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Abstract

Many applications can benefit from data that increases perfor-

mance but is not required for correctness (commonly referred

to as soft state). Examples include cached data from backend

web servers and memoized computations in data analytics sys-

tems. Today’s systems generally statically limit the amount of

memory they use for storing soft state in order to prevent un-

bounded growth that could exhaust the server’s memory. Static

provisioning, however, makes it difficult to respond to shifts

in application demand for soft state and can leave significant

amounts of memory idle. Existing OS kernels can only spend

idle memory on caching disk blocksÐwhich may not have the

most utilityÐbecause they do not provide the right abstractions

to safely allow applications to store their own soft state.

To effectively manage and dynamically scale soft state, we

propose soft memory, an elastic virtual memory abstraction

with unmap-and-reconstruct semantics that makes it possible

for applications to use idle memory to store whatever soft state

they choose while guaranteeing both safety and efficiency.

We present Midas, a soft memory management system that

contains (1) a runtime that is linked to each application to

manage soft memory objects and (2) OS kernel support that

coordinates soft memory allocation between applications

to maximize their performance. Our experiments with four

real-world applications show that Midas can efficiently and

safely harvest idle memory to store applications’ soft state, de-

livering near-optimal application performance and responding

to extreme memory pressure without running out of memory.

1 Introduction

A wide range of applications can benefit from storing soft state

in memory, including web applications [43], databases [32],

key-value stores [30], CDN services [12, 34], and model serv-

ing frameworks [9]. Data is considered soft state when it is help-

ful for efficiency, but discarding it does not impact correctness

because it can easily be reconstructed if it is later needed. For ex-

ample, caches and memoization are both common forms of soft

state. Soft state enables applications to trade extra memory con-

sumption for better performance, and these gains generally in-

crease with the amount of memory available [45, 47]. A signif-

icant fraction of memory is left idle in today’s datacenters [27,

48], suggesting there is a large untapped opportunity to improve

overall efficiency by using idle memory to store soft state.

While spending memory on soft state can improve

performance, it must not compete with the need to store regular

application data. For example, if too much memory is spent

on soft state, this could lead to swapping to disk or worse still,

out-of-memory errors, which can result in failures. Because

of this, developers often limit their storage of soft state to a

small static amount, for fear that they may run out of memory.

In other words, it is a challenge to allocate enough soft state

to consume all available idle memory, but to not go beyond

the point where it would cause performance issues or failures.

Existing OS abstractions for elastically responding to

changes in available idle memory are too limited. For example,

the Linux Kernel maintains a page cache that automatically fills

idle memory but it can only be used to cache disk blocks. This

constrains idle memory to storing just a single type of soft state

which may or may not provide the most utility for applications.

An ideal abstraction would instead democratize access to

idle memory so that each application could choose how to best

spend it (i.e., the type of soft state that is most beneficial). For

example, suppose an application does not rely much on local

storage, but frequently accesses objects stored in a key value

store over the network. Instead of being limited to the page

cache, idle memory could be spent on caching the key-value

store’s objects locally, resulting in a much greater benefit.

This problem is further complicated in today’s multi-

tenant cloud. It is common for each server to run multiple

applications, and they may come from different users and

exhibit dramatically different performance sensitivity to the

amount of soft state. At the same time, adding memory to one

application can lead to reductions in the performance of others.

Consequently, determining how to dynamically balance

the soft state needs of different applications in a way that

maximizes overall memory utility/performance is a challenge.
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Insight. In this paper, we aim to answer the following

question: can we provide a new virtual memory abstraction for

soft state (herein referred to as ªsoft memoryº) that developers

can use to coordinate with the kernel so that they can take full

advantage of all available memory? In other words, our goal

is to no longer limit idle memory to the page cache, and to

instead allow its use to be customized by each application in

a way that maximizes overall utility.

Unlike existing systems that perform caching entirely in

the user space [2, 9, 30], we propose Midas, a system that

coordinates with the kernel to dynamically provision soft

memory between applications. The advantage of this approach

is two-fold. First, application developers can program with

the illusion of an ªunlimited cacheº, and are thus freed of the

burden of manually managing their soft state. To avoid running

out of memory, the kernel responds to memory pressure by

rapidly unmapping soft memory pages. To transparently

recover any lost soft state, later accesses will automatically

trigger the application to reconstruct the missing soft state.

Second, the kernel has global visibility of all applications,

their memory usage, and the amount of idle memory, making

it possible to understand each application’s sensitivity to

memory size and automatically coordinate soft memory

allocation between applications. Midas also incorporates the

page cache by treating it as another source of soft memory.

Challenges. Midas is a soft memory management system that

achieves (1) programming flexibility and (2) dynamic memory

provisioning, with unmap-and-reconstruct semantics, to

guarantee both safety and efficiency. Realizing these benefits

requires overcoming four major challenges:

First, what interfaces shall we expose to developers? To im-

prove usability, Midas provides developers with a soft memory

pointer abstraction (similar to C++ smart pointers) to access

soft memory easily and safely (see §4.1). Midas offers a set

of high-level key-value store APIs, which are similar to those

of popular cache services (such as Memcached [30], Redis [2],

CacheLib [9], etc.), but enhanced to allow the exposure of

more semantics to the runtime. A critical interface we expose

to developers is data structure reconstructionÐdevelopers

not only register soft memory objects but also specify their

(re)construction logic, so soft state can be transparently

regenerated if it is later accessed after it was evicted.

Second, how shall soft memory be managed? Program

data is allocated as objects on the heap but the kernel cannot

recognize them, as it is only aware of memory pages. As a

result, if we let the kernel manage soft memory alone, it could

only reclaim space in coarse-grained units without knowledge

of what objects the space contains. For example, reclaiming

hot (i.e., frequently accessed) objects in a soft-state cache can

lead to significant slowdowns. In addition, it is undesirable to

reclaim space from the programs that would benefit the most

from soft state when others need it less, but such performance

sensitivity information is invisible to the kernel.

To solve the problem, we propose a runtime library that can

be linked into each application to recognize object behaviors,

letting the runtime and the kernel co-manage soft memory.

The Midas runtime offers a log-structured allocator [41] and a

concurrent evacuator that continuously identifies and compacts

hot objects into a small soft memory space. This information

(of hot and cold regions) is shared with the kernel so that it can

focus its reclamation on regions with cold objects (see §4.2).

Third, how can we coordinate soft memory allocation

between applications? The runtime can only see each applica-

tion’s individual behavior without any global knowledge of the

server’s available memory and other applications’ needs. Fur-

thermore, the runtime can only manage objects in user space,

but cannot dynamically add/remove memory between appli-

cations. To overcome this challenge, we propose a global coor-

dinator inside the Linux kernel. The coordinator periodically

probes each application by communicating with the runtime to

request information regarding the application’s sensitivity to

cache size. Cold regions of soft memory from applications that

are less sensitive to size changes will be reclaimed and memory

will be given to those that are more sensitive (and hence benefit

more from a larger cache) by the kernel (see §4.3).

Finally, how can the kernel quickly reclaim soft memory

without disrupting a running application? Since the kernel

operates at page granularity, a natural idea is to swap out

pages that contain soft-state data. Unfortunately, swapping is

disruptiveÐswapping out a page blocks all incoming memory

allocations and hence all threads of the application; frequently

swapping pages can introduce significant overheads that

prevent applications from reaching service-level agreements

(SLA) [40] (see §2).

To maintain high efficiency, Midas instead uses the kernel

to unmap pages directly (which is much faster than swapping

them to disk). When pages are unmapped, their underlying

data is lostÐthis is acceptable for soft state because it can

be regenerated. Without coordination, however, the kernel

cannot distinguish soft state from application data, making

unmapping potentially unsafe.

To solve this problem, our runtime is designed in a way that

is resilient to data loss. A soft pointer-based interface detects

data loss through segmentation faults that are triggered by the

runtime’s functions. These functions are carefully designed

to capture faults and transparently invoke a reconstruction

interface to regenerate the needed data (see §4.2.3).

