limits.

- Braking Distance: At t,, the drone initiates deceleration.
In this phase, we must consider the drone’s velocity at the
onset of braking, vy = V1 + @max X Treaction, Which incorpo-
rates the maximal potential increase in speed during the
reaction interval. Hence, the braking distance, defined as
the distance traversed from dzeceleration to a complete halt,

is expressed as dpraking = %, where agec represents the
ec

drone’s deceleration capacity. Therefore, the total stopping

distance can be modeled by the equation:

2
% ) @

Adec

dstop = (V1 % Treaction) + (

In these calculations we have treated system latency and
the deceleration rate as fixed constants. While reaction time
might vary according to the current processing load of the
sUAS, our system prioritizes critical processes (e.g. stop
commands) over other secondary processes (i.e. computer
vision, analytics), thereby reducing variation in reaction
times for prioritized processes such as emergency braking.

Finally, as the drone’s maximum acceleration capacity is
bounded by the drone’s maximum velocity capacity, the
practical formulation of apax is accounted in the equation:

A= P)) 5)

T
where vy, corresponds to the drone’s maximum velocity
capacity, v corresponds to the drone’s velocity of reference
and T to the time interval in question.

Amax = min(amax,(

D. The Impact of Wind (DR3)

Computing the effect of wind speed and direction, espe-
cially with transient wind gusts, versus the drone’s heading
and velocity is highly complex due to the unpredictable,
often chaotic nature of wind behavior, countered by the
drone’s PID (Proportional-Integral-Derivative) control sys-
tem’s response to these external forces.

We therefore start by making two simplifying assump-
tions. First, we assume that drones are operated within
manufacturers specifications, and therefore are only flown
in weather conditions they can handle. This means that we
can ignore extreme weather conditions that are beyond the
capabilities of the PID.



All. Process: Operators do not launch the drone when
wind conditions are outside operational specifications
or forecasted to be outside operational specifications
within the planned flight window.

Further, due to the processing resources that would be
required to continually compute the current direction of
the wind versus the drone’s heading, we make the following
assumptions that allow us to focus on the worst-case
scenario of tailwinds only.

Al2. Physical Environment. When wind conditions are
within operational specifications, regardless of wind
direction, sideways drift of the drone is minimal and
remains within an acceptable drift_margin.

Al3. Physical Environment. Tailwinds extend drone
stopping distances more than other relative wind di-
rections.

Given that the PID system’s capacity to mitigate wind
conditions hinges on its precise tuning, which can vary
across different drones and operational conditions, we
adopted an empirical approach for predicting the impact
of wind conditions. We started by utilizing the Gazebo
simulation environment [16], [17] to methodically assess
trajectory deviations under a range of wind conditions.
However, any trust we place in Gazebo for generating
correct trajectory deviations caused by wind, implies the
following assumption:

Al4. Process: The Gazebo simulation environment
closely approximates the aerodynamic and physical
interactions of a typical drone under varied wind condi-
tions, reflecting real-world behavior with an acceptable
degree of fidelity.

In an effort to validate this assumption, we inspected
the source code and associated documentation of the
underlying Gazebo physics model, which indicates that
wind is modeled using a nonlinear quadratic approximation
for thrust calculations under various wind conditions. The
documentation further claims that wind behavior has been
validated by the developers in a physical wind tunnel [16];
however, this assumption has relatively high degrees of
uncertainty associated with it, and is highly dependent
upon individual drone characteristics. All three of these as-
sumptions are supported by limited data that we previously
collected from a series of physical flight tests [18]; however,
additional data is needed for specific drone models. Based
on these findings, we focus our analysis on tailwinds, which
represent the worst case scenario with respect to stopping
distance.

