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ON TRAJECTORY AUGMENTATIONS FOR
OFF-POLICY EVALUATION

Ge Gao∗ Qitong Gao† Xi Yang‡ Song Ju∗ Miroslav Pajic† Min Chi∗

ABSTRACT

In the realm of reinforcement learning (RL), off-policy evaluation (OPE) holds
a pivotal position, especially in high-stake human-centric scenarios such as e-
learning and healthcare. Applying OPE to these domains is often challenging with
scarce and underrepresentative offline training trajectories. Data augmentation has
been a successful technique to enrich training data. However, directly employing
existing data augmentation methods to OPE may not be feasible, due to the Marko-
vian nature within the offline trajectories and the desire for generalizability across
diverse target policies. In this work, we propose an offline trajectory augmentation
approach, named OAT, to specifically facilitate OPE in human-involved scenarios.
We propose sub-trajectory mining to extract potentially valuable sub-trajectories
from offline data, and diversify the behaviors within those sub-trajectories by vary-
ing coverage of the state-action space. Our work was empirically evaluated in
a wide array of environments, encompassing both simulated scenarios and real-
world domains like robotic control, healthcare, and e-learning, where the training
trajectories include varying levels of coverage of the state-action space. By en-
hancing the performance of a variety of OPE methods, our work offers a promis-
ing path forward for tackling OPE challenges in situations where human-centric
data may be limited or underrepresentative.

1 INTRODUCTION

Off-policy evaluation (OPE) has been recognized as an important part of reinforcement learning
(RL), especially for human-involved RLs (Wu et al., 2022; Gao et al., 2023a;b;c), in which eval-
uations of online policies can have high stakes (Levine et al., 2020). The objective of OPE is
to evaluate target policies based on offline trajectories collected from behavioral policies differ-
ent from the target ones. One major barrier often lies in the fact that the offline trajectories in
human-involved tasks often only provide limited coverage of the entire state-action space (Chang
et al., 2021; Schweighofer et al., 2021). This can be caused by homogeneous behavioral policies;
for example, during clinical procedures, physicians need to follow certain standardized guidelines.
However, a sub-optimal autonomous control agent (e.g., surgical robots under training) may deviate
from such guidelines, and thus result in trajectories where the state-action space may not be fully
covered by the offline trajectories collected, which introduces great challenges for OPE, as illus-
trated in Figure 1. Therefore, to improve the OPE performance, it is essential to enrich the offline
trajectories.

Data augmentation is a powerful tool for data enrichment by artificially generating new data points
from existing data. It has shown effectiveness in facilitating learning more robust supervised and
unsupervised models (Iwana & Uchida, 2021a; Xie et al., 2020). Specifically, generative methods
such as variational autoencoder (VAE) have achieved superior performance in time-series augmen-
tation (Yoon et al., 2019; Barak et al., 2022). However, an important characteristic of OPE training
data is the Markovian nature, as the environments are usually formulated as a Markov decision pro-
cess (MDP) (Thomas & Brunskill, 2016; Fu et al., 2021). As a result, prior works on time-series
augmentation may not be directly applicable to MDP trajectory augmentation. Recently, though
data augmentation methods have been extended to facilitate RL policy optimization, most existing
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works focus on enriching the state space, such as adding noise to input images to generate sufficient
data and improve the generality of agents (Laskin et al., 2020a; Raileanu et al., 2021), but over-
look the coverage of the joint state-action distribution over time. More importantly, the goal of data
augmentation towards OPE is different from RL policy optimization. Data augmentation in RL gen-
erally aims to quickly facilitate identifying and learning from high-reward regions of the state-action
space (Liu et al., 2021; Park et al., 2022). In contrast, the evaluation policies considered by OPE
can be heterogeneous and lead to varied performance, i.e., the policies to be evaluated by OPE do
not necessarily perform well; therefore, it is equally important to allow the agent learning from tra-
jectories resulted from high- and low-reward regions. As a result, OPE methods prefer training data
that provides comprehensive coverage of the state-action space, including the trajectories resulting
from low-performing and sub-optimal policies. To the best of our knowledge, there does not exist a
method that augments historical trajectories specific to OPE.
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Figure 1: A conceptual illustration of
the discrepancy between human demon-
strations (left) versus the empirical tra-
jectories resulted from a sub-optimal
policy (right) to be evaluated by OPE.
It can be observed that the autonomous
agent may perform maneuvers unseen
from the training (demonstration) tra-
jectories, and thus can potentially hin-
der OPE’s performance.

In this paper, we propose a framework to facilitate OPE
using Augmented Trajectories (OAT). Specifically, moti-
vated by the intrinsic nature that human-involved systems
(HIS) are often provided limited coverage of the state-
action space, while human may behave diversely when
following different policies (Yang et al., 2020b; Wang
et al., 2022), we propose potential sub-trajectories (PSTs)
mining to identify sub-trajectories of historical trajecto-
ries whose state-action space is less covered but have
great potential to enrich the space. Then a generative
modeling framework is used to capture the dynamic un-
derlying the PSTs and induce augmented sub-trajectories.
Based on that, we design the fuse process by simultane-
ously taking the augmented sub-trajectories while main-
taining the part of the states and actions associated with
non-PSTs. The key contributions of this work are summarized as follows: (i) To the best of our
knowledge, OAT is the first method augmenting historical trajectories to facilitate OPE in HIS. (ii)
We conduct extensive experiments to validate OAT in a variety of simulation and real-world envi-
ronments, including robotics, healthcare, and e-learning. (iii) The experimental results present that
OAT can significantly facilitate OPE performance and outperform all data augmentation baselines.

2 OPE WITH AUGMENTED TRAJECTORIES (OAT)

Figure 2: The illustration of OAT. It con-
sists of three steps: (i) Mining of poten-
tial sub-trajectories (PSTs), where human be-
have similarly under behavioral policies at
the grey-shaded area and may have more po-
tential to enrich the coverage of its state-
action space; (ii) VAE-MDP for augment-
ing PSTs; (iii) Fuse augmented PSTs back
to their origins.

We propose a framework to facilitate OPE with aug-
mented trajectories (OAT). Specifically, we first in-
troduce offline trajectories and OPE. Then we pro-
pose a sub-trajectory mining method that identifies
the sub-trajectories of trajectories that have great
potential to increase the offline trajectories’ cover-
age over the state-action space, i.e., potential sub-
trajectories (PSTs). A generative modeling frame-
work is used to capture the dynamics underlying the
selected PSTs, followed by a fuse process that gen-
erates augmented trajectories with augmented sub-
trajectories which will be used to train the OPE
methods.

Offline Trajectories. We consider framing an
agent’s interaction with the environment over a se-
quence of decision-making steps as a Markov de-
cision process (MDP), which is formulated as a 6-
tuple (S,A,P,S0, r, γ). S is the state space. A
is the action space. P defines transition dynamics
from the current state and action to the next state. S0

defines the initial state distribution. r is the reward
function. γ ∈ (0, 1] is discount factor. Episodes are
of finite horizon T . At each time-step t, the agent observes the state st ∈ S of the environment, then

2



Published as a conference paper at ICLR 2024

chooses an action at ∈ A following a policy π. The environment accordingly provides a reward
rt = r(st, at), and the agent observes the next state st+1 determined by P . τ (i) is defined as a
trajectory where τ (i) = [..., (st, at, rt, s

′
t), ...]

T
t=1.

Offline Policy Evaluation (OPE). The goal of OPE is to estimate the expected total return over the
evaluation (target) policy π, V π = E[

∑T
t=1 γ

t−1rt|at ∼ π], using set of historical trajectories D
collected over a behavioral policy β ̸= π. The historical trajectories D = {..., τ (i), ...}Ni=1 consist
of a set of N trajectories.

2.1 MINING OF POTENTIAL SUB-TRAJECTORIES (PSTS)

The historical trajectories D collected from HIS are often provided with limited coverage of the
state-action space, due to the intrinsic nature that human may follow homogeneous behavioral poli-
cies or specific guidelines when performing their professions (Yang et al., 2020b; Wang et al., 2022).
For example, a surgeon could perform appendectomy in various ways across patients depending on
each patient’s specific condition; however, they may strictly follow similar steps at the beginning
(e.g., disinfection) and the end of surgeries (e.g., stitching). Therefore, the resulting trajectories may
lead to limited coverage for part of the state-action space representing similar scenarios. However,
a sub-optimal autonomous agent, subject to be evaluated by OPE, may visit states unseen from the
trajectories collected from the surgeon, e.g., towards the beginning/end of the surgery. As a result,
we consider augmenting the part of trajectories, i.e., the PSTs, that are more likely to be insuffi-
ciently covered by the historical trajectories D. Moreover, the downstream generative models, such
as VAEs, do not necessarily need to reconstruct entire trajectories for long horizons and over limited
samples which are the common limitations of data collected from HIS (Yacoby et al., 2020).

To identify the PSTs that are subject to be augmented, we introduce a three-step approach, i.e., (i)
discrete representation mapping, followed by (ii) determining support from discrete representations,
where the support is used in step (iii) to identify PSTs to be augmented.

Step (i) – Discrete Representation Mapping. Trajectories collected from HIS can be complex,
due to the unobservable underlying human mindset and high-dimensional state space (Mandel et al.,
2014). Discrete representation mapping has been recognized as effectively providing abstractions
from complex original data and helping capture homogeneous behaviors shared across trajecto-
ries (Yang et al., 2021). We assume that states st ∈ S can be mapped into C clusters, where each
st is associated with a cluster from the set K = {K1, . . . ,KC}. After mapping, each state si,t on
trajectory τ (i) is mapped to Ki,t ∈ K.

Step (ii) – Determine Support from Discrete Representations. We assume that each trajectory
τ (i) can be mapped to a corresponding temporal discrete sequence K(i) = [Ki,1, . . . ,Ki,T ] ⊂
ZT , based on the state mapping, where T is the horizon of the environment and Z is the set of
integers. We also define H = {...,K(i), ...}Ni=1 which is the set of all temporal discrete sequences
mapped from the set of original trajectories D. We define δ

(i)
ζ,ζ+W−1 = [Ki,ζ , ...,Ki,ζ+W−1] as

a temporal discrete sub-sequence (TDSS) with length W ∈ [1, T ] of K(i), where ζ ∈ [1, T −
W + 1], denoted as δ

(i)
ζ,ζ+W−1 ⊑ K(i). Note that C is generally greatly smaller than T × N as

considered in discrete representation mapping in general (Hallac et al., 2017; Yang et al., 2021).
Therefore, it is possible that a temporal discrete sub-sequence δ

(i)
ζi,ζi+W−1 is “equal” to another

temporal discrete sub-sequence δ
(j)
ζj ,ζj+W−1, such that δ(i)ζi,ζi+W−1 = δ

(j)
ζj ,ζj+W−1 if every Ki,ζi =

Kj,ζj given Ki,ζi ,Kj,ζj ∈ Z. Though ζi does not necessarily equals to ζj , we omit the superscript
for concise expression. Then, the support (or frequency) of any TDSS δ

(i)
ζ,ζ+W−1 appears in H is the

number of K(i) in H containing the TDSS, i.e.,

supportH(δ
(i)
ζ,ζ+W−1) =

N∑
j=1

[
1(δ

(j)
ζ,ζ+W−1 ⊑ K(j))× 1(δ

(j)
ζ,ζ+W−1 = δ

(i)
ζ,ζ+W−1)

]
, (1)

where 1(·) is the indicator function.

Step (iii) – Identify PSTs. We denote φ
(i)
ζ,ζ+W−1 = [..., (ŝ

(i)
t , â

(i)
t , r̂

(i)
t , ŝ

′(i)
t ), ...]ζ+W−1

t=ζ as a sub-
trajectory with length W of τ (i). Given the mapping from trajectory τ (i) to temporal discrete se-
quence K(i) (introduced in the step above), we define that each sub-trajectory φ

(i)
ζ,ζ+W−1 can be
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mapped to a corresponding TDSS δ
(i)
ζ,ζ+W−1. Now we can identify the PSTs that will be used to

train the generative model for reconstructing new sub-trajectories (i.e., augmentation) in Section 2.2,
following the definition below.

Definition 2.1 (Potential Sub-Trajectory (PST)). Given historical trajectories D and a threshold ξ,
a sub-trajectory φ

(i)
ζ,ζ+W−1 is considered as a potential sub-trajectory if the support of its mapped

temporal discrete sub-sequence δ
(i)
ζ,ζ+W−1 satisfies supportH(δ

(i)
ζ,ζ+W−1) ≥ ξ.

An intuitive way to determine the threshold ξ is ranking the TDSSs by their supports in descending
order and picking the top k ones. In this study, we iteratively select the top k distinct TDSSs until
the support of the set of G selected TDSSs {δgζ,ζ+W−1}1, g ∈ [1, G], i.e., the number of K(i) in H
containing any TDSS δ ∈ {δgζ,ζ+W−1}, is greater than or equal to .99N , or we early stop at k = 5.

Following the step above, a set of PSTs is determined for historical trajectories D, from which we
can obtain a set of G distinct corresponding TDSSs {δgζ,ζ+W−1} mapped from the PSTs. Then

we can obtain G sets of PSTs, such that each set T g = {φ(i)
ζ,ζ+W−1}, where all φ(i)

ζ,ζ+W−1 ∈ T g

satisfy that their corresponding δ
(i)
ζ,ζ+W−1 = δgζ,ζ+W−1. Each set of PSTs may contain unique

information captured from the original historical trajectories D, as previous works have found that
the PSTs in the same set, T g , are in general associated with similar temporal and cross-attributes
correlations (Gao et al., 2021; 2022a).

2.2 AUGMENTING THE PSTS
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Figure 3: Illustration of VAE-MDP
for Sub-trajectory augmentations. The
PSTs are extracted by PSTs mining
from original offline trajectories. Then
VAE-MDP is employed to roll out
new PSTs by reconstructing state-action
space and inducing rewards. The aug-
mented trajectory (colored in green) is
formed by fusing back augmented PSTs
to offline trajectories.

In this section, we introduce how to adapt VAE to cap-
ture the MDP transitions, i.e., VAE-MDP, underlying
each set of PSTs, T g , as well as reconstruct new PST
samples that will be fused back with the original his-
torical trajectories D for OPE methods to estimate the
returns of evaluation (target) policies. The adaptation
mainly consists of three parts: the latent prior, varia-
tional encoder, and generative decoder. Given a set of
PSTs, T g = {δζ,ζ+W−1}2, the formulation of VAE-
MDP consists of three major components, i.e., (i) the la-
tent prior p(zζ) ∼ N (0, I) representing the distribution
of the initial latent states (at the beginning of each PST
in the set T g), where I is the identity covariance ma-
trix. (ii) the encoder qω(zt|st−1, at−1, st) that encodes
the MDP transitions into the latent space, and (iii) the de-
coders pη(zt|zt−1, at−1), pη(st|zt), pη(rt−1|zt) that re-
constructs new PST samples. The detailed setup can be
found in Appendix A.4, and the overall encoding and de-
coding processes are illustrated in Figure 3.

The training objective for VAE-MDP is to maximize the evidence lower bound (ELBO), which
consists of the log-likelihood of reconstructing the states and rewards, and regularization of the
approximated posterior, i.e.,

L = −ELBO(ω, η) = −Eqω

[∑ζ+W−1

t=ζ
log pη(st|zt) +

∑ζ+W−1

t=ζ+1
log pη(rt−1|zt)−KL

(
qω(zζ |sζ)||p(zζ)

)
−

∑ζ+W−1

t=ζ+1
KL

(
qω(zt|zt−1, at−1, st)||pη(zt|zt−1, at−1)

)]
.

(2)

The proof of Equation 2 are provided in Appendix A.5. Consequently, given a set of PSTs, T g ,
a VAE-MDP to the set can be trained to reconstruct a set of new PST samples, denoted as T̂ g =

1From now we use superscript g to replace (i) for δ’s, since there may exist multiple TDSSs that are equiv-
alent.

2From now on we omit the superscripts of δ for conciseness.
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{φ̂v
ζ,ζ+W−1}, v ∈ [1, V ], where φ̂v

ζ,ζ+W−1 = [..., (ŝvt , â
v
t , r̂

v
t , ŝ

′v
t ), ...]

ζ+W−1
t=ζ is a augmented PST

and V is the total number of augmented PST samples, generated from VAE-MDP, for the set T g .