Compared to paging, Midas does not freeze the execution

when shrinking soft memory, resulting in less disruption

to the application. Furthermore, reconstruction focuses on

recovering the individual objects that are needed and hence

is much more fine-grained and can be more efficient than

swapping, which brings back entire pages. Reconstruction

may require more computation than paging (the amount of

computation depends on exact soft state data). Therefore,

Midas provides a profiling tool that warns developers when

reconstruction incurs a high cost (discussed in §4.4).
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Figure 1: The throughput of all three applications increases by

caching more soft state, but the benefit varies: SocialNet is 1.8×

faster by caching 70% of its working set, while HDSearch, in contrast,

achieves a 3.3× throughput increase by caching 50% state.

Results. With Midas, one can easily allow applications to

take advantage of soft state that do not currently support

it. It is also easy to port legacy code that uses an existing

cache system to use Midas instead. Our evaluation shows that

Midas can efficiently and safely harvest idle memory to store

applications’ soft state and achieve near-optimal performance

while reacting to extreme memory pressure quickly enough

to avoid running out of memory. By effectively granting

soft memory to the applications that benefit the most, Midas

achieves 1.34× higher overall throughput than Cliffhanger

(a state-of-the-art caching system). Midas is available at

https://github.com/uclasystem/midas.

2 Motivation

Many types of applications can benefit from soft state. For ex-

ample, a web frontend could cache content locally after loading

it from a backend to reduce network traffic and improve re-

sponse times; a database could cache the results of user queries

to reduce disk I/O and improve throughput; and a data analytic

or machine learning system could memoize intermediate

computation results to eliminate redundant computations.

To gain a high-level understanding of how much improve-

ment can be achieved by storing soft state, we experimented

with three datacenter applications: SocialNet (from Death-

StarBench [18]), MongoDB [32], and HDSearch (from

μSuite [46]). Each of these applications are capable of

using soft state. SocialNet [18] is a web forum built using

microservices; it employs Memcached and Redis to cache

user data in its frontend services. MongoDB [32] is a NoSQL

database; it has a built-in, in-memory caching engine that

caches recently queried data. HDSearch is an image search

service that memoizes the feature vectors of the images in its

corpus, generated by a GPU-based DNN.

Figure 1 shows the throughput of each application with vary-

ing amounts of soft state. The x-axis represents the percentage

of each application’s working set cached in memory, and the

y-axis shows the normalized throughput (to its performance

without soft state). Soft state is helpful to all applications

but the amount of benefit it provides varies. SocialNet is the

least sensitive to its soft state size; however, it still sees a

1.8× speedup by storing 70% of its soft state. HDSearch, in

Figure 2: SocialNet starts to swap when it caches excessive data

and exhausts all available memory at t = 8min and it experiences a

throughput collapse.

Figure 3: Statically provisioning the cache space for SocialNet is sub-

optimal. During t=0min–5min, the cache is overprovisioned which

wastes memory. After that, the cache becomes underprovisioned

which limits performance.

contrast, is more sensitive to the soft state size—its throughput

increases by more than 3× with only 50% of its soft state.

Real-world datacenter applications can access a massive

amount of data. For example, a web forum like Twitter

generates petabytes of new data every day [49]. Thus, blindly

storing soft state in memory without a proper limit can hurt

application performance. An example of this problem is

shown in Figure 2. Storing soft state increases the throughput

of SocialNet up to a point. However, when idle memory

becomes exhausted, the kernel begins to swap out pages (at

t=8min), leading to a severe collapse in throughput.

A simple strawman solution is to statically provision a

limited memory capacity for storing soft state so that memory

use does not grow unbounded. However, provisioning the

right capacity is extremely challenging in practice.

First, for each application, we must find its sweet spot

of cache capacity; underprovisioning limits performance

while overprovisioning wastes memory. In addition, data-

center applications often have phased behaviors and load

variability [7, 8], making it impossible to have a simple static

configuration that is optimal at all times. For example, Figure

3 shows the results of SocialNet when statically provisioning

it with 4 GiB for storing soft state. It takes about 5 minutes

to fully fill this memory, leading to a suboptimal utilization

during this period. Performance increases with more usage

until it exhausts the soft state limit. After that, performance

flattens out despite the possibility of higher throughput if

additional soft state memory were available (the optimal line).

Second, as shown by Figure 1, different applications gain

different amounts of benefits through caching. To achieve

optimal overall performance with a limited amount of memory,
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Figure 4: Midas enables developers to utilize soft memory easily and

efficiently with three major components: a familiar programming

abstraction, an application-integrated runtime, and a global soft-

memory budget coordinator.

one must grant space correctly to the applications that benefit

the most. For example, initially MongoDB’s performance

is most sensitive to the amount of soft state (the left side of

Figure 1), and thus we should prioritize its need. However,

the return diminishes quickly after caching 30% of its state.

To make the best use of the remaining memory, we should

respond by granting memory to HDSearch.

These problems call for a new system that can provide

elastic access to soft state for applications and dynamically

coordinate usage among applications in response to each

one’s execution phase and sensitivity to soft state size. To

be efficient, soft state should be able to quickly scale up and

down its capacity with little disruption. To be safe, the system

should be resilient to data loss caused by scaling down. To be

responsive, the system should conduct coordination among

applications quickly. Finally, to be practical, the system should

provide familiar programming abstractions for developers to

store and access soft state.

3 Midas Overview

As shown by Figure 4, Midas consists of three main com-

ponents: a programming abstraction for using soft memory

(§4.1), an application-integrated runtime that manages soft-

memory objects (§4.2), and a global coordinator that arbitrates

soft memory usage across different applications (§4.3).

Midas provides programming abstractions that enable sim-

ple and efficient use of soft memory through familiar APIs. At

a low-level, programmers can interact with Midas through soft

memory pointers, an abstraction that provides object ownership

similar to C++ smart pointers. However, it differs in that under-

lying objects can be forcibly released when under memory pres-

sure, even if still in scope. If a released object is later accessed,

a reconstructor function is invoked to regenerate the missing

object (e.g., by fetching it from a database over the network).

Building upon soft memory pointers, Midas provides a

higher-level library of familiar STL-style soft data structuresÐ

including arrays, hash tables, and queues. These hide the

complexity of managing individual soft memory pointers, and

can be used as drop-in replacements for existing data structures.

For example, a developer building a key-value store similar

to Memcached could use a soft hash table to store soft memory

objects. Midas’s high-level interface is generally sufficient for

most use cases, but developers are free to build their own cus-

tom soft data structures through use of soft memory pointers.

Midas manages soft memory objects through a runtime

that is linked as a library with the application. It serves as an

allocator for soft memory objects. It works cooperatively with

the coordinator (discussed next) to determine the best memory

to release (i.e., idle memory first, then cold objects, and finally

hot objects). To achieve this, the runtime provides a moving

allocator that embraces the idea of log-structured memory [41]

to organize soft memory into different segments. An evacuator

thread scans and compacts logs to segregate hot objects, cold

objects, and dead objects. This helps both to coordinate which

memory should be freed and to reduce fragmentation.

However, the runtime is not trusted for correct operation.

If it fails to respond quickly enough or if memory pressure

becomes too severe, pages will be unmapped in an uncoordi-

nated fashion to avoid swapping. In the event such forcible

revocation happens, the runtime is designed to safely tolerate

page faults when accessing unmapped memory. To achieve

this, we developed a set of page-fault-resilient functions and

used them as primitives to build our runtime.

Midas’s global coordinator dynamically adjusts the soft

memory budget among applications to optimize their overall

performance. It periodically probes the marginal utility of soft

memory for each application by granting a small amount of

additional memory and observing the effect on performance.