For purposes of this paper, we report results obtained
from our experimentation in the Gazebo simulation in
which we investigated the stopping distance caused by
a constant tailwind aligned with the intended flight path
on a representative drone using the Gazebo simulation

Trajectory Deviation vs Wind Speed
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Fig. 3. Nonlinear regression analyses on data collected in Gazebo.

environment. We conducted an experiment in which drones
executed a predetermined straight-line flight between two
waypoints, where total distances were measured. We varied
wind speeds while keeping a control case (zero wind) for
baseline comparisons. The deviation in stopping distance
caused by the wind was quantified by comparing the
drone’s travel distance in wind-affected trials versus their
non-wind controlled distance as reported in Figure 3.

We performed nonlinear regression analysis to model the
relationship between wind speed and the deviation of the
drone’s trajectory from its intended path. An exponential
model of the form y = ae’™ was fitted to the data using
the least squares method, implemented via the curve_fit
function from the SciPy library in Python. This model was
chosen based on the observed exponential increase in tra-
jectory deviation with wind speed. The results confirm the
intrinsic exponential relationship claimed by the Gazebo
documentation, and thus we define d,q as:

dind = 0.02¢"26Vwind ®)

where vyinq is the speed of a tailwind upon contact with
the drone.

Given the inherent variability of wind patterns encoun-
tered during flight, we employed a Monte Carlo [19] sim-
ulation approach to evaluate the uncertainties affecting
tailwind disturbances under a wide range of conditions to
provide a robust framework for understanding the proba-
bilistic impacts of wind on drone trajectories. To model the
probability distribution of wind speeds during a particular
flight session, we employed the Weibull distribution. The
use of the Weibull distribution is supported by its extensive
validation for accurately modeling wind speed variations
across various environments [20], [21].

Given a mean wind speed, pwing and a predefined shape
parameter, the scale parameter A can be estimated using

A= %. This allows us to construct a tailored wind pro-
%



file for each flight session. Furthermore, since the Weibull
distribution generally denotes speeds at 10 meters above
ground level, adjustments for drone altitudes are made
using the wind power law, expressed as:
z a
v(z) = Uref(_) (7
Zref

Here, v(z) signifies wind speed at altitude z, v,s denotes
reference wind speed at reference height z.e¢, and a repre-
sents the wind shear exponent, which depends on surface
roughness and stability of the atmosphere. This law enables
refined altitude-specific wind speed estimations that can be
tailored to each drone’s operational necessities.

By integrating these elements, along with our empiri-
cal Equation 6, we can calculate trajectory deviations for
randomly generated wind profiles within the Monte Carlo
simulation. For conservative safety buffer estimations, we
consider the disturbance corresponding to wind speeds
situated two standard deviations from the mean.

E. Projected Distance during time interval 'P’ (DR4)

Projected distance, dpoj, forecasts the drone’s displace-
ment based on current operational conditions. For a drone
with current speed v and subjected to a maximum accel-
eration anmay, the projected distance over a time interval P
can be articulated through the kinematic equation:

1
dPrOj:VXP+§amaxXP2 8)

In operational terms, the projected distance incorporates
the drone’s current motion state and its capability to in-
crease speed within the specific time frame. We adopt a
conservative operative approach by factoring in amax as
the upper limit of potential acceleration when computing
the projected distance. As discussed in Section II-B, for
drone d’, the period P is effectively L to account for
communication latency.

E Tolerances

Eq. 2 includes a tolerance variable, which is designed
to accommodate additional factors, uncertainties, and
dcomfort, Tepresenting a distance between drones that must
be maintained at all times to prevent scenarios in which
drones pass within inches of each other. As an example,
the tolerance currently includes the physical dimensions
of drones d and d' for which we specify one additional
assumption.

Al5. Operational Environment. Every drone knows its
physical dimensions, broadcasts this information upon
startup, and notifies new drones upon their entry to
the airspace.