2.3 FUSE AUGMENTED PSTS BACK TO THEIR ORIGINS

With new augmented sub-trajectories rolled out by the VAE-MDP, we fuse them back to the orig-
inal historical trajectories D for the OPE methods to leverage. This fusing process is designed to
(i) provide enhanced coverage over the state-action space where the corresponding PSTs do not ex-
plicitly capture homogeneous behaviors, and still (ii) maintain the part of the covered state-action
distribution associated with non-PSTs, since those may indicate object-specific information that is
not shared across all trajectories, e.g., the part of the surgical procedure specific to each patient,
following from the surgery analogy above. Below we introduce how to fuse T̂ g with the original
trajectories from D. A graphical illustration of this step can be found in Figure 2.

Given a trajectory τ (i) ∈ D, the G sets of PSTs {T 1, ..., T G} mined from D following Section 2.1,
and G sets of augmented sub-trajectories {T̂ 1, ..., T̂ G} generated from G corresponding VAE-
MDPs following Section 2.2, an augmented trajectory τ̂ (i) corresponding to τ (i) can be obtained

by τ̂ (i) =
[
1(t ∈ [ζ, ζ + W − 1])(ŝvt , â

v
t , r̂

v
t , ŝ

′v
t ) ∨ 1(t /∈ [ζ, ζ + W − 1])(s

(i)
t , a

(i)
t , r

(i)
t , s

′(i)
t )

]T
t=1

;

(ŝvt , â
v
t , r̂

v
t , ŝ

′v
t ) ∈ φ̂v

ζ,ζ+W−1, φ̂v
ζ,ζ+W−1 ∈ T̂ g . In this study, the φ̂v

ζ,ζ+W−1 is selected as the one
whose state and action are the closest to the original state and action at step ζ+W −1. More details
are provided in Appendix A.6.

3 EXPERIMENTS

3.1 SETUP

Baselines. We investigate a variety of augmentation methods as baselines, including (i) RL-oriented
methods: TDA (Park et al., 2022) which originally incorporates with rewards learning by randomly
extracting sub-trajectories from trajectories, we replace PST mining by TDA in OAT so that TDA
can be used for OPE with augmentation; permutation, Gaussian jittering, and scaling have been
broadly employed in RL (Laskin et al., 2020b; Liu et al., 2020; Raileanu et al., 2021); (ii) generative
methods: TimeGAN (Yoon et al., 2019) and VAE (Barak et al., 2022); (iii) time-series methods:
SPAWNER (Kamycki et al., 2019) and DGW (Iwana & Uchida, 2021b) that consider similarities
across time series. We implement RL-augmentation methods strictly following original algorithms,
and use open-sourced code provided by the authors for the generative and time-series augmentation
methods. Since generative and time-series methods are not proposed towards trajectories, we treat
trajectories as multivariate time series as their input.

Ablations. One ablation of our approach is to apply VAE-MDP to reconstruct entire trajectories
as augmentations, i.e., without PST mining (Section 2.1) and fusing back (Section 2.3). Moreover,
TDA (Park et al., 2022) and VAE (Barak et al., 2022) can be considered as two ablations as well,
since TDA isolates our PST mining from OAT and VAE augments entire trajectories following the
vanilla VAE (Kingma & Welling, 2013), i.e., without being adapted to the Markovian setting.

OPE methods considered. Outputs from all augmentation methods are fed into five OPE meth-
ods to compare the performance achieved with versus without augmentations. The OPE methods
we consider include importance sampling (IS) (Precup, 2000), fitted Q-evaluation (FQE) (Le et al.,
2019), distribution correction estimation (DICE) (Yang et al., 2020a), doubly robust (DR) (Thomas
& Brunskill, 2016), and model-based (MB) (Zhang et al., 2020a). We use the open-sourced imple-
mentations provided by the Deep OPE (DOPE) benchmark (Fu et al., 2021).

Standard validation metrics. To validate OPE’s performance (for both with and without aug-
mentations), we use standard OPE metrics as introduced in the DOPE benchmark, which include
absolute error, Spearman’s rank correlation coefficient (Spearman, 1987), regret@1, and regret@5.
Definitions of the metrics are described in Appendix B.3.

3.2 ENVIRONMENTS

To evaluate our method, OAT, as well as the existing augmentation approaches for OPE, we use
both simulated and real-world environments, spanning the domains of robotics, healthcare, and e-
learning. The environments are human-involved which is generally challenging with highly limited
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quantity of demonstrations containing underrepresented state space, due to homogeneous interven-
tions when collecting the historical trajectories.

Adroit. Adriot (Rajeswaran et al., 2018) is a simulation environment with four synthetic real-world
robotics tasks, where a simulated Shadow Hand robot is asked to hammer a nail (hammer), open a
door (door), twirl a pen (pen), or pick up and move a ball (relocate). Each task contains three
training datasets with different levels of human-involvements, including full demonstration data
from human (human), induced data from a fine-tuned RL policy (expert), and mixing data with
a 50-50 ratio of demonstration and induced data (cloned). We follow the experimental settings
provided in Deep OPE benchmark, with 11 DAPG-based evaluation policies ranging from random
to expert performance (Fu et al., 2021).

Real-World Sepsis Treatment. We investigate a challenging task in healthcare, sepsis treatments,
which has raised broad attention in OPE (Namkoong et al., 2020; Nie et al., 2022). Specifically,
the trajectories are taken from electronic health records containing 221,700 patient visits collected
from a hospital over two years. The state space is constituted by 15 continuous sepsis-related clinical
attributes that represent patients’ health status, including heart rate, creatinine, etc. The cardinality of
the action space is 4, i.e., two binary treatment options over {antibiotic administration,
oxygen assistance}. Given the four stages of sepsis defined by the clinicians (Delano & Ward,
2016), the rewards are set for each stage: infection (±5), inflammation (±10), organ failure (±20),
and septic shock (±50). Negative rewards are given when a patient enters a worse stage, and positive
rewards are given when the patient recovers to a better stage. The environment considers discrete
time steps, with the horizon being 1160 steps. Five evaluation (target) policies are obtained by
training Deep Q Networks (DQNs) (Mnih et al., 2015) respectively over different hyper-parameters.
More details are provided in Appendix D.

Real-World Intelligent Tutor. Another important human-involved task for OPE is intelligent tutor-
ing, where students interact with intelligent tutors, with the goal of improving students’ engagements
and learning outcomes. Such topics have been investigated in prior OPE works (Mandel et al., 2014;
Nie et al., 2022). Specifically, we collect trajectories recorded from 1,307 students’ interaction logs
with an intelligent tutor, over seven semesters of an undergraduate course at an university. Since
students’ underlying learning states are unobservable (Mandel et al., 2014), we consult with domain
experts who help defines the state space which is constituted by 142 attributes that could possibly
capture students’ learning status from their logs. The cardinality of the action space is 3, i.e., on
each problem, the tutor need to decide whether the student should solve the next problem by
themselves, study a solution provided by the tutor, or work together with the tutor to solve
on the problem. During the tutoring, each student is required to solve 12 problems, thus the horizon
of the environment is considered as 12 discrete steps. Sparse rewards are obtained at the end of the
tutoring, which are defined as students’ normalized learning gains (Chi et al., 2011). We use the
trajectories collected from six semesters as the training data, where the behavior policy follows an
expert policy commonly used in e-learning (Zhou et al., 2019), and test on the upcoming semester.
There are 4 evaluation policies, including three obtained by training DQNs over different hyper-
parameters respectively, in addition to one expert policy. More details are provided in Appendix E.

3.3 RESULTS

Figure 4: Visualization of trajectories
in Maze2D-umaze. Left: the original
250 trajectories; Right: augmented data
with ten times numbers of trajectories
(×10).

The need of PSTs mining. To better understand the need
of PSTs mining (Section 2.1) conceptually, we visualize
the set of augmented trajectories produced by our method,
against the original set of historical trajectories D, over
the Maze2D-umaze environment which is a toy navi-
gation task requiring an agent to reach a fixed goal lo-
cation (Fu et al., 2020). We uniformly down-sample a
limited number (i.e., 250) of trajectories from the original
dataset provided by D4RL (overall 12k trajectories), and
use our method to augment this subset such that the to-
tal number of trajectories becomes ten times (×10) larger.
The visualization is shown in Figure 4. It can be observed
that there exist 3 sets of PSTs (as circled in the figure) that have significantly increased state space
visitation after augmentation, benefiting from the PSTs mining methodology introduced in Sec-
tion 2.1.
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3.3.1 RESULTS OVER ADROIT

Figure 5: OPE improvement results aver-
aging across 5 OPE methods and 4 tasks
in Adroit human using each augmentation
method. Top-left: Mean absolute error
(MAE) percentage improved. Top-right:
rank correlation improvements. Bottom-left
& bottom-right: Regret@1 and @5 improve-
ments, respectively.

Figure 5 summarizes the averaged improvements
across five OPE methods, over all four tasks (i.e.,
hammer, door, pen, relocate) in Adroit
human, quantified by the percentage increases over
the four validation metrics achieved by the OPE
methods evaluated over the augmented against the
original datasets. Overall, our method significantly
improves OPE methods in terms of all standard val-
idation metrics, and achieves the best performance
compared to all augmentation baselines. This il-
lustrates the effectiveness and robustness of our
proposed methods across environments and tasks.
There is no clear winner among baselines, where
VAE, TimeGAN, and scaling in general perform bet-
ter in terms of MAE, DGW and scaling performs
better in terms of rank correlation, permutation and
jittering perform better in terms of regrest@5. More
specifically, besides the fact that all methods can in
general improve MAE, most baselines lead to nega-
tive effects in terms of the other three metrics. De-
tailed results are presented in Appendix C.1.

More importantly, it can be observed that the ab-
lation baseline VAE-MDP is significantly outper-
formed by OAT across all metrics, which further jus-
tifies the importance of augmenting over the PSTs
instead of the entire horizon. It can be also observed that VAE-MDP in general outperforms the
vanilla VAE without adaptation to the Markovian setting, illustrating the importance of the adapta-
tion step introduced in Section 2.2. We also find that generative models achieve the best performance
among the baselines over environments that have relatively shorter horizons (e.g., pen), while their
performance is diminished when horizons increased. That further indicates the advantage of PSTs
mining that provides much shorter and representative sub-trajectories for generative learning.

3.3.2 RESULTS OVER REAL-WORLD HEALTHCARE AND E-LEARNING

Figure 6: OPE improvement results averaging
across 5 OPE methods in e-learning (left) and
healthcare (right).

Figure 6 presents the average MAE improvements
across all OPE methods in e-learning (left), and
improved rank correlation in healthcare (right).
Complete results for empirical study and all val-
idation metrics are provided in Appendix E. Re-
gret@5 is not applicable to both environments,
since the total number of evaluation policies are
less than or equal to five.

Overall, our method can significantly improve
OPE performance in terms of MAE, rank corre-
lation, and regret@1 in both real-world environ-
ments. In both e-learning and healthcare, most
augmentation baselines lead to neutral to negative
percentage improvements over the metrics considered, while OAT significantly improves OPE’s per-
formance over all baselines, with the ablation VAE-MDP attains the 2nd best performance. A reason
for baselines perform worse in real-world environments than in simulations can be that real-world
HIS are considered sophisticated, as the human mental states impact their behaviors implicitly. This
further indicates the importance of extracting underlying information from historical trajectories D,
as did in OAT and VAE-MDP, as well as effectively enriching the coverage of state-action space to
provide more comprehensive coverage for OPE methods to leverage, powered by the methodologies
introduced in Section 2.
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3.3.3 MORE DISCUSSIONS

We explore the following two major questions that are commonly involved in analyses over HIS.

Figure 7: OPE improvement results with three
human-involving levels, i.e., 100% (human),
50% (cloned), 0% (expert), averaging
across 5 OPE methods and 4 tasks in Adroit.

Will the level of human involvements affect tra-
jectory augmentations for OPE? As presented
in Figure 7, we evaluate augmentation meth-
ods across the four tasks in Adroit environment
with three different levels of human involvements
(LoHI) sorted from the most to least, i.e., human,
cloned, and expert. The results show that our
method achieves the best performance in terms of
all validation metrics when humans are involved in
data collection (i.e., human, cloned). The per-
formance of our method is slightly attenuated (but
still effective) when the LoHI decreased, while our
ablation VAE-MDP leads MAE when the LoHI is
0% (i.e., expert). Though TDA is effective un-
der the case when the LoHI is 0%, it still performs
worse than OAT and consistently worse at other
levels. Such a finding further confirms the effec-
tiveness of PST mining. Moreover, most base-
lines are ineffective when the LoHI is below 50%.
The reason is that the trajectories obtained from
demonstrations often provide limited and/or bi-
ased coverage over the state-action space (Fu et al.,
2021; Chang et al., 2021), thus any augmentation
methods that can potentially increase the coverage might be able to improve OPE’s performance.
In contrast, the historical trajectories induced from simulations using fine-tuned policies tend to re-
sult in better coverage over the state-action space in general (Fu et al., 2020), and the augmentation
methods that do not consider the Markovian setting generate trajectories that could be less meaning-
ful (i.e., providing limited or even unrealistic information) to the OPE methods, making them less
effective (e.g., negative effects on OPE when LoHI is 0%). For example, in the realm of surgery,
permutation can result in a trajectory with stitching happened before incision, which is unrealistic.

Table 1: Statistical significance test at
the level of ρ < 0.05 with bootstrapping
on three RL-induced policy π1, π2, π3

compared to expert policy πexpert from
real-world intelligent tutoring. The re-
sults that show significance are in bold.

IS result π1 tp π2 tp π3 tp
No Aug. 7.24.00 7.07.00 -4.48.00

OAT 3.10.00 1.33.19 2.11.06
TDA 10.14.00 5.82.00 -13.58.00
Perm. -1.78.08 -1.77.08 1.77.08

Jittering -1.89.06 -1.89.06 1.90.06
Scaling -1.33.06 -1.33.06 1.33.06

VAE -1.94.06 -1.92.06 1.54.13
TimeGAN 1.90.06 -2.25.03 -2.25.03
SPAWNER -1.00.32 -1.00.32 1.00.32

DGW -1.43.06 -1.43.16 1.43.16
Empirical result 2.01.04 0.61.54 0.20.84

Can trajectory augmentation facilitate OPE in terms
of significance test? OPE validation metrics generally
focus on standard error metrics as proposed in (Fu et al.,
2021), while domain experts emphasis statistical signif-
icance test for real-world HIS (Robertson & Kaptein,
2016; Zhou et al., 2022). For example, rank correlation
summarizes the performance of relative rankings of a set
of policies using averaged returns; in contrast, statistical
significance tests can examine if the relationships being
found are due to randomness. Moreover, they can be eas-
ier conveyed to and interpreted by domain experts (Guil-
ford, 1950; Ju et al., 2019).

One key measurement for RL-induced policies is
whether they significantly outperform the expert policy
in HIS (Zhou et al., 2019; 2022). We conduct t-test over
OPE estimations (with and without augmentations) ob-
tained from bootstrapping as introduced in (Hao et al.,
2021), and measure whether there is a significant difference between the mean value of OPE esti-
mation for each RL-induced policy against the expert policy. Interestingly, the results show that IS
performs the best among all 5 OPE methods we considered, in terms of all standard validation met-
rics in e-learning experiments, with and without augmentations using each augmentation method.
This can be caused by the fact that the behavioral policies are intrinsically similar, where 3 out of the
4 policies (i.e., π2, π3, πexpert) lead to similar returns (as shown in Appendix E.1) and the horizon
(i.e., T=12) is not much long, the unbiased nature of IS estimators could dominate it’s high variance
downside. Such characteristics of IS made it broadly used in short-horizon settings (Mandel et al.,
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2014; Xie et al., 2019). The statistical significance results are summarized in Table 1. It can be ob-
served that, without augmentation, IS estimates that all RL-induced policies performs significantly
different from the expert policy. However, in empirical study, only π1 performs significantly better
than expert policy, while the other two, i.e., π2 and π3 not. And our proposed method is the only one
that improves the IS estimation to be aligned with empirical results across all three policies, while
the baselines improve estimation at most one policy. Therefore, the results indicate the effectiveness
of our proposed method in terms of both standard OPE validation metrics and significance test.

