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Abstract
We present a parallel algorithm for the (1 � ") -approximate maximum flow problem in

capacitated, undirected graphs with n vertices and m edges, achieving O("�3 polylog n) depth and
O(m"

�3 polylog n) work in the PRAM model. Although near-linear time sequential algorithms for this
problem have been known for almost a decade, no parallel algorithms that simultaneously achieved
polylogarithmic depth and near-linear work were known.

At the heart of our result is a polylogarithmic depth, near-linear work recursive algorithm for
computing congestion approximators. Our algorithm involves a recursive step to obtain a low-
quality congestion approximator followed by a “boosting” step to improve its quality which prevents
a multiplicative blow-up in error. Similar to Peng [SODA’16], our boosting step builds upon the
hierarchical decomposition scheme of Räcke, Shah, and Täubig [SODA’14]. A direct implementation
of this approach, however, leads only to an algorithm with n

o(1) depth and m
1+o(1) work. To

get around this, we introduce a new hierarchical decomposition scheme, in which we only need to
solve maximum flows on subgraphs obtained by contracting vertices, as opposed to vertex-induced
subgraphs used in Räcke, Shah, and Täubig [SODA’14]. This in particular enables us to directly
extract congestion approximators for the subgraphs from a congestion approximator for the entire
graph, thereby avoiding additional recursion on those subgraphs. Along the way, we also develop a
parallel flow-decomposition algorithm that is crucial to achieving polylogarithmic depth and may be
of independent interest.

We extend our results to related graph problems such as sparsest and balanced sparsest cuts, fair
and isolating cuts, approximate Gomory-Hu trees, and hierarchical clustering. All algorithms achieve
polylogarithmic depth and near-linear work.

Finally, our PRAM results also imply the first polylogarithmic round, near-linear total space
MPC algorithms for approximate undirected maximum flows, as well as all its aforementioned
applications in the fully scalable regime where the local machine memory is O(n�) for any constant
� > 0.

1 Introduction.

The maximum flow problem, or equivalently, the minimum congestion flow problem is one of the oldest
and most well-studied combinatorial optimization problems that finds numerous applications across
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computer science and engineering. Formally, we are given a directed, capacitated flow network (graph)
G = (V,E, c) with |V | = n vertices and |E| = m edges with positive edge capacities c 2 RE , along with a
set of vertex demands b 2 RV specifying the desired excess flow at each vertex where

P
v2V bv = 0. The

objective is to find a flow f 2 RE that satisfies demands b, while minimizing the maximum congestion
|fe|/ce on any edge e 2 E in the network, i.e.

(1.1) min kC�1fk1 s.t. Bf = b (flow conservation constraints); f � 0,

where C 2 RE⇥E is a diagonal matrix of edge capacities with Ce,e = ce, and B 2 {�1, 0, 1}V⇥E is the
vertex-edge incidence matrix with Bv,e being 1 if e = (u, v), �1 if e = (v, u) and 0 otherwise. For the
special case where the edges are undirected, the formulation is identical except that the edges are oriented
arbitrarily, and the non-negativity constraint on the flows is dropped; the sign of the flow on an edge
specifies its direction relative to the edge orientation.

The maximum flow problem has a rich history, starting with the work of [19] and [25], who first
proposed algorithms with pseudo-polynomial running times of O(mn2U) and O(m2U) respectively, for
networks with maximum edge capacity U . Since then, substantial e↵ort has been devoted to designing
increasingly e�cient algorithms for this problem. This has resulted in a sequence of exciting developments,
with initial improvements coming from primarily combinatorial ideas such as shortest augmenting paths
and blocking flows [21, 23, 41, 22, 24, 9], push-relabeling [33, 30, 56], pseudo-flows [37, 10], and capacity
scaling [2, 32], eventually culminating in the recent breakthrough O(m1+o(1)) time result of [14] achieved
through a combination of second-order continuous optimization techniques (interior point methods) and
e�cient dynamic graph data-structures. Meanwhile, for the weaker objective of finding an approximately
maximum flow in undirected graphs, even faster algorithms have been developed using simpler first-order
continuous optimization techniques [66, 57, 67, 68]. In particular, [57] showed that in undirected graphs,
a (1� ")-approximate maximum flow can be computed in just O(m poly(1/", log n)) time.

However, these aforementioned algorithmic results were largely developed in the sequential setting,
and are not readily parallelizable. Moreover, the question of designing fast parallel algorithms for max-
flows has remained surprisingly under-explored.

In the context of parallel algorithms, several models of computation have been proposed over the
years. Amongst them, the parallel random-access machine (PRAM) is often considered as a standard,
owing to its simplicity and its well-understood connections to other models of parallel computation. A
generalization of the usual (sequential) RAM model, the PRAM is a synchronous, shared-memory, multi-
processor model. Within PRAM, there are several variants depending on how concurrent operations in
the shared memory are handled: (in decreasing order of restrictiveness) exclusive-read-exclusive-write,
concurrent-read-exclusive-write, and concurrent-read-concurrent-write. However, due to the low-level
nature of the PRAM, even the simplest algorithms designed for it involve tedious implementation details.
In order to abstract away these specifics, we usually consider the equivalent work-depth paradigm, which
measures the performance of a parallel algorithm using two parameters – total work, which is the total
running time needed given only one processor, and depth, which is the total parallel time given a maximal
number of processors. Moreover, in this framework, the di↵erent variants of PRAM are equivalent up to
polylogarithmic factors in work and depth, and therefore, can also be abstracted.

For the question of designing parallel algorithms for max flows, the literature is sparse. For finding
exact max flows, early results of [70, 62] achieved Õ(n2) depth and Õ(mn) work. More recently, [59]
improved the depth to Õ(n) while retaining the same asymptotic work. For the weaker objective of
finding an approximate max flow, the combined results of [54] and [58] imply an algorithm with Õ(

p
m)

depth and Õ(m1.5) work at the cost of a O(1/poly(n)) additive error in the flow value. A much earlier
work of [65] also implies a O(poly(log n, log(1/"))) depth algorithm for finding a (1 � ")-approximate
max flow via a reduction to finding maximum matchings in bipartite graphs. However, this comes at the
expense of an unspecified polynomial blow-up in work, a common issue with many of the early results
for parallel algorithms. The question of whether it is possible to simultaneously have a polylogarithmic
depth and near-linear work approximate max-flow algorithm remained open. In this paper, we answer
this in the a�rmative for undirected graphs. Namely, we show the following main result.
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Theorem 1.1. There is a randomized PRAM algorithm that given an undirected capacitated graph

G = (V,E, c), s, t 2 V , and precision " > 0, computes both a (1 � ")-approximate s-t maximum

flow and a (1+ ")-approximate s-t minimum cut with high probability in O
�
"�3 polylog n

�
depth and

O
�
m"�3 polylog n

�
total work.

A more recent model of parallel computation is the massively parallel computation (MPC) model,
which is a common abstraction of many MapReduce-style computational frameworks (see i.e. [8, 4, 35]).
In this model, the input data is partitioned across multiple machines that are connected together through
a communication network. The computation proceeds in synchronous rounds where in each round, the
machines can perform unlimited local computation on their local memory, but cannot communicate with
other machines. Between rounds, machines can communicate, so long as the total size of messages sent
and received by any machine does not exceed the size of its local memory. The performance of an
MPC algorithm is measured by the number of rounds needed to complete the computation, the size of the
local machine memory, as well as the total memory used across all machines. A simulation result of [40, 35]
shows that any PRAM algorithm with D depth and W work can be simulated by an MPC algorithm with
O(D) rounds and O(W ) total memory even in the most stringent fully-scalable regime1 where the local
memory size is O(n�) for any constant � > 0. Using this simulation result, we obtain the following
corollary of our main result.

Corollary 1.1. (of Theorem 1.1) There is a randomized MPC algorithm that given an undi-

rected capacitated graph G = (V,E, c), s, t 2 V and precision " > 0, computes both a (1 � ")-
approximate s-t maximum flow and a (1 + ")-approximate s-t minimum cut with high probability

in O
�
"�3 polylog n

�
rounds, O

�
m"�3 polylog n

�
total memory and O

�
n�
�
local memory, for any

constant � > 0.

Note that by standard reduction, our Results 1.1 and 1.1 extend to general vertex demands b 2 RV

in the same form of Eq 1.1.

1.1 Applications. Our result for approximate max flows has broad implications to other related graph
problems, where it implies either new or substantially improved parallel algorithms (both PRAM and
MPC) for them.

Sparsest cut and balanced sparsest cut: The sparsest cut problem is an important subroutine for
divide-and-conquer based approaches for several graph problems and has many applications including
image segmentation, VLSI design, clustering and expander decomposition. In this problem, given a
weighted undirected graph G = (V,E, c), the objective is to find a cut (S, S̄) with minimum sparsity
�(S) which is defined as �(S) := c(E(S, S̄))/min{|S|, |S̄|}, where c(E(S, S̄)) is the total weight of the
edges going across the cut. The balanced sparsest cut problem is a variant of this problem where there
is an additional requirement that the cut (S, S̄) must be �-balanced, i.e. min{|S|, |S̄|} � �n for some
given parameter � 2 (0, 1/2). Balanced sparse cuts are useful in applications where one wants the
divide-and-conquer tree to have low-depth.

The sparsest cut problem is NP-hard and the best known approximation factor of O(
p
log n) is

achieved by an SDP-based algorithm due to Arora, Rao and Vazirani [6]. However, this algorithm
is highly sequential, and computationally expensive. The most e�cient algorithms for sparsest cut
problem are based on the cut-matching game framework of Khandekar, Rao and Vazirani [45], which
e↵ectively reduces the sparsest cut problem to a poly-logarithmic number of single commodity max-flow
computations. In this framework, a cut-player and a matching-player play an alternating game; in each
round, the former produces a bisection (S, S̄) of vertices, and the latter produces a perfect matching
between S and S̄ that can be embedded in the underlying graph. The game ends when either the cut

1
The dependence of the the local memory parameter (the constant � > 0) on the number of rounds and total memory

is a multiplicative O(1/�), and is usually omitted.
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player produces a bisection for which the matching player cannot find a perfect matching (i.e. a sparse
cut has been found), or the union of the perfect matchings produced thus far form an expander (i.e. an
expander can be embedded in the underlying graph, certifying its expansion). [45] showed that there is a
cut strategy with runtime Tcut = Õ(n) such that this game terminates in ↵ = O(log2 n) rounds, regardless
of the matching player’s strategy. Furthermore, the matching player’s strategy can be implemented using
a max-flow computation with the sources and sinks being the two sides of the bipartition. In combination,
this framework produces an O(↵)-approximation to sparsest cut with a runtime of O(↵ · (Tcut + Tflow)),
where ↵ is an upper bound on the number of rounds of this game, Tcut is the time to implement cut
player’s strategy and Tflow is the time to compute a single commodity max-flow. This framework also
generalizes to the problem of �-balanced sparsest cut for any constant � with the same approximation
factor and running time.

Nanongkai and Saranurak [55] further showed that the matching player’s strategy can be implemented
using approximate max-flow computations rather than exact max-flows. Building on [55], we show that
our parallel algorithm for max-flows (Result 1.1) can be used to implement the matching player’s strategy,
yielding a O(polylog n) depth and Õ(m) work algorithm for the matching player. Furthermore, we show
that the cut player’s strategy can also be implemented in O(polylog n) depth and Õ(m) work using our
new parallel flow decomposition algorithm (see Section 2.2 for a discussion). In combination, this gives
a O(polylog n) depth and Õ(m) work algorithm for sparsest cuts that has an approximation factor of
O(log3 n). These results also imply a bicriteria approximation algorithm for �-balanced sparsest cut with
the same depth and work. Specifically, our algorithm finds a (�/ log2 n)-balanced cut whose sparsity is
at most O(log3 n) times the sparsity of an optimal �-balanced cut.

Minimum cost hierarchical clustering: Hierarchical clustering is a fundamental problem in data
analysis where the goal is to recursively partition data into clusters which results in a rooted tree
structure. This problem has wide-ranging applications across di↵erent domains including phylogenetics,
social network analysis, and information retrieval. While the study of hierarchical clustering goes back
several decades, Dasgupta [20] initiated its study from an optimization viewpoint. Specifically, he
proposed a minimization objective for hierarchical clustering on similarity graphs that measures the
cost of a hierarchy as the sum of costs of its internal splits, which in turn is measured as the total
edge-weight across the split scaled by the size of the cluster at that split. [20] and subsequent work
by [17, 12] showed that the hierarchical clustering produced by recursively splitting the graph using
a ↵-approximate sparsest cut subroutine results in a hierarchy that is an O(↵)-approximation for this
minimization objective. Furthermore, using an ↵-approximate �-balanced sparsest cut subroutine results
in the same approximation with an additional property that the depth of the tree is O(log n) for � = ⌦(1).
[12] also showed that a (↵,�0)-bicriteria approximation oracle for �-balanced min-cut is su�cient to
achieve a O(↵/�0)-approximation for minimum cost hierarchical clustering. As a consequence, using our
parallel balanced min-cut algorithm as a subroutine, we get the first parallel algorithm that computes a
tree that is a O(log5 n)-approximation to Dasgupta’s objective with Õ(m) work and O(polylog n) depth.

Fair cuts and approximate Gomory-Hu trees: Li et al. [51] recently introduced the notion of fair
cuts for undirected graphs which are a “robust” generalization of approximate min-cuts. Specifically, for
↵ � 1, a s-t-cut is ↵-fair if there exists an s-t flow that uses at least 1/↵-fraction of the capacity of
every edge in the cut. [51] showed that a near-linear time oracle for computing a fair cut is useful for
obtaining near-linear time algorithms for several applications including computation of (approximate) all-
pairs maxflow values (using approximate Gomory-Hu trees). They also showed that, given an unweighted
graph, a fair cut can be computed in parallel using m1+o(1) work and no(1) depth, implying a similar result
for approximate Gomory-Hu trees. Our results improve upon their results by giving parallel algorithms
for fair cuts and approximate Gomory-Hu trees that have O(m polylog n) work and O(polylog n) depth.
The key technical tool that results in this improvement is our O(polylog n) depth construction of a
O(polylog n)-congestion approximator (see Section 2.1 for a discussion).
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2 Technical Overview.

The starting point of our discussion is Sherman’s framework [66, 68], which was initially proposed for
computing fast approximate undirected max-flows in the sequential setting. Given the optimization
problem defined in Equation 1.1, let optG(b) := minf :Bf=b kC�1fk1 be the minimum congestion of any
feasible flow routing given demands b in the graphG. Sherman showed that if we have a matrix � such that
for any demand vector b, k�bk1 is always an ↵-approximation to opt(b), i.e., k�bk1  opt(b)  ↵·k�bk1,
then there is an iterative algorithm to compute a (1 + ")-approximate minimum congestion flow. The
matrix � is called a ↵-congestion approximator matrix, and the algorithm requires poly(↵, "�1, log n)
iterations2 where each iteration requires in total O(m)-time algorithmic operations plus computing the
matrix-vector products �x and �T y for some arbitrary vectors x and y.