IV. VALIDATING ENVIRONMENTALLY COMPLEX
REQUIREMENTS

So far we have documented 15 environmental assump-
tions and validated them to various degrees using a com-
bination of techniques. However, to simplify our reasoning

about this complex space, we have assumed a linear depen-
dency between wind speed, drone trajectory deviation, and
geolocation accuracy, as depicted in Eq. 1, even though the
interactions between the factors may lead to complex, non-
linear outcomes, and therefore may not be fully predictable
using linear models or under assumptions of component
independence. However, we deliberately built tolerances
into Eq. 2 to accommodate unaccounted interactions, and
additional factors that we were either unaware of, chose
not to explicitly model, or for which unknown degrees of
uncertainty could impact our assumptions. This leads to
the following assumption:

Al6. Operational Environment: The tolerances built into
the equations for dynamically computing minimum
separation distance are sufficiently large to accom-
modate uncertainties associated with potentially non-
linear interactions of stopping distances, wind, geolo-
cation and other potential contributing factors.

It is particularly important to validate this assumption in
order to provide assurance that an absolute safe separation
distance is maintained between drones at all times, even
if all other factors combine into a worst-case scenario. For
example, consider some value for dg,¢ representing the safe
separation distance that drone d needs to maintain from
other drones under current operating conditions, and then
assume that the drone needs to perform an emergency stop
when the timing of status messages, wind conditions, and
geolocation accuracy join together to create a worst case
scenario. Further, following the emergency stop, there is a
dcomfort distance that must still be maintained, for example,
to ensure that drones pass each other with only inches to
spare. This d¢omfort is already accounted for in the toler-
ance buffers of in Eq. 2. It addresses derived requirement
DR5 which established the need for an absolute minimum
separation distance to never be violated.

To validate that drones consistently maintain the nec-
essary deomfort distance under all operational conditions,
including worst-case scenarios, we have planned, but not
yet executed a Monte Carlo, using the Gazebo simulation
framework. These simulations will introduce variables such
as GPS variance, diverse drone velocities and maneuvers,
and varying wind profiles. By systematically testing against
a broad spectrum of conditions, we aim to ensure that
drones adhere to the predefined d.omfort Separation. If
simulations confirm that drones uphold the dcomfort dis-
tance, this would affirm that the tolerances integrated into
Equation 2 are sufficiently robust to encapsulate potential
non-linearities and any overlooked factors present in the
operational model.

Furthermore, given potential uncertainties in the fidelity
of the simulation models versus the physical world, we also
need to collect data from diverse physical world flights to
build confidence in our results. We can collect this data
using runtime monitoring [22] or through post-mortem



System Level Requirement

Functional Requirement (R1): When in flight, drone d shall continually compute the minimum_separation_distance with each neighboring drone d' within its Region of Interest (ROI).

‘Regulations and Assumptions: (Note: REG1/A1 & REG2 /A2 serve as requirements for drone d and as assumptions upon drone d")

‘REG1 / A1. Regulatory: Every drone d operating in the shared airspace broadcasts a status message at fixed intervals, denoted as period P. The status message includes the drone's current position, velocity, heading,

:acceleration, and accuracy in its geolocation.

A
‘to other drones is negligible.

iREGZIAZ. Regulatory: Each drone d computes its required safety distance from drone d'upon receipt of the status message sent from from d"

4. Adjacent System: Drones maintain operational safety between consecutive broadcasts and thus all minimum safety calculations are valid until the following status update.

Adjacent System: The onboard software, which broadcasts status messages, receives updates from its associated flight controller sufficiently frequently that the delay between obtaining a status update and broadcasting

d worstStoppingDistance
worstStoppingDistance ¥ d'
neighbors with respect to

d GeolocationSphere
GeolocationSphere ¥ d'
neighbors with respect to d

T
d windAdjustment
windAdjustment V d'
neighbors with respect to d
|

T
d projectedDistance
projectedDistance V d'
neighbors with respect to d

1
d,d)
toleranceDistance

Derived Requirement - 1

Derived Requirement - 3

Derived Requirement - 5

For each drone d, the autopilot shall periodically ascertain its geolocation and
the geolocation of each neighboring drone d', ensuring at least a 99% confidence
level that each drone is positioned within a specified 3D region around its
computed coordinates.