4 RELATED WORKS

OPE A variety of contemporary OPE methods has been proposed, which can be mainly divided
into three categories (Voloshin et al., 2021b): (i) Inverse propensity scoring (Precup, 2000; Doroudi
et al., 2017), such as Importance Sampling (IS) (Doroudi et al., 2017). (ii) Direct methods that
directly estimate the value functions of the evaluation policy (Nachum et al., 2019; Xie et al., 2019;
Zhang et al., 2021; Yang et al., 2022; Gao et al., 2022c), including but not limited to model-based
estimators (MB) (Paduraru, 2013; Zhang et al., 2021), value-based estimators (Munos et al., 2016;
Le et al., 2019) such as Fitted Q Evaluation (FQE), and minimax estimators (Liu et al., 2018; Zhang
et al., 2020b; Voloshin et al., 2021a) such as DualDICE (Yang et al., 2020a). (iii) Hybrid methods
combine aspects of both inverse propensity scoring and direct methods (Jiang & Li, 2016; Thomas
& Brunskill, 2016), such as DR (Jiang & Li, 2016). However, a major challenge of applying OPE
to real-world is that many methods can perform unpleasant when human-collected data is highly
limited as demonstrated in (Fu et al., 2020; Gao et al., 2023a; 2024). Therefore, augmentation can
be an important way to facilitate OPE performance.

Data Augmentation for RL In RL, data augmentation has been recognized as effective to improve
generalizability of agents over various tasks (Laskin et al., 2020b;a; Kostrikov et al., 2020; Liu et al.,
2021; Raileanu et al., 2021; Joo et al., 2022; Goyal et al., 2022). For instance, automatic augmen-
tation selection frameworks are proposed for actor-critic algorithms by regularizing the policy and
value functions (Raileanu et al., 2021). However, most of the prior work only consider image in-
put which may not capture temporal dependencies in trajectories. More importantly, the prior work
is proposed towards RL policy optimization by learning from high-reward regions of state-action
space, while OPE aims to generalize over evaluation policies that can be heterogeneous and lead
to varied performance. To the best of our knowledge, no prior work has extensively investigated
various prior augmentation methods in OPE, nor proposed augmentation towards offline trajectories
to scaffold OPE in real-world domains. More comprehensive review of related works on OPE and
data augmentations in general can be found in Appendix G.

5 CONCLUSION & LIMITATION

We have proposed OAT, which can capture the dynamics underlying human-involved environments
from historical trajectories that provide limited coverage of the state-action space and induce effec-
tive augmented trajectories to facilitate OPE. This is achieved by mining potential sub-trajectories,
as well as extending a generative modeling framework to capture dynamics under the potential
sub-trajectories. We have validated OAT in both simulation and real-world environments, and the
results have shown that OAT can generally improve OPE performance and outperform a variety
of data augmentation methods. Latent-model-based models such as VAE have been commonly
used for augmentation in offline RL, while they generally rarely come with theoretical error bounds
provided (Hafner et al., 2020; Lee et al., 2020; Rybkin et al., 2021). Such a challenge also re-
mains for many data augmentation methods (Zheng et al., 2023). However, once the trajectories
are augmented, one can choose to use the downstream OPE methods which come with guarantees,
such as DR and DICE. Moreover, prior works found that distribution shift could be a challenge for
OPE (Wang et al., 2021; Fu et al., 2021). Though this is beyond the scope of this work, given we
use existing OPE methods as backbones to process the augmented trajectories, a potential future
work is coming up with new OPE methods that can resolve the distribution shift. We conduct exten-
sive experiments to examine the proposed augmentation method, and the results demonstrating its
effectiveness. OAT can be stand-alone to generate trajectories without any assumptions over target
policies. And it can be utilized by built-on-top works such as policy optimization and representation
learning.
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SOCIAL IMPACTS

All real-world educational and healthcare data employed in this paper were obtained anonymously
through exempt IRB-approved protocols and were scored using established rubrics. No demographic
data or class grades were collected. All data were shared within the research group under IRB, and
were de-identified and automatically processed for labeling. This research seeks to remove societal
harms that come from lower engagement and retention of students who need more personalized
interventions and developing more robust medical interventions for patients.
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A MORE DETAILS ON METHODOLOGY

A.1 COMPLEXITY ANALYSIS

OAT consists of three main steps, including PSTs mining, PSTs augmentation, and fuse back; thus,
the overall complexity depends on the specific techniques used in each step. In PSTs mining, the
discrete representation mapping uses TICC, which takes O(TNC) time to assign TN states (T is
the horizon, N is the number of trajectories) into C clusters (Hallac et al., 2017). To identify PSTs,
we use MG-FSM (Miliaraki et al., 2013) for sub-trajectory mining which has O(T ) time complexity.
We found that providing complexity for PSTs augmentation could be challenging given that training
VAE requires stochastic gradient descent algorithms with parameter tuning (e.g., for step size and
network architecture). In fusing back, the time complexity is O(N) if the same amount of augmented
trajectories is added, and we are positive this can be shortened with parallel processing. Overall, as
shown in Table 2, on average, OAT takes less training time of timeGAN and VAE with the same
neural network architecture, respectively, which indicates OAT benefits more in augmenting on
much shorter PSTs than the mining process.

For the cost of reaching effectiveness, the total number of TDSSs from which PSTs are selected
is correlated to the length of the TDSSs which are capped at the horizon, i.e., the total number of
TDSSs is capped at CT . However, in Adroit-human, we noticed that the longest length of the PSTs
found is 10 when ξ is 10 (less than N/2), so T seems like a generous upper bound. For example, in
Adroit door-human, PSTs mining takes 224s over 6.7k data points.

Table 2: Average training time of OAT and generative-model-based methods in Adroit environment.
Training time (s) Pen Door Relocate Hammer

OAT 1662 688 734 1476
VAE 4247 2266 3184 3756

TimeGAN 1888 3027 4178 3716

A.1.1 TRAINING TIME WITH VAE-MDP

We plot the training time of VAE-MDP vs length of PSTs across all 12 Adroit datasets in Figure 8,
obtained from the same architecture of LSTMs and training settings as provided in Appendix B.2.
From the Figure 8, we can observe that the training time of VAE-MDP is increased almost linearly
with the length of PSTs. In experiments, the lengths of PSTs mined from most of the datasets (i.e.,
9 out of 12 datasets) are within 11, which only require less than 1 minute to train the VAE-MDP.

Figure 8: Plots of training time of VAE-MDP (in seconds) vs length of PSTs across all Adroit tasks.
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A.2 MORE ANALYSIS ON AUGMENTED TRAJECTORIES FROM OAT

A.2.1 SCATTER PLOTS ON RETURNS

We present scatter plots plotting the true returns of each policy against the estimated returns. Each
point on the plot represents one target policy.
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Figure 9: Scatter plots of estimate vs ground truth return before (top) and after (bottom) OAT aug-
mentation in Adroit pen-human environment.
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Figure 10: Scatter plots of estimate vs ground truth return before (top) and after (bottom) OAT
augmentation in Adroit relocate-human environment.
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Figure 11: Scatter plots of estimate vs ground truth return before (top) and after (bottom) OAT
augmentation in Adroit hammer-human environment.
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Figure 12: Scatter plots of estimate vs ground truth return before (top) and after (bottom) OAT
augmentation in Adroit door-human environment.

A.3 DETAILS OF DISCRETE REPRESENTATION MAPPING

In this work, we leverage Toeplitz inverse covariance-based clustering (TICC) (Hallac et al., 2017)
to map states st ∈ S into C clusters, where each st is associated with a cluster from the set
K = {K1, . . . ,KC}. The states mapped to the same cluster can be considered sharing graphical
connectivity structure of both temporal and cross-attributes information captured by TICC. There are
variations of TICC targeting specific characteristics of data. Specifically, we used MT-TICC (Yang
et al., 2021) which is proposed towards time-awareness and multi-trajectories. The hyperparameter
C can be determined by calculating silhouette score (Hallac et al., 2017).

A.3.1 TICC PROBLEM

Each cluster c ∈ [1, C] is defined as a Markov random field (Rue & Held, 2005), or correlation net-
work, captured by its Gaussian inverse covariance matrix Σ−1

c ∈ Rm×m, where m is the dimension
of state space. We also define the set of clusters K = {K1, . . . ,KC} ⊂ R as well as the set of
inverse covariance matrices Σ−1 = {Σ−1

1 , . . . ,Σ−1
C }. Then the objective is set to be

max
Σ−1,K

C∑
c=1

[ ∑
s
(i)
t ∈Kc

(
L(s(i)t ; Σ−1

c )− ϵ1{s(i)t−1 /∈ Kc}
)]
, (3)
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where the first term defines the log-likelihood of s(i)t coming from Kc as L(s(i)t ; Σ−1
c ) = − 1

2 (s
(i)
t −

µck)
TΣ−1

c (s
(i)
t − µc) +

1
2 log detΣ

−1
c − n

2 log(2π) with µc being the empirical mean of cluster
Kc, the second term 1{s(i)t−1 /∈ Kc} penalizes the adjacent events that are not assigned to the same
cluster and ϵ is a constant balancing off the scale of the two terms. This optimization problem
can be solved using the expectation-maximization family of algorithms by updating Σ−1 and K
alternatively Hallac et al. (2017).

A.4 DETAILED FORMULATION OF THE VAE-MDP

The latent prior p(zζ) ∼ N (0, I) representing the distribution of the initial latent states (at the
beginning of each PST in the set T g), where I is the identity covariance matrix.

The encoder qω(zt|st−1, at−1, st) is used to approximate the posterior distribution
pη(zt|st−1, at−1, st) =

pη(zt−1,at−1,zt,st)∫
zt∈Z p(zt−1,at−1,zt,st)dzt

, where Z ⊂ Rm and m is the dimension.

Given that qω(zζ:ζ+W−1|sζ:ζ+W−1, aζ:ζ+W−2) = qω(zζ |sζ)
∏ζ+W−1

t=ζ+1 qω(zt|zt−1, at−1, st),
both distributions qω(zζ |sζ) and qω(zt|zt−1, at−1, st) follow diagonal Gaussian, where mean and
diagonal covariance are determined by multi-layer perceptrons (MLPs) and long short-term memory
(LSTM), with neural network weights ω. Thus, one can infer zωζ ∼ qω(zζ |sζ), zωt ∼ qω(zt|hω

t ),
with hω

t = fω(h
ω
t−1, z

ω
t−1, at−1, st) where fω represents LSTM layer and hω

t represents LSTM
recurrent hidden state.

The decoder pη(zt, st, rt−1|zt−1, at−1) is used to sample new tra-
jectories. Given pη(zζ+1:ζ+W−1, sζ:ζ+W−1, rζ:ζ+W−2|zζ , β) =∏ζ+W−1

t=ζ pη(st|zt)
∏T

t=ζ+1 pη(zt|zt−1, at−1)pη(rt−1|zt), where at’s are determined follow-
ing the behavioral policy β, distributions pη(st|zt) and pη(rt−1|zt) follow diagonal Gaussian with
mean and covariance determined by MLPs and pη(zt|zt−1, at−1) follows diagonal Gaussian with
mean and covariance determined by LSTM.

Thus, the generative process can be formulated as, i.e., at initialization, zηζ ∼ p(zζ), s
η
ζ ∼ pη(sζ |zηζ ),

aζ ∼ β(aζ |sηζ ); followed by zηt ∼ pη(h̃
η
t ), r

η
t−1 ∼ pη(rt−1|zηt ), s

η
t ∼ pη(st|zηt ), at ∼ β(at|sηt ),

with h̃η
t = gη[fη(h

η
t−1, z

η
t−1, at−1)] where gη represents an MLP.
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A.5 PROOF OF EQUATION 2

The derivation of the evidence lower bound (ELBO) for the joint log-likelihood distribution can be
found below.

log pη(sζ:ζ+W−1, rζ:ζ+W−2) (4)

= log

∫
zζ+1:ζ+W−1∈Z

pη(sζ:ζ+W−1, zζ+1:ζ+W−1, rζ:ζ+W−2)dz (5)

= log

∫
zζ+1:ζ+W−1∈Z

pη(sζ:ζ+W−1, zζ+1:ζ+W−1, rζ:ζ+W−2)

qω(zζ:ζ+W−1|sζ:ζ+W−1, aζ:ζ+W−2)
qω(zζ:ζ+W−1|sζ:ζ+W−1, aζ:ζ+W−2)dz

(6)
Jensen′s inequality

≥ Eqω [log p(zζ) + log pη(sζ:ζ+W−1, zζ+1:ζ+W−1, rζ:ζ+W−2|zζ)− log qω(zζ:ζ+W−1|sζ:ζ+W−1, aζ:ζ+W−2)]
(7)

=Eqω

[
log p(zζ) + log pη(sζ |zζ) +

∑ζ+W−1

t=ζ
log pη(st, zt, rt−1|zt−1, at−1)

− log qω(zζ |sζ)−
∑ζ+W−1

t=ζ+1
log qω(zt|zt−1, at−1, st)

]
(8)

=Eqω

[
log p(zζ)− log qω(zζ |sζ) + log pη(sζ |zζ) +

∑ζ+W−1

t=ζ+1
log

(
pη(st|zt)pη(rt−1|zt)pη(zt|zt−1, at−1)

)
−
∑ζ+W−1

t=ζ+1
log qω(zt|zt−1, at−1, st)

]
(9)

=Eqω

[∑ζ+W−1

t=ζ
log pη(st|zt) +

∑ζ+W−1

t=ζ+1
log pη(rt−1|zt)

−KL
(
qω(zζ |sζ)||p(zζ)

)
−

∑ζ+W−1

t=ζ+1
KL

(
qω(zt|zt−1, at−1, st)||pη(zt|zt−1, at−1)

)]
.

(10)

A.6 MORE DETAILS OF FUSING BACK STEP

We have ensured that the transition from the original trajectory to the beginning of the augmented
PSTs are smoothed, by letting the generation of ŝζ , the initial state in the PST (e.g., ŝ3 in Figure 3),
to be conditioned on sζ−1 which is the last state in the original trajectory (e.g., ŝ2 in Figure 3),
which equivalently set sζ−1 as the underlying initial state for the generated PST. To smooth the end
of PSTs, we select the augmented PSTs with the states and actions that have the least distance to the
original states and actions, at step ζ +W − 1. In experiments, we use the Euclidean distance as the
measure.

A.7 OAT WITH NON-TEMPORALLY-ALIGNED TRAJECTORIES

In the main context, for notation conciseness, we use horizon T to denote the length of all trajecto-
ries for notational simplicity, since our work is the first one introducing sub-trajectory mining and
augmentation to OPE. Note that OAT can work with non-temporally-aligned trajectories, i.e., tra-
jectories with different lengths and varied start and end times. In the PSTs mining step, the length
W is flexible and the TDSSs can be generated with a small length (e.g., 2) and expanded recursively
until reaching a maximum length (e.g., T ). Since our goal is to extract PSTs whose TDSSs are
shared across trajectories with large supports, a threshold ξ is used to bound the supports of PSTs so
that the PSTs with the greatest supports can be always extracted. Moreover, in our experiment, the
Adroit-human environments contain temporally non-aligned trajectories (e.g., length of trajectories
from door and relocate, varied from 223 to 300, and 297 to 527, respectively). More environ-
mental details are provided in Appendix C. And Appendix C.2 shows the the length of trajectories,
and start and end time of PSTs found on each trajectory can be varied.
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B EXPERIMENTAL SETUP

B.1 TRAINING RESOURCES

We implement the proposed method in Python. Training of our method and baselines are supported
by four NVIDIA TITAN Xp 12GB, three NVIDIA Quadro RTX 6000 24GB, and four NVIDIA
RTX A5000 24GB GPUs.

B.2 IMPLEMENTATION DETAILS & HYPER-PARAMETERS

The cluster number for discrete representation mapping can be determined by silhouette score using
training data following (Hallac et al., 2017), we perform search among [10, 20] for C in all datasets
and the one with the highest silhouette score is selected. In our experiments, C = 18, 10, 19, 16 for
{pen, door, relocate, hammer}-human, respectively; C = 20, 10, 10, 10 for {pen,
door, relocate, hammer}-cloned, respectively; C = 11, 10, 10, 10 for {pen, door,
relocate, hammer}-expert, respectively; C = 14, 17 for e-learning and healthcare, respec-
tively.

The experimental results are obtained with selecting the PSTs using the threshold ξ ∈ [2, N ] at the
top 1, i.e., we use the PST with the highest support of its corresponding TDSS, for easier investiga-
tion of the PSTs mining and comparison to other augmentation baselines such as TDA, and present
straightforward and general effects of our method. The percentage supports of the selected PSTs,
i.e., support(·)/N , are all ≥ 82% across all datasets and all experimental environments, especially
can cover 100% trajectories in all Adroit human tasks, which may further indicates the effectiveness
of PSTs mining. We choose the neural network architectures as follows.

