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Abstract. Symbolic powers arise naturally in commutative algebra from the theory of
primary decomposition, but they also contain geometric information, thanks to a classical
result of Zariski and Nagata. Computing primary decompositions is a difficult computational
problem, and as a result, many natural questions about symbolic powers remain wide open.
We will briefly introduce symbolic powers, describe some of the main open problems on the
subject, and discuss some recent developments.

1. Introduction

Given a finite set of points P1, . . . , Ps in projective space Pd
C, what is the lowest degree of

a hypersurface passing through P1, . . . , Ps? How about a hypersurface passing through each
given point Pi with the same multiplicity n? More generally, given an affine or projective
variety V , which polynomials vanish to order n at every point in V ? These classical geometric
questions can be studied with commutative algebra tools once we reframe them within the
language of symbolic powers.

Let us formalize what we mean by vanishing to order n. Given a point a in either affine
space Ad+1

C or projective space Pd
C, a polynomial f ∈ R := C[x0, . . . , xd], which we assume

to be homogeneous in the projective case, vanishes to order n at a if

∂c0+···+cdf

∂xc0
0 · · · ∂xcd

d

(a) = 0 for all c0 + · · ·+ cd < n.

Notice that with this definition, f vanishes to order 1 at a if and only if f(a) = 0. More
generally, given an algebraic set V — the solution set to some system of polynomial equations
in d+1 variables, which are homogeneous in the projective case — consider the ideal I of all
the polynomials in R that vanish at every a ∈ V . A (homogeneous, in the projective case)
polynomial f vanishes to order n along V if

∂c0+···+cd

∂xc0
0 · · · ∂xcd

d

(f) ∈ I for all c0 + · · ·+ cd < n.

Let us give examples of polynomials vanishing to order n on a given algebraic set. The nth
power of I is the ideal generated by all the n-fold products of elements in I, which we write
as

In := (f1 · · · fn | fi ∈ I).

Here the notation I = (g1, . . . , gm) stands for the ideal generated by g1, . . . , gm, so the
elements in In are all the R-linear combinations of n-fold products of polynomials that
vanish at V . It is elementary to show that every element in In must vanish to order n along
V . However, we may have other more interesting polynomials vanishing to order n along V .

Example 1.1. Let V be the union of the 3 coordinate lines in affine 3-space, which corre-
sponds to the ideal I = (xy, xz, yz). The polynomial f = xyz vanishes to order 2 along V ,
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since ∂f
∂x

= yz ∈ I, ∂f
∂y

= xz ∈ I, and ∂f
∂z

= xy ∈ I. On the other hand, all the nonzero

polynomials in I2 have degree 4 or higher, so f /∈ I2.

In particular, we may have polynomials vanishing to order n along V that live in an
unexpected degree — meaning, a degree d such that In has no polynomials of degree d.
Completely describing which polynomials vanish to order n along a given algebraic set V ,
determining whether those are exactly the polynomials in In, or giving (lower) bounds for
the degrees of polynomials vanishing to order n along V are all very delicate questions.

We can attack these questions using purely algebraic tools, thanks to a classical result of
Zariski and Nagata [Zar49, Nag62] which says that the polynomials that vanish to order n
along V are exactly the polynomials in the nth symbolic power of I, which we will introduce
in the next section. Despite being a classical topic that has been around for a century,
many natural questions about symbolic powers remain unanswered, in part because it is
computationally difficult to calculate symbolic powers and test conjectures. We will first
introduce symbolic powers in Section 2, and then quickly survey some of the current active
research questions related to symbolic powers in the remaining sections. For a more detailed
survey of symbolic powers, see [DDSG+18]. Throughout, let R be a commutative Noetherian
ring; a good working example is the case when R is a polynomial ring in finitely many
variables over a field k.

2. Symbolic powers: definition and basic properties

Symbolic powers arise naturally in commutative algebra from the theory of primary de-
composition. Roughly speaking, primary decomposition is an ideal-theoretic version of the
Fundamental Theorem of Arithmetic — the theorem which says that every nonzero integer
can be written as a product of prime integers that is unique up to sign and the order of
the factors. Once we replace the integers with other commutative rings, there are many
examples of rings where we cannot write every element as a product of irreducibles that is
unique up to multiplication by units or the order of the factors; for example, in Z[

√
−5],

6 = 2 · 3 = (1+
√
−5)(1−

√
−5) are two distinct factorizations into irreducibles. One way to

avoid this failure of the Fundamental Theorem of Arithmetic is to focus on ideals rather than
elements: every ideal in a Noetherian ring can be written as a finite intersection of primary
ideals [Las05, Noe21], and while this primary decomposition is not necessarily unique, there
are certain aspects of it that are in fact unique.