For each drone d, and each neighboring drone d'of d, the autopilot shall
consider the drone's additional stopping distance introduced by the
projected L

fusedGPSPosition
envelopeSphereRadius
|

maxTailwindAdjustedStopDist
windDriftDeviation
1

GEOLOCATION UNCERTAINTY
For each drone, geolocation inaccuracies can result from sensor errors and GPS signal
disruptions, etc.

WIND ADJUSTMENT
High tailwinds increase stopping distance of drones.

:Assumptions:

:A5. Adjacent System: The EKF reports the estimated latitude and longitude of the
‘drone, along with a distance representing a 68% probability that the drone's actual
‘location is within this distance from the estimated coordinates.

;A Adjacent System: The EKF reports the estimated altitude of the drone, along with a
eight representing a 68% probability that the drone's actual altitude is within this :
:distance from the estimated altitude.

§A7 Adjacent System: Errors in the horizontal position (latitude & longitude) and vertical
‘position (altitude) as computed by the flight-controller, follow a normal distribution where :
:Z-score corresponds to 99% =~ 2.576. :

:Collect at runtime_
‘fusedGPSPosition=GLOBAL_POSITION_INT
‘ESTIMATOR_STATUS . pos_horiz_accuracy
‘ESTIMATOR_STATUS . pOs_vert_accuracy

e

ONM

orizontalUncertaintyMeters = pos_horiz_accuracy * 2.567
erticalUncertaintyMeters = pos_vert_accuracy * 2.567

:3: envelopeSphereRadius = worst case envelope sphere radius, given the
:current horizontalUncertaintyMeters and the current verticalUncertaintyMeters.

:Note: The PX4 Kalman filter aggregates data into the fused global_position_int from

:numerous other sensors, including, but not limited to (a) number of satellite fixes, (b)
:HDOP (Horizontal Delusion of Precision), (c) satellite based GPS, (d) IMU sensors, and :
‘(e) barometric sensors. :

EAssumptiuns:

§A11. Process: Operators do not launch the drone when wind conditions are outside
‘operational specifications or forecasted to be outside operational specifications
within the planned flight window.

EA12. Physical Environment: When wind conditions are within operational
‘specifications, regardless of wind direction, sideways drift of the drone is minimal
‘and remains within an acceptable drift_margin.

‘A13. Physical Environment: Tailwinds extend drone stopping distances more than
‘other relative wind directions.

‘A14. Process: The Gazebo simulation environment closely approximates the
‘aerodynamic and physical interactions of a typical drone under varied wind
:conditions, reflecting real-world behavior with an acceptable degree of fidelity.

:projectedWind
:projectedWindGust

‘Compute upon startup

1: maxTailwindAdjustedStopDist = worst case stopping distance deviation of drone
‘given maximum wind gusts projected, and tailwind.

:2: windDriftDeviation = expected drift from flight path given perpendicular wind at
maximum gusts projected.

Derived Requirement - 2

Derived Requirement - 4

For each drone d, the autopilot shall periodically compute its maximum
stopping distance and the maximum stopping distance of each neighboring
drone d', in non-windy conditions, given their current velocity.

For each drone d, the autopilot shall compute its distance projected to

travel, and the distance projected to travel of each neighboring drone d',
between status updates, given their current velocity.

speedWorstStoppingDistance
|

worstProjectedDistance

SPEED INFLUENCE
Higher speeds increase stopping distance of drones.

PROJECTED DISTANCE MOVED
Each drone can move to a different geolocation between status reports.

‘Assumptions:

:A8. Operational Environment: All drones flying in the shared airspace operate
:autonomously. Therefore the reaction time to initiate deceleration is solely determined
‘by system latency.

Adjacent System: Status messages are transmitted over Doodle Labs Smart Radio
M-2450 using an ultra-reliable Low Latency Channel with message latency of 3-30
:ms. Messages take two hops creating a total transmission latency of 6-60 ms.