Using this information, the coordinator can optimize the

allocation of soft memory by granting it to the applications

that benefit the most. The coordinator defines the global

utility function as the weighted average of all applications’

performance and employs a hill-climbing algorithm to

approach the global optimal point. Midas allows operators

to specify the weight of each application to indicate relative

significance, similar to the nice interface of Linux.

4 Design

4.1 Soft Memory Abstraction

Soft memory is a new type of memory that can be revoked

under memory pressure. In Midas, soft memory is backed

by physical pages that can be unilaterally unmapped and

reclaimed by the OS kernel. Accessing reclaimed soft memory

will trigger a reconstruction event to rebuild the missing data.

Midas provides a smart-pointer-like API to enable developers

to easily use soft memory, hiding the complex details of soft

memory allocation/deallocation, page-fault handling, and data
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1 template <typename T, typename... ReconArgs >

2 class SoftMemPool {

3 SoftMemPool(std::function <T(ReconArgs ...)>

4 reconstructor);

5 SoftUniquePtr <T, ReconArgs...> new_unique();

6 SoftSharedPtr <T, ReconArgs...> new_shared();

7 };

8

9 template <typename T, typename... ReconArgs >

10 class SoftUniquePtr {

11 ~SoftUniquePtr();

12 T read(ReconArgs... args);

13 void write(T newval);

14 bool cmpxchg(const T &oldval , T newval);

15 };

Listing 1: Midas’s soft memory pool and unique pointer interface.

1 template <typename T> class SoftArray {

2 SoftArray(size_t size , std::function <T(size_t)>

3 reconstructor);

4 T read(size_t idx);

5 void write(size_t idx , T t);

6 bool cmpxchg(size_t idx , const T &oldval , T newval);

7 };

8

9 class BlockCache {

10 BlockCache(size_t sz) : array_(sz, [](size_t idx) {

11 return read_from_storage(idx); }) {}

12 Block read(size_t idx) { return array_.read(idx); }

13 void write(size_t idx , Block block) {

14 array_.write(idx , block);

15 write_to_storage(idx , block);

16 }

17

18 SoftArray <Block > array_;

19 };

Listing 2: Midas’s soft array interface and a simple user-level storage

block cache (similar to Linux’s page cache) built using soft array.

reconstruction (§4.1.1). Furthermore, Midas offers high-level

data structure libraries as composable building blocks (§4.1.2).

4.1.1 Soft Memory Pointer

Listing 1 shows Midas’s soft memory pool and pointer

interface. To use soft memory, developers first need to create

a soft memory pool which can later be used to allocate soft

memory pointers. The pool abstraction conceptually groups

together soft pointers whose objects can be reconstructed in

a similar way. Midas exposes the pool as a C++ template class

whose parameters consist of two parts: T, which is the object

type of soft pointers to allocate, and ReconArgs, which are the

types of arguments used for reconstructing a missing object.

Developers can initialize a pool with a reconstructor

function and then allocate pointers using new_unique (for

soft unique pointers, similar to C++’s std::unique_ptr)

and new_shared (for shared pointers).

Soft memory pointers support automatic lifetime man-

agement through reference counting. Developers can use

its read API to get the value of the pointed object. In case

the underlying soft memory has been reclaimed, Midas will

automatically reconstruct the missing object using the recon-

struction arguments passed into read (we will show a concrete

example soon in §4.1.2). Midas hides the raw reference and

returns the value by copying. This is critical as the underlying

reference may become invalid any time when the soft memory

gets reclaimed. With copying, Midas restricts potential

faulting sites to stay inside Midas’s internal code, thereby

freeing developers from handling complicated page faults in

the application code. The copying design incurs negligible

performance overheads (only a few additional cache accesses).

write enables developers to update the object value. However,

different from read, write does not require reconstruction

arguments as Midas can directly rebuild the object using the

new value. Soft pointers also support atomic operations like

compare-and-exchange, enabling developers to atomically

update object values to support multi-threaded applications.

With its smart pointer design, Midas is able to capture rich

application semantics for effectively managing soft memory.

For example, since all soft object accesses go through the

read/write API, Midas can accurately track the hotness

information of each object which can be leveraged by Midas

runtime for making intelligent object placement and eviction

decisions (details in §4.2). Soft pointer’s automatic lifetime

management enables cascading eviction, improving the

efficiency of using soft memory. For instance, in a web forum

application, a forum post object may contain a soft unique

pointer to an attached picture. Under memory pressure, Midas

may decide to evict the post object in which case the reference

count of the picture pointer will automatically drop to zero

and trigger evicting the dangling picture object cascadingly.

4.1.2 Soft Data Structures

To further reduce the programming effort of using soft

memory, Midas offers high-level data structures as convenient

building blocks. Midas’s built-in data structures include soft

arrays, soft hash tables, and soft queues; developers can also

easily build more based on the soft pointer abstraction.

Listing 2 presents the interface of soft array (lines 1-8).

Developers can create a soft array by specifying its size and

reconstructor (which rebuilds the array element of a given

index). Soft array supports standard read, write, and atomic

operations by index. Under the hood, a soft array is simply

implemented via an ordinary array of soft pointers.

Lines 10-21 present a user-level storage block cache as a

simple illustrative application, similar to Linux’s page cache.

BlockCache internally wraps a soft array whose elements

are storage blocks (line 20). This enables it to efficiently

leverage idle memory to cache storage blocks in a best-effort

manner. For each block read request, it simply retrieves the

result from the soft array (line 14). Upon an element miss,

the array automatically reconstructs the element by reading

the block back from the storage device (lines 12-13). For each

block write request, BlockCache updates both the cache in

array and the data in storage.

4.2 Application-Integrated Runtime

Midas runtime is the key component that manages soft objects

to enable efficient use of soft memory. It includes a log-

structured memory allocator that serves memory allocation
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Figure 5: Midas organizes soft memory using a free segment list and

a used segment list (sorted by segment’s hotness, useful for Midas’s

evacuator in §4.2.2). It employs a log-structured allocator to serve

memory allocation requests. Each object has a 10-byte header, which

includes a liveness bit, an evacuating bit, hotness bits, an object size

field, and a reversed pointer field.

requests and organizes objects into a list of segments (§4.2.1),

a concurrent evacuator that constantly compacts hot objects

and releases cold and dead objects (§4.2.2). Page faults can

happen in Midas runtime when the soft memory it is accessing

gets reclaimed and unmapped because of memory pressure.

To ensure robustness, we carefully built the runtime using a

set of page-fault-resilient functions which are able to capture

page faults and gracefully recover from them (§4.2.3).

In Midas, the runtime as well as the soft memory it manages

are linked directly into each application’s address space.

Compared to traditional cache services (e.g., Memcached) that

run in a separate process, our design offers several important

advantages. First, it provides direct and efficient soft memory

accesses for applications, eliminating the inter-process

communication (IPC) overhead. Second, it enables our

runtime to profile the application and collect semantics, greatly

facilitating semantics-aware optimizations. Third, since

each application has its own runtime, we can easily enforce

soft memory isolation among applications and adaptively

customize the memory management policy of each application.

4.2.1 Log-structured Soft Memory Allocator

Midas embraces the idea of log-structured memory [41]

to manage soft memory; it reduces memory fragmentation

through compaction, thereby achieving higher efficiency in

utilizing soft memory.

Midas’s log-structured allocator organizes soft memory

using a free segment list and a used segment list, illustrated

in Figure 5. Segments are the units for Midas to perform

evacuation to compact objects and reclaim space (details in

§4.2.2). The total size of all segments (used and free) equals the

soft memory budget that the linked application receives from

the global coordinator (§4.3). For each memory allocation

request, the allocator allocates space from a free segment;

if the current one is full, it will pop a new one from the free

list. Midas backs each segment using a 2 MiB huge page; this

reduces TLB pressure and page table walk cost. While small

objects reside in only one segment (i.e., they do not cross the

segment boundary), big objects whose sizes are larger than 2

MiB span across multiple segments. Since the free list does not

provide any address contiguity guarantee for segments, Midas

breaks the big object into smaller piecesÐeach one fits into

a single segmentÐand chains them together using segment

headers. The decomposition is transparent to application

developers; upon object read, Midas automatically reads all

segregated pieces and stitches them back. This is possible

thanks to Midas’s pass-by-copy interface (§4.1).