For the components involving LSTMs, which include qω(zt|zt−1, at−1, st) and pη(zt|zt−1, at−1),
their architecture include one LSTM layer with 64 nodes, followed by a dense layer with 64 nodes.
All other components do not have LSTM layers involved, so they are constituted by a neural network
with 2 dense layers, with 128 and 64 nodes respectively. The output layers that determine the
mean and diagonal covariance of diagonal Gaussian distributions use linear and softplus activations,
respectively. The ones that determine the mean of Bernoulli distributions (e.g., for capturing early
termination of episodes) are configured to use sigmoid activations. For training OAT and its ablation
VAE-MDP, maximum number of iteration is set to 100 and minibatch size set to 4 (given the small
numbers of trajectories, i.e., 25 for each task) in Adroit, and 1,000 and 64 for real-world healthcare
and e-learning, respectively. Adam optimizer is used to perform gradient descent. To determine the
learning rate, we perform grid search among {1e− 4, 3e− 3, 3e− 4, 5e− 4, 7e− 4}. Exponential
decay is applied to the learning rate, which decays the learning rate by 0.997 every iteration. For
OPE, the model-based methods are evaluated by directly interacting with each target policy for 50
episodes, and the mean of discounted total returns (γ = 0.995 for Adroit, γ = 0.99 for Healthcare,
γ = 0.9 for e-learning) over all episodes is used as estimated performance for the policy.

B.3 EVALUATION METRICS

Absolute error The absolute error is defined as the difference between the actual value and estimated
value of a policy:

AE = |V π − V̂ π| (11)

where V π represents the actual value of the policy π, and V̂ π represents the estimated value of π.

Regret@1 Regret@1 is the (normalized) difference between the value of the actual best policy, and
the actual value of the best policy chosen by estimated values. It can be defined as:

R1 = (max
i∈1:P

V π
i − max

j∈best(1:P )
V π
j )/ max

i∈1:P
V π
i (12)

where best(1 : P ) denotes the index of the best policy over the set of P policies as measured by
estimated values V̂ π .
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Table 3: Summary of Adroit.
Task State Dim. Action Dim. Early Term. Continuous Ctrl. Dataset Size

Pen-human 45 24 Yes Yes 5000
Door-human 39 28 No Yes 6729
Hammer-human 46 26 No Yes 11310
Relocate-human 39 30 No Yes 9942
Pen-cloned 45 24 Yes Yes 5 ∗ 105
Door-cloned 39 28 No Yes 106

Hammer-cloned 46 26 No Yes 106

Relocate-cloned 39 30 No Yes 106

Pen-expert 45 24 Yes Yes 5 ∗ 105
Door-expert 39 28 No Yes 106

Hammer-expert 46 26 No Yes 106

Relocate-expert 39 30 No Yes 106

Rank correlation Rank correlation measures the Spearman’s rank correlation coefficient between the
ordinal rankings of the estimated values and actual values across policies:

ρ =
Cov(rank(V π

1:P ), rank(V̂ π
1:P ))

σ(rank(V π
1:P ))σ(rank(V̂ π

1:P ))
(13)

where rank(V π
1:P ) denotes the ordinal rankings of the actual values across policies, and rank(V̂ π

1:P )
denotes the ordinal rankings of the estimated values across policies.

C ADROIT

Figure 13: Four tasks in Adroit environment.

As shown in Figure 13, Adriot (Rajeswaran
et al., 2018) is a simulation environment with
four synthetic real-world robotics tasks, where
a 24-DoF simulated Shadow Hand robot is
asked to hammer a nail (hammer), open a door
(door), twirl a pen (pen), or pick up and
move a ball (relocate). Each task contains
three training datasets with different levels of
human-involvements, including full demonstra-
tion data from human (human), induced data
from a fine-tuned RL policy (expert), and
mixing data with a 50-50 ratio of demonstra-
tion and induced data (cloned). Task proper-
ties are provided in Table 3.

C.1 DETAILED RESULTS
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Table 4: Summary results averaging across five OPE methods without augmentation and with each
augmentation method in Adroit human.

Pen Relocate

MAE Rank Corr. Regret@1 Regret@5 MAE Rank Corr. Regret@1 Regret@5

NoAug. 3014 -0.104 0.184 0.03 1956.4 0.204 0.434 0.298
OAT 1042.2 0.276 0.166 0.026 537 0.36 0.42 0.158

VAE-MDP 1527.8 0.226 0.204 0.02 430.8 0.142 0.53 0.256
VAE 1302.4 -0.03 0.334 0.062 834.8 0.04 0.654 0.484

TimeGAN 1538.2 0.006 0.216 0.022 1209 0.408 0.604 0.34
SPAWNER 1817.8 -0.192 0.218 0.144 1560.6 0.338 0.436 0.272

DGW 1578 -0.028 0.292 0.054 1226.8 0.164 0.434 0.294
Permutation 1548.6 -0.132 0.27 0.076 1628 0.338 0.51 0.152

Jittering 1632.8 -0.096 0.202 0.076 1407.4 0.038 0.574 0.168
Scaling 1308.2 -0.02 0.382 0.076 1462.8 0.244 0.72 0.212
TDA 1030.4 -0.116 0.262 0.06 832.2 0.182 0.608 0.496

Hammer Door

MAE Rank Corr. Regret@1 Regret@5 MAE Rank Corr. Regret@1 Regret@5

NoAug. 5266 0.344 0.34 0.058 603.8 0.14 0.274 0.004
OAT 3187.8 0.608 0.084 0.018 477.8 0.676 0.152 0.026

VAE-MDP 3418.6 0.02 0.454 0.126 497.2 0.336 0.224 0.052
VAE 3733.2 -0.198 0.47 0.104 642.8 0.482 0.288 0.046

TimeGAN 4681 0.262 0.34 0.24 507 0.392 0.27 0.03
SPAWNER 4244.8 -0.156 0.55 0.37 687.6 0.146 0.37 0.186

DGW 5238.8 0.242 0.296 0.144 578.2 0.342 0.134 0.052
Permutation 4103.2 -0.202 0.534 0.076 583.4 0.264 0.236 0.088

Jittering 4256.4 0.004 0.452 0.102 700.2 0.268 0.342 0.056
Scaling 3832.4 0.166 0.404 0.102 580.8 0.222 0.326 0.078
TDA 3448 -0.298 0.56 0.078 511.2 0.118 0.376 0.112
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Table 5: MAE results of OPE without and with each augmentation method in Adroit human en-
vironment. Results are obtained by averaging over 3 random seeds used for training at a discount
factor of 0.995, with standard deviations shown after ±.

FQE pen door relocate hammer MB pen door relocate hammer

NoAug. 3872±140 389±60 593±113 6000±612 1218±23 403±18 353±21 3778±78
OAT 1231±33 464±17 742±7 3500±42 316±126 461±4 298±5 3372±28

VAE-MDP 843±44 498±10 419±6 3358±24 541±310 493±3 423±1 2912±13
TimeGAN 919±141 459±92 962±96 4353±495 1063±450 435±34 413±1 5811±97

VAE 614±9 531±7 520±2 3746±16 615±14 530±3 421±1 3734±9
SPAWNER 1508±52 504±35 735±131 6529±172 1107±0 473±4 698±4 3561±11

DGW 792±222 320±20 787±69 9578±431 1278±175 430±29 810±6 3779±37
Permutation 924±140 520±41 542±10 4069±56 998±0 483±4 754±4 3324±11

Jittering 1092±105 403±30 746±0 5526±323 1064±9 539±11 512±60 3257±103
Scaling 875±52 360±20 624±179 4599±306 961±337 478±5 524±84 3627±63
TDA 1185±29 469±6 805±10 3407±22 471±248 470±4 810±4 3402±11

IS pen door relocate hammer DR pen door relocate hammer

NoAug. 3926±128 870±173 3926±128 7352±1118 2846±200 379±65 606±116 5768±751
OAT 1364±97 508±5 436±2 3779±32 1015±186 494±6 450±27 3815±142

VAE-MDP 1315±383 499±6 437±4 3678±83 2954±883 502±10 451±23 3811±262
TimeGAN 1752±212 591±12 1995±5 5683±12 1352±282 494±70 667±122 4224±138

VAE 1896±87 513±5 930±7 3628±174 784±155 515±7 545±16 3832±166
SPAWNER 2769±0 1007±9 2871±19 3567±10 870±39 450±86 591±69 4008±444

DGW 2360±0 541±10 534±8 5289±11 861±99 545±55 573±38 4270±92
Permutation 2433±11 520±13 3093±20 5332±11 787±149 368±42 613±84 4467±245

Jittering 2350±0 1114±2 2111±28 5334±10 1058±127 419±12 519±28 3841±274
Scaling 1284±40 523±8 2118±72 3710±16 822±132 525±7 642±29 3892±239
TDA 1269±101 572±5 882±25 3418±134 991±193 477±11 857±156 3613±261
DICE pen door relocate hammer

NoAug. 3208±22 978±10 4304±68 3432±6
OAT 1285±5 462±5 759±14 1473±12

VAE-MDP 1986±40 494±5 424±3 3334±9
TimeGAN 2605±15 556±6 2008±15 3334±9

VAE 2603±3 1125±11 1758±10 3726±18
SPAWNER 2835±11 1004±10 2908±49 3559±12

DGW 2599±0 1055±10 3430±63 3278±9
Permutation 2601±2 1026±11 3138±49 3324±10

Jittering 2600±1 1026±11 3149±51 3324±10
Scaling 2599±0 1018±11 3406±60 3334±10
TDA 1236±8 568±5 807±14 3400±11
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Table 6: Rank correlation results of OPE without and with each augmentation method in Adroit
human environment. Results are obtained by averaging over 3 random seeds used for training at a
discount factor of 0.995, with standard deviations shown after ±.

FQE pen door relocate hammer MB pen door relocate hammer

NoAug. 0.31±0.21 0.07±0.09 0.62±0.11 0.14±0.10 -0.12±0.33 0.13±0.13 0.16±0.10 0.29±0.23
OAT -0.02±0.65 0.55±0.60 -0.05±0.55 0.34±0.92 0.67±0.08 0.99±0.01 0.40±0.78 0.62±0.47

VAE-MDP -0.02±0.64 0.68±0.24 -0.86±0.04 -0.44±0.72 0.12±0.34 0.14±0.58 0.71±0.16 0.29±0.00
TimeGAN -0.17±0.28 0.39±0.20 0.76±0.07 0.37±0.06 0.52±0.48 0.18±0.13 -0.02±0.19 0.16±0.23

VAE -0.52±0.38 0.39±0.20 -0.83±0.11 -0.61±0.46 0.46±0.28 0.93±0.02 0.25±0.30 0.11±0.67
SPAWNER 0.12±0.20 0.44±0.17 0.62±0.11 -0.11±0.31 0.13±0.44 0.04±0.79 0.19±0.60 -0.82±0.02

DGW -0.12±0.25 0.47±0.21 0.17±0.36 0.47±0.16 -0.02±0.15 0.29±0.19 0.35±0.31 0.20±0.19
Permutation -0.17±0.18 0.50±0.05 0.43±0.09 0.48±0.03 -0.18±0.56 0.02±0.74 0.23±0.07 -0.85±0.10

Jittering -0.17±0.21 0.45±0.00 -0.33±0.78 -0.29±0.26 0.05±0.04 0.31±0.01 0.17±0.42 -0.22±0.20
Scaling 0.36±0.24 0.53±0.06 0.40±0.15 0.35±0.34 -0.35±0.38 0.21±0.65 0.24±0.33 0.35±0.15
TDA -0.26±0.68 -0.41±0.35 -0.27±0.89 -0.12±0.52 0.09±0.09 0.72±0.11 0.71±0.12 -0.21±0.60

IS pen door relocate hammer DR door relocate hammer

NoAug. 0.28±0.28 0.12±0.35 0.23±0.07 0.39±0.07 0.36±0.29 0.01±0.18 0.65±0.19 0.04±0.25
OAT 0.57±0.31 0.81±0.06 0.82±0.07 0.75±0.14 0.04±0.64 0.45±0.46 0.29±0.70 0.74±0.16

VAE-MDP 0.48±0.36 0.12±0.71 0.22±0.70 -0.28±0.51 0.34±0.68 0.50±0.11 0.72±0.18 -0.35±0.79
TimeGAN -0.01±0.80 0.38±0.75 - -0.85±0.01 -0.20±0.64 0.53±0.10 0.65±0.08 0.40±0.03

VAE - 0.65±0.00 -0.31±0.00 0.31±0.86 -0.17±0.64 0.29±0.29 -0.04±0.69 0.06±0.75
SPAWNER -0.83±0 - - 0.81±0.16 -0.09±0.20 0.36±0.26 0.62±0.09 0.47±0.16

DGW - -0.03±0.61 0.82±0.16 0.26±0.57 0.02±0.06 0.63±0.15 0.09±0.67 0.27±0.36
Permutation -0.21±0.74 0.37±0.56 -0.70±0.00 - -0.12±0.37 0.57±0.14 0.38±0.31 0.27±0.36

Jittering -0.28±0.79 0.12±0.38 0.85±0.00 0.23±0.73 -0.08±0.51 0.64±0.18 -0.04±0.42 0.18±0.84
Scaling - 0.24±0.42 0.65±0.00 0.66±0.14 -0.15±0.67 0.26±0.45 0.09±0.67 0.09±0.67
TDA -0.15±0.53 0.37±0.28 -0.67±0.00 0.81±0.13 -0.11±0.63 0.18±0.34 -0.22±0.85 -0.28±0.79

DICE pen door relocate hammer

NoAug. -0.01±0.39 0.61±0.34 -0.18±0.45 0.94±0.01
OAT 0.12±0.70 0.58±0.29 0.35±0.88 0.52±0.67

VAE-MDP 0.21±0.59 0.24±0.53 0.02±0.68 0.38±0.73
TimeGAN -0.11±0.19 0.48±0.09 0.27±0.84 0.38±0.73

VAE 0.08±0.45 0.15±0.74 0.17±0.76 -0.24±0.16
SPAWNER -0.29±0.59 -0.11±0.71 0.26±0.83 -0.32±0.58

DGW -0.02±0.54 0.35±0.57 0.24±0.87 -0.55±0.28
Permutation 0.02±0.64 -0.14±0.59 0.28±0.88 -0.21±0.75

Jittering 0.00±0.58 -0.18±0.60 0.27±0.84 -0.50±0.45
Scaling 0.04±0.67 -0.13±0.58 0.25±0.87 -0.61±0.30
TDA -0.15±0.64 -0.27±0.62 0.32±0.91 -0.21±0.84
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Table 7: Regret@1 results of OPE without and with each augmentation method in Adroit human
environment. Results are obtained by averaging over 3 random seeds used for training at a discount
factor of 0.995, with standard deviations shown after ±.