:A10. Adjacent System: Environmental factors such as signal interference or
:communication delays beyond the established latency 7_com are negligible or within

Collect at runtime
currentVelocity

fixedPeriod P
systemLatency T_reaccion
communicationLatency T_com

:maxAcceleration
:maxSpeed
:droneDeceleration

1: for drone d: uncertaintyPeriod = fixedPeriod P :
: v neighbor drone d': uncertaintyPeriod = fixedPeriod P + communicationLatency T_com :
orstProjectedSpeed = worst possible speed that the drone could achieve during the ~ :
ncertainty period, given the currentVelocity and the uncertaintyPeriod. :
4: worstSpeedUntilDeceleration = worst possible speed that the drone could achieve until :
the deceleration is initiated, given the currentVelocity and the systemLatency.

:5: speedWorstStoppingDistance = stopping distance given the :
‘current worstProjectedSpeed, current worstSpeedUntilDeceleration, the systemLatency, :
:and the droneDeceleration

‘Assumptions:

:A9. Adjacent System: Status messages are transmitted over Doodle Labs Smart
:Radio — RM-2450 using an ultra-reliable Low Latency Channel with message
‘latency of 3-30 ms. Messages take two hops creating a total transmission latency of
:6-60 ms. :

:A10. Adjacent System: Environmental factors such as signal interference or
:communication delays beyond the established latency 7_com are negligible or
-within controllable limits.

Collect at runtime
‘currentVelocity

‘maxAcceleration

‘maxSpeed

fixedPeriod P
‘communicationLatency T_com

éCo_mpute at runtime

:1: for drone d: uncertaintyPeriod = fixedPeriod P

:2: v neighbor drone d':

‘uncertaintyPeriod edPeriod P + communicationLatency T_com

:3: worstProjectedDistance = distance to have been travelled during the
‘uncertaintyPeriod, considering the currentVelocity, maxAcceleration and maxSpeed
‘possible.

For each drone d, and each
neighboring drone d', there shall
exist a minimum separation
distance that must never be
violated.

toleranceDistance

TOLERANCE DISTANCE
There is a tolerance distance assigned
to every drone.

‘Assumptions:

:A15. Operational Environment: Every
:drone knows its physical :
-dimensions, broadcasts this :
‘information upon startup, and notifies :
:new drones upon their entry to the
:airspace.

:A16. Operational Environment: The
‘tolerances built into the equations for
-dynamically computing minimum
‘separation distance are sufficiently
‘large to accommodate uncertainties
:associated with potentially non-linear
‘interactions of stopping distances, :
‘wind, geo-location and other potential :
:contributing factors. :
‘Collect upon startup

:dronesRadius [Lookup table]
:comfortDistance

‘Collect at runtime
:newEnteringDroneRadius

‘Compute upon startup
:1: toleranceDistance [Lookup table] = :
:dronesRadius[d,d"] + comfortDistance :

Com ute at runtime
“1: toleranceDistance.update(
EnewEmeringDroneRadius )

Fig. 4. An environmentally complex requirement is decomposed into derived requirements and environmental assumptions. At runtime, sensor data
is continually collected as specified in the requirements to compute minimum separation distances, and to monitor that sUAS maintain safe distances
between each other at all times.



flight log analysis [23]. Finding any case in which dcomfort is
violated, could indicate that we have missed an important
factor (e.g., humidity) or an inter-feature interaction (e.g.,
cold weather impacting the responsiveness of the flight
controller) that is neither explicitly modeled nor accom-
modated in our tolerance factor and therefore needs to be
modelled independently.

V. THREATS TO VALIDITY

Our reliance on simulation results with limited field
data introduces a potential gap between the controlled,
simulated environment and the real-world conditions under
which the drones will operate. Further, we used the Gazebo
simulator and its underlying physics engines, without mod-
ifying the properties to match those of our physical drones.
This creates a risk that the simulation-based findings will
not generalize to physical environmental conditions. We
have partially mitigated this problem through validating
some of our simulation results, especially the wind-related
analysis, against real-world data, and have performed pre-
liminary stopping distance tests. Further, we have used this
simulator as part of our devops environment for several
years, and have observed high (but not perfect) fidelity
with the real world. The field-data that we have collected
so far supports our assumptions that differences between
simulation and physical world outcomes are covered by
tolerances built into our formulas.