A line of work in the parallel transshipment (`1 flow) literature [5, 50, 64, 72] observed that Sherman’s
framework can be adapted to the parallel computing regime. In particular, they showed the following:
given an ↵-congestion approximator matrix �, there is a PRAM algorithm which outputs a (1 + ")-
approximate minimum congestion flow. The depth of the algorithm is poly(↵, "�1, log n) · (depth(�x) +
depth(�T y)), and the work is poly(↵, "�1, log n)·(work(�x)+work(�T y)+O(m)), where depth(·),work(·)
denote the depth and work required to compute the corresponding sub-problem respectively, and �x,�T y
denote the sub-problems of multiplication between � and an arbitrary vector and the multiplication
between �T and an arbitrary vector respectively. Therefore, the problem e↵ectively reduces to e�ciently
computing a good congestion approximator matrix � that also allows e�cient computation of �x and
�T y.

Räcke, Shah, and Täubig [61] gave an e�cient algorithm for building a tree-structured congestion
approximator. Specifically, they showed that given any graph G = (V,E, c), one can construct an
O(log n)-depth tree R = (VR, ER, cR) supported on VR ◆ V such that for any demand vector b,
optR(b)  optG(b)  O(log4 n) · optR(b). A useful property of the tree R is that the flow that goes
from u to the parent of u is equal to the total demand within the subtree of u. This implies that we can
write optR(b) = k�bk1 for a matrix �, where each row of � corresponds to a node in R, such that the
u-th entry of �b equals the congestion of the tree edge connecting u to its parent:

(�b)u =

P
v in the subtree of u bv
cR(u, parent of u)

.

Furthermore, computing �x is equivalent to computing the sum of rescaled node weights in each subtree,
and computing �T y is equivalent to computing the sum of rescaled edge weights of the path from each node
to the root. Thus, both computations of �x and �T y can be done in polylog(n) depth and n · polylog(n)
work using standard dynamic programming ideas. Hence, our goal becomes to compute such a congestion
approximator tree (or hereafter simply congestion approximator) R.

The algorithm of [61] constructs such a tree by performing a hierarchical decomposition of the graph.
At a high level, starting with the vertex set V , they recursively apply a subroutine to partition a given
cluster S of vertices into smaller sub-clusters such that the boundary edges leaving each sub-cluster are
well-linked, in the sense that one can route a product multicommodity flow between them with low
congestion. However, this partitioning routine itself requires computing (1 + ")-approximate minimum
congestion flows on the induced subgraph G[S], which is the exact same problem (though on a subgraph)
we set out to solve by constructing a congestion approximator!

In the sequential setting, this chicken-and-egg situation was resolved by Peng [57] using a clever
recursive construction, which we summarize below:

1. Given an input graph G = (V,E, c), the goal is to output an O(log4 n)-congestion approximator
tree R = (VR, ER, cR).

2
To be precise, Sherman’s algorithm upon termination routes a flow that almost satisfies the desired demand b, and the

negligible residual demand is such that it can be routed in the flow network with 1/poly(m) congestion. We get a feasible

flow by trivially routing this residual demand along a maximum spanning tree, which is known to admit an e�cient parallel

construction with Õ(m) work and polylog(n) depth [60].
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2. Simulate the algorithm of [61] on G. Every time a (1 + ")-approximate minimum congestion flow
computation is required on some vertex-induced subgraph G[S] of G, do the following:

(a) Compute a sparsifier H of G[S] such that for any demand b, optH(b)  optG[S](b) 
polylog(n) · optH(b). In addition, H can be decomposed into a core graph C and a forest F
such that (i) C only has |S|/ polylog(n) nodes and edges, and (ii) each connected component
of F has exactly one vertex in C.

(b) Recursively compute an O(log4 n)-congestion approximator tree RC for the core graph C.

(c) Let RG[S] = RC [ F . It is easy to show that by composing, RG[S] is a polylog(n)-congestion
approximator tree for G[S].

(d) Compute a (1 + ")-approximate minimum congestion flow on G[S] by plugging RG[S] into
Sherman’s algorithm.

3. Output an O(log4 n)-congestion approximator tree R for G obtained from simulating the algorithm
of [61].

Note that since C has significantly smaller size than G[S], the computation of a congestion approximator
tree for C is much faster than for G[S]. Leveraging this observation, and using a large enough polylog(n)
factor in the size reduction of the sparsifier, [57] showed that the overall running time of their algorithm
can be bounded by m · poly("�1, log(n)).

However, there are two major challenges to convert Peng’s algorithm into a small depth PRAM al-
gorithm. The first challenge is that Peng’s algorithm has multiple recursive calls and the input to each
recursive call depends on the output of previous recursive calls. These dependent recursive calls result
in long dependent computation paths and thus the algorithm has a large (i.e. super-logarithmic) depth.
The second challenge comes from how the approximate maximum flows are used in [61]. In particular,
given an approximate maximum s-t flow, [61] crucially requires a decomposition of the flow into s-t flow
paths.

Our paper’s main technical contribution is to address these two challenges. To address the second
challenge, we propose a novel e�cient parallel flow decomposition routine which we discuss in more detail
later in Section 2.2 of this overview. With this routine, we are already able to implement the algorithm
of [61] with m1+o(1) work and no(1) depth. However, getting the depth down to polylog(n) leaves us
with the considerably more di�cult task of addressing the first challenge. To this end, we devise a
variant of the algorithm in [61] for constructing congestion approximators. While our new algorithm
also computes a hierarchical decomposition of the graph, it allows us to apply our partitioning routine
by running maximum flows on subgraphs obtained by contracting vertices, as opposed to recursing on
vertex-induced subgraphs as done in [61]. This in particular allows us to extract congestion approximators
for the subgraphs from a given congestion approximator of the entire graph, thus avoiding any additional
recursive calls on these subgraphs. As a result, we only have one recursive call, whose goal is to compute a
congestion approximator of the core graph C of the sparsifier, enabling us to obtain a depth of polylog(n).

We adopt a similar recursive idea to that of Peng [57], with the key di↵erence being our approach
involves only one recursive call. Specifically, our construction consists of a recursive step to obtain a low-
quality (though still polylog(n)-approximate) congestion approximator, and a boosting step to improve it
to an O(log9 n)-congestion approximator, so as to avoid an accumulation of error over successive recursive
calls. We summarize our new construction as follows:

1. Given input G = (V,E, c), the goal is to output an O(log9 n)-congestion approximator tree
R = (VR, ER, cR).

2. Compute a sparsifier H of G such that for any demand b, optH(b)  optG(b)  polylog(n) ·optH(b).
In addition, H can be decomposed into a core graph C and a forest F such that (i) C only has
|S|/ polylog(n) nodes and edges, and (ii) each connected component of F has exactly one vertex in
C.
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3. (Recursive step) Only one recursive call: Recursively compute an O(log9 n)-congestion approx-
imator tree RC for the core graph C.

4. Let RG = RC [ F . Then RG is a polylog(n)-congestion approximator tree for G.

5. (Boosting step) Simulate our variant of the algorithm in [61] on G to find an O(log9 n)-congestion
approximator tree R, where every time when (1 + ")-approximate minimum congestion flow
computation is required on some subgraph G(S) obtained from G by contracting vertices V \S into
a single supernode, do the following:

(a) Extract from RG a polylog(n)-congestion approximator tree RS for G(S).

(b) Compute a (1 + ")-approximate minimum congestion flow required on G(S) by plugging RS

into Sherman’s algorithm.

Line 2 involves constructing ultrasparsifiers [71, 46], and subsequently transforming them into j-trees [53].
Though not particularly technically challenging, we are the first to give e�cient constructions of these
objects in the PRAM model. We refer the reader to Section 5 for their parallel implementations. Line 5,
namely our variant of the algorithm in [61], is substantially more involved, as we must open the blackbox
of [61] entirely. In the following section, we explain in more detail, our new construction of congestion
approximators that is used in our boosting step.

2.1 Overview of New Congestion Approximator Construction. As mentioned above, the
di�culty in parallelizing the construction of congestion approximators in [61] arises from the fact that
we need to solve (approximate) maximum flows on vertex-induced subgraphs, which in turn requires
congestion approximators for those subgraphs. However, recursing on these subgraphs necessarily blows
up the depth of our algorithm to super-logarithmic. There are two possibilities of resolving this: (i)
use a more aggressive size reduction than polylog(n) when computing sparsifiers, or (ii) reduce the
number of dependent recursive calls. Here, (i) can be immediately ruled out, since a more aggressive
size reduction implies a worse approximation for the sparsifier, which in turn results in a larger iteration
count (and hence, depth) of Sherman’s algorithm to compute maximum flows. This leaves us with (ii)
as the only option. Notice that having even just two dependent recursive calls would result in a depth of

2O(
log n

log log n ) = no(1), which makes (ii) even more imperative.
This raises the following question: can we reduce the number of dependent recursive calls by reusing

congestion approximators? While it indeed seems plausible to combine the congestion approximators for
the subgraphs into one for the entire graph, this does not suit the construction of [61] - in particular, the
hierarchical decomposition tree there is computed in a top-down manner, and thus we do not know on
what subgraphs we want to run maximum flows until we are done with the partitioning at higher levels.
This suggests that we should instead consider extracting congestion approximators for the subgraphs
from that of the entire graph. But unfortunately, this is in general impossible due to the information loss
due to congestion approximation (which in turn is a form of sparsification that preserves both cuts and
flows).

Our solution here is to open the blackbox of [61] entirely and propose a new framework for
computing a hierarchical decomposition. Our new framework allows us to partition the graph by running
(approximate) maximum flows on contracted subgraphs, each of which is obtained by contracting a subset
of vertices into a single supernode, as opposed to vertex-induced subgraphs as in [61]. We show that for
the contracted subgraphs we encounter in our construction, we are actually able to extract congestion
approximators for them from a given congestion approximator of the entire graph by contracting its
vertices3, thereby avoiding any additional recursive calls. Crucially, the congestion approximators

3
This is a vast simplification of our extraction process. In particular, since we need our congestion approximator to be

a tree in order to run Sherman’s algorithm, we can only do certain “partial” contractions that preserves the tree structure,

which significantly complicates both our algorithm and its analysis. We refer the reader to Section 7 for more detail.
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obtained for the contracted subgraphs have size proportional to the size of the corresponding subgraphs
which prevents any substantial blow up in the total work of our algorithm.

We next highlight some additional ideas needed to make our new construction work. Since we run
maximum flows on contracted subgraphs, the routing we get could use paths in the contracted subgraphs,
which are not necessary valid in the entire graph. Therefore we need a “fixing” step in our routing - namely,
whenever we obtain a routing in a contracted subgraph, we have to then fix it so that it becomes a valid
routing (with low congestion) in the entire graph, while routing the exact same demands4. This fixing
step is possible because our construction guarantees that the edges incident on a contracted supernode
(which we call boundary edges) are always well-linked, in the sense that one could route in the entire graph
a product multicommodity flow between them with low (polylog(n)) congestion. Thus, we can convert
all the flow paths passing through a supernode in a contracted subgraph into flow paths in the entire
graph using the well-linkedness of these edges while blowing up the congestion by at most polylog(n).

As stated thus far, it may seem that too many contracted subgraphs might end up using a same edge
in the entire graph to route and thus overcongesting the edge by too much. We address this issue by
fixing the routing level-by-level in our hierarchical decomposition in a bottom-up manner; at each level,
we only partially fix the routing in a contracted subgraph, in the sense that it becomes valid (i.e. routes
the exact same demand) in the slightly larger contracted subgraph obtained one level above. We aim to
maintain the invariant that in each contracted subgraph, the edges incident on the contracted supernode
(i.e. boundary edges) are never congested by a factor larger than polylog(n). This invariant guarantees
that in the (partial) fixing step, the edges inside the contracted supernodes do not get congested by a
factor larger than polylog(n) either: any routing that utilizes these edges has to go through the boundary
edges in the first place, and the latter are guaranteed to have low congestion.

However, notice that naively performing this (partial) fixing operation level-by-level does not get us
the desired invariant. This is because each time we use well-linkedness of the boundary edges to fix the
routing, we get a multiplicative polylog(n) blowup in congestion, which accumulates across all ⇥(log n)
levels to a very large value. To address this issue, we use a similar trick as in [61] where, when solving
maximum flows in each contracted subgraph, we lower the weights of the boundary edges by a large
enough polylog(n) factor. Therefore, the actual congestion we get on these edges is in fact polylog(n)
times smaller than what we get in our maximum flow routing, canceling out the multiplicative blowup
caused by the fixing step. Moreover, a polylog(n)-congestion approximator for the original contracted
subgraph remains a polylog(n)-congestion approximator for the reweighted contracted subgraph, albeit
with a worse polylog(n) approximation factor. Therefore we can still use Sherman’s algorithm to solve
maximum flows on the reweighted subgraph in polylog(n) depth. Leveraging all these ideas, we get a
parallel algorithm for computing an O(log9 n)-congestion approximator.

2.2 Overview of Our Parallel Flow Decomposition Routine. We now summarize the ideas
behind our parallel flow decomposition routine that addresses our second challenge. Here we are given an
s-t flow represented by a flow network, with each edge carrying some non-negative amount of flow, and
our goal is to decompose the flow into s-t flow paths. We will decompose the flow in an iterative manner
where in each iteration, we shortcut flow paths of length two in the flow network by replacing them with
a single edge having the same flow value. We then repeat until (almost) all remaining edges directly go
from s to t (i.e. all s-t paths have length 1).

In order to achieve small depth, in every iteration, we need to find a large (in capacity) collection of
edge-disjoint length two flow paths so that they can be shortcut in parallel without interfering with each
other. We show that such a collection exists, and moreover, can be found e�ciently by formulating the
problem as b-matching instances. Specifically, for every (directed) edge e = (u, v) that does not directly
connect s and t, we independently and randomly assign e either as an “outgoing” edge to its head vertex
u, or as an “incoming” edge to its tail vertex v. Now taking a local view at any vertex w in the flow

4
In a contracted subgraph, we only ever route demands that are supported entirely on the “uncontracted” vertices. Thus

there is no ambiguity in saying “same demands” in contracted subgraphs vs. in the entire graph.
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network, the task of shortcutting reduces to a b-matching problem in a complete bipartite graph, where
the two sides are vertices corresponding to incoming edges into w and outgoing edges from w, respectively,
with demands equal to their flow values. This way, we never have to worry about an edge being matched
more than once as it gets assigned to exactly one of its two endpoints.

We show that in expectation over the random incoming/outgoing assignments of the edges, the total
weight of the maximum b-matchings across all vertices must be at least a constant fraction of the total
remaining flow that does not directly go from s to t. Moreover, algorithmically, in each b-matching
instance, we can utilize a natural greedy strategy to gather at least a constant fraction of the maximum
matched value, which can further be implemented in parallel across all vertices. This guarantees that
in each iteration, the total `1-norm of the remaining flow shrinks by a constant factor, and thus after
O(log n) iterations we have decomposed a (1� 1/poly(n))-fraction of the total flow into s-t paths, which
su�ces for our purpose since we only want approximate maximum flows. At the end, we output the
entire shortcutting history represented by a DAG data structure from which we can recover our desired
information.

2.3 Algorithms. Lastly, we present all the key algorithms outlines in our overview. Our main
algorithm is a recursive PRAM algorithm for computing a O(log9 n)-congestion approximator in
O(polylog n) depth and Õ(m) total work. We present our algorithms for the case where the ratio between
the largest and smallest capacities in the graph is bounded by poly(n), but by the reduction shown in
Section E, this is without loss of generality.