Let us start with prime ideals. An ideal P is prime if ab ∈ P ⇒ a ∈ P or b ∈ P . When
R = C[x0, . . . , xd], prime ideals are precisely the ideals that correspond to varieties: a variety
is an irreducible algebraic set, meaning it cannot be decomposed as a finite union of two or
more proper algebraic subsets.

Definition 2.1. Let P be a prime ideal. The nth symbolic power of P is the ideal

P (n) := {f ∈ R | sf ∈ P n for some s /∈ P}.

Note that P n ⊆ P (n), since every f ∈ P n satisfies 1 · f ∈ P n for 1 /∈ P . In general,
P n ∕= P (n).

Example 2.2. Let k be any field, R = k[x, y, z]/(xy − z2), and consider the prime ideal
P = (x, z) in R. Since xy = z2 ∈ P 2 and y /∈ P , we have x ∈ P (2), while x /∈ P 2.
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While we will not define primary decomposition, it turns out that when writing a pri-
mary decomposition for P n, one of the components — the P -primary component — will be
precisely P (n). Historically, this is the context where symbolic powers first arose.

More generally, let us consider a radical ideal I, which means that I is a finite intersection
of prime ideals. Geometrically, Hilbert’s Nullstellensatz gives us a bijection between algebraic
sets and radical ideals, so for our purposes these are the only ideals we care about.

Definition 2.3. Let P1, . . . , Pk be prime ideals, and let I = P1∩· · ·∩Pk. The nth symbolic

power of I is the ideal

I(n) := P
(n)
1 ∩ · · · ∩ P

(n)
k = {f ∈ R | sf ∈ In for some s /∈

k!

i=1

Pi}.

The following properties can be shown via elementary commutative algebra methods.

Theorem 2.4. Let I be a radical ideal in a Noetherian ring R.

(1) In ⊆ I(n) for all n ! 1.
(2) I(n+1) ⊆ I(n) for all n ! 1.
(3) I(a)I(b) ⊆ I(a+b) for all a, b ! 1.

The last property allows us to construct the symbolic Rees algebra of I, which packages
together all the symbolic powers of I into one graded object. The symbolic Rees algebra of
I is the graded R-algebra with I(n) in degree n, Rs(I) =

"
I(n)tn ⊆ R[t], where the t keeps

track of degrees. It turns out that this algebra can fail to be finitely generated over R —
or equivalently, it can fail to be a Noetherian ring — which means that for arbitrarily high
values of n, there are elements in I(n) that do not live in the product of symbolic powers of I
of lower order. While we will not have a chance to discuss symbolic Rees algebras in detail,
we point the reader to [GS20] for a survey on symbolic Rees algebras and the fascinating
problem of when they are finitely generated.

In the next section we will discuss some of the geometric motivations to study I(n). Note
that there are also many algebraic reasons to study symbolic powers, including the fact
that they can be used as effective tools to answer questions that are a priori unrelated to
symbolic powers, and that symbolic powers are used in the proofs of important results in
commutative algebra, such as Krull’s Height Theorem and the Hartshorne–Lichtenbaum
Vanishing Theorem in local cohomology, even though these results are not about symbolic
powers.

3. Higher order vanishing

A classical result of Zariski and Nagata [Zar49, Nag62] and its modern generalization by
Eisenbud and Hochster [EH79] give us the connection with our opening questions.

Theorem 3.1 (Zariski–Nagata, 1949 and 1962, [Zar49, Nag62, EH79, DDSG+18]). Let I
be a radical ideal in R = C[x0, . . . , xd]. Then

I(n) =
#

m⊇I
m maximal ideal

mn =

$
f ∈ R | ∂c0+···+cd

∂xc0
0 · · · ∂xcd

d

(f) ∈ I for all c0 + · · ·+ cd < n

%
.