Each allocated object has a 10-byte header inlined with

its data, used for tracking the object’s runtime information.

This includes 1) a liveness bit, indicating whether the object

has been deallocated; 2) an evacuating bit, marked by the

evacuator to synchronize evacuation with object accesses; 3)

hotness bits, a counter that will be incremented (or unchanged

when it has reached the maximum) each time the object gets

accessed; 4) a size field, indicating the total size of the object;

5) a reverse pointer field, used by the evacuator, if it moves

the object, to rewrite the soft pointer.

4.2.2 Soft Memory Evacuator

As the allocation goes on, the application may eventually

deplete the free segment list. It is the responsibility of Midas’s

evacuator to constantly release cold and dead objects, ensuring

the best use of soft memory by only storing hot objects. In

addition, the evacuator tracks segments in order of hotness

in a used list (see Figure 5), to simplify the design and improve

the speed of memory reclamation, in which the kernel forcibly

unmaps application’s soft memory pages under intense

memory pressure (§4.3).

Midas’s background thread continuously monitors the

free segment ratio and triggers evacuation if it falls below

a configurable threshold (our default value is 90%). The

evacuation mainly consists of three stages:

Scanning Stage. The evacuator first scans through all objects

in the used segment list. For each scanned object, it decrements

the embedded hotness counter (similar to the CLOCK

algorithm [15]). The evacuator treats objects with a zero pre-

scanning hotness value, in addition to deallocated objects, as

dead objects; they will be released in the compaction stage. The

evacuator calculates the live ratio of each segment (i.e., the per-

centage of live bytes) during scanning, and then uses it to sort

all scanned segments to decide their priority for compaction.

The segment with the lowest live ratio will be compacted first

as it yields the largest benefits (in terms of the reclaimed space).

Compaction Stage. The evacuator compacts one segment at a

time. For each live object, it first relies on the evacuation bit to

synchronize with application threads to avoid data race (similar

to AIFM [40]). It then copies the object into a new segment and

leverages the reversed pointer field to rewrite the address of the

corresponding soft pointer. After evacuating all live objects, it

moves the segment from the used list into the free list.

Sorting Stage. After compaction, the evacuator calculates the

segment-level hotness value for all segments in the used list,

defined as ∑∀ob j∈seg SIZE(ob j) ·HOT NESS(ob j). It finally

sorts the used list by segment-level hotness in ascending order.
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1 for each segment S to compact {

2 D = pick_destination_segment();

3 for each object O in S {

4 try {

5 // A wrapper around our PF-resilient memcpy

6 copy_object_into(O, D);

7 } catch (SoftMemUnmapped &exception) {

8 if (exception.fault_addr belongs to O)

9 break; // Skip S as it has gone

10 else // It must belong to D

11 goto line2; // Pick a new D and restart

12 }

13 }

14 }

Listing 3: Midas implements its evacuator’s compaction code using a

page-fault-resilient memory copy function.

4.2.3 Page-Fault-Resilient Functions

Midas runtime directly manipulates soft memory during

allocation and evacuation. Since the kernel may unmap soft

pages to reclaim memory under pressure (details in §4.3), the

runtime has to be aware of page faults and be able to recover

from them gracefully. We carefully built the runtime to achieve

this goal. First, we stored the important metadata (e.g., the

free and used segment lists) in normal memory instead of soft

memory, therefore it will not be lost under memory pressure.

This is viable as the metadata only consumes little memory

(less than 10 MiB). Second, we introduced page-fault-resilient

functions and used them as primitives to build the runtime.

A page-fault-resilient function is able to capture any internal

page fault that stems from dereferencing unmapped soft mem-

ory and respond to it by reverting all side effects and throwing

a SoftMemUnmapped(fault_addr) exception to the caller.

As a concrete example, in Midas we internally implemented

a page-fault-resilient memory copy function, which is used to

build the evacuator’s compaction code to withstand page faults

(see Listing 3). Page faults can happen when copying objects

from the old segment into the new segment. To deal with this

case, Midas uses its resilient memory copy function (line 7)

to capture and handle the potential exception (lines 8-13).

Midas registers its own signal handler to facilitate capturing

and handling all soft-memory-related page faults. Addition-

ally, a page-fault-resilient function satisfies the following

requirements to ensure resilience:

• It embeds a fault recovery code block for aborting the

partial execution and rolling back side effects. Midas

runtime maintains a mapping from resilient functions to

their recovery blocks so that when page fault happens the

handler can invoke the corresponding recovery code.

• All of its inner non-resilient functions have to be inlined

to prevent the control flow from jumping out of its scope.

Otherwise, the page fault handler is unable to find the

corresponding recovery code.

• It preserves its stack frame base pointer (by disabling the

compiler optimization) so that the fault handler can easily

unwind its stack and throw an exception back to its caller.

4.3 Global Soft Memory Coordinator

Midas’s global coordinator is responsible for granting

server’s idle memory to applications as soft memory and

coordinating the budget across applications to optimize the

overall performance.

4.3.1 Soft Memory Management Mechanism

The coordinator maps idle memory pages directly into an

application’s address space as soft memory segments. For

each application, the coordinator dynamically maps or unmaps

pages to readjust its soft memory budget. To facilitate the

management, the application’s runtime shares its free segment

list and used segment list with the coordinator.

To grant more soft memory to an application, the co-

ordinator maps more pages to it and inserts them into the

free segment list. Similarly, to reclaim memory from an

application, the coordinator unmaps pages. The coordinator

first tries to pop out and unmap the segments from the free list;

since they do not hold any useful live objects, unmapping them

does not incur any impact on the application’s performance.

Meanwhile, the runtime strives to avoid the exhaustion of the

free list by triggering evacuation (§4.2.2).

The synergy between the runtime and the coordinator is able

to handle moderate memory pressure (i.e., the common case).

However, under severe pressure, the evacuation may fall be-

hind, leading to an empty free segment list. To avoid depletion,

the coordinator reacts by unmapping used segments which may

induce performance disruption in two folds. First, when the ap-

plication later tries to access an unmapped object, the runtime

will experience a page fault which incurs overhead. Second,

the runtime has to spend additional time reconstructing the

missing object. To alleviate this issue, the coordinator priori-

tizes cold segments over hot segments. Thanks to the evacuator,

the segments in the used list have been ordered by their hotness

(§4.2.2). Therefore, the coordinator can realize prioritization

by simply unmapping segments based on their order in the list.

4.3.2 Coordination Policy

Midas continuously adjusts each application’s soft memory

budget by solving the following optimization problem:

maximize
m

∑
∀i∈APPS

wiΓi(mi) , subject to ∑
∀i∈APPS

mi=M

For each application i, wi denotes its weight (which is either

specified by the operator or uses the default value 1) and Γi

denotes its performance utility when assigned soft memory

of size mi. The server-wide overall utility is defined as the

weighted sum of all application’s utilities. M denotes the

server’s total idle memory.

By default, the coordinator estimates Γi as −RCOSTi,

where RCOSTi is the application’s CPU usage spent on

reconstructing missing objects. Midas’s runtime can easily
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collect this per-application information and report it to the

coordinator. Developers can also plug in the real performance

metric reported by applicationsÐwhich already exists in many

datacenter applications [11]Ðfor a more faithful Γi.

Midas solves the optimization problem using the hill climb-

ing approach [42]. It periodically probes every application’s

marginal utility benefit
∂Γi(mi)

∂mi
by additionally assigning a

small portion of memory ∆mi
and monitoring the change of

utility ∆Γi
. Midas regrants the soft memory budget from the

application with the lowest marginal utility benefit to the one

with the highest benefit.