Algorithm 2.1. congestion-approx(G)
Input: Graph G = (V,E, c) with n = |V |,m = |E|
Output: A O(log9 n)-congestion approximator for G.
Procedure:

1: Gs  ultrasparsifier(G,) with  = 10 log4 n. . Section 5.1.1
2: (C, E) j-tree(Gs) with C the core and E the envelope of the j-tree. . Section 5.1.2
3: // This is the only recursive call to congestion-approx
4: RC  congestion-approx(C).
5: // RC [ E is an O(log13 n)-congestion approximator for G
6: R0  tree-hierarchical-decomp(RC [ E) . Section 5.2
7: // From the call to tree-hierarchical-decomp, R0 is a binary tree with O(log n) depth
8: R improve-CA(G,R0) . Algorithm 2.2
9: return R

Our major technical contributions are in the new framework for computing congestion approximators,
the implementation specifics of which are described in the improve-CA subroutine and the details of which
are discussed in Section 6.

Algorithm 2.2. improve-CA(G,R)
Input: Graph G = (V,E, c) and O(logd n)-congestion approximator R for G, with 9 < d  30.
Output: An O(log9 n)-congestion approximator for G.
Procedure:

1: A1, A2  partition-A(G) . Section 6.1
2: B1, B2  partition-B(G,A1, A2) . Section 6.2
3: // Claim 7.1 guarantees the edges leaving each Zi are O(1/ log9 n)-well-linked
4: Set Z1 = A1 \B1, Z2 = A2 \B1, Z3 = A1 \B2, Z4 = A2 \B2.
5: for all Zi do
6: // Ri has size Õ(|Zi|) by Lemma 7.1
7: Ri  ca-contraction(R,Zi) . Section 7.1
8: // G(Zi) is a contracted subgraph (Definition 4.3), reweighted as in Section 6.3
9: Ti  improve-CA(G(Zi), Ri)

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4005

D
ow

nl
oa

de
d 

07
/1

3/
24

 to
 1

08
.4

.2
35

.8
7 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



10: Set R0 as the tree formed by the Ti, using lines 11 and 12 of Algorithm 6.1.
11: return R0

Theorem 2.1. Given an undirected capacitated graph G = (V,E, c) with n nodes and m edges, Algorithm

2.1 is a polylog n-depth, O(m polylog n) total work PRAM algorithm which outputs a hierarchical

decomposition tree that, with high probability, is a O(log9 n)-congestion approximator for G.

Proof. The depth, work and correctness of all subroutines besides improve-CA follow from the proofs in
their respective sections. Specifically, these sections show that R0 passed to improve-CA is a O(polylog n)-
congestion approximator for G which is a binary tree with depth O(log n), and that R0 can be computed
using O(polylog n) depth and Õ(m) work. Then, the correctness of improve-CA follows from Theorem
6.1, as does the depth and work of all but the ca-contraction calls. To bound the work from contracting
the congestion approximators, by Lemma 6.1 we have that A1, A2, B1, B2 are both partitionings of V ,
and so

S
i Zi = V . Let G(Zi) be as defined in Definition 4.3, and properly modifying the capacities

of some edges as in Section 6.3. As the Zi’s are a partitioning of nodes V (G), each edge in G can be
present in a most two contracted graphs G(Zi). Thus,

P
i |E(G(Zi))| = O(m) as well. Constructing all

contracted graphs G(Zi) can therefore be done in O(m) work (and O(1) depth), and so by Lemma 7.1,
computing the contracted congestion approximators for all G(Zi) takes work Õ(m) and depth O(log n).
The total work and depth of the algorithm then follow from Theorem 6.1.

Proof. (Theorem 1.1) Using the congestion approximator from Theorem 2.1, we can run the parallel
version of Sherman’s algorithm (Theorem 4.1) to get both a (1� ")-approximate maximum s-t flow and
a (1 + ")-approximate minimum s-t cut.

2.4 Organization. We first discuss additional related work in Section 3 and then preliminaries
in Section 4. We give details of our construction of congestion approximators in three subsequent
sections. Firstly, Section 5 presents the construction of low-quality congestion approximators (outlined
in Algorithm 2.1). Secondly, Section 6 presents the boosting step where the quality of the congestion
approximator is improved (outlined in Algorithm 2.2). Finally, Section 7 presents details on how we
extract congestion approximators for contracted subgraphs and utilize them within Sherman’s framework
[66]. We give details of our parallel flow decomposition algorithm in Section 8. We finally discuss
applications of our approximate max-flows result in Section 9.

3 Other Related Work.

In addition to the related work we covered in the introduction, parallel maximum flow has also been
studied for restricted classes of graphs. For example, when the flow network is a DAG with depth r,
[16] gives a PRAM algorithm with near linear work and poly(r, log n) depth. Another problem related to
the parallel maximum flow is parallel global minimum cut. The global minimum cut problem has been
studied by [39, 38, 29]. The current best known algorithm [29] has polylog(n) depth and Õ(m) work.

In the sequential setting, the maximum flow problem on directed graphs has been extensively studied
over the past ⇠70 years. Ford and Fulkerson gave the first maximum flow algorithm using the idea
of augmenting paths [25]. Since then, there has been a long line of work giving increasingly more
computationally e�cient algorithms for this problem; a partial list includes [21, 23, 41, 22, 24, 28, 34,
33, 32, 9, 30, 18, 37, 10, 49, 31, 54, 52, 42, 14]. When supplies and demands are polynomially bounded
integrals, [14] provides the current fastest maximum flow algorithm which achieves a running time of
m1+o(1) by leveraging interior point methods, which are powerful second-order continuous optimization
methods. When considering undirected maximum flow problem, continuous optimization techniques
have also been used to obtain fast (1 � ")-approximate maximum flow algorithms including, e.g.,
[15, 44, 48, 66, 43, 57, 67, 68]. Instead of using IPMs, these algorithms use simpler first-order methods.

In the parallel computation setting, flow problems other than maximum flow/minimum congestion
flow have also been widely studied. As we have discussed in previous sections, the goal of maximum
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flow/minimum congestion flow problem is to minimize the `1 norm of the (rescaled) flow vector while
satisfying the flow conservation constraints. Alternatively, if the objective is to minimize the `1 norm of
the (rescaled) flow vector while satisfying the same constraints, the problem is known as the uncapacitated
minimum cost flow problem. This problem can be seen as a generalization of the shortest path problem.
There is a line of work of parallel undirected uncapacitated minimum cost flow algorithms that are based
on Sherman’s framework [68] as well. In particular, [5, 50, 64] provide e�cient procedures to compute
a polylog(n)-approximate `1-oblivious routing scheme (`1 preconditioner), and thus they are able to
apply Sherman’s framework [68] to compute a (1 � ")-approximate uncapacitated minimum cost flow
for undirected graphs using polylog(n) depth and Õ(m) work. If the goal is to minimize the `2 norm
of the (rescaled) flow vector while satisfying the flow conservation constraints, the problem is known as
the electric flow problem. The e�cient parallel electric flow (`2-flow) algorithm essentially reduces to an
e�cient (approximate) solver for symmetric, diagonally dominant (SDD) linear systems due to [58]. In
particular, [58] provides a parallel algorithm to solve SDD systems with n dimensions and m non-zero
entries in polylog(n) depth and Õ(m) work, and thus the electric flow problem can be solved in the
same complexity. Interestingly, by plugging the parallel SDD system solver into the framework of [54] to
deal with the computation of each Newton step in the IPMs, it implicitly gives a parallel maximum flow
algorithm for directed graphs with Õ(

p
m) depth and Õ(m1.5) work (and with 1/poly(n) additive error).

Finally, we also note that a recent paper by Forster et al. [27] used a relevant technique in [16]
to round fractional flows to integral ones in their distributed maximum flow algorithms. However, we
emphasize that the scheme of [16] is for flow rounding rather than flow decomposition, i.e. rounding
fractional flows to integer flows, as opposed to finding the actual s-t flow paths. The latter is crucial for
our application in cut matching games, as the matching player needs to compute a (fractional) matching
between the sources and sinks from a given s-t flow.

4 Preliminaries.

Graphs. We represent an n-vertex, m-edge undirected, capacitated graph as G = (V,E, c) with V
being the vertices (nodes), E being the edges, and c being the edge capacities (weights). We also use V (G)
and E(G) to denote the vertices and edges of the graph G, respectively. We will interchangeably write
the capacity of an edge e as c(e) or ce. Sometimes the same edge e appears in two di↵erent graphs with
di↵erent capacities, thus we write cH(e) or cHe to denote the weight of e in graph H to avoid ambiguity. In
Section E, we show how to transform a graph with arbitrary capacities into one with polynomial aspect
ratio while only reducing the maximum s-t flow by a (1 � ") factor, for any s, t 2 G and " > 0. Thus,
throughout the paper we assume that graphs have poly(n/") aspect ratio.

We usually need to solve maximum flows by adding a source and a sink, for which we set up the
following notation.

Definition 4.1. (Graphs with Sources and Sinks) Given a graph H with two (not necessarily

disjoint) vertex subsets V1, V2 ✓ V (H), and a parameter cu � 0 for each u 2 V1, and a parameter

du � 0 for each u 2 V2, we write Hst to denote the graph obtained from H by doing the following:

1. Add a vertex s, and connect s to each u 2 V1 with capacity cu;

2. Add a vertex t, and connect t to each u 2 V2 with capacity du.

Congestion Approximators and Sherman’s Algorithm. Given a graph G = (V,E, c) and a
demand vector b, let optG(b) = minf :Bf=b kC�1fk1 be the optimal congestion of any flow routing a
given demand vector b in the graph G, with B being the edge-vertex incidence matrix of G.

We first define congestion approximators. Note that in this paper, we always consider congestion
approximators that are trees, which are readily plugged into Sherman’s algorithm.

Definition 4.2. (Congestion Approximators) Given a graph G = (V,E, c), a tree R = (VR, ER, cR)
with V ✓ VR is an ↵-congestion approximator of G for some ↵ � 1 if for any demand vector b, we have

optR(b
0)  optG(b)  ↵ · optR(b0),
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where b0 is obtained by appending b with zeros on entries VR \ V .

We next state the parallel version of Sherman’s algorithm. While we believe it is known that
Sherman’s algorithm can be implemented with low depth modulo the computation of a good congestion

approximator, we give a discussion of such an implementation in Appendix C for completeness.

Theorem 4.1. (Sherman’s algorithm [66], Parallel Version) There is a PRAM algorithm that,

given a graph G = (V,E, c), an ↵-congestion approximator R = (VR, ER, cR) of G, a source s 2 V and

a sink t 2 V , and an " 2 (0, 1), computes a (1� ")-approximate maximum s-t flow as well as a (1 + ")-
approximate minimum s-t cut in G. The total work of the algorithm is O((|E|+ |ER|)↵2"�3 polylog(n)),
and the depth of the algorithm is O(↵2"�3 polylog(n)).

Contracted Subgraphs. We give the definition of contracted subgraphs below. We useX to denote
the subset of vertices that we contract, and use S = V (G) \X to denote the remaining vertices.

Definition 4.3. (Contracted Subgraphs) Given a graph G = (V,E, c) and a subset of vertices

S ✓ V (G), we denote by G(S) the graph obtained from G by contracting X := V \ S into a single

supernode uX , deleting any resulting self-loops, and keeping all resulting parallel edges.

We now define reweighted contracted subgraphs which will be useful in our new congestion
approximator construction in Section 6.

Definition 4.4. (Reweighted Contracted Subgraphs) Given a graph G = (V,E, c) and a pair

P = (S,!), where S ✓ V (G) is a subset of vertices, and ! : E(S, V (G) \ S) ! (0, 1] is a real-valued

reweighting function, we denote by G(P) the graph obtained from G by doing the following operations:

1. Contract X := V \ S into a single supernode uX , deleting any resulting self-loops, and keeping all

resulting parallel edges;

2. Scale the weight of each (parallel) edge e incident on uX by a factor of !(e).

We call uX the contracted vertex, and refer to other vertices (a.k.a. S) in G(P) as uncontracted vertices.

We refer to the edges in G(P) that are incident on uX the boundary edges.

Subdivision Graphs and Well-Linked Edges. We recall the definition of subdivision graphs
from [61].

Definition 4.5. (Subdivision Graphs) Given a capacitated graph G = (V,E, c), we write G0 =
(V 0, E0, c0) to denote the subdivision graph of G, defined as follows. To obtain G0

, we split each edge

e = (u, v) in G by introducing a new split vertex (or subdivision vertex) xe and two split edges (u, xe)
and (xe, v), both with capacity ce. In words, we have V 0 = V [XE where XE is the set of split vertices

of the edges in E, E0 =
S

e=(u,v)2E {(u, xe), (xe, v)}, and c0(u,xe)
= c0(v,xe)

= ce for every edge e 2 E.

For a subset of edges F ✓ E, we write XF to denote the set of split vertices of edges in E, and cF
(or equivalently, c(F )) to denote the total capacity of edges in F .

Definition 4.6. Given G(P) and another reweighting function !̃ supported on the split edges of the

boundary edges of G(P) in G0(P). Then we define the graph G0(P̃ = (P, !̃)) to be the graph obtained

from G0(P) by reweighting the split edges of the boundary edges by !̃. That is, for an edge e that is a

split edge of a boundary edge, we have cG
0(P̃=(P,!̃))

e = !̃(e) · cG
0(P)

e .

We next recall the notion of well-linked edges as used in [61].

Definition 4.7. (Well-linked Edges) For a capacitated graph G = (V,E, c), a set F ✓ E of edges

of total capacity cF is called �-well-linked for some � 2 (0, 1] if there is a feasible multicommodity flow

in the subdivision graph G0
that sends (�cecf/cF ) units of flow from xe to xf for all pairs e, f 2 F

simultaneously.
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Any subset of well-linked edges are also well-linked.

Proposition 4.1. If set F ✓ E of edges is �-well-linked in G = (V,E, c), then any subset F 0 ✓ F of F
is �-well-linked.

Proof. Given a product demand on F 0, we can first let each edge distribute its demands uniformly to all
edges in F with each edge getting flow proportional to its capacity. This can be done with congestion
1/� since edges in F are �-well-linked. Then for each demand between two vertices s, t in F 0, we can
compose the routings which distributed the flow from s and t to F . The proposition thus follows.

PRAM Primitives. We state a few basic PRAM primitives, whose implementation is discussed in
Appendix A for completeness.

Proposition 4.2. (Prefix Sums [3]) There is a PRAM algorithm that, given a list of values a1, . . . , an,
computes all prefix sums

P
ik ai’s. The algorithm has O(n) total work and O(log n) depth.

Proposition 4.3. (Subtree Sums) There is a PRAM algorithm that, given a tree T = (VT , ET , wT )
where wT : VT ! R is a vertex weight function, a vertex r 2 VT , computes all subtree sums of the

weight function wT with the r being the root of tree. The algorithm has total work O(|Et|) and total depth

O(log |ET |).

5 Recursive Computation of a Low-Quality Congestion Approximator.

In this section, we detail the steps of Algorithm 2.1 up to the call to improve-CA (which is detailed
in Algorithm 2.2 and Section 6). That is, in this section we detail how to recursively compute a ↵0-
congestion approximator forG which is aO(log n) depth binary hierarchical decomposition tree ofG where
↵0 = O(polylog n). Section 6 then details how to improve the quality of the congestion approximator to
O(log9 n).