This is the classical result we alluded to in the introduction: that I(n) is precisely the set of
polynomials that vanish to order n along the algebraic set corresponding to I. The maximal
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ideals m that contain the radical ideal I correspond to each point in the affine algebraic
set that I defines, and mn is the set of polynomials vanishing to order n at the particular
point corresponding to m. From this perspective, our opening questions can be answered by
studying the elements in I(n) and their degrees.

This result can be stated in a lot more generality, via differential operators.

Definition 3.2 (Grothendieck, Section 16.8 of [Gro67]). Given an A-algebra R, the A-linear
differential operators on R of order up to n, Dn

R|A, are defined inductively as follows:

• D0
R|A = HomR(R,R) ⊆ HomA(R,R) := {R f−→ R is an A-module homomorphism}.

• Dn
R|A =

&
δ ∈ HomA(R,R) | δf − fδ ∈ Dn−1

R|A for all f ∈ D0
R|A

'
.

When R = C[x1, . . . , xd], the C-linear differential operators on R of order up to n are

Dn
R|C =

(

a1+···+ad!n

C · ∂a1+···+ad

∂xa1
1 · · · ∂xad

d

.

Theorem 3.3 (Differential version of Zariski–Nagata, see Proposition 2.4 in [DDSG+18]).
Let k be a perfect field and consider any radical ideal I in R = k[x1, . . . , xd]. Then

I(n) =
)
f ∈ R | ∂(f) ∈ I for every ∂ ∈ Dn−1

R|k

*
.

If we replace k by Z or some other ring of mixed characteristic, this description no longer
holds; roughly speaking, the differential operators cannot see what happens in the arithmetic
direction.

Example 3.4. In R = Z[x], the symbolic powers of the maximal ideal m = (2, x) coincide
with its powers, so 2 /∈ mn for any n > 1. However, any differential operator ∂ ∈ Dn

R|Z of

any order is Z-linear, so ∂(2) = 2 · ∂(1) ∈ m.

To describe symbolic powers in mixed characteristic, we need to consider differential oper-
ators together with p-derivations, a tool from arithmetic geometry introduced independently
in [Joy85] and [Bui95]; for a thorough development of the theory of p-derivations, see [Bui05].

Definition 3.5 (p-derivation). Fix a prime p ∈ Z, and let R be a ring on which p is a
nonzerodivisor. A set-theoretic map δ : R → R is a p-derivation if φp(x) := xp + pδ(x) is a
ring homomorphism. Equivalently, δ is a p-derivation if δ(1) = 0 and δ satisfies the following
identities for all x, y ∈ R:

1) δ(xy) = xpδ(y) + ypδ(x) + pδ(x)δ(y),
2) δ(x+ y) = δ(x) + δ(y) + Cp(x, y)
where Cp(X, Y ) = Xp+Y p−(X+Y )p

p
∈ Z[X, Y ]. If δ is a p-derivation, we set δa to be the a-fold

self-composition of δ; in particular, δ0 is the identity.

Roughly speaking, a p-derivation and its powers play the role of differential operators in
the arithmetic direction.

Theorem 3.6 (De Stefani – Grifo – Jeffries, 2020 [DSGJ20]). Let p be a prime. Let A = Z or
a DVR with uniformizer p. Let R be an essentially smooth A-algebra that has a p-derivation
δ. Let Q be a prime ideal of R that contains p, and assume that A/pA is perfect, or more
generally that the field extension A/pA ↩→ RQ/QRQ is separable. Then

Q(n) = {f ∈ S | (δs ◦ ∂)(f) ∈ I for all ∂ ∈ Dt
R|A with s+ t " n− 1}.
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For prime ideals that do not contain p, the usual description using only differential oper-
ators, as in Theorem 3.3, still holds [DSGJ20, Theorem 3.9].

Example 3.7. The maximal ideal m = (2, x) in R = Z[x] contains the prime 2, so to
describe its symbolic powers we need to consider a 2-derivation. The map δ2 : R → R

δ2(f(x)) =
f(x2)− f(x)2

2

is a 2-derivation on R. By Theorem 3.6, the symbolic powers of m = (2, x) are given by

m(n) =

$
f ∈ Z[x] | δa2

+
∂bf

∂xb

,
∈ (2, x), for a+ b " n− 1

%
.