FQE pen door relocate hammer MB pen door relocate hammer

NoAug. 0.07±0.05 0.05±0.08 0.17±0.14 0.46±0.23 0.15±0.15 0.44±0.42 0.73±0.36 0.15±0.17
OAT 0.20±0.26 0.26±0.36 0.99±0.01 0.34±0.48 0.12±0.17 0.00±0.00 0.35±0.46 0.00±0.00

VAE-MDP 0.38±0.21 0.01±0.01 1.00±0.01 0.81±0.30 0.13±0.11 0.39±0.45 0.41±0.28 0.42±0.16
TimeGAN 0.19±0.13 0.23±0.13 0.39±0.24 0.15±0.17 0.22±0.25 0.51±0.36 1.00±0.00 0.19±0.24

VAE 0.57±0.00 0.05±0.05 1.00±0.01 0.73±0.26 0.09±0.06 0.00±0.01 0.03±0.02 0.34±0.48
SPAWNER 0.03±0.00 0.01±0.00 0.27±0.32 0.94±0.11 0.12±0.12 0.35±0.48 0.41±0.43 1.02±0.00

DGW 0.23±0.17 0.14±0.08 0.32±0.42 0.02±0.01 0.33±0.12 0.12±0.09 0.67±0.47 0.14±0.18
Permutation 0.37±0.16 0.15±0.16 0.87±0.11 0.05±0.03 0.19±0.13 0.37±0.47 0.09±0.09 1.02±0.00

Jittering 0.11±0.06 0.12±0.00 0.67±0.47 0.73±0.26 0.08±0.07 0.63±0.10 0.48±0.41 0.45±0.31
Scaling 0.13±0.16 0.17±0.11 0.81±0.12 0.25±0.22 0.50±0.10 0.68±0.48 0.94±0.04 0.14±0.08
TDA 0.35±0.25 0.79±0.29 0.68±0.45 0.81±0.30 0.26±0.23 0.12±0.10 0.31±0.30 0.72±0.37

IS pen door relocate hammer DR pen door relocate hammer

NoAug. 0.17±0.15 0.45±0.40 0.63±0.41 0.19±0.30 0.09±0.00 0.05±0.09 0.17±0.15 0.46±0.23
OAT 0.12±0.17 0.06±0.05 0.02±0.02 0.00±0.00 0.20±0.19 0.00±0.01 0.37±0.45 0.05±0.05

VAE-MDP 0.05±0.03 0.37±0.47 0.37±0.45 0.30±0.34 0.16±0.22 0.00±0.01 0.05±0.00 0.71±0.43
TimeGAN 0.38±0.27 0.13±0.17 1.00±0.00 1.00±0.02 0.16±0.21 0.13±0.17 0.26±0.33 0.33±0.32

VAE 0.44±0.19 0.68±0.48 1.00±0.00 0.19±0.25 0.36±0.15 0.21±0.25 0.74±0.37 0.37±0.46
SPAWNER 0.57±0.00 1.03±0.00 1.00±0.00 0.34±0.45 0.12±0.08 0.01±0.01 0.00±0.00 0.02±0.25

DGW 0.44±0.19 0.15±0.16 0.00±0.00 0.59±0.28 0.25±0.24 0.03±0.02 0.68±0.44 0.03±0.00
Permutation 0.44±0.19 0.05±0.06 0.91±0.13 0.74±0.39 0.10±0.06 0.08±0.12 0.31±0.19 0.50±0.40

Jittering 0.44±0.19 0.34±0.48 0.68±0.45 0.36±0.46 0.10±0.05 0.09±0.11 0.54±0.31 0.35±0.47
Scaling 0.57±0.00 0.06±0.05 0.67±0.47 0.26±0.18 0.39±0.19 0.19±0.26 0.68±0.44 0.68±0.44
TDA 0.10±0.13 0.05±0.06 1.00±0.00 0.00±0.01 0.39±0.19 0.35±0.46 0.68±0.44 0.60±0.43

DICE pen door relocate hammer

NoAug. 0.44±0.19 0.38±0.46 0.47±0.40 0.44±0.01
OAT 0.19±0.14 0.44±0.09 0.37±0.45 0.03±0.05

VAE-MDP 0.30±0.22 0.35±0.15 0.82±0.26 0.03±0.05
TimeGAN 0.13±0.12 0.35±0.15 0.37±0.45 0.03±0.05

VAE 0.21±0.15 0.50±0.35 0.50±0.39 0.72±0.37
SPAWNER 0.25±0.11 0.45±0.32 0.50±0.39 0.43±0.39

DGW 0.21±0.11 0.23±0.23 0.50±0.39 0.70±0.42
Permutation 0.25±0.11 0.53±0.22 0.37±0.45 0.36±0.44

Jittering 0.28±0.15 0.53±0.22 0.50±0.39 0.37±0.43
Scaling 0.32±0.20 0.53±0.22 0.50±0.39 0.69±0.41
TDA 0.21±0.15 0.57±0.16 0.37±0.45 0.67±0.47
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Table 8: Regret@5 results of OPE without and with each augmentation method in Adroit human
environment. Results are obtained by averaging over 3 random seeds used for training at a discount
factor of 0.995, with standard deviations shown after ±.

FQE pen door relocate hammer MB pen door relocate hammer

NoAug. 0.01±0.02 0.00±0.01 0.75±0.22 0.13±0.09 0.03±0.04 0.02±0.03 0.03±0.02 0.01±0.01
OAT 0.01±0.02 0.13±0.18 0.15±0.21 0.07±0.09 0.00±0.00 0.00±0.00 0.02±0.02 0.00±0.00

VAE-MDP 0.06±0.08 0.00±0.00 0.87±0.10 0.13±0.09 0.01±0.01 0.08±0.12 0.00±0.00 0.17±0.05
TimeGAN 0.03±0.04 0.00±0.01 0.47±0.35 0.13±0.09 0.00±0.00 0.01±0.01 0.02±0.02 0.02±0.01

VAE 0.06±0.08 0.00±0.00 0.75±0.22 0.13±0.09 0.00±0.00 0.00±0.00 0.00±0.00 0.07±0.09
SPAWNER 0.02±0.01 0.01±0.00 0.00±0.00 0.01±0.01 0.02±0.01 0.19±0.26 0.07±0.10 0.17±0.05

DGW 0.01±0.02 0.00±0.00 0.68±0.32 0.10±0.08 0.03±0.04 0.01±0.01 0.15±0.10 0.01±0.01
Permutation 0.00±0.00 0.00±0.00 0.02±0.02 0.01±0.01 0.10±0.06 0.19±0.26 0.00±0.00 0.23±0.12

Jittering 0.00±0.00 0.00±0.00 0.45±0.37 0.02±0.01 0.08±0.07 0.01±0.01 0.07±0.10 0.05±0.04
Scaling 0.00±0.00 0.01±0.01 0.03±0.02 0.00±0.01 0.08±0.07 0.08±0.12 0.07±0.10 0.01±0.01
TDA 0.07±0.08 0.27±0.23 0.56±0.41 0.01±0.01 0.10±0.06 0.00±0.00 0.07±0.10 0.15±0.17

IS pen door relocate hammer DR pen door relocate hammer

NoAug. 0.00±0.00 0.00±0.00 0.07±0.10 0.01±0.02 0.10±0.08 0.00±0.01 0.32±0.46 0.14±0.18
OAT 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.06±0.08 0.00±0.01 0.32±0.46 0.01±0.01

VAE-MDP 0.01±0.01 0.09±0.11 0.30±0.43 0.14±0.18 0.01±0.01 0.00±0.00 0.02±0.02 0.16±0.16
TimeGAN 0.01±0.01 0.08±0.12 0.97±0.00 1.02±0.00 0.06±0.08 0.00±0.01 0.09±0.09 0.00±0.00

VAE 0.19±0.27 0.00±0.00 0.95±0.03 0.13±0.18 0.05±0.06 0.08±0.12 0.40±0.41 0.14±0.18
SPAWNER 0.57±0.00 0.56±0.00 0.97±0.00 1.02±0.00 0.04±0.04 0.01±0.01 0.00±0.00 0.60±0.43

DGW 0.19±0.27 0.15±0.16 0.00±0.00 0.46±0.40 0.01±0.01 0.01±0.01 0.34±0.45 0.00±0.01
Permutation 0.19±0.27 0.04±0.06 0.44±0.00 0.00±0.00 0.03±0.00 0.00±0.00 0.00±0.00 0.00±0.01

Jittering 0.19±0.27 0.00±0.00 0.00±0.00 0.15±0.17 0.05±0.06 0.00±0.01 0.02±0.02 0.13±0.18
Scaling 0.18±0.00 0.05±0.06 0.32±0.46 0.01±0.01 0.06±0.08 0.08±0.12 0.34±0.45 0.34±0.45
TDA 0.01±0.02 0.00±0.01 0.97±0.00 0.00±0.00 0.06±0.08 0.00±0.00 0.56±0.41 0.16±0.16

DICE pen door relocate hammer

NoAug. 0.01±0.01 0.00±0.01 0.32±0.42 0.00±0.00
OAT 0.06±0.08 0.00±0.00 0.30±0.43 0.01±0.02

VAE-MDP 0.01±0.01 0.09±0.11 0.09±0.09 0.03±0.05
TimeGAN 0.01±0.02 0.06±0.00 0.15±0.21 0.03±0.05

VAE 0.01±0.02 0.15±0.16 0.32±0.42 0.05±0.03
SPAWNER 0.07±0.08 0.16±0.12 0.32±0.42 0.05±0.04

DGW 0.03±0.04 0.09±0.11 0.30±0.43 0.15±0.17
Permutation 0.06±0.08 0.21±0.15 0.30±0.43 0.14±0.18

Jittering 0.06±0.08 0.27±0.22 0.30±0.43 0.16±0.16
Scaling 0.06±0.08 0.17±0.11 0.30±0.43 0.15±0.17
TDA 0.06±0.08 0.29±0.21 0.32±0.46 0.07±0.05
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Table 9: MAE results of OPE without and with each augmentation method in resampled Adroit
cloned environment. The data are randomly sampled from original training data as the same data
points as the corresponding task in human environment. Results are obtained by averaging over 3
random seeds used for training at a discount factor of 0.995, with standard deviations shown after
±.

FQE pen door relocate hammer MB pen door relocate hammer

NoAug. 715±11 359±16 371±5 3714±34 622±102 1009±92 357±6 4119±7
OAT 663±24 336±7 438±3 3780±20 607±2 537±3 339±1 3743±18

VAE-MDP 323±9 539±6 384±4 3624±16 813±674 538±3 386±1 3611±4
TimeGAN 1237±25 572±7 539±4 5268±24 1065±118 573±4 541±1 5268±15

VAE 412±8 561±6 384±2 3823±14 409±19 561±3 385±1 3814±10
SPAWNER 1173±0 502±5 443±2 3988±6 1173±0 502±3 446±1 3988±6

DGW 1176±0 550±5 864±8 4127±6 1176±0 550±3 871±4 4127±6
Permutation 1176±0 537±5 822±11 4128±6 1176±0 536±3 832±4 4128±6

Jittering 1176±0 537±5 820±11 4128±6 1176±0 536±3 833±4 4128±6
Scaling 1176±0 517±6 696±5 4123±6 1176±0 517±3 705±4 4123±6
TDA 610±4 526±6 438±3 3746±16 599±0 527±3 441±1 3715±14

IS pen door relocate hammer DR pen door relocate hammer

NoAug. 636±21 1072±24 458±13 8162±91 731±115 458±34 475±22 6719±118
OAT 259±9 563±3 369±2 3905±9 422±9 390±41 371±8 3885±166

VAE-MDP 300±17 507±4 406±11 3686±47 493±76 542±20 415±40 3689±89
TimeGAN 978±192 576±4 695±27 5325±85 771±191 606±18 696±26 5514±133

VAE 300±21 517±2 433±15 3722±15 386±19 540±22 437±20 3764±80
SPAWNER 1173±0 611±3 506±1 3989±6 1174±0 527±14 509±14 3990±5

DGW 1176±0 567±3 1149±4 4129±6 1176±0 597±23 1180±35 4129±5
Permutation 1176±0 557±3 1107±4 4129±6 1176±0 592±25 1110±39 4129±5

Jittering 1176±0 557±3 1107±4 4129±6 1176±0 588±24 1115±89 4130±5
Scaling 1176±0 543±3 945±4 4124±6 1176±0 580±31 968±35 4125±5
TDA 604±6 501±5 445±10 3725±11 261±12 539±34 453±9 3765±142

DICE pen door relocate hammer

NoAug. 1218±41 1138±7 1841±15 3752±8
OAT 1166±38 536±3 441±1 3750±11

VAE-MDP 778±5 538±4 1606±8 3614±15
TimeGAN 1276±42 573±4 1925±10 5252±18

VAE 1020±14 561±5 1602±10 3813±20
SPAWNER 1173±0 1067±7 1856±4 3988±6

DGW 1176±0 1140±3 869±8 4127±6
Permutation 1176±0 1140±7 832±5 4128±6

Jittering 1176±0 1140±7 831±8 4128±6
Scaling 1176±0 1098±7 704±8 4123±6
TDA 601±0 1119±9 1835±6 3731±15
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Table 10: Rank correlation results of OPE without and with each augmentation method in resam-
pled Adroit cloned environment. The data are randomly sampled from original training data as
the same data points as the corresponding task in human environment. Results are obtained by av-
eraging over 3 random seeds used for training at a discount factor of 0.995, with standard deviations
shown after ±.

FQE pen door relocate hammer MB pen door relocate hammer

NoAug. 0.51±0.25 0.55 ± 0.27 -0.28±0.17 0.50 ± 0.09 0.29±0.19 0.63±0.14 0.45±0.30 0.22±0.12
OAT -0.26±0.32 0.95±0.02 0.48±0.51 0.35±0.89 0.31±0.54 0.77±0.05 0.52±0.15 0.38±0.52

VAE-MDP -0.18±0.44 0.26±0.52 -0.32±0.65 0.28±0.78 0.10±0.44 0.19±0.18 0.88±0.11 0.05±0.61
TimeGAN -0.39±0.43 0.54±0.28 -0.47±0.41 -0.01±0.71 -0.12±0.63 0.58±0.34 0.46±0.71 0.68±0.30

VAE -0.69±0.19 0.38±0.48 -0.40±0.62 0.16±0.50 0.37±0.47 0.56±0.29 0.36±0.73 -0.23±0.23
SPAWNER -0.19±0.68 0.18±0.59 -0.32±0.73 0.02±0.79 0.05±0.70 0.62±0.06 0.79±0.19 0.40±0.82

DGW -0.46±0.49 -0.07±0.67 -0.75±0.11 -0.32±0.82 -0.30±0.20 0.47±0.14 -0.09±0.58 0.09±0.25
Permutation -0.36±0.69 -0.28±0.24 0.12±0.59 -0.29±0.79 0.15±0.25 0.60±0.13 0.43±0.75 0.51±0.32

Jittering -0.32±0.80 0.54±0.49 -0.17±0.53 -0.47±0.49 0.25±0.60 0.67±0.10 -0.19±0.46 0.45±0.44
Scaling -0.19±0.80 0.63±0.22 -0.25±0.64 -0.26±0.83 0.03±0.62 0.45±0.30 0.67±0.29 0.66±0.18
TDA -0.26±0.77 0.37±0.26 -0.22±0.48 -0.31±0.87 0.00±0.50 0.35±0.33 0.61±0.27 -0.45±0.62

IS pen door relocate hammer DR pen door relocate hammer

NoAug. 0.00±0.00 -0.32±0.59 0.25±0.54 0.79±0.04 0.42±0.24 0.46±0.72 -0.22±0.70 0.29±0.49
OAT 0.78±0.00 0.96±0.01 0.99±0.00 0.77±0.15 -0.38±0.50 0.23±0.53 0.33±0.78 0.62±0.37

VAE-MDP 0.15±0.28 0.55±0.06 0.96±0.04 -0.02±0.74 -0.15±0.60 -0.57±0.06 -0.02±0.19 -0.23±0.82
TimeGAN 0.89±0.00 -0.78±0.27 0.88±0.08 0.50±0.29 -0.43±0.36 -0.42±0.14 -0.10±0.62 -0.18±0.78

VAE 0.61±0.11 -0.23±0.66 0.88±0.10 0.98±0.01 -0.46±0.34 -0.10±0.62 -0.02±0.70 -0.20±0.76
SPAWNER -0.89±0.00 -0.10±0.00 -0.29±0.25 0.37±0.39 -0.23±0.66 0.02±0.64 -0.06±0.64 -0.16±0.78

DGW - -0.45±0.00 -0.67±0.00 - -0.05±0.32 -0.36±0.31 -0.09±0.63 -0.20±0.77
Permutation - -0.50±0.00 -0.67±0.00 - -0.18±0.36 -0.43±0.21 -0.20±0.71 -0.22±0.75

Jittering - - -0.42±0.02 - -0.31±0.26 -0.33±0.39 0.03±0.74 0.06±0.78
Scaling - -0.67±0.00 -0.24±0.44 - 0.07±0.55 -0.31±0.38 -0.25±0.71 -0.20±0.73
TDA 0.37±0.42 0.41±0.22 -0.48±0.35 0.79±0.13 -0.22±0.37 -0.32±0.41 -0.05±0.70 -0.25±0.79

DICE pen door relocate hammer

NoAug. 0.03±0.56 0.39±0.51 0.05±0.52 0.31±0.76
OAT 0.24±0.71 0.41±0.57 0.36±0.89 0.44±0.62

VAE-MDP -0.61±0.38 0.26±0.65 0.82±0.17 -0.28±0.79
TimeGAN -0.36±0.36 0.06±0.70 0.77±0.24 -0.43±0.62

VAE -0.18±0.45 0.18±0.79 0.30±0.61 -0.11±0.64
SPAWNER -0.30±0.33 0.47±0.66 -0.18±0.78 -0.19±0.73

DGW 0.16±0.10 0.38±0.58 0.22±0.85 -0.36±0.45
Permutation 0.24±0.43 -0.48±0.11 0.96±0.02 -0.20±0.75

Jittering -0.39±0.61 0.37±0.43 -0.30±0.82 -0.14±0.77
Scaling 0.14±0.60 0.40±0.55 0.14±0.81 -0.16±0.70
TDA -0.02±0.56 -0.11±0.61 0.30±0.83 -0.31±0.78
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Table 11: Regret@1 results of OPE without and with each augmentation method in resampled Adroit
cloned environment. The data are randomly sampled from original training data as the same data
points as the corresponding task in human environment. Results are obtained by averaging over 3
random seeds used for training at a discount factor of 0.995, with standard deviations shown after
±.