5.1 Reducing the Size of the Graph.

5.1.1 Constructing an Ultrasparsifier. To reduce the size, our first step is to construct an
ultrasparsifier of the graph. An ultrasparsifier, informally speaking, consists of a spanning tree plus
some additional edges that approximately preserves all graph cuts.

Definition 5.1. (Ultrasparsifier) Given a graph G = (V,E, c) with n nodes and m edges, and any

parameter  � 1, a -ultrasparsifier Gs = (V,Es, cs) is the union of a spanning tree T of G and a

collection of edges E0
such that |E0| = O(m log2 n/). Moreover, with high probability, the capacity of

every cut of G is preserved to within a  factor in Gs.

In Algorithm 2.1, we use  = 10 log4 n to ensure a polylog n reduction in size compared to the original
graph.

Lemma 5.1. There exists a randomized PRAM algorithm that given an undirected, capacitated graph

G = (V,E, c), and any desired quality parameter  � 1, constructs a -ultrasparsifier of G with O(log n)
depth, and O(m) total work.

Proof. The algorithm first computes a maximum spanning tree using the result of [60], which uses O(log n)
depth and O(m) work. Then, scale up the weights on the tree edges by a factor of , and sample each
remaining edge with probability ⇥(log2 n/).

Sampling can easily be done in parallel, and the number of sampled edges in expectation is also
immediately as desired. So, it remains to show that the final constructed graph preserves all cuts to
within a O() factor with high probability.

Let T be the constructed maximum spanning tree of G. Multiplying the weight of each edge of T by
 results in a worst-case cut distortion factor of . So, after scaling, we wish to select additional edges in
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order to approximate cuts (in the graph with newly scaled edges) to within an O(1) factor. [26] shows
that to approximate edges cuts to within a (1 + ") factor, it is su�cient to sample each edge e with
probability at least Cce log

2 n/(⇢e"2), where ⇢e is the edge-connectivity between the endpoints of e, ce is
the capacity of edge e, and C is a suitably large constant. Here, the connectivity of an edge e = (u, v) is
defined as the capacity of the minimum cut separating u from v.

As our algorithm samples o↵-tree edges (that is, edges in G but not T ) at rate ⇥(log2 n/), to
complete our analysis it su�ces to show that the connectivity of any o↵-tree edge e = (u, v) is at least
ce. Since e is o↵-tree, adding it to T creates a cycle. Moreover, T is the maximum weight spanning
tree, so ce  ce0 for all e0 on the cycle created. Any cut separating u from v must also involve some tree
edge e0 from this cycle, so the capacity of any cut (after scaling) is at least ce0. Thus, the connectivity
of e is also at least ce0 � ce.

5.1.2 Constructing a j-tree. After constructing a O(polylog(n))-ultrasparsifier, we now have a graph
Gs which is the union of a spanning tree T and collection of o↵-tree edges E0. We now transform the
ultrasparsifer so that we only need to compute the congestion approximator for a smaller subgraph.
Namely, we convert the ultrasparsifer into a j-tree. A j-tree, introduced in [53], is a graph consisting of a
forest with j trees (called the envelope) connected together by an arbitrary graph (called the core) over
j vertices, one from each tree.

Definition 5.2. (j-tree [53]) A weighted graph G = (V,E, c) is a j-tree if it is a union of a core graph

H which is an arbitrary capacitated graph supported on at most j vertices of G, and a forest on V such

that each connected component in the forest has exactly one vertex in H. We call this forest the envelope

of the j-tree.

Lemma 5.8 of [53] shows how to sequentially convert any ultrasparsifer to an O(j)-tree, where j is
the number of nodes incident on o↵-tree edges in the ultrasparsifer. In this section, we show how to adapt
this sequential process to the PRAM setting.

The algorithm of [53] for converting an ultrasparsifier to a j-tree first recursively removes degree 1
vertices. Let F be the subgraph consisting of these deleted nodes and edges; F is thus a forest, and
all removed edges come from the spanning tree T of the ultrasparsifier. Unfortunately, this process is
inherently sequential, so we instead show that an alternative process, which can easily be parallelized
and identifies this forest of removed nodes.

Lemma 5.2. Let Gs be a O(polylog(n))-ultrasparsifier with spanning tree T and o↵-tree edges E0
.

Suppose T is rooted at an arbitrary node incident on some o↵-tree edge. Then, a node u is removed

by recursive deletion of degree 1 vertices if and only if the subtree of T rooted at u contains no nodes

incident on o↵-tree edges. Moreover, there is a PRAM algorithm with O(log n) depth and O(m) work

which removes all such nodes.

Proof. Let r be the root of T , and let F be the set of nodes removed by recursively deleting degree 1
vertices (so F induces a forest). Define X as the set of nodes incident on some o↵-tree edge. If the subtree
of u contains no nodes in X, then it immediately follows that u (and all of its descendants) must be in
F because they induce a tree.

Now, suppose some node in the subtree of u is incident on an o↵-tree edge. Let p be the parent of u,
let v be a child of u such that the subtree rooted at v also contains a node in X, and let Hu be the graph
formed by removing u from Gs. As r 2 X, both p and v are connected to X in Hu. If p, v are in the
same connected component of Hu, then u is in a cycle, and so it will never be removed by the recursive
deletion procedure.

Otherwise, p, v are connected in Hu to distinct elements of X; p is connected to r and v is connected
to some x 2 X such that x 6= r. As p and v are both neighbors of u, there exists in Gs a r ! x path
P such that u 2 P . Consider the rounds of the recursive deletion procedure, where in each round the
procedure removes all degree 1 vertices currently present in the graph. If before round i, no nodes of P
have been deleted, then after round i, none of P has been removed as well: the interior points have 2
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neighbors in the path, thus having degree at least 2, and the endpoints are never removed as they are
incident on o↵-tree edges. The entire path is trivially present before the procedure begins, and so no
nodes in P are ever removed. Thus, as u 2 P , u 62 F , as desired.

The algorithm to find F is as follows: first, root T at an arbitrary node incident on some o↵-tree
edge. Construct node weights by setting wu = 1 if u is incident on some o↵-tree edge, and wu = 0
otherwise. Then, run the subtree sum algorithm of Theorem A.4, and output all nodes whose subtree
sum is 0. Identifying which nodes are adjacent to o↵-tree edges requires at most O(1) depth and O(m)
work, and the subtree sum algorithm has depth O(log n) and total work O(n), giving the desired runtime
bounds.

Let G0 be the graph after recursively deleting degree 1 vertices, or, equivalently by Lemma 5.2,
removing all nodes whose subtree contains no nodes incident on o↵-tree edges. The next step is to find
paths in G0 involving entirely degree 2 vertices except for the end points u, v which have degree at least
3, and “move” capacity from the lowest weight edge into an edge between the endpoints of the path.
In Lemma 5.8, [53] proves that after reconnecting the vertices removed by recusively deleting degree 1
vertices, this results in (3j � 2)-tree, where j is the number of nodes incident on o↵-tree edges in Gs.

Algorithm 5.1. transform-paths-and-cycles(G0)
Input: Graph G0 with no degree 1 vertices, and j nodes incident on o↵-tree edges.
Output: A O(j)-tree G00.
Procedure:

1: Initialize W  {u | deg(u) = 2}, P = ;, C = ;, and G00 = G0.
2: Construct Gd by removing V \W (i.e. nodes of at least degree 3) from G0.
3: Run connectivity to identify connected components C1, . . . Cq of Gd.
4: for each component Ci do
5: Find U1 ✓ Ci, the set of degree 1 vertices in Ci.
6: if |U1| = 0 then
7: Add Ci to C.
8: else
9: Let U1 = {u1, u2}, and let v1, v2 2 V \W be the additional neighbors in G0 of u1, u2.

10: if v1 = v2 then
11: Add the cycle formed by Ci and v1 to C.
12: else
13: Add the path from v1 ! v2 through Ci to P.

14: for each S 2 P [ C do
15: Find emin, the edge with minimum capacity in S.
16: For all other e 2 S, update capacity w(e) = w(e) + w(emin) in G00.
17: If S 2 P with endpoints (v1, v2) and (v1, v2) 62 E(G00), create edge (v1, v2) with capacity w(emin).
18: Delete emin from G00.

19: return G00.

Theorem 5.1. (Parallel Version of Lemma 5.8 of [53]) Algorithm 5.1 uses O(log n) depth and

Õ(m) total work to construct a O(j)-tree, where j is the number of nodes incident on an o↵-tree edge of

Gs.

Proof. For runtime, in Line 3 we may use the connectivity algorithm shown in [69], which has O(log n)
depth and Õ(m) work. Finding the additional neighbors can be identified in O(1) depth and O(n) work,
along with identifying whether they induce a path or a cycle, and a O(log n) depth algorithm can correctly
update the capacities.

For correctness, all constructed paths have endpoints of degree 3. After removing all nodes of degree
at least 3, the remaining nodes all have degree 2 in G0, as G0 has no degree 1 vertices by Lemma 5.2. So,
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every degree 2 vertex and every edge between degree 2 vertices is in exactly one component, and thus
every edge is in some path or cycle and all paths and cycles are edge disjoint.

The result then follows from the proof Lemma 5.8 in [53].

Once we have a O(j)-tree J , to identify the core on which we wish to construct a congestion
approximator, we first find a spanning tree of J . We then invoke the procedure of Lemma 5.2 with
respect to this spanning tree to remove any nodes not present in the core. Then by Lemma 5.8 in [53],
the constructed j-tree preserves all cut values to within a polylog(n) factor.

Finally, we then recursively run Algorithm 2.1 on the core of the j-tree, and attach the trees in the
envelope (where envelope is defined as in Definition 5.2).

5.2 Hierarchical Decomposition on Trees. After recursing on the core of the j-tree, we have a
congestion approximator R0 for G. However, the depth of R0 may be very large, as there is no bound
on the depth of trees which make up the envelope of the j-tree. Several parts of our algorithm, such as
the procedure to reduce the size of the congestion approximator (Section 7.1), rely on R0 having O(log n)
depth. As such, before running the procedure to improve the quality of the congestion approximation
of R0, we emulate the hierarchical decomposition procedure of [61] on the tree R0. That is, we take
as input the tree R0, and output a hierarchical decomposition tree with depth O(log n) which is an
O(log4 n)5 congestion approximator for R0. Moreover, to bound the work of the contraction of congestion
approximators in Section 7.1, we require the output congestion approximator to be a binary tree.

The goal of this section is to prove the following theorem:

Theorem 5.2. (Hierarchical Decomposition on Trees) Let T be a tree on n nodes. There is a

O(log3 n) depth, Õ(n) work algorithm to compute an O(log4 n)-congestion approximator R for T which is

a hierarchical decomposition with depth O(log n). Moreover, in the same depth and work, we can ensure

that R is a binary tree.

The algorithm makes use of a tree separator node, which is any node q of a tree T such that removing
q results in a forest of components of size at most |T |/2.

Definition 5.3. (Tree Separator Node) A node q in a tree T is called a tree separator node of T if

the forest induced by T \ {q} consists of trees with at most |T |/2 nodes.

Lemma A.2 gives a O(log |T |) depth, O(|T |) work PRAM algorithm to find a tree separator node for any
tree T .

With this definition, we now describe the algorithm for computing a hierarchical decomposition on
trees. Each level in the hierarchical decomposition algorithm of [61] consists of two partitioning steps.
Given a set P of nodes, the first determines an ⌦(1/ log2 n)-well-linked (see Definition 4.7) set of edges
within the graph induced by P and for the second, it su�ces to find an exact min-cut between these
well-linked edges and the edges leaving P (see Lemma 3.9 of [61] for more details)6.

Definition 5.4. (Partition A) Let P be a subset of nodes of a graph G = (V,E, c), and let G0[P ]
be the subdivision graph (see Definition 4.5) of the subgraph of G induced by P . Then, Partition A is

a partitioning of P into clusters P1, . . . , Pw such that the set of inter-cluster edges in G0[P ], namely

{(u, v) | u 2 Pi, v 2 Pj , i 6= j}, is ⌦(1/ log2 n)-well-linked. Moreover, we have |Pi|  (1/2)|V (G)| for all

i.

For the definition of Partition B, we state it in terms of an exact min-cut, which is stronger than what
[61] or Section 6 uses, since when the graph is a tree, we are able to compute exact min-cut e�ciently in
low depth (see Section D for more details).

5
As this loss of O(log

4
n) su�ces for our purposes, we do not attempt to improve it, and instead rely on the analysis of

[61] in a near-black-box fashion.

6
We reuse the names “Partition A” and “Partition B” used in Section 6, to highlight the similar goals of the procedures

partition-A and partition-B, however we are not invoking or directly implementing these procedures.
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Definition 5.5. (Min-Cut Partition B) Let P be a subset of nodes of a graph G = (V,E, c), let BP

be set of edges with one endpoint in P and one endpoint in V \P . Construct a graph H as follows. Start

with G0[P ], and for each edge e in BP , add a node xe to H. Finally, for each e = (u, v) in BP such

that v 2 P , add an edge (xe, v) with capacity c(e)/ log n. Then, with W the set of nodes of H which

corresponds to the set of subdivision nodes of the inter-cluster edges from Partition A, Partition B is a

partitioning (X,P \X) such that (X,P \X) is a min-cut between BP and W in the graph H.

The analysis of [61] and Section 6 shows that to get a polylog(n) depth, Õ(n) work PRAM algorithm to
compute a hierarchical decomposition for a tree, it su�ces to implement Partition A and Partition B in
polylog(k) depth and Õ(k) work on a set of k nodes. We now give a pair of lemmas showing that we can
indeed do this.

Lemma 5.3. (Computing Partition A on Trees) There is a O(log k) depth, Õ(k) work PRAM

algorithm to compute Partition A on a set of k nodes which induce a tree.

Proof. Let T be the tree induced by the vertex set we wish to partition. Then, compute a tree separator
node c of T , and set the partitions to be the connected components of T \ {c} along with {c}. The
depth and work are then O(log k) and Õ(k), using the algorithms for finding a tree separator node and
connected components.

The only edges cut are those incident on the center c. The set of edges incident on the center are
1-well-linked, since they share an endpoint, meeting the requirements for Partition A.

Lemma 5.4. (Computing Partition B on Trees) Given a tree T , there is a O(log2 k) depth, Õ(k)
work PRAM algorithm to compute Partition B on the subgraph of T induced by a set K of k nodes.

Proof. First, note that the subgraph induced by K is a forest, as T is a tree. Then, with P = K, define
BP , W , and H as in Definition 5.5. Note that as the subgraph induced by K in T is a forest, H is also
a forest. Add to H a super-source s connected to each node of BP with capacity 1 and a super-sink t
connect to each node of W with capacity1. Then, the result follows from computing a exact s-t min-cut
on H (using Lemma D.2)7.

These lemmas allow us to compute hierarchical decompositions on trees.

Lemma 5.5. Given a tree T on n nodes, there is an O(log3 n) depth, Õ(n) work PRAM algorithm to

compute an O(log4 n)-congestion approximator R for T which is a hierarchical decomposition with depth

O(log n).