In particular, we can now see that 2 /∈ m(2), since

δ2(2) =
2− 22

2
= −1 /∈ m,

while as we saw in Example 3.4 there are no Z-linear differential operators ∂ of order up to
1 (or any order!) satisfying ∂(2) /∈ m.

4. Some open Problems

There are many interesting open problems related to symbolic powers. We collect a quick
survey of some of those problems, but must necessarily leave a lot of the story to be told
elsewhere. For a survey of symbolic powers and other related problems, see [DDSG+18].

4.1. Equality. While the symbolic powers I(n) of I can be computationally difficult to
compute, its ordinary powers In are very easy to describe. It is thus desirable to understand
when I(n) = In for some or all n. We do have I(n) = In for all n whenever I defines a complete
intersection — meaning I is generated by a regular sequence — though this condition is far
from being necessary [Hoc73, LS]. A necessary and sufficient condition can be found in
[Hoc73], though this condition is not suitable to test in practice outside of special cases.
When we restrict to squarefree monomial ideals a polynomial ring k[x1, . . . , xd] over a field
k, it is conjectured that the condition I(n) = In for all n is equivalent to a combinatorial
condition. A monomial ideal is an ideal generated by monomials, and it is squarefree if
it is generated by products of distinct variables; (xy, xz, yz) is a squarefree monomial ideal,
(x2y, z) is a monomial ideal but not squarefree, and (x+ y, z) is not a monomial ideal.

Definition 4.1 (König ideal). Let I be a squarefree monomial ideal of height c in a poly-
nomial ring over a field. We say that I könig if I contains c monomials with no common
variables. A squarefree monomial ideal of height c is said to be packed if every ideal obtained
from I by setting any number of variables equal to 0 or 1 is könig.

The following is a restatement by Gitler, Valencia, and Villarreal [GVV05] in the set-
ting of symbolic powers of a conjecture of Conforti and Cornuéjols about max-cut min-flow
properties.

Conjecture 4.2 (Packing Problem). Let I be a squarefree monomial ideal in a polynomial
ring over a field k. We have I(n) = In for all n ! 1 if and only if I is packed.
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The Packing Problem has been solved for edge ideals of simple graphs, in which case
In = I(n) for all n if and only if I is the edge ideal of a bipartite graph [GVV05], but it
remains open in the general setting.

One may also wonder if it is sufficient to check the equality In = I(n) for finitely many n;
this has recently been shown to hold in the case when I is generated by monomials.

Theorem 4.3 (Montaño — Núnez Betancourt, 2019 [MnNnB19]). Let I be a monomial
ideal in k[x1, . . . , xd], where k is a field, and suppose that I is generated by µ monomials. If
In = I(n) for all n " µ

2
, then In = I(n) for all n.

It is an open question whether such a theorem holds for a general ideal, and if it does,
what values of n we need to test to guarantee In = I(n) for all n.

4.2. Degree bounds. Given a nonzero homogeneous ideal I in k[x1, . . . , xd], we write α(I)
for the minimum degree of a nonzero homogeneous f ∈ I. The questions that we opened
the paper with asked about α(I) and α(I(n)); giving lower bounds for these quantities can
be quite challenging.

Conjecture 4.4 (Chudnovsky, 1981 [Chu81]). If I defines a finite set of points in PN , then
for all m ! 1 we have

α(I(m))

m
! α(I) +N − 1

N
.

Chudnovsky’s conjecture holds for any set of points in P2 [Chu81, HH13], a general set of
points in P3 [Dum15], a set of at most N+1 points in generic position in PN [Dum15], a set of
a binomial coefficient number of points forming a star configuration [BH10, GHM13], a set of
points in PN lying on a quadric [FMX18], a very general set of points in PN [DTG17, FMX18],
and sets of s ! 4N general points in PN [BGHN]. The case of an arbitrary set of points
remains open.

4.3. The Containment Problem. When is I(a) ⊆ Ib? Necessary and sufficient conditions
for this question to make sense — so that given I and b, we can always find such an a —
were studied by Schenzel in the 1980s [Sch85]. For each I and each b, we want to find the
smallest possible a with I(a) ⊆ Ib. If I(b) ⊆ Ib, then I(b) = Ib, so this question contains
the equality problem as a subproblem. When equality does not hold, we may think of the
Containment Problem as a way of comparing the ordinary and symbolic powers of I. Notice
also that if I(a) ⊆ Ib, then α(I(a)) ! bα(I), so answering the Containment Problem for I will
in particular provide lower bounds for the degrees of elements in the symbolic powers of I.