In contrast, Cliffhanger (a recent cache service) [13]

adopts a coordination policy that optimizes for the overall

cache hit rate, but this does not necessarily optimize the

overall performance. For example, caching objects that are

frequently accessed may not be helpful if they can be cheaply

reconstructed. Midas avoids this issue by using both access

frequency and reconstruction cost as metrics for optimization.

4.4 Discussion

Though Midas is mainly designed for caching hot data and

memoizing intermediate computation results, developers have

the freedom to put any data into soft memory as long as it is re-

constructible. However, storing data that is expensive to recon-

struct but infrequently accessed can lead to performance issues.

Midas provides a profiling tool that generates runtime warnings

if such cases are detected. In addition,Midas offers a debugging

mode where we validate the reconstruction logic by calling the

user-defined reconstruction function and comparing its result

with the actual cached object using the object’s comparison

operator. Bugs are reported if these objects are not identical.

Midas also incorporates Linux’s page cache by simply

treating it as another per-application soft memory pool. For

each application, Midas’s shim layer intercepts all POSIX

file operations and caches the file data using a soft hash table,

whose keys are file inode numbers along with block-aligned

offsets and values are file blocks. The reconstructor rebuilds

the missing block by performing the actual file read.

5 Implementation

Midas is implemented in C++ and includes bindings for C.

Our implementation has 2,814 LOC for the soft memory

abstraction (§4.1), 3,866 LOC for the runtime (§4.2), and

1,029 LOC for the global coordinator (§4.3).

Soft data structures store their metadata (e.g., a hash table’s

bucket array that stores indices) in normal memory and store

their data payload (e.g., a hash table’s key-value pairs) in soft

memory using soft pointers.

The log-structure allocator enforces 16-byte alignment

for allocated data to make it GCC-compatible. The evacuator

adopts a concurrent pauseless design similar to AIFM [40].

The evacuator ensures atomicity when evacuating or recon-

structing large objects that span across multiple soft memory

segments. Midas registers its own SIGSEGV handler. For each

segmentation fault, the handler checks whether the faulting

memory address belongs to a soft memory region and whether

the faulting program counter (PC) belongs to a page-fault-

resilient function; for faults that do not meet these conditions,

the handler treats them as unrecoverable exceptions and aborts

the program. To facilitate the PC check, Midas leverages a

linker script to place all resilient functions into a separate code

segment whose layout is known at compile time.

During each application’s initialization, the runtime

registers itself to the global coordinator using ioctl and

uses mmap to create a shared memory region for exposing

informationÐincluding its free segment list and used list

(implemented as arrays) and the application’s reconstruction

cost (implemented as a counter)Ðto the coordinator.

We implemented the global coordinator as a user-space

daemon (that runs the coordination policy) and a privileged

kernel module (that executes the coordination decision by

mapping/unmapping pages to/from user processes directly).

Every 5 seconds, the coordinator probes the marginal utility of

each application and makes a new adjustment to soft memory

budgets. It probes an application by either granting or revoking

64 MiB soft memory and monitoring its performance change.

In each adjustment, it regrants up to 256 MiB soft memory from

the application with the lowest marginal utility to the one with

the highest utility. To avoid oscillation, it refrains from grant-

ing more soft memory to the application until it has consumed

the additional memory offered in the previous round.

6 Programming with Midas

We present general guidelines of programming with Midas

(§6.1) followed by concrete examples of porting four real

applications (§6.2).

6.1 Guidelines

When is it safe to use soft memory? Developers can

generally use soft memory to store any application data that

follows the unmap-and-reconstruct semantics. To support

evacuation, developers have to implement copy constructors

for objects stored in soft memory.

When is it beneficial to use soft memory? Developers should

generally consider using soft memory when applications can

opportunistically benefit from having additional memory.

Typical use cases include caching in web applications and

memoization in data analytics systems. They often have

unknown marginal utility and unbounded memory footprint,

making them hard to handle efficiently through static provi-

sioning. Midas can benefit them by automatically rightsizing

their soft memory budget and harvesting idle memory.
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Applications
Abstractions

used

Porting

effort (LOC)

CPU

cores

Normal

mem. (GiB)

Peak soft

mem. (GiB)

Reconstruction

cost (µs/obj.)
Dataset

HDSearch [46] Soft hash table 36 12 1.7 13.6 1244.2 OpenImg [25], 1.9M images

WiredTiger [33] Soft pointer 332 12 3.7 21.3 20.6 Facebook USR [8], 50M KV

Storage Server [24] Soft array 29 4 1.1 20.4 10.5 multilate [23], 16 GiB disk

SocialNet [18]
Soft hash table

Soft queue
175 20 1.3 12.2 99.1±3227.7

Socfb-Penn94 [39],

41.5K nodes, 1.4M edges

Table 1: We ported four applications into Midas with low programming effort. All four applications extensively use soft memory while their

data reconstruction costs vary drastically.

How to migrate from traditional cache services? Exist-

ing applications that employ local cache services (e.g., Mem-

cached [30] or Redis [2]) can directly use Midas as a drop-in re-

placement. Existing applications that employ distributed cache

services (e.g., AWS ElastiCache [1]) can use Midas as a fast lo-

cal cache tier to reduce the overhead of accessing remote cache.

6.2 Application Case Studies

We ported four applications to Midas. They cover a range of

CPU usage,normal and soft memory usage,data reconstruction

cost, and Midas’s abstraction usage (see Table 1).

HDSearch [46] is an image search service based on content

similarity. For each query, a feature extraction backend

transforms the input image into a feature vector via a DNN

(running on GPU), and then caches the result along with a

hash of the image (using Memcached for memoization). To

port this application, we replaced Memcached with our soft

hash table, which only involves 36 LOC changes. It has 1.7

GiB normal memory usage and 13.6 GiB peak soft memory

usage. Reconstructing KV pairs is expensive (1244.2 µs per

object) as it requires re-performing transformation on GPU.

WiredTiger [33] is a NoSQL key-value storage engine used

by MongoDB [32]. It persists all key-value pairs in storage

indexed via an in-memory B+ tree. It has a built-in in-memory

caching engine that caches the data of B+ tree’s internal nodes

and leaf nodes to reduce expensive storage I/Os. To port

WiredTiger, we implement its caching engine using Midas’s

soft memory pool and pointer abstractions; we created a

soft memory pool with a reconstruction method that wraps

WiredTiger’s existing code for handling cache misses, and

replaced ordinary B+ tree pointers with soft memory pointers

allocated from the pool. This only involves 332 LOC changes.

With our port, WiredTiger has 3.7 GiB normal memory usage

and 21.3 GiB peak soft memory usage. Reconstructing a tree

node object requires reading its content from the disk and

rebuilding the index, which takes 20.6 µs.

Storage Service is an NVMe-based block storage service

similar to Reflex [24]. It exposes a standard block I/O interface

using RPC to support accessing 4KiB storage blocks remotely.

Its original design uses SPDK [3] to communicate with the

storage block device, which bypasses Linux’s page cache.

To port it, we cache the block data using a soft array, similar

to the BlockCache design in Listing 2. This requires adding

29 LOC. With our port, it uses 1.1 GiB normal memory and

20.4 GiB peak soft memory. Reconstructing an array element

requires a block I/O which takes 8.5 µs to finish.

SocialNet is a twitter-like latency-critical web service from

DeathStarBench [18]. It is built using 12 microservices with

sophisticated fan-out patterns and call dependencies. Its orig-

inal design uses Memcached/Redis to cache users’ data and

memoize results of certain queries, and employs pools to cache

TCP connections/RPC sessions. Since each microservice has

its own binary and runs within its own process, Midas treats

SocialNet as 12 different applications. To port it, for each

microservice, we replace its Memcached/Redis usage with

Midas’s soft hash table and connection pool with Midas’s soft

queue; this involves 175 LOC changes. With our port, it uses

1.3 GiB normal memory and 12.2 GiB peak soft memory. It

takes 99.1±3227.7 µs to reconstruct an object depending on

its type; for example, it takes only 99.1 µs to re-establish an

RPC session but requires 3227.7 µs to re-fetch a user’s post.