Proof. We follow the algorithm of [61] to construct a congestion approximator for T . As each level of
the constructed congestion approximator in [61] corresponds to a partitioning of the edges, computing
Partition A and B for all sets at a given level can be done in O(log2 n) depth and Õ(n) work. The use
of tree separator nodes leads to a constant factor size reduction from each Partition A step, and so there
are at most O(log n) levels, leading to a O(log3 n) depth, Õ(n) work algorithm. Finally, the analysis of
[61] shows that the constructed hierarchical decomposition is a O(log4 n)-congestion approximator for
the original tree, and that the tree has O(log n) depth.

It thus remains shows how to convert the congestion approximator R into a binary tree; we describe
the procedure in Algorithm 5.2. In Algorithm 5.2, we use the term first non-binary node to refer to
any node u 2 R such that none of the ancestors of u have more than two children, but u has at least
three children. Since R has depth O(log n), a breadth-first traversal can find all first non-binary nodes
in O(log n) depth and O(n) work.

Finally, for any node u of a hierarchical decomposition tree R, we use the notation Ru to refer to the
subtree of R rooted at u, and Pu the set represented by node u.

7
Lemma D.2 is written for a tree with the addition of a source s and sink t, rather than a forest; as such, we first add a

dummy node y that connects to one node of every component of the forest with a capacity 0 edge, which does not change

the min-cut value and allows us to use Lemma D.2.
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Algorithm 5.2. convert-binary(R)
Input: Hierarchical decomposition tree R = (VR, ER, cR) which is a ↵-congestion approximator for some
tree T .
Output: Binary tree R0 which is a ↵-congestion approximator for T .
Procedure:

1: Compute the set B of all first non-binary nodes in R
2: // Ru is the subtree of R rooted at u
3: Let F =

S
u2B Ru \ B be the forest of descendants of all first non-binary nodes

4: Initialize R0  R \ F
5: for each first non-binary node u 2 B do
6: // Pvi is the set represented by vi in R, and q � 3 as u 2 B
7: Let v1, . . . , vq be the children of u such that |Pv1 | � |Pv2 | � . . . |Pvq |
8: Set s such that s is the smallest index such that |Pv1 [ . . . [ Pvs | � |Pu|/4
9: Add to R0 new nodes z1, z2 as children of u with edges of capacity 1. Moreover, in R0, z1

represents Pv1 [ . . . [ Pvs and z2 represents Pvs+1 [ . . . [ Pvq

10: for 1  i  s do
11: Add Rvi to R0 by adding edge (z1, vi) with capacity cR((u, vi))

12: for s+ 1  i  q do
13: Add Rvi to R0 by adding edge (z2, vi) with capacity cR((u, vi))

14: If z1 (or z2) has exactly one child v, remove z1 (or z2) and connect v to u with an edge of capacity
cR((u, v)).

15: If R0 is binary, return R0. Otherwise, return convert-binary(R0).

To prove the correctness of Algorithm 5.2, we first prove the following helper lemma.

Lemma 5.6. Let R0 = convert-binary(R), and consider x a node of R0
. Let y be the parent of x, and

let z be the parent of y. Then, |P 0
x|  (3/4)|P 0

z|, where for any w 2 R0
, P 0

w is the set represented by w in

R0
.

Proof. Every node in R is present in R0, as each call to convert-binary adds nodes but does not remove
any. As such, V (R) ✓ V (R0). We again use the notation Pw to denote the set represented by a node
w in R, and P 0

w = Pw for all w 2 R. Call any node in R0 \ R an intermediary node. First, consider
a node x in R0 whose parent y is not an intermediary node; that is, y 2 R. If x 2 R as well, then by
Lemma 5.3, |Px|  (1/2)|Py|. So, suppose x is an intermediary node, and thus P 0

x is a union of sets
Pw1 , . . . , Pwq , where w1, . . . , wq are the children of y in R. As in Algorithm 5.2, set s to be the smallest
index such that |Pw1 [ . . . [ Pws | � (1/4)|Py|, and let S1 = Pw1 [ . . . [ Pws and S2 = Pws+1 [ . . . [ Pwq .
From the fact that |Pwi |  (1/2)|Py| (which is again from Lemma 5.3) and the setting of s, we have that
(1/4)|Py|  |S1|  (3/4)|Py|. Since S1 [ S2 = Py, the same inequality holds for |S2|. Thus, as either
P 0
x = S1 or P 0

x = S2, we have that |P 0
x|  (3/4)|P 0

y|. Since R0 is a hierarchical decomposition, if z is
the parent of y, P 0

y ✓ P 0
z, and thus all nodes which are the child of a non-intermediary node satisfy the

lemma.
Now, consider a node x 2 R0 whose parent y is an intermediary node. Let z be the parent of y. As R0

is a hierarchical decomposition by construction, there exists a set S0 ✓ V (R) such that P 0
z =

S
w2S0 Pw

and a set S ⇢ S0 such that P 0
y =

S
w2S Pw. If for all w 2 S, |Pw|  (1/2)|P 0

z|, then by the same argument
used in the case where y was non-intermediary, |P 0

x|  |P 0
y|  (3/4)|P 0

z|. Suppose, for contradiction, there
exists a w 2 S such that |Pw| > (1/2)|Pz|. Since Algorithm 5.2 sorts the nodes in Line 7 in decreasing
order of size of the sets they represent, if S contains an element w such that |Pw| > (1/2)|Pz|, w must be
the only element of S. As such, since S = {w}, y is not an intermediary node, which is a contradiction.

Lemma 5.7. Given an ↵-congestion approximator R from Lemma 5.5 for a tree T with n nodes,

Algorithm 5.2 is a O(log2 n) depth, Õ(n) work PRAM algorithm that constructs a binary tree R0
such
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that R0
is a ↵-congestion approximator for T . Moreover, R0

has depth O(log n).

Proof. Let R0 = convert-binary(R) be the output of Algorithm 5.2 on R. Lemma 5.6 immediately
implies that R0 has depth O(log n), and Line 15 guarantees that it is binary, so it remains to show that
R0 is a ↵-congestion approximator for T and that Algorithm 5.2 has O(log2 n) depth and Õ(n) total work.
Note that for any edge (u, v) in R, there is a path from u to v in R0 with the same minimum capacity
as (u, v) in R; namely, all edges on the path from u to v in R0 have capacity either 1 or cR((u, v)). Let
Puv be the path for (u, v) in R0, and let Pxy be the path for some other edge (x, y) 2 E(R) in R0. By the
setting of edge capacities in Algorithm 5.2, all edges along both Puv and Pxy, if there are any, must have
capacity 1. As such, any routing in R0 can be converted to a routing in R with the same congestion,
and vice-versa, so R0 is also a ↵-congestion approximator for T .

Let R0 = R,R1, . . . , RL be the sequence of trees such that for all i < L, convert-binary(Ri) makes
a recursive call convert-binary(Ri+1) in Line 15, and the call convert-binary(RL) returns R0 without
further recursion. Each call to convert-binary only increases the number of nodes and depth of the
tree: no nodes are removed, and each addition of a node zi in Line 9 can only increase the depth. So, it
follows that for any i 2 [L], the depth of Ri is no more than the depth of R0; by Lemma 5.6, we have that
the depth of Ri is then O(log n). Moreover, by construction, each Ri is a hierarchical decomposition of
T , so each level j of Ri represents a partitioning of V (T ). Thus, as there are O(log n) levels, each node
in T can appear in the sets of at most O(log n) nodes of Ri, each at a di↵erent level of Ri. Since there
are n nodes in T , it follows that there are O(n log n) nodes in Ri.

Each call convert-binary(Ri) before the recursive call in Line 15 can be implemented in O(log |Ri|)
depth and Õ(|Ri|) work. Since |Ri| = O(n log n), each call can be implemented in O(log n) depth and
Õ(n) work. To bound the total depth and work, it thus su�ces to bound the total number of recursive
calls to convert-binary made during a call of convert-binary(R). Define B(Ri) to be the lowest depth
(i.e. distance from the root) of any first non-binary node in Ri. In each call convert-binary(Ri), after
the for loop of Line 4, all first non-binary nodes have at most two children, and are thus no longer first
non-binary nodes. In addition, the for loop can only reduce the number of children any node has. As
such, it follows that B(Ri+1) � B(Ri) + 1 for all i < L. Then, as RL has depth O(log n), we must have
B(Ri) = O(log n) for all i, and thus L = O(log n) as well. This results in a complete depth of O(log2 n)
and total work of Õ(n).

The proof of Theorem 5.2 then follows from Lemma 5.5 and Lemma 5.7.

6 New Framework for Congestion Approximator Computation.

The goal of this section and the next (Section 7) is to give a full presentation and analysis of our
Algorithm 2.2, whose goal is to boost the approximation quality of a given congestion approximator.
Specifically, given any congestion approximator of a graph G of arbitrary polylog(n) distortion, we will
compute an O(log9 n)-congestion approximator of G in O(m polylog(n)) work and O(polylog(n)) depth.

Our presentation of Algorithm 2.2 will be given as two parts. First in this section, we show,
assuming being able to solve approximate maximum flows on contracted subgraphs, how we can compute a
congestion approximator of O(log9 n) distortion. Then in the next section (Section 7), we show how we can
directly extract congestion approximators for contracted subgraphs from a given congestion approximator
of the entire graph, allowing us to then run Sherman’s algorithm [66] to compute (1 � ")-approximate
maximum flows on these contracted subgraphs.

We now present in this section a variant of the framework in [61] that allows us to boost

the approximation of a given congestion approximator in a manner that is both work-e�cient and
parallelizable. The key novelty in our new framework is to avoid running (approximate) maximum
flows on subgraphs of G, which are obtained by removing vertices/edges from G. This is because
running maximum flows on such subgraphs requires computing congestion approximators for them using
additional recursions, which would have blown up the depth of our algorithm to at least no(1). Rather, we
run approximate maximum flows on contracted subgraphs of G, that are obtained from G by contracting
subsets of vertices into single nodes. As we will show in Section 7, we can extract congestion approximators
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for contracted subgraphs directly from a given congestion approximator of the entire graph, without having
to recurse on the subgraphs.

Throughout this section, we assume that we have a PRAM algorithm A, whose implementation we
describe in the next section (Section 7), that can compute a (1� ")-approximate maximum flow on any
given contracted subgraph of G with work near-linear in the number of edges of the subgraph and depth
O(polylog(n)). We separate the implementation of A from the presentation of the new framework here
in an e↵ort to make the latter cleaner and more intelligible.

Remark 6.1. Note that the specific implementation of algorithm A will depend on the execution of our

framework in this section, and in particular the execution of our framework and that of A should alternate

with each other. This is because the implementation of A involves extracting congestion approximators

for the contracted subgraphs from the given congestion approximator of the entire graph. However, only

after we have run A on a current cluster S do we know the sub-clusters on which we want to run A
subsequently. The composition of the two algorithms is given in Algorithm 2.2.

We state the performance of our assumed PRAM algorithm A below, and describe how to implement
it in Section 7. Note that in our algorithm, we always set ⇣ to be at least 1/ polylog(n) so A has near-linear
total work and polylog(n) depth.

Proposition 6.1. (Performance of A) Let G0(P = (S,!)) be the subdivison of a contracted subgraph

of G with reweighting function ! such that the range of ! is within [⇣, 1] for some ⇣ 2 (0, 1]. Then given

an arbitrary graph G0
st(P) obtained from G0(P) with maximum s-t flow value F ⇤

, A computes with high

probability

1. A feasible s-t flow of value at least (1� ")F ⇤
in G0

st(P).

2. An s-t cut (T, T̄ ) in G0
st(P) with capacity at most (1 + ")F ⇤

.

A has total work O(|E(G0
st(P))|⇣�2"�3 polylog(n)) and depth O(⇣�2"�3 polylog(n)).

Plan for the Rest of the Section. We will obtain a hierarchical decomposition tree of the graph
that serves as our congestion approximator. In each step of the decomposition, we use the maximum flow
algorithm A to perform two partitioning steps on a current cluster S, and use the resulting partitions to
obtain a two-level decomposition tree. Recursively applying this decomposition step to each sub-cluster
obtained ends up giving us a hierarchical decomposition tree of the graph. As will be guaranteed by our
partitioning steps, in each decomposition step we reduce the size of the cluster by a constant factor. As
a result, we get a tree of O(log n) depth.

At a high level, the goals of the two partitioning steps are similar to those of [61]. Specifically,
the first partitioning step is to find a subset of edges that (i) are well-linked in the sense that we can
route product demands between them with low congestion, and (ii) separate the current cluster S into
sub-clusters whose sizes are a constant factor smaller. The second partitioning step is then to find a
bottleneck cut that separates the inter-cluster edges found in step one and the boundary edges that go
from S to V (G) \ S. The di↵erence between our partitioning steps and those of [61] is that we obtain
these partitions in contracted subgraphs rather than vertex-induced subgraphs, which avoids additional
recursions on these subgraphs when solving maximum flows on them, but on the other hand requires
extra care so as to prevent the edges from getting over-congested, since after all an edge could implicitly
appear in polynomially many contracted subgraphs as one inside the contracted vertices.

In the rest of this section, we will first present the two partitioning steps needed, and then show how
to use them to obtain a hierarchical decomposition tree. In the following, we will interchangeably use the
terms partitioning and clustering, and the terms partitions and clusters. For a given edge subset F , the
partition induced by F is the partition of the vertices correponding to the connected components of the
graph after the removal of F .
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6.1 The First Partitioning Step. Given a contracted subgraph G(P) with at least two uncontracted
vertices, our first step is to partition the vertices V (G(P)) into sets Z1, Z2 such that the edges between
Z1, Z2 are well-linked in G(P), and Z1, Z2 are size balanced. To this end, we first use the parallel
implementation of the cut-matching game in [61] to get a balanced partition with almost all of the
inter-cluster edges well-linked. To simplify our presentation, we say a partition Z1, . . . , Zz of a set Z is
�-balanced for some � 2 (0, 1] if |Zi|  � |Z| for all i.

By plugging A into the cut matching game of [61] (their Lemma 3.1), whose parallel version is
described in Appendix B, we have the following lemma.

Lemma 6.1. There exists a PRAM algorithm partition-A1 that given G(P) for P = (S,!) with

X = V (G) \ S and the range of ! within [⇣, 1], and a set of edges F ✓ E that induces a 3/4-balanced
partition of V (G(P)), with high probability computes a set of new edges Fnew such that Fnew also induces

a 3/4-balanced partition of V (G(P)), and

1. either cG(P)(Fnew)  7
8c

G(P)(F );

2. or Fnew = A [ R with A,R disjoint, such that cG(P)(A)  cG(P)(F ), cG(P)(R)  2
logn · cG(P)(A),

and edges in A are �-well-linked in G(P) for � = ⌦(1/ log2 n).

The algorithm partition-A1 has O(|E(G(P))|⇣�2 polylog(n)) total work and O(⇣�2 polylog(n)) depth.

We also need the following lemma, whose proof is deferred to Section 6.2.

Lemma 6.2. There is a PRAM algorithm partition-A2 that given G(P) for P = (S,!) with X =
V (G) \ S and the range of ! within [⇣, 1], a set of edges F = A [B inducing a 3/4-balanced partition of

V (G(P)) where A,B are disjoint with cG(P)(B)  2cG(P)(A)/ log n,

1. either finds an edge set Fnew with cG(P)(Fnew)  3
4c

G(P)(F ) that induces a 3/4-balanced partition;

2. or finds an edge set C disjoint from A such that Fnew := A [ C induces a 3/4-balanced partition,

and there exists a multicommodity flow in G0(P) with congestion O(log n) from XC to XA such that

(i) each xe 2 XC sends cG(P)
e units of flow, and (ii) each xf 2 XA receives O(log n) · cG(P)

f units of

flow.