In addition, as architects of DroneResponse, we are inti-
mately aware of its requirements; however, it is possible that
we have missed key factors for computing the minimum
separation distance dynamically, and that these missing
factors exceed the tolerances built into our formulas. The
final Monte Carlo simulation and proposal for field-based
runtime monitoring is designed to detect near violations of
minimum-separation distance, triggering reconsideration of
the key factors and our inbuilt tolerance levels.

VI. RELATED WORK

In Michael Jackson’s world-machine model [24], [25], the
‘world’ refers to the application domain or the specific
problem context that the software aims to address, while
the ‘machine’ is the software solution or system being devel-
oped to interact with this world. The ‘specification’ acts as a
bridge between the world and the machine, describing the
behavior the machine must exhibit at its interfaces to satisfy
user requirements. Environmental assumptions are integral
to the world-machine model as they define domain knowl-
edge from the perspective of developers’ beliefs about the
external context and conditions within which the machine
operates. However, the majority of work on environmental
assumptions has focused on formal requirements modeling
[1], [2] and safety assurance cases [26], [27]. In contrast,
our case study has emphasized the role of environmental
assumptions in a less formal software development process,
characterized by natural language requirements, iterative

design, and robust testing, without the use of formal meth-
ods. Several researchers have highlighted the central role
of environmental assumptions across diverse areas such as
automotive, aviation, and medical domains [12]. Leveson
discussed approaches for avoiding assumption violations
[11], [28] while Rahimi et al., discussed problems associated
with missing and outdated assumptions [5]. Finally, Piccardi
et al., [29] and Chowdhury et al., [30] described the role of
well validated assumptions in safety assurance arguments.

Case studies have played an important role in require-
ments engineering for research associated with require-
ments synthesis, goal modeling, model checking, and ar-
chitectural design. While recent discussions have attempted
to narrow the definition of a case study [31], this term has
traditionally been used to describe this type of in-depth
example, and we therefore continue to use it in this paper.
Commonly referenced case studies include the mine pump
problem [32], a patient monitoring system [33], and the
automated train control system [34]. However, the focus
has been primarily on requirements, with less emphasis
on environmental assumptions beyond stating that they
must be identified and validated (e.g., [35]). In contrast,
our case study emphasizes the role of the assumptions in
the requirements specification and validation process.

VII. CONCLUSIONS

The case study presented in this paper provides an initial
description of requirements and environmental assump-
tions for addressing the problem of dynamically maintain-
ing safe separation distance between sUAS. The paper pro-
vides only a high-level discussion of the process we followed
to identify assumptions, and does not propose or compare
alternative modeling approaches based on techniques such
as formal methods or goal-oriented approaches. This is by
design, as our primary intention is to provide an in-depth
example from the sUAS domain to serve as a case-study for
other researchers interested in exploring diverse modeling
and synthesis approaches.

In ongoing work we will conduct the currently unimple-
mented integration tests described in Section IV. Second
we will extend our case study through more robust real-
world testing, including evaluating the impact of additional
environmental factors such as drone characteristics, and
additional weather conditions, such as temperature which
is known to impact flight performance. We will determine
whether to explicitly model these additional characteristics.
We will also investigate other environmentally complex
requirements from our DroneResponse system, including
various failure cases which are currently not fully addressed.

As this workshop paper represents an ongoing effort to
specify requirements associated with challenging aspects of
our DroneResponse project, we have established a github
repository for reporting further results and for facilitating
community discussion. The link can be found at https://
github.com/SAREC-Lab/UAV-MinimumSeparation.


https://github.com/SAREC-Lab/UAV-MinimumSeparation
https://github.com/SAREC-Lab/UAV-MinimumSeparation
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