7 Evaluation

Our evaluation seeks to answer the following questions:

1. Can Midas judiciously coordinate soft memory among

applications to optimize overall performance? (§7.1)

2. Can Midas quickly and reactively harvest available idle

memory to improve utilization and performance? (§7.2)

3. Can Midas quickly react to memory pressure to avoid out-

of-memory killing while maintaining good performance?

(§7.3 and §7.4)

4. How does the data reconstruction cost of an application

affect its performance? (§7.4)

Setup. We conducted experiments on one server that equips a

48-core Intel Xeon Gold 6252 CPU and 128 GiB memory. The

server ran Ubuntu 20.04 with Linux 5.14. In line with prior

work [37], we enable hyperthreading, but disable dynamic

CPU frequency scaling, transparent huge pages, and kernel

mitigations for transient execution attacks. For interactive

services (e.g., SocialNet), we use a separate server to generate

load, which connects to the application server via a 10 GbE

network. For all four applications, we generated requests

with Zipfian distribution, consistent with the study of real

datacenter workloads [9].
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Figure 6: When co-running four applications with 20 GiB idle

memory, Midas dynamically coordinates their soft memory budgets

and reaches an equilibrium in around 20 minutes. Overall, it harvests

19.6 GiB idle memory as soft memory and achieves 75.0% of the

ideal throughput (measured by overprovisioning soft memory for

all applications regardless of the 20 GiB total budget constraint).

Figure 7: Midas and Cliffhanger converge to different allocations

of soft memory between applications because of fundamental

differences in their coordination policies.

7.1 Coordinating Soft Memory

In this experiment, we investigated whether Midas can

judiciously coordinate soft memory usage among applications

to optimize overall performance.

We provisioned the server with 20 GiB idle memory and

co-ran all four applications (§6) using Midas. Initially, all

applications start with the same amount of soft memory (i.e.,

5 GiB), but Midas will dynamically adjust it. SocialNet has 12

loosely-coupled microservices and we start by evenly splitting

the 5 GiB budget across them. We measured the overall

throughput (defined as the average of all applications’ through-

put normalized to their ideal throughput) and the soft memory

usage. We compared Midas with three different baselines. The

first baseline overprovisions soft memory for each application

to cache all of possible soft state. This leads to a 67.5 GiB

soft memory usage that is impossible to achieve under 20 GiB

idle memory; thus, this represents the ideal throughput. The

second baseline limits itself to the 20 GiB soft memory budget

and statically partitions it across four applications in an even

manner (i.e., each application gets 5 GiB soft memory). The

third baseline is Cliffhanger [13]. Similar to Midas, it dynam-

ically coordinates soft memory among applications. However,

it adopts a different coordination policy of maximizing the

global cache hit rate as opposed to maximizing the overall

performance utility. As the original version of Cliffhanger

only supports Memcached, we emulated Cliffhanger by

implementing its coordination policy atop Midas.

A good result for Midas would show that it quickly reaches

an equilibrium by judiciously coordinating soft memory usage

among applications and achieves good overall throughput

close to the ideal throughput (of the overprovisioning

baseline). In contrast, the overall throughput of the static

provisioning baseline should be suboptimal, as it equally

treats all applications and fails to prioritize the soft memory

need of applications that can benefit the most. On the contrary,

Cliffhanger does coordinate soft memory among applications,

but it optimizes for the overall cache hit rate which does not

guarantee optimal overall performance (§4.3.2). Therefore,

we expect Cliffhanger to achieve overall throughput better

than the static baseline but worse than Midas.

Figure 6 shows the results. The top figure presents the

overall throughput of four systems normalized to the ideal

value. The bottom figure presents soft memory usage; we leave

out the usage of the overprovisioning baseline as it is much

higher (67.5 GiB) than the amount of idle memory (20 GiB).

Midas’s overall throughput converges in around 20 minutes

and achieves 75.0% of the ideal throughput by harvesting

98.0% idle memory. It also reduces SocialNet’s 99th percentile

latency by 58.4% from 5.5ms to 2.3ms. In contrast, the

static provisioning baseline only achieves 48.7% of the ideal

throughput and fails to improve SocialNet’s tail latency due to

the lack of coordination. It also uses 3.1 GiB less soft memory

than Midas as some microservices of SocialNet fail to fully use

their statically-provisioned soft memory budgets due to small

soft memory footprints. Cliffhanger uses a similar amount of

soft memory to Midas. Due to its coordination policy, it con-

verges on the overall cache hit rate (not shown due to the space

constraint) but oscillates in terms of the overall throughput.

Therefore, it only achieves 56.0% throughput on average.

Figure 7 presents the per-application soft memory usage

of Midas and Cliffhanger. For each application, the gray line
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represents the soft memory budget it receives, while the color-

ful line represents the amount of soft memory it uses. Because

of the difference in their coordination policies, Midas and

Cliffhanger make very different allocations of soft memory be-

tween applications except for the storage server. For example,

since it is time-consuming to reconstruct HDSearch’s objects

(as it involves recomputing the feature vectors of images), Mi-

das scales up HDSearch’s soft memory to cache more objects.

However, since HDSearch has a relatively low request skew-

ness (compared to other applications) and consequently a lower

cache utility (in terms of hit rate), Cliffhanger deprioritizes

it by scaling down its soft memory, significantly impacting

its performance (and therefore the overall performance).

In summary, the experiment demonstrates that Midas can

efficiently utilize available memory as soft memory and

judiciously coordinate soft memory among applications,

achieving high overall performance close to the ideal one that

requires 3.4× more memory.

7.2 Harvesting Available Idle Memory

In this experiment, we investigated whether Midas can quickly

and reactively harvest additional idle memory—whenever it

is available—to improve memory utilization and application

performance.

We ran an application using Midas and dynamically added

idle memory to the server. A good result for Midas would show

that it quickly detects any new idle memory and reactively

grants it to SocialNet as additional soft memory to improve

performance. Additionally, we expect that the marginal benefit

decreases as SocialNet uses more soft memory and caches

more hot items.

Figure 8 presents the results of SocialNet. The results of

other applications show similar trends and can be found in Ap-

pendix A. Initially, the server has 2 GiB idle memory (the dark

gray line). With Midas, SocialNet fully utilizes them as soft

memory (the blue line) and achieves 13 MOPS throughput (the

pink line). At t=5min, we added 4 GiB more idle memory to

the server. Midas immediately detects this change and rapidly

ramps up its soft memory usage; it only takes around 3 min-

utes for SocialNet to reach a new steady state. Benefiting from

more soft memory, SocialNet’s throughput increases by 46%

from 13 MOPS to 19 MOPS, and its 99th percentile latency

decreases by 27% from 5.5ms to 4ms (the light brown line). At

t=15min, we again added 4 GiB more idle memory. This time

we observed a reduced marginal benefit as SocialNet has al-

ready cached most hot items; it takes 15 minutes to reach a new

equilibrium (i.e., 8.5 GiB soft memory usage) and yields a 43%

improvement of 99th percentile latency (from 4ms to 2.3ms).

In summary, these results highlight Midas can quickly detect

idle memory and reactively scale up its soft memory usage

to improve memory utilization and application performance.

Figure 8: With Midas, SocialNet effectively harvests additional

idle memory by scaling up its soft memory usage, improving both

throughput and tail latency.

Figure 9: Under moderate memory pressure (t=5min-15min), Midas

is able to reactively scale down SocialNet’s soft memory usage to

avoid running out of memory with moderate performance impact.

Figure 10: Midas is able to avoid out-of-memory killing even under

extreme memory pressure (t = 5min and t = 10min). SocialNet

experiences brief throughput collapses and tail latency spikes but

quickly recovers to normal once the pressure is finished.