The algorithm partition-A2 has O(|E(G(P))|⇣�2 polylog(n)) total work and O(⇣�2 polylog(n)) depth.

We now prove the main lemma about our first partitioning step.

Lemma 6.3. There is a PRAM algorithm partition-A that given G(P) for P = (S,!) with X = V (G)\S
and the range of ! within [⇣, 1], with high probability partitions the uncontracted vertices into Z1, Z2 such

that

1. Z1 [ Z2 = V (G(P)) \ {uX}.

2. |Zi|  7
8 |V (G(P))| for each i = 1, 2.

3. The set of inter-cluster edges F := {(u, v)|u 2 Z1, v 2 Z2} is �-well-linked in G(P) for � =
⌦(1/ log3 n).

The algorithm partition-A has O(|E(G(P))|⇣�2 polylog(n)) total work and O(⇣�2 polylog(n)) depth.

Proof. By composing Lemmas 6.1 and 6.2 the same way as [61] compose their Lemmas 3.1 and 3.2, we
get in desired total work and depth a partition Z 0

1, . . . , Z
0
z of V (G(P )) such that

1. Z 0
1 [ . . . [ Z 0

z = V (G(P)).

2. |Z 0
i|  3

4 |V (G(P))| for each i 2 [z].
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3. The set of inter-cluster edges F 0 =
�
(u, v)|u 2 Z 0

i, v 2 Z 0
j , i 6= j

 
is �0-well-linked in G(P) for

�0 = ⌦(1/ log3 n).

We can then obtain Z1, Z2 by the following process. First, we remove the supernode uX from Z 0
1, . . . , Z

0
z

to obtain a partition Z 00
1 , . . . , Z

00
z of the uncontracted vertices. Now the inter-cluster edges between

Z 00
1 , . . . , Z

00
z are still ⌦(1/ log3 n)-well-linked in G(P) since they are a subset of the inter-cluster edges

between Z 0
1, . . . , Z

0
z. Then to get a bi-partition, we merge the subsets Z 00

1 , . . . , Z
00
z as follows. Let i be the

largest integer s.t. |Z 00
1 [ Z 00

2 [ . . . [ Z 00
i |  7

8 |V (G(P)|. Then we merge the Z 00
1 , . . . Z

00
i into one partition

Z1 and the remaining Z 00
i ’s into another partition Z2 to obtain our bi-partition Z1, Z2. Then because

Z 00
1 , . . . , Z

00
z is a partition of the uncontracted vertices, so is Z1, Z2. Since each Z 00

i has size at most
3
4 |V (G(P))|, by the definition of i, Z1 has size between [ 18 |V (G(P))| , 7

8 |V (G(P))|]. Therefore, Z2 has
size at most 7

8 |V (G(P))| since Z1, Z2 is a partition of the uncontracted vertices in V (G(P)). Finally,

inter-cluster edges (call them F ) from Z1 to Z2 are still ⌦(1/ log3 n)-well-linked in G(P) since they are a
subset of the inter-cluster edges between Z 00

1 , . . . , Z
00
z .

Note that the partitioning into Z1, Z2 can be done in parallel in O(log n) depth by computing a
prefix sum and a binary search. The total work and depth then follows from the performance of the first
partitioning step of [61].

6.2 The Second Partitioning Step. Let B denote the boundary edges in G(P), namely those that
go from the contracted vertex uX to the uncontracted vertices. In other words, B := E(uX , V (G) \X).

Our second step is to find a cut in G(P) separating the boundary edges B from the inter-cluster
edges F that we identified in the first partitioning step. Here, we want the property that there is a
low-congestion routing from the cut edges we find to the boundary edges B, as well as from the cut edges
to the inter-cluster edges F , such that each cut edge sends out flow equal to its capacity. Specifically,
we prove the following lemma. Recall that for a graph H and an edge e 2 H, we write cHe to denote the
capacity of edge e in H.

Lemma 6.4. There is a PRAM algorithm partition-B that given G(P) for P = (S,!) with X = V (G)\S
and the range of ! being within [⇣, 1] with ⇣ 2 (0, 1], two disjoint edge subsets B,F ⇢ E(G(P)), and a

parameter  2 (0, 1], with high probability returns a subset of edges Y (potentially intersecting both B
and F ) in G(P) such that

1. XY separates XB from XF in G0(P), that is, in G0(P) every path between a vertex in XB and a

vertex in XF must contain a vertex in XY . Moreover, in G(P), the total capacity of Y is at most

twice the capacity of B and at most twice the capacity of F .

2. There is a multicommodity flow in G0(P) from XY to XB such that

(a) The congestion on edges incident on uX in G0(P) is O( log n), while the congestion on other

edges in G0(P) is O(log n).

(b) Each xy 2 XY sends cG(P)
y units of flow while each xb 2 XB receives at most O(log n) · cG(P)

b
units of flow.

3. Similarly, there is a multicommodity flow in G0(P) from XY to XF such that

(a) The congestion on edges incident on uX in G0(P) is O( log n), while the congestion on other

edges in G0(P) is O(log n).

(b) Each xy 2 XY sends cG(P)
y units of flow, while each xf 2 XF receives at most O(log n) · cG(P)

f
units of flow.

The algorithm partition-B has O(|E(G(P))|⇣�2 �2 polylog(n)) total work and O(⇣�2 �2 polylog(n))
depth.
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Proof. We will do an iterative refinement process to find the desired set of cut edges Y . Initially, we start
with Y being the smaller (in capacity) of B and F , which has the desired property that XY separates
XB from XF in G0(P). We will maintain this property, while “refine” the set Y . In particular, we will
classify the edges in Y into good edges Ygood and bad edges Ybad, and try to reduce the total capacity of
the bad edges Ybad. Initially, Ygood = ; and Ybad = Y .

In each iteration, we do the following refinement step. Define a reweighting function !̃ on the split
edges (in G0(P)) of the boundary edges of G(P) such that

!̃(f) =

(
 f incident on uX

1 otherwise.

and look at the graph G0(P̃ = (P, !̃)). Let " = log�1 n.
Let T1 := B and T2 := F . For j 2 {1, 2}, we consider the graph G0

sjtj (P̃) where we connect sj to

each xy 2 XYbad with capacity cG(P)
y and connect each xe 2 XTj to tj with capacity cG(P)

e . We run A
(as defined in Proposition 6.1) on G0

sjtj (P̃) to find a (1 � ")-approximate maximum sj-tj flow f 0
j and a

(1 + ")-approximate sj-tj minimum cut with edges Y 0
j .

We say an edge y 2 Ybad has become good, if for both j = 1, 2, the edge (sj , xy) in G0
sjtj (P̃) carries

(in the direction from sj to xy) at least c
G(P)
y /4 units of flow in f 0

j .
We then do a case analysis as follows:

Case 1 If for both j = 1, 2, we have

c
G0

sjtj
(P̃)

(Y 0
j ) �

9

10
cG(P)(Ybad),

then move the edges in Ybad that have become good to Ygood.

Case 2 Else, let j⇤ 2 {1, 2} be such that

c
G0

sj⇤ tj⇤
(P̃)

(Y 0
j⇤) <

9

10
cG(P)(Ybad).

Then let Ybad  Yj⇤ , where Yj⇤ is constructed as follows:

(a) Let Y 00
j⇤ be Y 0

j⇤ with edges incident on uX removed.

(b) Include any edge e 2 E(G(P)) in Yj⇤ if xe is incident on at least one edge in Y 00
j⇤ .

Claim 6.1. In Case 1, the edges y 2 Ybad’s that have become good contribute at least 1/5 of the total

capacity of Ybad.

Proof. For j 2 {1, 2}, consider the flow f 0
j in G0

sjtj (P̃). The flow value is at least 4
5c

G(P)(Ybad) given
the conditions of Case 1 and that f 0

j is a (1 � ")-approximate maximum flow. Therefore at least 3/5

(in capacity) of y 2 Ybad’s (call them Y (j)
good) satisfies that the edge (sj , xy) in G0

sjtj (P̃) carries (in the

direction from sj to xy) at least c
G(P̃)
y /4 units of flow in f 0

j , since otherwise the total flow value would be
✓
3

5
+

2

5
· 1
4

◆
cG(P)(Ybad) <

4

5
cG(P)(Ybad),

a contradiction. The claim then follows by taking the intersection of Y (1)
good and Y (2)

good.

Claim 6.2. In Case 2, we have

cG(P)(Yj⇤)  c
G0

sj⇤ tj⇤
(P̃)

(Y 0
j⇤).

Moreover, XYj⇤[Ygood separates XB from XF .
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Proof. For the capacity condition, notice that we can simply charge the capacity of every edge in e 2 Yj⇤

to the capacity of an edge in Y 00
j⇤ that is incident on xe. Let Y 0

good denote the set of all split edges of
edges in Ygood in G0(P). Define edge set Zj⇤ by including edges e 2 E(G(P)) for which xe is incident
on at least on edge in Y 0

j⇤ . Since Y 0
j⇤ is an sj-tj cut in G0

sjtj (P̃), XZj⇤ separates XYbad from XTj⇤ . Since
XYbad [XYgood separates XB and XF , XZj⇤ [XYgood also separates XB and XF . Now notice that the only
di↵erence between Yj⇤ and Zj⇤ is that the former does not have the edges e for which the only incident
edge of e in Y 0

j⇤ is (uX , xe). However, these edges are only useful for moving between XB through uX ,
and thus does not a↵ect whether or not XB is separated from XF . Hence XYj⇤[Ygood also separates XB

from XF .

Therefore, if we repeat the above refinement process, each time we shrink the capacity of Ybad by a
constant factor. So after O(log n) iterations, we are done finding a desired set of cut edges Y that can
route to both B and F with the desired congestion. Moreover, in each iteration, we can determine in
parallel which edges in Ybad have become good by simply examining our flow solution. The lemma thus
follows.

We now prove Lemma 6.2.

Proof. (Lemma 6.2) The proof is essentially the same as Lemma 3.2 of [61], with their second partitioning
step replaced by ours. Using Lemma 6.4 with  = 1, we can find an edge set C such that XC separates XA

and XB in G0(P) and there exists a desired multicommodity flow routing from XC to XA as guaranteed
by Lemma 6.4. Moreover, the total capacity of C is at most twice of the total capacity of B. Using the
fact that XC separates XA and XB in G0(P), and that A [ B induces a 3/4-balanced partition, due to
Claim 1 in the Proof of Lemma 3.2 in [61], either A [C or B [C induces a 3/4-balanced partition. If it
is A [ C, then we have achieved the second case of the lemma. If it is B [ C, we have achieved the first
case of the lemma.

6.3 Recursive Construction of Congestion Approximators. We now show how to recursively
construct a congestion approximator for G using our two partitioning steps above. Note that imperatively,
we use a lower reweighting factor for the boundary edges in partition-A than in partition-B (log�12 n
vs. log�4 n) to avoid a blowup in the congestion when doing the routing “fixing” phase, which is needed
because we route on contracted subgraphs rather than vertex-induced subgraphs.

Algorithm 6.1. hierarchical-decomp(G(P))
Input: Reweighted contracted subgraph G(P), where P = (S, 1).
Output: A hierarchical tree decomposition tree T of G.
Procedure:

1: if G(P) only has one uncontracted vertex, plus the supernode uX then
2: Return the single uncontracted vertex as our congestion approximator and abort.

3: Run partition-A on G(PA := (S, log�12 n)) to get a partition Z1, Z2 of the uncontracted vertices
V (G(P)) \ {uX}, with F being the inter-cluster edges between Z1, Z2.

4: Run partition-B onG(PB := (S, log�4 n)) with  = log�6 n to obtain a set of cut edges Y separating
boundary edges B from inter-cluster edges F .

5: // Recall that B is the set of edges incident to uX in G(PB).
6: Let L1 denote the vertices in V (G(P)) that cannot reach any edge in B after the removal of Y , and

let L2 denote the other vertices.
7: // L2 are the vertices that can reach B after the removal of Y
8: Let Z := {Z1 := Z1 \ L1,Z2 := Z2 \ L1,Z3 := Z1 \ L2,Z4 := Z2 \ L2} be the partition obtained by

taking the intersection of the partitions returned by partition-A and partition-B.
9: for Zi 2 Z do

10: Recursively run hierarchical-decomp on G(Pi) to get a tree Ti, where Pi = ({Si := Zi}, 1)
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11: Create a new tree node r as the root of our tree, and two other nodes vL1 , vL2 as r’s children
corresponding to vertex subsets vL1 , vL2 respectively. We also create nodes v1, v2, v3, v4 corresponding
to Z1,Z2,Z3,Z4 respectively, and let v1, v2 be the children of L1 and let v3, v4 be the children of L2.

12: For each vi, let vi be the root of the tree Ti that we computed using recursive calls to
hierarchical-decomp. In other words, the children of L1 are the roots of T1 and T2, and the
children of L2 are the roots of T3 and T4.

13: For each tree node corresponding to a subset of vertices S ⇢ V (G), weight the tree edge that connects
this tree node to its parent by the total capacity of the cut (S, V (G) \ S) in G.

14: return The tree rooted at r constructed above.

Similar to [61], our congestion approximator will also be a hierarchical decomposition tree of the
graph. For a tree node corresponding to a subset of vertices S ⇢ V , the tree edge that connects this tree
node to its parent will have capacity equal to the total capacity of edges leaving S in G (i.e. the capacity
of the cut (S, V (G) \ S) in G).

We give the pseudocode of our construction of a congestion approximator of G below. As we
highlighted at the beginning of this section, this algorithm implements our Algorithm 2.2 modulo being
able to solve approximate maximum flows on contracted subgraphs, which we will show how to do in the
next section (Section 7). During the execution of our algorithm, we do not reweight the graph that we
recurse on, but only do reweighting when running the two partitioning steps. We slightly abuse notations
by writing a number � to denote a constant reweighting function that evaluates to � on every boundary
edge. Initially, we call the algorithm on the entire graph with X = ;.

Theorem 6.1. The algorithm hierarchical-decomp(G) has O(m polylog(n)) total work and

O(polylog(n)) depth. Moreover, the output tree T = hierarchical-decomp(G) is an O(log9 n)-
congestion approximator of G with high probability.

Proof. The total work and depth follows easily from the performance of the two partitioning steps above.
We thus focus on proving that the returned tree T is an O(log9 n)-congestion approximator. Specifically,
we show that

1. Any multicommodity flow demands that can be routed in G with congestion 1 can also be routed
on the tree with congestion at most 1.

2. Any multicommodity flow demands that can be routed on the tree with congestion 1 can also be
routed in G with congestion O(log9 n).

Here 1 is clear, since the tree cut induced by each tree edge corresponds to a cut in the original graph
with exactly the same capacity, and thus the set of these tree cuts are a subset of the cuts in the original
graph. We then prove 2. Consider that there is a demand Dst between each vertex pair s, t 2 V (G)
such that these demands Dst’s can be routed simultaneously on the tree with congestion at most 1. We
then describe a routing scheme to show that they can also be simultaneously routed in G with congestion
O(log9 n). Our routing scheme will be invoking an essentially same routing routine in [61], plus an
additional routing fixing phase, which is necessary due to the fact that we work in contracted subgraphs
rather than vertex-induced subgraphs.