FQE pen door relocate hammer MB pen door relocate hammer

NoAug. 0.10±0.13 0.07±0.04 1.00±0.01 0.03±0.01 0.06±0.06 0.19±0.14 0.34±0.45 0.21±0.18
OAT 0.47±0.00 0.01±0.01 0.33±0.47 0.34±0.48 0.10±0.13 0.04±0.03 0.48±0.37 0.13±0.18

VAE-MDP 0.30±0.22 0.13±0.17 0.67±0.47 0.26±0.37 0.20±0.26 0.79±0.19 0.02±0.02 0.39±0.31
TimeGAN 0.41±0.23 0.39±0.45 1.00±0.00 0.40±0.44 0.31±0.22 0.42±0.44 0.35±0.46 0.08±0.08

VAE 0.57±0.00 0.46±0.41 0.66±0.47 0.47±0.39 0.12±0.06 0.08±0.12 0.33±0.47 0.94±0.11
SPAWNER 0.20±0.26 0.44±0.32 0.67±0.47 0.37±0.46 0.13±0.16 0.21±0.25 0.26±0.33 0.26±0.37

DGW 0.05±0.03 0.43±0.43 0.99±0.02 0.68±0.48 0.57±0.00 0.52±0.41 0.90±0.12 0.01±0.02
Permutation 0.38±0.27 0.72±0.27 0.74±0.36 0.60±0.43 0.57±0.00 0.00±0.00 0.40±0.42 0.34±0.48

Jittering 0.35±0.25 0.09±0.11 0.67±0.47 0.47±0.39 0.14±0.11 0.02±0.03 0.81±0.12 0.01±0.02
Scaling 0.35±0.25 0.09±0.11 0.67±0.47 0.60±0.43 0.24±0.24 0.19±0.26 0.59±0.39 0.01±0.01
TDA 0.35±0.25 0.19±0.26 0.67±0.47 0.68±0.48 0.17±0.21 0.47±0.42 0.40±0.42 0.81±0.30

IS pen door relocate hammer DR pen door relocate hammer

NoAug. 0.57±0.00 0.47±0.42 0.68±0.45 0.34±0.48 0.22±0.25 0.26±0.36 0.68±0.45 0.26±0.37
OAT 0.19±0.27 0.05±0.06 0.00±0.00 0.00±0.01 0.28±0.20 0.26±0.36 0.37±0.45 0.00±0.01

VAE-MDP 0.19±0.13 0.07±0.04 0.00±0.00 0.35±0.47 0.17±0.10 0.93±0.11 0.82±0.26 0.37±0.46
TimeGAN 0.57±0.00 1.02±0.00 0.02±0.02 0.85±0.09 0.50±0.05 0.93±0.11 0.82±0.26 0.37±0.46

VAE 0.35±0.24 0.68±0.48 0.00±0.00 0.34±0.46 0.44±0.19 0.62±0.41 0.67±0.47 0.37±0.46
SPAWNER 0.57±0.00 0.81±0.31 1.00±0.00 0.37±0.43 0.35±0.24 0.60±0.43 0.68±0.45 0.37±0.46

DGW 0.57±0.00 1.03±0.00 1.00±0.00 1.02±0.00 0.35±0.24 0.93±0.11 0.68±0.45 0.37±0.46
Permutation 0.57±0.00 1.03±0.00 1.00±0.00 1.02±0.00 0.35±0.25 0.93±0.11 0.68±0.44 0.37±0.46

Jittering 0.57±0.00 1.03±0.00 1.00±0.00 1.02±0.00 0.54±0.05 0.62±0.41 0.73±0.36 0.37±0.46
Scaling 0.57±0.00 1.03±0.00 0.91±0.13 1.02±0.00 0.17±0.21 0.62±0.41 0.81±0.26 0.37±0.46
TDA 0.17±0.21 0.08±0.06 1.00±0.00 0.07±0.09 0.25±0.24 0.62±0.41 0.68±0.45 0.37±0.46

DICE pen door relocate hammer

NoAug. 0.26±0.18 0.34±0.48 0.73±0.36 0.34±0.48
OAT 0.28±0.21 0.35±0.48 0.33±0.47 0.03±0.05

VAE-MDP 0.36±0.18 0.36±0.30 0.03±0.02 0.67±0.47
TimeGAN 0.44±0.12 0.60±0.25 0.11±0.08 0.68±0.48

VAE 0.31±0.24 0.50±0.35 0.35±0.46 0.65±0.46
SPAWNER 0.26±0.23 0.34±0.48 0.65±0.43 0.40±0.44

DGW 0.29±0.23 0.36±0.47 0.41±0.43 0.53±0.35
Permutation 0.50±0.10 0.94±0.12 0.02±0.02 0.40±0.44

Jittering 0.38±0.27 0.02±0.03 0.68±0.45 0.47±0.42
Scaling 0.50±0.10 0.34±0.48 0.73±0.36 0.40±0.44
TDA 0.08±0.06 0.60±0.25 0.37±0.45 0.68±0.48
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Table 12: Regret@5 results of OPE without and with each augmentation method in resampled Adroit
cloned environment. The data are randomly sampled from original training data as the same data
points as the corresponding task in human environment. Results are obtained by averaging over 3
random seeds used for training at a discount factor of 0.995, with standard deviations shown after
±.

FQE pen door relocate hammer MB pen door relocate hammer

NoAug. 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.01 0.00±0.00 0.00±0.01 0.02±0.02 0.01±0.01
OAT 0.01±0.02 0.00±0.00 0.02±0.02 0.03±0.05 0.01±0.02 0.00±0.00 0.02±0.02 0.01±0.01

VAE-MDP 0.07±0.08 0.08±0.12 0.34±0.45 0.03±0.05 0.00±0.00 0.02±0.03 0.00±0.00 0.07±0.09
TimeGAN 0.06±0.08 0.00±0.01 0.36±0.43 0.07±0.09 0.01±0.02 0.00±0.00 0.00±0.00 0.00±0.00

VAE 0.08±0.07 0.00±0.01 0.45±0.37 0.08±0.09 0.01±0.02 0.00±0.00 0.02±0.02 0.01±0.01
SPAWNER 0.07±0.08 0.13±0.17 0.67±0.47 0.08±0.09 0.05±0.06 0.00±0.00 0.07±0.10 0.03±0.05

DGW 0.31±0.24 0.23±0.24 0.87±0.10 0.16±0.16 0.19±0.27 0.00±0.00 0.35±0.45 0.00±0.00
Permutation 0.38±0.27 0.09±0.11 0.15±0.21 0.16±0.16 0.10±0.08 0.00±0.00 0.24±0.34 0.00±0.00

Jittering 0.07±0.08 0.08±0.12 0.17±0.20 0.16±0.16 0.01±0.01 0.00±0.00 0.64±0.31 0.01±0.01
Scaling 0.35±0.25 0.02±0.03 0.39±0.30 0.16±0.16 0.07±0.08 0.08±0.12 0.00±0.00 0.00±0.00
TDA 0.07±0.08 0.04±0.06 0.17±0.20 0.10±0.08 0.01±0.02 0.00±0.00 0.09±0.09 0.14±0.08

IS pen door relocate hammer DR pen door relocate hammer

NoAug. 0.18±0.00 0.25±0.00 0.63±0.44 0.13±0.18 0.00±0.00 0.13±0.18 0.56±0.41 0.00±0.00
OAT 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.05±0.06 0.13±0.18 0.24±0.34 0.00±0.00

VAE-MDP 0.01±0.01 0.00±0.01 0.00±0.00 0.14±0.18 0.09±0.06 0.25±0.18 0.02±0.02 0.16±0.16
TimeGAN 0.02±0.02 0.16±0.12 0.00±0.00 0.01±0.01 0.10±0.08 0.25±0.18 0.40±0.41 0.14±0.18

VAE 0.10±0.08 0.27±0.23 0.00±0.00 0.00±0.00 0.09±0.06 0.19±0.26 0.32±0.46 0.14±0.18
SPAWNER 0.18±0.00 0.56±0.00 0.02±0.02 0.00±0.01 0.06±0.08 0.13±0.18 0.26±0.33 0.14±0.18

DGW 0.18±0.00 0.56±0.00 0.97±0.00 0.39±0.00 0.00±0.00 0.15±0.16 0.34±0.45 0.14±0.18
Permutation 0.18±0.00 0.56±0.00 0.97±0.00 0.39±0.00 0.05±0.06 0.15±0.16 0.56±0.41 0.14±0.18

Jittering 0.18±0.00 0.56±0.00 0.97±0.00 0.39±0.00 0.01±0.01 0.13±0.17 0.24±0.34 0.13±0.18
Scaling 0.18±0.00 0.56±0.00 0.11±0.08 0.39±0.00 0.05±0.06 0.13±0.17 0.56±0.41 0.14±0.18
TDA 0.01±0.01 0.04±0.06 0.65±0.46 0.00±0.00 0.05±0.06 0.13±0.17 0.34±0.45 0.16±0.16

DICE pen door relocate hammer

NoAug. 0.05±0.06 0.02±0.03 0.00±0.00 0.03±0.05
OAT 0.01±0.01 0.35±0.48 0.30±0.43 0.01±0.02

VAE-MDP 0.06±0.04 0.13±0.17 0.00±0.00 0.07±0.05
TimeGAN 0.11±0.07 0.19±0.26 0.00±0.00 0.08±0.09

VAE 0.03±0.04 0.13±0.18 0.15±0.21 0.07±0.05
SPAWNER 0.02±0.02 0.13±0.18 0.56±0.41 0.07±0.05

DGW 0.01±0.01 0.00±0.00 0.30±0.43 0.07±0.04
Permutation 0.00±0.00 0.13±0.18 0.00±0.00 0.07±0.05

Jittering 0.04±0.04 0.00±0.00 0.60±0.43 0.05±0.04
Scaling 0.03±0.04 0.00±0.00 0.32±0.46 0.07±0.05
TDA 0.06±0.04 0.23±0.24 0.30±0.43 0.07±0.05
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Table 13: MAE results of OPE without and with each augmentation method in resampled Adroit
expert environment. The data are randomly sampled from original training data as the same data
points as the corresponding task in human environment. Results are obtained by averaging over 3
random seeds used for training at a discount factor of 0.995, with standard deviations shown after
±.

FQE pen door relocate hammer MB pen door relocate hammer

NoAug. 1101±47 1751±52 1729±557 2822±756 2363±135 708±88 621±28 13110±535
OAT 1254±21 1213±45 419±30 3599±159 1212±2 1233±3 444±2 3383±193

VAE-MDP 467±5 793±36 468±5 1983±45 1217±1 746±10 474±1 9890±105
TimeGAN 2012±24 1008±37 994±11 6317±194 3108±2 1027±1 1007±2 19197±1121

VAE 1250±12 903±14 1605±8 2039±43 3109±1 912±6 1610±6 10031±210
SPAWNER 1247±11 1264±47 778±10 4738±157 3108±1 2738±6 778±10 21218±915

DGW 1245±11 1343±29 762±8 7264±117 3109±1 2885±6 762±8 36422±33
Permutation 1249±12 1270±28 763±8 6350±104 3109±1 2725±6 763±8 31965±28

Jittering 1247±13 1259±43 1772±19 6267±158 3108±2 2724±6 763±8 29471±76
Scaling 1247±11 1500±49 1495±15 5729±144 2589±367 1478±13 762±8 27187±209
TDA 1251±12 1058±45 477±4 3420±186 1217±2 1043±13 481±1 12350±1943

IS pen door relocate hammer DR pen door relocate hammer

NoAug. 1881±23 1005±22 1863±43 3659±159 1632±783 970±86 1837±52 3262±856
OAT 939±31 1089±3 1136±5 3354±64 597±74 1044±51 2078±86 2989±614

VAE-MDP 676±24 871±23 1858±42 2225±110 1260±299 886±71 1837±52 2494±901
TimeGAN 833±43 1054±44 1858±42 5929±83 1299±452 972±7 1837±52 5029±1100

VAE 1579±38 1480±41 1741±46 2481±209 2149±477 654±63 1734±77 2179±158
SPAWNER 1933±14 2400±6 1526±19 4128±6 2384±309 1089±51 1529±19 3840±606

DGW 2793±9 2571±6 1496±16 6935±6 3109±347 1172±53 1499±16 6556±643
Permutation 2675±12 2386±6 1497±16 5820±6 2997±344 1081±61 1500±17 5380±780

Jittering 2675±14 2386±6 1499±17 5821±6 3038±349 1081±50 1503±17 5465±701
Scaling 2683±12 2858±6 1498±16 5320±6 3046±392 1288±75 1501±16 4909±707
TDA 733±27 985±18 2052±113 3542±138 1325±398 963±89 2015±161 3141±902

DICE pen door relocate hammer

NoAug. 3122±106 1250±21 2369±19 4171±47
OAT 1224±73 1148±10 360±27 3884±46

VAE-MDP 1146±53 812±6 473±3 1996±44
TimeGAN 1943±94 570±10 694±5 6637±68

VAE 3014±140 428±1 387±2 2021±38
SPAWNER 3067±143 1294±7 1524±19 4985±30

DGW 3103±37 1363±7 1492±16 7411±26
Permutation 3108±63 1284±1 1495±16 6510±21

Jittering 3104±57 1288±7 1495±16 6510±30
Scaling 3097±52 1531±8 1494±16 5970±30
TDA 1193±54 1087±7 479±2 3697±29
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Table 14: Rank correlation results of OPE without and with each augmentation method in resam-
pled Adroit expert environment. The data are randomly sampled from original training data as
the same data points as the corresponding task in human environment. Results are obtained by av-
eraging over 3 random seeds used for training at a discount factor of 0.995, with standard deviations
shown after ±.