Over R = k[x1, . . . , xd], or more generally any regular ring, the answer depends on the
big height of I, the largest codimension of an irreducible component of the algebraic set
corresponding to I, which in algebraic terms is the same as the largest height of a minimal
prime of I.

Theorem 4.5 (Ein–Lazarsfeld–Smith, Hochster–Huneke, Ma–Schwede [ELS01, HH02, MS17,
M]). Let R be a regular ring and I a radical ideal in R. If h is the big height of I, then

I(hn) ⊆ In for all n ! 1.

In particular, when k is a field and R = k[x1, . . . , xd], the theorem says that I(dn) ⊆ In for
every I. This type of uniform behavior — in this case, independent of the ideal I we choose
— appears in many shapes and forms throughout commutative algebra. For example, for
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a prime ideal P of height 2, the theorem says that P (4) ⊆ P 2; in 2000, Huneke asked if
this could be improved to P (3) ⊆ P 2 under some technical hypothesis, which inspired the
following conjecture.

Conjecture 4.6 (Harbourne, 2006). Let I be a radical homogeneous ideal in k[x1, . . . , xd],
and let h be the big height of I. Then for all n ! 1,

I(hn−h+1) ⊆ In.

Hochster and Huneke’s proof of Theorem 4.5 uses prime characteristic techniques and re-
duction to characteristic p to do the case when the ring contains a field, and their proof in
the prime characteristic p case for n = pe turns out to be a beautiful application of the Pi-
geonhole Principle. A more careful application of the Pigeonhole Principle gives Harbourne’s
Conjecture for powers of p: I(hq−h+1) ⊆ Iq for all q = pe. In an amazing twist, however,
Conjecture 4.6 is not true as stated: there is a set of 12 points in P12 [DSTG13] with h = 2
that fails I(3) ⊆ I2, among other families of counterexamples [HS15, Sec15, DS21].

Despite these counterexamples, Conjecture 4.6 does hold for some large classes of ideals,
such as monomial ideals [BDRH+09, Example 8.4.5], generic sets of points in P2 [BH10] or
P3 [Dum15], for matroid configurations [GHMN17], and for star configurations [HH13]. The
conjecture also holds if R/I has nice singularities: if R/I is F-pure in prime characteristic
or of dense F-pure type in equicharacteristic 0 [GH]. This class of rings contains Veronese
rings, generic determinantal rings, and more generally rings of invariants of linearly reductive
groups.

Moreover, every counterexample to Conjecture 4.6 known to date actually satisfies the
following open conjecture:

Conjecture 4.7 (Stable Harbourne [Gri20]). If I is a radical ideal of big height h in a
regular ring, then I(hn−h+1) ⊆ In for all n ≫ 0.

We are asking if Harbourne’s Conjecure holds for n large — where large enough should
depend on I. The philosophy is that when one asks for the smallest an such that I(an) ⊆ In,
things get better as n grows. Not only do we have no counterexamples to this conjecture,
the evidence supporting it keeps growing [Gri20, BGHN, GHM20a, GHM20b]. In fact, every
counterexample known to date to the original conjecture, Conjecture 4.6, satisfies the stable
conjecture.

If studying I(n) is hard, the computational problems only get harder as n grows. As such,
testing conjectures such as this one can be quite challenging. Many of the results in this
direction rely on proving that certain particular containments are sufficient to obtain an
eventual containment statement for large n, a technique which has also found applications
[BGHN, BGHN22] in the degree problem we mentioned in Section 4.2.

The problems we discussed here have been open for decades, but have paved the way for
many new research avenues in recent years. For more on recent advances in the topic of
symbolic powers, and their connections to other topics, see [DDSG+18].
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[Gri20] Elóısa Grifo. A stable version of Harbourne’s Conjecture and the containment problem for space

monomial curves. J. Pure Appl. Algebra, 224(12):106435, 2020.



SYMBOLIC POWERS 9
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