To illustrate a routing between s and t of flow value Dst, we let each of s, t send out a message
of size Dst. We will thus use the terms flow and message, as well as message passing and flow routing,
interchangeably. We will move these messages up along the hierarchical decomposition tree by repeatedly
moving the messages from the boundary edges of the current cluster to the boundary edges of the parent
cluster. If at some point, to some edge, we have routed the same amount of flow from s and t, then we
can construct a routing from s to t of this flow amount by reversing the message trail of t; whenever
this happens in our routing process, we discard these paired-up messages and never consider them in
subsequent routing steps. Crucially, we move these messages for di↵erent s, t pairs simultaneously.
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We will specify this message passing process inductively. Note that in each recursive call of the tree
construction, we always do two steps of partitioning and obtain a two-level tree before recursing on the
leaves of the two-level tree corresponding to smaller clusters. Let us call the two levels in each single
recursive call a level block. We will route the messages level block by level block. For each level block
with root being S = V (G) \X, we specify a routing in the graph G0(P = (S, 1)), the subdivision of the
contracted subgraph. When we say we route some flow to an edge in G(P) (the contracted subgraph
without subdivision), we mean we route the flow to the split vertex of that edge. We will maintain the
following invariant:

Invariant: After we are done with the routing for a level block with root being S = V (G)\X,

all messages originating from vertices in S either have been discarded, or reside on the

boundary edges (i.e. the ones that go between S and uX). (?)

We will also do the routing “fixing” inductively. Specifically, in each inductive step, even before we
specify the routing, we first fix the routing for each smaller cluster Zi that we specified in the smaller
contracted subgraph G0(Pi = (Zi, 1)), so that they become routings in the bigger contracted subgraph
G0(P = (S, 1)). Only after the fixing is done for each Zi do we proceed with the routing of the messages
in G0(P).

As a result, our inductive step consists of two phases, namely a fixing phase, and a routing phase,
where the routing phase will be essentially the same as in [61]. We now fully describe our inductive
routing scheme below, as well as analyze the congestion caused. Notice that, throughout the proof, we
always analyze the congestion of edges with respect to their original capacities in G (without considering
the reweighting factors that we use in contracted subgraphs). We will highlight all the congestion we
calculate along the way of presenting our routing scheme. Since we route in subdivision graphs, we will
need to distinguish, for a boundary edge e, the congestion on its split edge incident on uX , and the
congestion on its other split edge incident on S. We will call the former outer congestion, and the latter
inner congestion.

Note that for our goal of proving the obtained tree is a congestion approximator, it su�ces to prove
the existence of such a low-congestion routing. We will then plug in the tree into Sherman’s algorithm
to compute approximate maximum flows.

Base Case. Initially, as the base case of the inductive routing process, for each demand Dst, s and t
will each distribute the total amount of flow Dst uniformly to their outgoing edges - a.k.a. the boundary
edges of these singleton clusters - with each edge getting flow proportional to its capacity. Thus we have
established the invariant (?).

This routing causes congestion at most 2 on the edges of G, since a node cannot send or receive a
total flow amount greater than its weighted degree given that the demands are routable with congestion
1, and an edge is incident on two vertices.

Inductive Step: Fixing Phase. For i = 1, 2, 3, 4, given a routing in G0(Pi), we aim to obtain
another routing in the bigger contracted subgraph G0(P) that route the same demands. Recall that S
denotes the set of nodes in consideration, i.e., S = V \X = Z1 [Z2 [Z3 [Z4. Suppose first we take the
exact same given routing in G0(Pi) and simply expand (namely, undo the contractions of) the vertices
in S \ Zi, obtaining a routing in G0(P). Due to the expanding we have done, we may have created extra
deficits and excesses on the vertices in (S \ Zi)[ {uX}, which we now have to fix. To this end, it su�ces
to give for each demand a routing with the deficits/excesses on (S \Zi)[ {uX} switched. These routings
should be simultaneously achievable with low congestion.

Let ↵i � 0 be the maximum outer congestion on the boundary edges of G(Pi = (Zi, 1)), and let
↵ := max {↵1,↵2,↵3,↵4}. Let �i � 0 be the maximum inner congestion on the boundary edges of
G(Pi = (Zi, 1)), and let � := max {�1, �2, �3, �4}.

Claim 6.3. We can fix the routings in G(Pi)’s so that the become routings in G(P) with the same

demand while causing outer congestion of boundary edges O(↵ log�3 n), inner congestion of boundary

edges O(↵ log n), and congestion on edges inside S O(↵ log8 n).
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Proof. For Z3,Z4, we fix the extra deficits/excesses by a routing from Y \ B to B, followed by a
mixing to uniform (with each edge getting flow proportional to its capacity) over B. The routing causes
outer congestion of boundary edges O(↵ log�9 n), inner congestion of boundary edges O(↵ log�3 n), and
congestion of edges inside S O(↵ log n). The mixing causes congestion O(↵ log�3 n). The last congestion
is because each edge in B receives O(↵ log�3 n) times its capacity units of flow,

For Z1,Z2, we fix the extra deficits/excesses by a routing from Y to F , followed by a mixing to uniform
(with each edge getting flow proportional to its capacity) over F . The routing causes outer congestion of
boundary edges O(↵ log�5 n) , inner congestion of boundary edges O(↵ log n) , and congestion of edges
inside S O(↵ log5 n). The mixing causes congestion on boundary edges O(↵ log�4 n), and congestion on
edges inside S O(↵ log8 n).

Inductive Step: Routing Phase. This phase is essentially the same as in [61], except that we do
the routing in the contracted subgraph G0(P) rather than in the vertex induced subgraph, and therefore
we also have to analyze the congestion on the boundary edges B.

For the routing phase, we divide the messages originating in S that haven’t yet been discarded (thus
still need to be rounted) into following types:

Type 1 The messages corresponding to demands Dst’s for which both s, t lie in L = Z1[Z2 (vertices
not reachable from B after removing Y ).

Type 2 The messages corresponding to demands Dst’s for which one of s, t lies in L and the other
lies outside of L.

Type 3 The messages corresponding to demands Dst’s for which both s, t lie outside L (but at least
one of s, t lies in R = S \ L, as otherwise they are not considered in this level block).

Recall that, by the invariant (?) that we maintain, all three types of messages reside on the boundary
edges of the smaller clusters Zi’s. Note that, by the construction of the Z’s, the boundary edges of
clusters Z1,Z2 are subsets of F [ Y , while the boundary edges of Z3,Z4 are subsets of Y [B. The goal
of our inductive routing step is as follows:

Goal 1 For Type 1 messages, we show that we can simultaneously pair up the messages from s and
the ones from t.

Goal 2 For Type 2 and Type 3 messages, we show how to route them to the boundary edges B of
the bigger cluster S.

Here Goal 1 means that we can discard all Type 1 messages afterwards, since by doing so we have
already found a simultaneous routing of the corresponding demands Dst’s; whereas Goal 2 means that
after our routing, Type 2 and Type 3 messages always reside on the boundary edges of S. These
together imply that we have maintained our invariant (?).

We now describe how we achieve these goals, as well as analyze the congestion caused. Throughout,
let �i � 0 be the maximum ratio of the amount of flow received to the (original) edge capacity over the
boundary edges of Zi, when we finish routing in G(Pi). Then let � = max {�1,�2,�3,�4}.

Inductive Step: Routing Type 1 Messages. By our invariant (?), Type 1 messages reside
on the boundary edges of Z1 [ Z2, which are Y [ F . We first route Type 1 messages that reside on
Y \ F to F . By the guarantee of partition-B, this can be done with outer congestion of boundary
edges O(� log�5 n) , inner congestion of boundary edges O(� log n) , and congestion of edges inside S
O(� log5 n) .

After the routing, all Type 1 messages reside on F , and the flow that each edge in F carries is
at most 2� + O(� log5 n) = O(� log5 n) of its capacity. We then simultaneously mix each of Type 1
messages uniformly over F , in the sense that each edge in F gets an amount proportional to its capacity.
After the mixing, we have successfully paired up all Type 1 messages and thus can discard them all.
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This mixing causes congestion on boundary edges O(� log�4 n) , and congestion on edges inside S
O(� log8 n) . Combined this with the congestion we get in the Y \ F ! F routing, the added outer and
inner congestion of B in G(P) is at most O(� log�4 n) and O(� log n), whereas the added congestion on
edges inside S in G(P) is at most O(� log8 n).

Inductive Step: Routing Type 2, Type 3 Messages. By our invariant (?), both Type 2 and
Type 3 messages reside on the edges in Y [B [ F . We first route the messages that reside on F \ Y to
Y . This routing consists of first mixing the message uniformly on F and then reversing the routing from
Y to a uniform distribution over F , whose existence is guaranteed by partition-B. After the routing,
edges in F \Y carry no flow on them, and each edge in Y carries flow that is at most 2�+1 of its capacity
in G(P).

By a similar analysis as in the routing of Type 1 messages, the routing can be done with outer
congestion of boundary edges O(� log�5 n) , inner congestion of boundary edges O(� log n) , and
congestion of edges inside S O(� log5 n) .

We then route message on Y \ B to B. The routing causes outer congestion of boundary edges
O(� log�9 n), inner congestion of boundary edges O(� log�3 n), and congestion of edges inside S
O(� log n). After the routing, each edge in B carries flow that is at most � + (2� + 1)O(log�3 n) =
(1 +O(1/ log3 n))� of its capacity in G(P).

Total Congestion Analysis. We first obtain an upper bound on �, the total amount of flow carried
by a boundary edge divided by its capacity in G. Initially, we have � = O(1) in our base case. Then in
each inductive step, � grows by 1+O(1/ log3 n), as we have analyzed above when routing Type 2, Type
3 messages, which is the only place where we route flows to B. Since the depth of the tree is O(log n),
we have � = O(1) throughout.

We next obtain an upper bound on ↵, the total outer congestion of any boundary edge, and �,
the total inner congestion of any boundary edge, In the fixing phase, the total outer congestion and
inner congestion added on a boundary edge is O(↵i/ log

3 n) and O(↵ log n) respectively. In the routing
phase, the total outer and inner congestion added on a boundary edge is O(� log�4 n) and O(� log n).
Therefore, by a simple induction and the fact that the tree has O(log n) depth, the total outer and
inner congestion accumulated over descendant routing steps on a boundary edge is bounded by O(1) and
O(log2 n), respectively.

Finally, in the routing phase and the fixing phase, the total congestion added on the edges inside S
is bounded by O(� log8 n) + O(↵ log8 n) = O(log8 n). Since each edge appears O(log n) times as inside
S, the total congestion accumulated is O(log9 n). This finishes the proof of the theorem.

7 Extraction of Congestion Approximators.

We finally describe the implementation details of the approximate maximum flow oracle A in Section 6
whose performance guarantees are summarized in Proposition 6.1. We would like to remind the reader
that this oracle, at its heart, utilizes Sherman’s framework to compute approximate maximum flows which
requires as input polylog n-congestion approximators for the flow instance upon which it is invoked. While
we defer the PRAM implementation details of Sherman’s algorithm to Appendix C, we discuss in this
section, three important routines for constructing congestion approximators required for the contracted
subgraphs generated by our new framework for constructing high-quality congestion approximators.
These are (i) (partially) compressing the global congestion approximator to obtain one for the contracted
subgraphs, (ii) obtaining a near-linear work, low-depth implementation of Sherman’s algorithm when
given as input these (partially) compressed congestion approximators, and (iii) constructing congestion
approximators for contracted subgraphs with an arbitrarily attached super-source and super-sink. We
would crucially like to remind the reader that at all points in our overall approach, we build and maintain
congestion approximators for subdivision graphs and contracted subdivision graphs, as these are precisely
the flow instances upon which the max-flow oracle is invoked.

7.1 Compressing Congestion Approximators. We start by describing the ca-contraction
subroutine of Algorithm 2.2 that given a contracted subgraph and a congestion approximator for a much
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larger graph, compresses it to have size proportional to that of the contracted subgraph. Specifically, we
are given as input a O(polylog n)-congestion approximator R for some larger graph G = (V,E, c) along
with a subset S ⇢ V of k vertices that have the following special property: all edges that leave the set S
are well-linked in G. We prove such a property for the graphs we encounter:

Claim 7.1. In any G(P = (S, 1)) with X = V (G) \ S and S being a cluster corresponding to a leaf of

a level block of the tree constructed by hierarchical-decomp, the boundary edges incident on uX are

⌦(1/ log9 n)-well-linked in G.

Proof. Note that in G(P), these edges are 1-well-linked. We then consider the multicommodity flow
routing between them in G(P). We now fix this routing using our fixing step with performance guaranteed
by Claim 6.3 in a bottom-up manner until we have converted the routing into a valid one in G with the
same demands. Then by Claim 6.3 the total congestion is O(log9 n), implying the claim.

Our goal is to output a O(polylog n)-congestion approximator of size O(k log n) for the contracted
subgraph G(S) where V \ S is compressed into a single node8, and the aforementioned well-linkedness
property will be crucial in achieving it. This compression step is critical in order to achieve near-linear
work; while the original congestion approximator R of G is also a O(polylog n)-congestion approximator
for the contracted graph G(S), its size may be very large relative to that of G(S), and naively using it for
computing approximate max-flows in G(S) would substantially blow up the total work. This subroutine
precisely addresses this issue by reducing the size of the congestion approximator without degrading its
quality substantially.

If we were simply to contract into a single node all the nodes in R which represent only subsets of
V \ S, the resulting graph would not be a tree, and so we would not be able to use it for computing
max-flows with Sherman’s algorithm. As such, we must use an alternative approach to shrink the size
of R that preserves the tree structure. We accomplish this with the following algorithm, which uses all
three properties guaranteed by the transformation in Section 5.2: R is a hierarchical decomposition and
also a binary tree of depth O(log n). As R is a hierarchical decomposition, for all v 2 S, there is a leaf
of R corresponding to the set containing only v. Assign a node weight of 1 to these leaves, and assign a
weight of 0 to all other nodes in R. Then, run the subtree sum algorithm of Theorem A.4 and contract
all subtrees whose subtree sum is 0. As before, for a graph G and set S ✓ V (G), let G(S) be G with
V (G)\S contracted into a single node. We use the fact that R is binary and has O(log n) depth to bound
the size of resulting tree.

Algorithm 7.1. ca-contraction(R,S)
Input: ↵-congestion approximator R (for a graph G = (V,E, c)), which is a hierarchical decomposition
and a binary tree of depth O(log n); a subset S ⇢ V of |S| = k uncontracted vertices.
Output: Tree R0 with O(k log n) nodes that is an (↵ · polylog n)-congestion approximator for G(S).
Procedure:

1: Assign a node weight of 1 to each leaf u of R such that Pu = {v} for some v 2 S, where Pu ✓ V is
the partition of vertices the node u corresponds to in the hierarchical decomposition.

2: Assign a node weight of 0 to all other nodes of R.
3: Compute the subtree sums with respect to these weights using the algorithm of Theorem A.4.
4: From top-down, contract each subtree whose sum is 0 into a single supernode.

It is important to note that this algorithm does not require all leaves of the input R to correspond
to single vertices, as is the case in a standard hierarchical decomposition tree. In Algorithm 2.2, we
contract congestion approximators that themselves have been contracted from a previous tree, and so
not all leaves may correspond to single vertices.