FQE pen door relocate hammer MB pen door relocate hammer

NoAug. 0.19±0.22 0.87±0.07 -0.38±0.12 0.29±0.34 0.24±0.30 0.74±0.15 0.86±0.05 0.06±0.35
OAT -0.22±0.33 0.97±0.03 0.37±0.87 0.36±0.90 0.26±0.69 0.81±0.12 0.89±0.02 0.23±0.84

VAE-MDP -0.18±0.53 0.33±0.47 -0.10±0.51 -0.31±0.90 0.29±0.71 0.86±0.00 0.30±0.73 -0.27±0.41
TimeGAN -0.78±0.17 0.94±0.02 -0.10±0.51 -0.20±0.85 0.07±0.75 0.36±0.75 0.30±0.73 -0.25±0.56

VAE -0.50±0.35 0.63±0.25 -0.47±0.35 -0.44±0.73 0.09±0.25 0.54±0.61 -0.15±0.72 -0.79±0.14
SPAWNER -0.82±0.10 0.96±0.04 -0.22±0.50 -0.31±0.91 -0.40±0.53 0.29±0.60 -0.08±0.61 -0.00±0.68

DGW -0.88±0.00 0.21±0.14 -0.96±0.03 -0.32±0.91 0.06±0.53 0.19±0.62 0.27±0.33 -0.01±0.72
Permutation -0.79±0.13 0.80±0.19 -0.25±0.78 -0.31±0.92 -0.29±0.70 0.13±0.75 0.14±0.74 -0.65±0.32

Jittering -0.82±0.12 0.92±0.09 -0.21±0.60 -0.31±0.92 0.58±0.09 0.23±0.83 0.93±0.05 -0.40±0.66
Scaling -0.82±0.11 0.86±0.16 -0.09±0.55 -0.31±0.91 0.22±0.79 0.77±0.29 0.92±0.07 -0.37±0.55
TDA -0.68±0.12 0.80±0.25 -0.06±0.80 -0.31±0.92 0.46±0.52 0.55±0.33 0.72±0.24 0.00±0.53

IS pen door relocate hammer DR pen door relocate hammer

NoAug. -0.02±0.48 0.08±0.38 0.96±0.04 0.34±0.50 -0.85±0.03 0.32±0.18 -0.28±0.75 0.33±0.85
OAT -0.59±0.11 0.43±0.35 0.84±0.08 0.97±0.02 -0.27±0.26 0.37±0.11 0.21±0.64 0.34±0.88

VAE-MDP -0.25±0.32 0.28±0.02 0.96±0.00 1.00±0.00 -0.83±0.08 0.41±0.31 -0.28±0.75 0.15±0.63
TimeGAN 0.89±0.03 0.87±0.00 0.96±0.00 0.61±0.14 -0.82±0.05 0.42±0.10 -0.28±0.75 0.15±0.80

VAE - 0.19±0.04 0.75±0.00 0.49±0.45 -0.89±0.02 0.35±0.46 -0.26±0.38 0.08±0.75
SPAWNER -0.89±0.00 - -0.04±0.64 0.10±0.14 -0.89±0.02 0.08±0.28 0.10±0.69 0.23±0.85

DGW -0.32±0.37 - -0.59±0.26 - -0.88±0.03 -0.16±0.28 -0.55±0.18 0.22±0.84
Permutation -0.23±0.45 - 0.23±0.59 - -0.90±0.02 0.19±0.16 -0.11±0.27 0.18±0.83

Jittering 0.11±0.59 - 0.50±0.07 - -0.90±0.01 0.05±0.20 -0.75±0.16 0.22±0.84
Scaling -0.46±0.21 - 0.27±0.62 0.00±0.00 -0.91±0.02 0.32±0.07 -0.52±0.16 0.19±0.84
TDA 0.31±0.00 0.59±0.35 0.90±0.11 0.80±0.14 -0.87±0.00 0.31±0.33 0.02±0.72 0.24±0.82

DICE pen door relocate hammer

NoAug. 0.23±0.39 -0.33±0.89 0.11±0.62 -0.06±0.73
OAT 0.89±0.01 0.18±0.81 -0.22±0.01 -0.05±0.72

VAE-MDP 0.87±0.07 -0.23±0.82 -0.17±0.84 -0.20±0.85
TimeGAN 0.85±0.05 -0.07±0.61 -0.17±0.84 -0.24±0.86

VAE 0.65±0.19 -0.16±0.58 0.25±0.67 -0.11±0.59
SPAWNER 0.55±0.50 0.11±0.74 -0.16±0.67 -0.10±0.78

DGW 0.86±0.06 0.16±0.77 0.18±0.84 -0.07±0.75
Permutation 0.93±0.00 0.13±0.73 0.81±0.21 -0.21±0.84

Jittering 0.72±0.19 0.28±0.85 0.21±0.83 -0.12±0.79
Scaling 0.81±0.14 0.25±0.81 0.15±0.80 -0.11±0.79
TDA 0.76±0.08 0.17±0.80 0.23±0.57 -0.26±0.89
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Table 15: Regret@1 results of OPE without and with each augmentation method in resampled Adroit
expert environment. The data are randomly sampled from original training data as the same data
points as the corresponding task in human environment. Results are obtained by averaging over 3
random seeds used for training at a discount factor of 0.995, with standard deviations shown after
±.

FQE pen door relocate hammer MB pen door relocate hammer

NoAug. 0.17±0.14 0.05±0.06 0.91±0.13 0.05±0.04 0.22±0.25 0.07±0.04 0.15±0.10 0.34±0.18
OAT 0.19±0.27 0.01±0.01 0.33±0.47 0.34±0.48 0.22±0.19 0.04±0.03 0.00±0.00 0.33±0.46

VAE-MDP 0.26±0.23 0.35±0.48 0.68±0.45 0.68±0.48 0.17±0.21 0.01±0.01 0.41±0.43 0.91±0.09
TimeGAN 0.54±0.05 0.02±0.03 0.68±0.45 0.60±0.43 0.24±0.24 0.34±0.48 0.41±0.43 0.73±0.26

VAE 0.38±0.27 0.30±0.33 1.00±0.01 0.60±0.43 0.29±0.00 0.26±0.36 0.66±0.47 0.94±0.11
SPAWNER 0.46±0.09 0.01±0.01 0.66±0.47 0.68±0.48 0.41±0.17 0.60±0.43 0.57±0.42 0.20±0.16

DGW 0.46±0.09 0.19±0.26 1.00±0.01 0.68±0.48 0.20±0.19 0.34±0.48 0.41±0.43 0.34±0.48
Permutation 0.37±0.16 0.05±0.06 0.67±0.47 0.68±0.48 0.36±0.23 0.67±0.48 0.57±0.42 0.94±0.11

Jittering 0.46±0.09 0.01±0.01 0.68±0.45 0.68±0.48 0.07±0.08 0.34±0.48 0.16±0.08 0.67±0.46
Scaling 0.50±0.10 0.01±0.01 0.68±0.45 0.68±0.48 0.16±0.22 0.00±0.01 0.02±0.02 0.74±0.39
TDA 0.37±0.16 0.01±0.01 0.68±0.45 0.68±0.48 0.18±0.14 0.34±0.48 0.41±0.43 0.52±0.41

IS pen door relocate hammer DR pen door relocate hammer

NoAug. 0.14±0.03 0.94±0.12 0.00±0.00 0.05±0.04 0.37±0.16 0.00±0.00 0.68±0.44 0.34±0.48
OAT 0.46±0.09 0.00±0.01 0.02±0.02 0.00±0.00 0.43±0.05 0.00±0.00 0.07±0.10 0.34±0.48

VAE-MDP 0.19±0.13 0.39±0.45 0.67±0.47 0.00±0.00 0.37±0.16 0.00±0.01 0.68±0.44 0.20±0.15
TimeGAN 0.01±0.00 0.69±0.48 0.67±0.47 0.05±0.04 0.46±0.09 0.02±0.03 0.68±0.44 0.38±0.45

VAE 0.57±0.00 0.38±0.46 0.82±0.26 0.08±0.09 0.46±0.09 0.34±0.48 0.37±0.45 0.40±0.44
SPAWNER 0.44±0.19 1.03±0.00 0.40±0.41 0.20±0.15 0.46±0.09 0.34±0.48 0.37±0.45 0.34±0.48

DGW 0.29±0.23 1.03±0.00 0.81±0.26 1.02±0.00 0.37±0.16 0.67±0.48 1.00±0.01 0.35±0.47
Permutation 0.14±0.15 1.03±0.00 0.24±0.34 1.02±0.00 0.37±0.16 0.67±0.48 1.00±0.01 0.41±0.44

Jittering 0.17±0.21 1.03±0.00 0.17±0.20 1.02±0.00 0.37±0.16 0.34±0.48 1.00±0.01 0.40±0.44
Scaling 0.36±0.18 1.03±0.00 0.33±0.47 0.86±0.23 0.46±0.09 0.00±0.00 1.00±0.01 0.41±0.44
TDA 0.57±0.00 0.01±0.01 0.02±0.02 0.01±0.01 0.37±0.16 0.00±0.00 0.37±0.45 0.35±0.47

DICE pen door relocate hammer

NoAug. 0.20±0.26 0.69±0.48 0.30±0.43 0.67±0.47
OAT 0.02±0.01 0.34±0.48 1.00±0.00 0.67±0.47

VAE-MDP 0.01±0.01 0.68±0.48 0.64±0.45 0.66±0.46
TimeGAN 0.00±0.00 0.42±0.44 0.64±0.45 0.67±0.47

VAE 0.02±0.01 0.76±0.36 0.58±0.42 0.40±0.41
SPAWNER 0.06±0.05 0.42±0.44 0.66±0.46 0.67±0.47

DGW 0.02±0.01 0.34±0.48 0.58±0.42 0.67±0.47
Permutation 0.01±0.01 0.34±0.48 0.31±0.30 0.67±0.47

Jittering 0.11±0.13 0.34±0.48 0.58±0.42 0.65±0.46
Scaling 0.02±0.01 0.34±0.48 0.58±0.42 0.67±0.47
TDA 0.03±0.00 0.34±0.48 0.68±0.45 0.67±0.47
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Table 16: Regret@5 results of OPE without and with each augmentation method in resampled Adroit
expert environment. The data are randomly sampled from original training data as the same data
points as the corresponding task in human environment. Results are obtained by averaging over 3
random seeds used for training at a discount factor of 0.995, with standard deviations shown after
±.

FQE pen door relocate hammer MB pen door relocate hammer

NoAug. 0.02±0.01 0.00±0.01 0.24±0.34 0.00±0.01 0.01±0.01 0.00±0.01 0.00±0.00 0.07±0.09
OAT 0.05±0.06 0.00±0.00 0.24±0.34 0.03±0.05 0.06±0.08 0.00±0.00 0.00±0.00 0.03±0.05

VAE-MDP 0.10±0.06 0.00±0.01 0.17±0.20 0.13±0.09 0.06±0.08 0.00±0.00 0.02±0.02 0.03±0.00
TimeGAN 0.08±0.06 0.00±0.00 0.17±0.20 0.10±0.08 0.07±0.08 0.00±0.00 0.02±0.02 0.13±0.09

VAE 0.01±0.02 0.00±0.01 0.45±0.37 0.13±0.09 0.05±0.06 0.00±0.01 0.45±0.37 0.29±0.14
SPAWNER 0.12±0.06 0.00±0.00 0.26±0.33 0.13±0.09 0.09±0.07 0.02±0.03 0.09±0.09 0.07±0.09

DGW 0.14±0.03 0.00±0.01 0.95±0.03 0.16±0.16 0.06±0.08 0.00±0.00 0.07±0.10 0.13±0.18
Permutation 0.14±0.03 0.00±0.01 0.45±0.37 0.13±0.09 0.08±0.06 0.19±0.26 0.24±0.34 0.20±0.16

Jittering 0.08±0.06 0.00±0.01 0.17±0.20 0.13±0.09 0.00±0.00 0.19±0.26 0.00±0.00 0.07±0.05
Scaling 0.08±0.06 0.00±0.01 0.17±0.20 0.13±0.09 0.06±0.08 0.00±0.00 0.00±0.00 0.08±0.08
TDA 0.09±0.04 0.00±0.01 0.24±0.34 0.13±0.09 0.00±0.00 0.00±0.00 0.00±0.00 0.01±0.02

IS pen door relocate hammer DR pen door relocate hammer

NoAug. 0.02±0.02 0.23±0.24 0.00±0.00 0.03±0.05 0.14±0.03 0.00±0.00 0.56±0.41 0.13±0.18
OAT 0.07±0.03 0.00±0.01 0.00±0.00 0.00±0.00 0.05±0.06 0.00±0.00 0.07±0.10 0.13±0.18

VAE-MDP 0.04±0.04 0.23±0.24 0.65±0.46 0.00±0.00 0.14±0.03 0.00±0.00 0.56±0.41 0.07±0.05
TimeGAN 0.00±0.00 0.37±0.26 0.65±0.46 0.00±0.00 0.11±0.07 0.00±0.00 0.56±0.41 0.13±0.18

VAE 0.18±0.00 0.21±0.25 0.79±0.25 0.01±0.01 0.14±0.03 0.00±0.00 0.27±0.32 0.13±0.18
SPAWNER 0.06±0.08 0.56±0.00 0.15±0.10 0.39±0.00 0.14±0.03 0.00±0.00 0.24±0.34 0.13±0.18

DGW 0.06±0.08 0.56±0.00 0.71±0.21 0.39±0.00 0.14±0.03 0.00±0.01 0.58±0.39 0.13±0.18
Permutation 0.05±0.03 0.56±0.00 0.15±0.21 0.39±0.00 0.14±0.03 0.00±0.00 0.03±0.02 0.13±0.18

Jittering 0.04±0.04 0.56±0.00 0.02±0.02 0.39±0.00 0.14±0.03 0.00±0.00 0.70±0.34 0.13±0.18
Scaling 0.13±0.07 0.56±0.00 0.15±0.21 0.27±0.17 0.14±0.03 0.00±0.00 0.41±0.40 0.13±0.18
TDA 0.13±0.07 0.00±0.00 0.00±0.00 0.00±0.00 0.14±0.03 0.00±0.00 0.30±0.43 0.13±0.18

DICE pen door relocate hammer

NoAug. 0.00±0.00 0.37±0.26 0.15±0.21 0.04±0.04
OAT 0.00±0.00 0.19±0.26 0.30±0.43 0.04±0.04

VAE-MDP 0.00±0.00 0.19±0.26 0.05±0.00 0.14±0.18
TimeGAN 0.00±0.00 0.21±0.25 0.54±0.39 0.07±0.05

VAE 0.00±0.00 0.17±0.16 0.17±0.20 0.08±0.08
SPAWNER 0.01±0.01 0.19±0.26 0.56±0.41 0.05±0.04

DGW 0.00±0.00 0.19±0.26 0.32±0.46 0.05±0.04
Permutation 0.00±0.00 0.19±0.26 0.02±0.02 0.07±0.05

Jittering 0.00±0.00 0.19±0.26 0.32±0.46 0.05±0.04
Scaling 0.00±0.00 0.19±0.26 0.34±0.45 0.04±0.04
TDA 0.00±0.00 0.19±0.26 0.02±0.02 0.14±0.18
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Table 17: PST information in Adroit pen-human.
trajectory index trajectory length PTS start time PST end time

0 200 1 7
1 200 1 7
2 200 1 7
3 200 0 6
4 200 1 7
5 200 2 8
6 200 2 8
7 200 1 7
8 200 1 7
9 200 1 7
10 200 1 7
11 200 1 7
12 200 1 7
13 200 0 6
14 200 0 6
15 200 1 7
16 200 1 7
17 200 1 7
18 200 2 8
19 200 1 7
20 200 1 7
21 200 0 6
22 200 1 7
23 200 1 7
24 200 1 7

Table 18: PST information in Adroit door-human.
trajectory index trajectory length PTS start time PST end time

0 300 204 217
1 300 238 251
2 300 202 215
3 300 210 223
4 300 189 202
5 293 189 202
6 284 183 196
7 265 161 174
8 265 153 166
9 291 167 180
10 247 151 164
11 236 136 149
12 271 165 178
13 242 144 157
14 277 157 170
15 257 158 171
16 260 166 179
17 223 134 147
18 257 164 177
19 277 146 159
20 288 189 202
21 289 187 200
22 256 156 169
23 226 146 159
24 225 135 148

C.2 START AND END TIME OF PSTS.

We present that the length of trajectories, and start and end time of found PSTs on each trajectory in
Adroit human can be varied, as shown in Tables 17, 18, 19, & 20. It can be observed that PST can
start at different time steps across trajectories, which resolves the non-temporally-aligned cases.
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Table 19: PST information in Adroit relocate-human.
trajectory index trajectory length PTS start time PST end time

0 352 19 26
1 437 24 31
2 360 52 59
3 402 30 37
4 346 33 40
5 527 59 66
6 412 28 35
7 416 40 47
8 477 37 44
9 382 32 39
10 385 24 31
11 523 27 34
12 451 33 40
13 382 33 40
14 357 31 38
15 375 39 46
16 439 36 43
17 378 25 32
18 377 31 38
19 336 42 49
20 512 36 43
21 333 32 39
22 297 44 51
23 358 36 43
24 328 31 38

Table 20: PST information in Adroit hammer-human.
trajectory index trajectory length PTS start time PST end time

0 537 153 161
1 399 100 108
2 472 116 124
3 624 115 123
4 469 153 161
5 418 137 145
6 456 110 118
7 404 224 232
8 364 123 131
9 529 120 128
10 455 131 139
11 371 108 116
12 496 180 188
13 433 140 148
14 484 129 137
15 398 102 110
16 418 112 120
17 621 226 234
18 467 121 129
19 390 104 112
20 348 105 113
21 464 86 94
22 425 89 97
23 506 93 101
24 362 82 90
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D REAL-WORLD SEPSIS TREATMENT

Sepsis, which is defined as life-threatening organ dysfunction in response to infection, is the leading
cause of mortality and the most expensive condition associated with in-hospital stay (Liu et al., 2014;
Gao et al., 2022b). In particular, septic shock, which is the most advanced complication of sepsis
due to severe abnormalities of circulation and/or cellular metabolism (Bone et al., 1992), reaches a
mortality rate as high as 50% (Martin et al., 2003). It is critical to find an effective policy that can
be followed to prevent septic shock and recover from sepsis.