7.3 Reacting to Memory Pressure

In this experiment, we investigated whether Midas can quickly

react to memory pressure to avoid out-of-memory killing and

studied its impact on application performance.

Similar to §7.2, we ran SocialNet using Midas, but

dynamically decreased the server’s idle memory with a

colocated memory antagonist. We measured the impact on

SocialNet’s soft memory usage and performance.

Under moderate memory pressure, ideally, Midas’s global

coordinator should reactively unmap free soft memory

segments while Midas’s evacuator should be able to replenish

them (by evicting cold objects and evacuating hot objects)

to match the coordinator’s unmapping rate. A good result for

Midas would show that SocialNet’s throughput degrades gradu-
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ally and mildly as the pressure persists, since Midas prioritizes

the eviction of cold and dead objects over hot objects.

Under intense memory pressure, we expect the coordinator

to also unmap the used soft memory segments as the evacuator

cannot keep up with the high unmapping rate. In this case,

SocialNet may experience a sudden throughput collapse due

to the loss of hot objects. However, a good result for Midas

would show that SocialNet is still able to operate without expe-

riencing any out-of-memory killing. In addition, immediately

after the pressure is finished, SocialNet’s performance should

be able to recover to normal by reconstructing back hotter

objects and evicting colder objects.

Figure 9 presents the results under moderate memory

pressure. Initially, the server has 10 GiB soft memory. The

application uses around 9.6 GiB of it as soft memory and

achieves around 20 MOPS throughput and 2.3ms 99th

percentile latency. At t=5min, the memory antagonist starts to

allocate 8 GiB more memory at a moderate rate of 0.8 GiB/min,

resulting in the decrease of idle memory until t =15min. As

shown by the bottom figure, Midas is able to reactively scale

down SocialNet’s soft memory usage through reclamation

to avoid running out of memory. As shown by the top figure,

SocialNet’s throughput and 99th percentile latency remain un-

affected in the beginning, as Midas prioritizes the reclamation

of cold soft memory. After running below 5 GiB idle memory,

SocialNet experiences a mild throughput drop and latency

increase, as Midas starts to reclaim hotter soft memory.

Figure 10 presents the results under intense memory

pressure. In this case, the antagonist allocates memory as fast

as Linux permits (7 GiB/s), making it an extremely challenging

case to handle. Despite the high rate, Midas is still able to avoid

out-of-memory killing by rapidly scaling down SocialNet’s

soft memory usage. In this case, Midas has to unmap the used

soft memory segments, inevitably causing brief throughput

collapses and latency spikes (at t = 5min and t = 10min).

However, once the memory pressure is finished, SocialNet’s

throughput and latency quickly recovers to the normal level,

consistent with the numbers reported in Figure 8 and 9.

The results of other applications also show similar trends

(see Appendix B). In summary, these results demonstrate that

Midas can always quickly react to memory pressure to avoid

out-of-memory killing while maintaining good application

performance whenever it is possible.

7.4 Design Drill-Down

Soft Pointer Dereference Cost. We measured the latency of

dereferencing a soft pointer and compared it to the latency of

dereferencing an ordinary C++ unique_ptr, when the pointer

and data pointed to are originally in memory (i.e., not in CPU’s

cache). Table 2 shows the results of small objects (32 B) and

large objects (4 MiB), and Appendix D has more results of

other object sizes.

For small objects that fit into CPU’s cache line (Table 2a),

Midas is able to deliver comparable read latency as its extra

[read|write] Average Median P90

Latency (cycles) read/write read/write read/write

C++ unique_ptr 367 / 199 382 / 176 510 / 332

SoftUniquePtr 400 / 393 370 / 368 516 / 500

(a) Small objects (32 B).

[read|write] Average Median P90

Latency (Mcycles) read/write read/write read/write

C++ unique_ptr 0.97 / 1.39 0.94 / 1.36 0.99 / 1.37

SoftUniquePtr 1.77 / 1.15 1.75 / 1.14 1.77 / 1.18

(b) Large objects (4 MiB).

Table 2: Midas’ soft pointer only adds moderate dereferencing cost

compared to C++’s ordinary smart pointer.

Live Object Ratio 10% 30% 50% 70% 90%

Reclamation Cooperative 312.5 243.1 173.6 104.2 34.7

Tput. (MiB/s) Direct 8268.5

Table 3: Midas’s cooperative reclamation reclaims memory at the

throughput of 35 MiB/s-313 MiB/s, depending on the live object ratio

of soft memory. Midas’s direct reclamation trades off reclamation

quality for faster speed; it achieves a throughput of 8269 MiB/s,

exceeding the rate at which the Linux kernel can allocate memory.

object copying overhead is negligible. Midas achieves higher

write latency (< 200 cycles) as it has to additionally update

the metadata in the object header.

For large objects (Table 2b), Midas achieves ≈800K cycles

(82%) higher read latency since now the additional object copy-

ing happens in memory (rather than in CPU’s cache). However,

Midas achieves lower write latency than unique_ptr thanks

to its optimized memory copy implementation.

Memory Reclamation Speed. We measured Midas’s memory

reclamation throughput using a synthetic microbenchmark.

Under moderate memory pressure, the coordinator reclaims

memory with the cooperation from the runtime (Figure 9); we

refer to it as cooperative reclamation. Under severe memory

pressure, the coordinator directly unmaps soft memory

segments (Figure 10); we refer to it as direct reclamation.

Table 3 presents the throughput of both reclamation

methods. The speed of cooperative reclamation depends on

the live object ratio of soft memory; the lower the live ratio,

the easier to make room by compacting hot objects, thereby

yielding faster reclamation speed. It achieves a throughput of

313 MiB/s under 10% live ratio and 35 MiB/s under 90% live

ratio. To handle intense memory pressure, direct reclamation

trades off reclamation quality for faster reclamation speed;

it achieves a significantly higher throughput of 8269 MiB/s,

unrelated to the live object ratio. This exceeds the rate at which

the Linux kernel can allocate memory (7-8 GiB/s measured

in our machine), therefore Midas can always safely harvest

server’s idle memory without leading to OOM killing.

Performance Impact of Data Reconstruction. To examine

the performance impact of using soft memory, we conducted
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Figure 11: Midas’s efficiency (y-axis) as a function of data

reconstruction cost normalized to the ideal throughput of caching

all soft state. Midas’s efficiency increases as the reconstruction cost

decreases, delivering >80% efficiency for applications with <1024

μs/object reconstruction cost when caching 80% of soft state.

an experiment using a synthetic application; we measured

its performance with varying data reconstruction costs under

different soft memory ratios (i.e., the ratio of cached soft state).

Intuitively, the cheaper the data reconstruction, the lighter the

performance impact it incurs.

Figure 11 shows the result. When the soft memory ratio

is 20%, Midas is able to deliver >80% efficiency when the

reconstruction cost is <128 μs/object. When the soft memory

ratio is higher, Midas can tolerate a higher cost as reconstruc-

tion happens less frequently; thus, it is able to provide >80%

efficiency for applications with <256 μs/object reconstruction

cost under 50% memory ratio and <1024 μs/object under

80% memory. This suggests that Midas can still achieve high

performance with moderate data reconstruction costs.

8 Related Work

Resource Harvesting and Deflation. Datacenters today

suffer from low resource utilization [6, 17, 50]. To make use

of vacant resources, major cloud providers now offer spot

VMs [5, 20, 31], which run at a low priority and get evicted

under resource pressure. Others propose new VM designs to

gracefully adjust VMs’ resource usage. Harvest VM is a new

type of VM that grows and shrinks according to the amount

of unallocated resources at its underlying server, including

CPU [6], memory [17], and storage [38]. Similarly, deflatable

VM [45] codesigns the hypervisor, VM, and the application to

reclaim resources from applications under memory pressure.

These approaches focus on VMs only, and take minutes to

re-configure a VM to release resources.