D.1 TASK DETAILS

Labels. The hospital provided the EHRs over two years, including 221,700 visits with 35 static
variables such as gender, age, and past medical condition, and 43 temporal variables including vital
signs, lab analytes, and treatments. Our study population is patients with a suspected infection which
was identified by the administration of any type of antibiotic, antiviral, antibacterial, antiparasitic,
or antifungal, or a positive test result of PCR (Point of Care Rapid). On the basis of the Third
International Consensus Definitions for Sepsis and Septic Shock (Singer et al., 2016), our medical
experts identified septic shock as any of the following conditions are met:

• Persistent hypertension as shown through two consecutive readings (≤ 30 minutes apart).
Systolic Blood Pressure (SBP) < 90 mmHg Mean Arterial Pressure (MAP) < 65 mmHg
Decrease in SBP ≥ 40 mmHg with an 8-hour period

• Any vasopressor administration.

From the EHRs, 3,499 septic shock positive and 81,398 negative visits were identified based on the
intersection of the expert sepsis diagnostic rules and International Codes for Disease 9th division
(ICD-9); the 36,122 visits with mismatched labels between the expert rule and the ICD-9 were
excluded in our study. 2,205 shock visits were obtained by excluding the visits admitted with septic
shock and the long-stay visits and then we did the stratified random sampling from non-shock visits,
keeping the same distribution of age, gender, ethnicity, and length of hospital stay. The final data
constituted 4,410 visits with an equal ratio of shock and non-shock visits.

States. To approximate patient observations, 15 sepsis-related attributes were selected based on the
sepsis diagnostic rules. In our data, the average missing rate across the 15 sepsis-related attributes
was 78.6%. We avoided deleting sparse attributes or resampling with a regular time interval because
the attributes suggested by medical experts are critical to decision making for sepsis treatment, and
the temporal missing patterns of EHRs also provide the information of patient observations. The
missing values were imputed using Temporal Belief Memory (Kim & Chi, 2018) combined with
missing indicators (Lipton et al., 2016).

Actions. For actions, we considered two medical treatments: antibiotic administration and oxygen
assistance. Note that the two treatments can be applied simultaneously, which results in a total of
four actions. Generally, the treatments are mixed in discrete and continuous action spaces according
to their granularity. For example, a decision of whether a certain drug is administrated is discrete,
while the dosage of drug is continuous. Continuous action space has been mainly handled by policy-
based RL models such as actor-critic models (Lillicrap et al., 2015), and it is generally only available
for online RL. Since we cannot search continuous action spaces while online interacting with actual
patients, we focus on discrete actions. Moreover, in this work, the RL agent aims to let the physicians
know when and which treatment should be given to a patient, rather than suggests an optimal amount
of drugs or duration of oxygen control that requires more complex consideration.

Rewards. Two leading clinicians, both with over 20-year experience on the subject of sepsis, guided
to define the reward function based on the severity of septic stages. The rewards were defined as
follows: infection [-5], inflammation [-10], organ failures [-20], and septic shock [-50]. Whenever a
patient was recovered from any stage of them, the positive reward for the stage was gained back.

The data was divided into 80% (the earlier 80% according to the time of the first event recorded
in patients’ visits) for training and (the later) 20% for test, following the common practice while
splitting up time-series for training and testing (Campos et al., 2014).
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Figure 14: Our intelligent tutor GUI (left) and empirical results with three RL-induced policies and
one expert policy (right).

Policies We assume that the clinical care team is well-trained with sufficient medical knowledge
and follows standard protocols in sepsis treatments, thus we consider the behavioral policy, param-
eterized through behavior cloning (Azizsoltani & Jin, 2019), that generates the trajectories above
as an expert policy. We estimate the behavior policy with behavior cloning as in (Fu et al., 2021;
Hanna et al., 2019). The evaluation policies were trained using off-policy DQN algorithm with dif-
ferent hyper-parameter settings, where DQN was trained using default setting (learning rate 1e− 3,
γ = 0.99), learning rate 1e− 4, learning rate 1e− 5, a different random seed, γ = 0.9, respectively.

Evaluate Performance of Target Policies Since the RL agent cannot directly interact with patients,
it only depends on offline data for both policy induction and evaluation. In similar fashion to prior
studies (Komorowski et al., 2018; Azizsoltani & Jin, 2019; Raghu et al., 2017), the induced policies
were evaluated using the septic shock rate. And the OPE validation metric, rank correlation, can
be calculated by comparing the ranking by OPE estimations versus the rankings of septic shock
rate of target policies. The assumption behind that is (Raghu et al., 2017): when a septic shock
prevention policy is indeed effective, the more the real treatments in a patient trajectory agree with
the induced policy, the lower the chance the patient would get into septic shock; vice versa, the less
the real treatments in a patient trajectory agree with the induced policy (more dissimilar), the higher
the chance the patient would get into septic shock. Specifically, we follow the recent design by (Ju
et al., 2021): We measured agreement rate with the agent policy, which is the number of actions of a
target policy agreed with the agent policy among the total number of actions in a trajectory. Then we
sort the trajectories by their similarity rate in ascending order and calculate the septic shock rate for
the top 10% of trajectories with the highest similarity rate. If the agent policies are indeed effective,
the more the actually executed treatments agree with the agent policy, the less likely the patient is
going to have septic shock.

E REAL-WORLD INTELLIGENT TUTORING

E.1 TASK DETAILS

Our data contains a total of 1,307 students’ interaction logs with a web-based ITS collected over
seven semesters’ classroom studies. The ITS is used in an undergraduate STEM course at a col-
lege, which has been extensively used by over 2, 000 students with ∼800k recorded interaction logs
through eight academic years. The ITS is designed to teach entry-level undergraduate students with
ten major probability principles, including complement theorem, Bayes’ rule, etc. The GUI of the
ITS is provided in Figure 14.

States. During tutoring, there are many factors that might determine or indicate students’ learn-
ing state, but many of them are not well understood by educators. Thus, to be conservative, we
extract varieties of attributes that might determine or indicate student learning observations from
student-system interaction logs. In sum, 142 attributes with both discrete and continuous values are
extracted, which can be categorized into the following five groups:

(i) Autonomy (10 features): the amount of work done by the student, such as the number of times
the student restarted a problem;
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Figure 15: OPE improvement results averaging across OPE methods in e-learning.

(ii) Temporal Situation (29 features): the time-related information about the work process, such
as average time per step;

(iii) Problem-Solving (35 features): information about the current problem-solving context, such
as problem difficulty;

(iv) Performance (57 features): information about the student’s performance during problem-
solving, such as percentage of correct entries;

(v) Hints (11 features): information about the student’s hint usage, such as the total number of hints
requested.

Actions. For each problem, the ITS agent will decide whether the student should solve the next
problem, study a solution provided by the tutor or work together with the tutor to solve on the
problem. For each problem, the agent makes two levels of granularity: problem first and then step.
For problem level, it first decides whether the next problem should be a worked example (WE),
problem solving (PS), or a collaborative problem solving worked example (CPS). In WEs, students
observe how the tutor solves a problem; in PSs, students solve the problem themselves; in CPSs,
the students and the tutor co-construct the solution. If a CPS is selected, the tutor will then make
step-level decisions on whether to elicit the next step from the student or to tell the solution step to
the student directly.

Rewards. There was no immediate reward but the empirical evaluation matrix (i.e., delayed reward),
which was the students’ Normalized Learning Gain (NLG). NLG measured students’ learning gain
irrespective of their incoming competence. NLG is defined as: NLG =

scoreposttest−scorepretest√
1−scorepretest

,

where 1 denotes the maximum score for both pre- and post-test that were taken before and after
usage of the ITS, respectively.

Policies. The study were conducted across seven semesters, where the first six semesters’ data
were collected over expert policy and the seventh semester’s data were collected over four differ-
ent policies (three policies were RL-induced policies and one was the expert policy). The expert
policy randomly picked actions. The three RL-induced policies were trained using off-policy DQN
algorithm with different learning rates lr = {1e− 3, 1e− 4, 1e− 5}.

Evaluate Performance of Target Policies. Target policies are randomly assigned to 140 students
who take the Probability course in one semester. During the studies, all students used the same tutor,
followed the same general procedure, studied the same training materials, and worked through the
same training problems. All students went through the same four phases: 1) reading textbook, 2)
pre-test, 3) working on the ITS, and 4) post-test. During reading textbook, students read a general
description of each principle, reviewed examples, and solved some training problems to get familiar
with the ITS. Then the students took a pre-test which contained a total of 14 single- and multiple-
principle problems. Students were not given feedback on their answers, nor were they allowed
to go back to earlier questions (so as the post-test). Next, students worked on the ITS, where they
received the 12 problems on ITS in the same order. After that, students took the 20-problem post-test,
where 14 of the problems were isomorphic to the pre-test and the remainders were non-isomorphic
multiple-principle problems. Tests were auto-graded following the same grading criteria. Test scores
were normalized to the range of [0, 1].

41



Published as a conference paper at ICLR 2024

State Dim. Action Dim. Early Term. Continuous Ctrl. Dataset Dataset Size

Halfcheetah 17 6 No Yes

random 999,000

medium-
replay 201,798

medium 999,000

medium-
expert 1,998,000

expert 999,000

Hopper 11 3 Yes Yes

random 999,999

medium-
replay 401,598

medium 999,998

medium-
expert 1,998,966

expert 999,061

Walker2d 17 6 Yes Yes

random 999,999

medium-
replay 301,698

medium 999,322

medium-
expert 1,998,318

expert 999,000

Ant 27 8 Yes Yes

random 999,427

medium-
replay 301,698

medium 999,175

medium-
expert 1,998,158

expert 999,036

Table 21: Summary of the Gym-Mujoco environments and datasets used to train OAT and baselines.

F ADDITIONAL EXPERIMENTS AND RESULTS: GYM-MUJOCO

F.1 DETAILS OF GYM-MUJOCO

A total of 4 environments are provided by Gym-Mujoco, and we follow the guidelines from DOPE
benchmark to validate our work and baselines (Fu et al., 2020). Moreover, each environment is
provided with 5 training datasets collected using different behavioral policies, resulting in a total of
20 sets of tasks. DOPE also provides 11 target policies for each environment, whose performance
are to be evaluated by the OPE methods. Though the Gym-Mujoco environments may not fit our
major interests, i.e., human-involved tasks, we provide additional validation of our work on them,
given they are popular testbeds and may be interested by readers. Table 21 shows summary of the
Gym-Mujoco environments and datasets.

F.2 RESULTS ON GYM-MUJOCO AND DISCUSSIONS

The Table 22 presents summary results on Gym-Mujoco environments using OAT and augmentation
baselines. The results are obtained by calculating the improved percentage (for MAE), or distance
(for Rank Correlation, Regret@1, and Regret@5) after augmentation compared to the original OPE
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Halfcheetah Hopper
MAE Perc. Rank Corr. Regret@1 Regret@5 MAE Perc. Rank Corr. Regret@1 Regret@5

OAT 25.11 0.10 0.08 0.01 5.60 0.17 0.05 0.05
VAE-MDP 19.01 0.06 0.01 0.01 1.80 0.16 -0.08 0.04
TDA 15.86 0.04 -0.01 0.00 0.62 0.04 -0.11 0.04
Permutation 10.14 0.03 0.00 0.00 -3.72 0.01 -0.25 0.00
Jittering 12.32 0.00 -0.02 0.01 -3.34 0.00 -0.33 0.01
Scaling 12.08 0.01 -0.02 0.00 -4.13 0.02 -0.27 0.00
VAE 18.72 0.00 -0.02 -0.01 -3.21 0.14 -0.08 0.04
TimeGAN 17.56 -0.02 -0.08 0.00 -1.19 0.15 -0.08 0.04
SPAWNER 8.06 -0.11 -0.15 -0.03 -10.21 -0.02 -0.16 -0.12
DGW 7.22 -0.12 -0.11 -0.07 -11.38 -0.07 -0.18 -0.15

Walker2d Ant
MAE Perc. Rank Corr. Regret@1 Regret@5 MAE Perc. Rank Corr. Regret@1 Regret@5

OAT 3.39 0.15 0.06 0.03 1.50 0.27 0.20 0.01
VAE-MDP 3.37 0.01 0.00 0.02 1.26 0.15 0.06 0.01
TDA 0.00 0.04 -0.04 0.03 0.42 0.04 -0.03 0.00
Permutation -5.39 0.03 -0.05 0.02 -0.13 0.05 0.00 0.01
Jittering -5.62 -0.01 -0.08 0.00 -0.11 0.02 -0.04 -0.02
Scaling -6.37 0.04 -0.06 0.01 -0.17 0.00 -0.02 0.00
VAE -1.12 -0.07 -0.11 0.00 -0.22 0.10 -0.10 -0.02
TimeGAN -3.45 -0.03 -0.12 0.01 -0.30 0.08 0.01 0.01
SPAWNER -14.91 -0.13 -0.14 -0.02 -1.36 -0.19 -0.15 -0.04
DGW -12.67 -0.10 -0.15 0.00 -2.24 -0.20 -0.22 -0.02

Table 22: Summary results of averaged improvements on OPE by OAT and baselines in the Gym-
Mujoco environments and datasets.

results without augmentation. OAT can outperforms the baselines in terms of all four evaluation
metrics (as bold in Table 22).

G MORE RELATED WORKS

OPE In real-world, deploying and evaluating RL policies online are high stakes in such domains,
as a poor policy can be fatal to humans. It’s thus crucial to propose effective OPE methods. OPE
is used to evaluate the performance of a target policy given historical data drawn from (alternative)
behavior policies. A variety of contemporary OPE methods has been proposed, which can be mainly
divided into three categories (Voloshin et al., 2021b): (i) Inverse propensity scoring (Precup, 2000;
Doroudi et al., 2017), such as Importance Sampling (IS) (Doroudi et al., 2017), to reweigh the
rewards in historical data using the importance ratio between β and π. (ii) Direct methods directly
estimate the value functions of the evaluation policy (Nachum et al., 2019; Uehara et al., 2020;
Xie et al., 2019; Zhang et al., 2021; Yang et al., 2022), including but not limited to model-based
estimators (MB) (Paduraru, 2013; Zhang et al., 2021) that train dynamics and reward models on
transitions from the offline data; value-based estimators (Munos et al., 2016; Le et al., 2019) such
as Fitted Q Evaluation (FQE) which is a policy evaluation counterpart to batch Q learning; minimax
estimators (Liu et al., 2018; Zhang et al., 2020b; Voloshin et al., 2021a) such as DualDICE that
estimates the discounted stationary distribution ratios (Yang et al., 2020a). (iii) Hybrid methods
combine aspects of both inverse propensity scoring and direct methods (Jiang & Li, 2016; Thomas
& Brunskill, 2016). For example, DR (Jiang & Li, 2016) leverages a direct method to decrease the
variance of the unbiased estimates produced by IS. However, a major challenge of applying OPE to
real world is many methods can perform unpleasant when human-collected data is highly limited
as in (Fu et al., 2020; Gao et al., 2023a), augmentation can be an important way to facilitate OPE
performance.

Data Augmentation Data augmentation has been widely investigated in various domains, includ-
ing computer vision, time series, and RL. In computer vision, images are the major target and
augmentation have improved downstream models’ performance (LeCun et al., 1998; Deng et al.,
2009; Cubuk et al., 2019; Xie et al., 2020). However, many image-targeted methods, such as crop
and rotate images, will discard important information in trajectories. In time series, a variety of
data augmentation has been proposed to capture temporal and multivariate dependencies (Le Guen-
nec et al., 2016; Kamycki et al., 2019; Yoon et al., 2019; Iwana & Uchida, 2021a). For instance,
SPAWNER (Kamycki et al., 2019) and DGW (Iwana & Uchida, 2021b) augment time series by
capturing group-level similarities to facilitate supervised learning. Generative models such as GAN
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and VAE have achieved state-of-the-art performance in time series augmentation for both supervised
and unsupervised learning (Antoniou et al., 2017; Donahue et al., 2018; Yoon et al., 2019; Barak
et al., 2022). However, those approaches for images and time-series do not consider the Markovian
nature in OPE training data, and may not be directly applicable to MDP trajectory augmentation.
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