Resource Disaggregation and Remote Memory. Resource

disaggregation and remote memory systems are another

trending approach for improving utilization, thanks to faster

datacenter networking [19, 26, 29]. Their key idea is to

break the server hardware boundary with a fast network

interconnection to exploit stranded resources on a remote

server. Various systems have established the viability of

disaggregated storage [22, 24], accelerators [35, 51], and

memory [4, 21, 44, 54]. While some provide remote memory

transparently via OS paging, it is also possible to use a library-

based approach that modifies the application to bypass the

OS. AIFM [40] proposes remote-able data structures to build

remote-memory-aware applications. Semeru [52], Mako [28],

and MemLiner [53] co-design the JVM with the kernel to offer

transparent remote memory for Java programs. Like Midas,

these systems adopt customized pointer formats for their

remote-able objects. Unlike Midas, they do not consider the

unmap-and-reconstruct semantics and suffer from swapping

or out-of-memory killing under intense memory pressure.

Cache Services. Improving cache performance is important to

datacenter applications, especially in a shared setting [10, 36].

Fairride [36] and RobinHood [10] provide fair and latency-

aware cache-sharing policies, and CliffHanger [13] uses a hill

climbing method to incrementally optimize cache allocation

across applications. Memshare [14] further improves the

cache partitioning with a log-structured allocator for higher

hit rates. However, existing cache service systems still rely

on static memory allocation, and cannot efficiently use idle

memory. CacheLib [9] provides a library-based approach for

caching, but it again relies on static provisioning and lacks

global coordination, hindering its ability to manage memory

across multiple applications.

Cooperative Memory Revocation. In parallel with our work,

researchers are also exploring the benefits of soft state by

managing it at the application level [16]. Midas instead uses

kernel coordination and unmap-and-reconstruct semantics,

which enables it to reclaim pages even if applications do not

cooperate or are slow to respond. This makes it possible to react

to severe memory pressure without running out of memory.

9 Conclusion

In this paper, we presented Midas, a system that efficiently

and safely harvests idle memory to store the soft state

that is most beneficial to each application, improving both

memory utilization and application performance. Midas

provides familiar high-level programming abstractions and

maximizes overall performance through coordination between

an application-integrated runtime and a global coordinator.

Our evaluation demonstrates that Midas is able to effectively

use soft memory to achieve near-optimal performance and

can respond to extreme memory pressure fast enough to avoid

running out of memory.
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A Harvesting Available Idle Memory

(a) HDSearch.

(b) WiredTiger.

(c) Storage server.

Figure 12: With Midas, applications can reactively scale up their

soft memory usage to harvest additional idle memory and improve

performance.

In this section, we evaluated the other three applications

individually under the same setting as in §7.2 to show how

Midas can harvest available idle memory to improve memory

utilization and application performance. Figure 12 presents the

results. Similar to Figure 8, Midas can quickly detect any idle

memory and reactively grant it to the application to improve

its performance. As applications expose different allocation

speeds and utilities of their soft state, the average time to scale

up the soft memory usage as well as the performance gain

also varies across applications. HDSearch takes longer to fully

utilize the additional soft memory because it needs expensive

GPU computations to re-construct a cache-missed object. It

also enjoys higher throughput increases by memoizing com-

putation results with additional soft memory. On the contrary,

both WiredTiger and storage server can quickly utilize all ad-

ditional soft memory, but they only get marginal performance

improvement after caching most hot blocks at t=10min.

B Reacting to Memory Pressure

(a) HDSearch.

(b) WiredTiger.

(c) Storage server.

Figure 13: Under moderate memory pressure (t = 5min-15min),

Midas is able to reactively scale down applications’ soft memory

usage to avoid running out of memory while minimizing its impact

on their throughput.

In this section, we further investigated whether Midas can

quickly react to memory pressure by running the other three

applications individually under the same setting as in §7.3.

Similarly, we measured memory utilization and application

throughput under moderate memory pressure and intense

memory pressure, respectively.

Figure 13 presents the results of each individual application

under moderate memory pressure. Similar to Figure 9,

At t = 5min, the memory antagonist starts to allocate 10

GiB more memory with a moderate rate of 1.0 GiB/min,

leading to the decrease of idle memory until t = 15min. As

shown by the bottom figure, for all three applications, Midas

reactively scaled down their soft memory usage and avoided

out-of-memory killing. As shown by the top figure, application

throughput drops gradually and mildly as the reclamation goes

on and never experiences any severe disruption.

Figure 14 shows the results of each individual application

under intense memory pressure. Similar to Figure 10, the
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(a) HDSearch.

(b) WiredTiger.

(c) Storage server.

Figure 14: Midas is able to avoid out-of-memory killing even under

extreme memory pressure (t = 5min and t = 10min). The victim

application experiences brief throughput collapses but quickly

recovers to normal once the pressure is finished.

memory antagonist intensely allocated 5 GiB memory at

t=5min and t=10min. Despite the high memory allocation

rate, Midas is still able to rapidly reclaim application’s soft

memory and avoid running out of memory. Because Midas

has to unmap the used soft memory segments in this case, both

WiredTiger and Storage server experience brief throughput

collapses. However, once the memory pressure is finished,

their throughput can quickly recover to the normal level,

consistent with the numbers reported in Figure 12 and 13.

HDSearch has a relatively lower request rate, therefore it is

more tolerable to the enforced soft memory unmapping and

does not experience severe throughput collapse at all.

C SocialNet Microservices Memory Usage

We have reported the overall soft memory usage of SocialNet

in Figure 7. Among SocialNet’s 12 microservices, two mi-

croservices used the most soft memory, namely UserTimeline

Figure 15: Memory usage of two major microservices in SocialNet.

Midas dynamically coordinates memory between the microservices

to achieve high memory utilization and optimal performance for

SocialNet.

and PostStorage. Figure 15 reported the detailed memory

usage for each of them.

UserTimeline is the frontend microservice that handles

user requests. It fetches a group of user posts from the storage

backend and composes them as a timeline webpage. It caches

composed user timelines in soft memory to reduce backend

storage accesses. PostStorage is the backend database mi-

croservice that stores user posts. It handles post requests from

UserTimeline with MongoDB and caches hot posts using soft

memory. As shown in 15, at first, Midas reactively grants soft

memory to both microservices to quickly recover SocialNet’s

throughput and latency. As UserTimeline gets more soft mem-

ory, it caches more hot timelines and consequently reduces

its request rate to PostStorage. At t=8min, Midas’s profiling

reveals that PostStorage is no longer frequently accessed and

therefore has relatively low cache utility, so Midas reactively

scales down PostStorage’s soft memory. At t=20min, Social-

Net reaches a new equilibrium, where UserTimeline consumes

most of the soft memory budget and PostStorage only keeps

a small portion of soft memory. Cliffhanger, in contrast, only

profiles the cache hit rate of each microservice regardless of

their cache access rate and performance sensitivity. Therefore,

it continuously grants soft memory to PostStorage, resulting

in overprovisioning soft memory to SocialNet.

D Soft Pointer Dereference Cost

In this section, we reported the detailed results of soft pointer

dereference cost when reading and writing large objects in

various sizes and compared them with the cost of dereferencing

an ordinary C++ unique_ptr. Similar to Table 2, we measured

the P90 latency and throughput of accessing large objects

(Figure 16) in various sizes.

As shown in Figure 16, reading a large object whose size

is smaller than 512 KiB with Midas soft pointer has similar

latency and throughput compared to dereferencing a C++

unique_ptr, although dereferencing a soft pointer incurs an

additional memory copy. This is because the object and its
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Figure 16: Midas’s soft pointer achieves similar performance com-

pared to C++’s ordinary smart pointer when objects can fit into CPU

L2 cache, and it only adds moderate dereferencing cost otherwise.

copy can both fit into the CPU L2 cache and hence the second

copy is fast. For all object sizes, soft pointer offers lower write

latency and higher write throughput than unique_ptr thanks

to Midas’s optimized memory copy implementation.
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