8
with some edges properly reweighted; see Section 6.3. Since this does not a↵ect the algorithm or analysis of this section,

we assume this reweighting has been done prior to the call to ca-contraction.
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Lemma 7.1. The ca-contraction(R,S) subroutine has depth O(log n) and O(|R| log n) total work, and
outputs a tree R0

with O(k log n) nodes.

Proof. By Theorem A.4 and the fact that R has O(log n) depth, the algorithm has O(log n) depth and
O(|R| log n) total work. To bound the size, first note by the fact that R is a hierarchical decomposition,
if u1, . . . , uq are the nodes of R at some level i, the Pu1 , . . . , Puq are a partitioning of V . So, at each
level of R, there can be at most k nodes u such that Pu \ S 6= ;, and so at most k nodes can remain
uncontracted at each level after contraction. Moreover, since R is a binary tree, every uncontracted node
can have at most two supernodes as children, and, by definition, all supernodes are leaves. Since R has
depth O(log n), it thus follows that the size of the resulting tree R0 is O(k log n), as desired.

It thus remains to show that the contracted tree R0 can still be used to route flow with low congestion
in the graph with V \S contracted into a single node. R0 is constructed by contracting some subtrees of R;
call the root of these contracted subtrees (along with any remaining leaves corresponding to single nodes
from V \ S) u⇤

1, . . . , u
⇤
q and let Ti = Pu⇤

i
, ordering arbitrarily. So, T1 [ . . . [ Tq = V \ S. Let Ḡ(S) be the

graph with each Ti contracted to a single node, but these contracted nodes are not further contracted.
Since R0 is constructed by contracting the nodes corresponding to each Ti in R, R0 is a ↵-congestion
approximator for Ḡ(S) (where ↵ is the congestion achieved by R for routing on G). Our goal is thus to
show that R0 can be used as an (↵ · polylog n)-congestion approximator for G(S).

Let x be the contracted node (i.e. the node formed by contracting V \ S in G) in G(S), and suppose
we are given a demand vector b on G(S). Furthermore, for each i 2 [q], let xi be the node in Ḡ(S) formed
by contracting Ti. If we were able to e�ciently split the demand bx into demands for x1, . . . , xq without
inducing much additional congestion, then we would be able to use R0 as a congestion approximator
for G(S). Namely, we first convert the demand on G(S) into the corresponding demand on Ḡ(S), and
then use R0 to route the flow on Ḡ(S) which is also a routing on G(S) (by replacing any xi with x).
So, it remains to show that we may indeed split the demand bx into demands b0x1

, . . . , b0xq
such that

bx =
P

i2[q] b
0
xi

and b0 can be routed on Ḡ(S) with low congestion. This follows from the fact that we

are guaranteed the set of edges leaving S in G are ⌦(1/ log9 n)-well-linked (Claim 7.1), and is formalized
in the following lemma. Importantly, since R0 remains an ↵-congestion approximator for Ḡ(S), for any
Q ✓ S, ca-contraction(R0, Q) is also an ↵-congestion approximator for Ḡ(Q)9. As such, the error does
not accumulate when repeatedly contracting a congestion approximator, as we do in Algorithm 2.2.

Lemma 7.2. Let b be a demand vector on G(S) which can be satisfied with congestion 1. Let Wx =P
(u,x)2E c((u, x)) be the sum of capacities of edges incident on x in G(S), and define Wxi similarly

for each xi in Ḡ(S). Then, with b0 the demand vector on Ḡ(S) such b0u = bu for all u 2 S and

b0xi
= Wxibx/Wx, b0 can be satisfied with congestion O(log9 n).

Proof. Consider some flow f in G(S) which satisfies b with congestion 1. Let S = {(u, x) | u 2 S} be the
set of edges leaving S in G(S), and similarly let Si = {(u, xi) | u 2 S} be the set of edges incident on xi

in Ḡ(S). Note that for each (u, x) 2 S, there exists a corresponding edge (u, xi) (for some xi) in Ḡ(S)
with the same capacity, by the construction of x and x1, . . . , xq. So, we may convert f into a flow on
Ḡ(S); call this f 0. Define the flow vector b⇤ such that b⇤xi

is the net incoming flow to xi induced by f 0,
and b⇤u = bu for all u 2 S. f 0 has congestion 1, by assumption on b, and satisfies the demand vector b⇤,
so it follows that b⇤ can be satisfied in Ḡ(S) with congestion 1 as well. As S is ⌦(1/ log9 n)-well-linked
for each S on which we call ca-contraction in Algorithm 2.2 (as shown in Claim 7.1), each Si is as well
by Proposition 4.1. Thus, by definition of well-linked and the fact that b and b⇤ di↵er only on the xi, it
follows that b0 can be satisfied on Ḡ(S) with congestion O(log9 n).

There is one last point to check: that this splitting procedure can be implemented in O(log n) depth and
O(|R|) work. This is not as simple as it may initially seem: since there could be potentially ⇥(k log n)

9
We slighly abuse notation to refer to Ḡ(Q) as the graph with the same components contracted as in the tree output of

ca-contraction(R0
, Q)
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contracted nodes xi in Ḡ(S), naively summing the weight on all edges could result in ⌦(k2) work.
Fortunately, given access to the contracted graph G(S) (which are computed in Algorithm 2.2), we can
use subtree sums to implement the demand splitting e�ciently. Iterate through these edges, and for each
(u, v) 2 B, where B is the boundary edges of G(S), such that u 2 S and v 2 V \ S, assign a node weight
of c((u, v)) to leaf of R which corresponds to v. Assigning these weights can be implemented in work
O(|B|); this su�ces to prove that Algorithm 2.2 requires only Õ(m) total work and does not a↵ect the
runtime of ca-contraction. Once the node weights have been assigned, compute the subtree sums for
each node in R, which can be done in O(log n) depth and O(|R|) work by Theorem A.4. The sum Wxi

used in Lemma 7.2 is then exactly the subtree sum of the node corresponding to the set Ti, allowing us
to correctly distribute the demands.

7.2 Implementing Sherman’s Algorithm on the Contracted Subgraph. Next, we discuss how
we achieve a linear-work, low-depth implementation of Sherman’s algorithm on the contracted subgraph
G(S), where S ⇢ V is the set of |S| = k uncontracted vertices, with all other vertices V \ S being
contracted into a single super-vertex x. We encourage the reader to familiarize themselves with the
vanilla implementation of Sherman’s algorithm outlined in Appendix C to obtain a better understanding
of the discussion that follows.

Recall from the preceding section, that we are given access to an ↵0-congestion approximator R0

for a slightly larger graph Ḡ(S), where the vertices V \ S have been partitioned and contracted into
multiple super-vertices x1, . . . , xq. In order to use this congestion approximator R0 for our desired
contracted graph G(S), we need to translate demands on vertices in G(S) into demands on vertices
in Ḡ(S). The optimization problem within the AlmostRoute subroutine of [66] therefore becomes a
minimization problem over the new congestion potential

�(f) = lmax(C�1f) + lmax(2↵0R0P (Bf � b)),

where B is the vertex-edge incidence matrix for G(S), and P is a linear operator that projects any
demands b supported over vertices of G(S) to demands b0 supported over vertices of Ḡ(S) as described in
Lemma 7.2. Due to the fact that R0 is a O(k log n) size, O(log n) depth tree, evaluating this potential is
easy; its computation remains unchanged from the vanilla case described in Appendix C. The only major
challenge here is e�ciently computing the derivatives of this new potential, specifically, the derivative of
the second term

�2(f) := lmax(2↵0R0P (Bf � b)).

First, observe that the operation P · B e↵ectively constructs a new vertex-edge incidence matrix10

B0 for Ḡ(S) from the incidence matrix B in the following way: for every edge e = (u1, u2) in G(S) with
only uncompressed vertices u1, u2 2 S as its endpoints, this operation replicates the edge exactly in B0,
i.e. B0

v,e = Bv,e 2 {�1, 1}, for v 2 {u1, u2} and 0 otherwise. However, for any edge e = (u, x) (or (x, u))
with one of its endpoints being the contracted vertex x, this operation splits the edge e into fractional
copies e1 = (u, x1), . . . , eq = (u, xq) with copy ei having fractional value ⇢xi := Wxi/Wx as defined in
Lemma 7.2. i.e. for each i 2 [q], B0

xi,ei = ⇢xi · Bx,e, B0
u,ei = ⇢xi · Bu,e, and 0 otherwise. Note that we

never consider edges going between two partially contracted vertices xi, xj , as they are absent in G(S).
While we do not explicitly compute this new incidence matrix B0 as doing so naively might exceed our
linear (in size of G(S)) work requirement, it will serve as a useful intermediate object for analyzing the
gradients.

Now let I 0 be the set of all cuts considered by our congestion approximator R0, and for any cut
i = (Si, Si) 2 I 0, let yi = 2↵0[R0P (Bf � b)]i be the congestion induced by the residual demands across

10
Note that this new vertex-edge incidence matrix B

0
may not be the same as the actual incidence matrix of Ḡ(S).

However, this is how it e↵ectively appears to Sherman’s algorithm when invoked with R
0
as its input.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4027

D
ow

nl
oa

de
d 

07
/1

3/
24

 to
 1

08
.4

.2
35

.8
7 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



cut i. We have that for any edge e 2 G(S), the partial derivative

@�2(f)

@fe
=
X

i2I0

@�2(f)

@yi
· @yi
@fe

=
X

i2I0

exp(yi)� exp(�yi)
exp(�2(f))

·
2↵0B0

Si,e

c(Si, Si)
,

where c(Si, Si) is the capacity of cut i = (Si, Si) in Ḡ(S) considered in our congestion approximator
R0, and (with some abuse of notation) B0

Si,e
represents the total “fraction” of the edge e crossing the

cut (Si, Si); for edges e = (u1, u2) with only uncompressed vertices as its endpoints, this quantity is
B0

Si,e
=
P

v2Si
B0

v,e =
P

v2Si\S Bv,e, and for edges e = (u, x) (or (x, u)) with one of its endpoints being
the compressed vertex, this quantity is B0

Si,e
=
P

j2[q] B
0
Si,ej

=
P

j2[q]

P
v2Si

B0
v,ej =

P
v2Si\S Bv,e +P

v2Si\S ⇢v ·Bx,e, where the set {ej}j2[q] correspond to the fractional copies of edge e constructed by the
operation P ·B.

In order to e�ciently compute this gradient, we shall again exploit the fact that R0 is represented by
a rooted hierarchical decomposition tree T 0 of size O(k log n) and depth O(log n). To do so, we use the
same node-potential trick as in Appendix C: for any internal node j in T 0 (which in turn corresponds to
a cut (Sj , Sj)), we define the node potential ⇡j as

⇡j :=
X

i2T 0
j,r

exp(yi)� exp(�yi)
exp(�2(f))

· 2↵0

c(Si, Si)
,

where T 0
j,r denotes the path in T 0 from node j to the root r of T 0. Now observe that, following an identical

calculation as in Appendix C, the gradient of �2(f) w.r.t. the flow fe on any edge e = (u1, u2) with only
uncompressed vertices as its end-points remains unchanged from the vanilla case.

@�2(f)

@fe
=

X

i2T 0
u1,u2

exp(yi)� exp(�yi)
exp(�2(f))

·
2↵B0

Si,e

c(Si, Si)
= ⇡u2 � ⇡u1 ,

where T 0
u1,u2

denotes the unique path between u1, u2 in the tree T 0. For any edge e = (u, x) (or (x, u))
with one of its end points being the contracted vertex x that is in turn partitioned into fractional edges
e1 = (u, x1), . . . , eq = (u, xq) in B0, observe that this gradient

@�2(f)

@fe
=
X

j2[q]

X

i2T 0
u,xj

exp(yi)� exp(�yi)
exp(�2(f))

·
2↵B0

Si,ej

c(Si, Si)

=
X

j2[q]

⇢xj (⇡xj � ⇡u) =

0

@
X

j2[q]

⇢xj⇡xj

1

A� ⇡u,

where the final equality follows from the fact that
P

j2[q] ⇢xj = 1. We can easily compute all these node
potentials ⇡v (through a prefix sum over an Eulerian tour of the congestion approximator tree T 0 starting
at its root) and precompute the quantity

P
j2[q] ⇢xj⇡xj in the PRAM model with O(|R0|) = O(k log n)

work and O(log n) depth. Since this is all we need, namely, be able to e�ciently evaluate congestions
and compute gradients over the supplied congestion approximator, we have an e�cient implementation
of Sherman’s algorithm on the contracted subgraph Ḡ(S).

7.3 Computing a Congestion Approximator for G[{s, t}. The final requirement is the following:
in the cut-matching game of Section B, we need to compute (1� 1/ polylog n)-approximate max flow on
G with the addition of a source s and sink t which are arbitrarily connected to G. As such, we must
convert our ↵-congestion approximator R for G into a O(↵ polylog n)-congestion approximator R0 for
G [ {s, t}. In this section, we specify how this is achieved.
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Lemma 7.3. Let R be a ↵-congestion approximator for G which is a hierarchical decomposition, and let

s, t be two additional vertices connected arbitrarily (and with arbitrary capacities) to G. Then, there is a

polylog k depth, Õ(k) work PRAM algorithm which computes a O(↵ polylog n)-congestion approximator

R0
for G [ {s, t}, where k = |R|.

Note that R [ {s, t}, with s,t connected to the leaves of R corresponding to their neighbors, can be
used to route any feasible flow on G [ {s, t} with congestion ↵, since R is an ↵-congestion approximator
for G. However, R [ {s, t} is not a tree, and thus cannot be readily plugged into Sherman’s algorithm
to compute maximum flows in G[ {s, t}. It thus remains to obtain a congestion approximator (that is a
tree) for G[{s, t}, which boils down to computing a hierarchical decomposition (as in [61]) for R[{s, t}.
The algorithm is quite similar to the procedure of Section 5.2, but with a few key modifications to account
for the nodes s and t.

Recall from Section 5.2 that it su�ces to implement the two partitioning steps Partition A and
Partition B; we use the same definitions as in Section 5.2.

Lemma 7.4. Partition A
11

can be implemented in O(log |Q|) depth and Õ(|Q|) work on any subset Q of

nodes of R [ {s, t}.

Proof. We use the following procedure:

1. If s 2 Q, then output the partition ({s}, Q \ {s})

2. If t 2 Q and s 62 Q, then output the partition ({t}, Q \ {t})

3. If s 62 Q and t 62 Q, then Q induces a subtree of R, and we run the procedure of Lemma 5.3

The depth and work are immediate from Lemma 5.3. It remains to show that the edges between the
partition that is output are 1-well-linked. If s 2 Q or t 2 Q, then all the edges between the outputted
partitions are incident on s or t and are thus 1-well-linked. If s 62 Q and t 62 Q, then the edges between
the outputted partitions are 1-well-linked by Lemma 5.3.

For Partition B, we only need to apply it on partitions without s or t, or on partitionings where
all boundary edges are incident on either s or t, by the construction of Partition A. As such, Partition
B reduces to finding the (exact) min-cut on a tree with a source and sink added, exactly as in Section
5.2. So, we may use the algorithm of Appendix D to compute Partition B and the analysis follows from
Lemma 5.4.

The proof of Lemma 7.3 is then essentially identical to the proof of Lemma 5.5.

8 Parallel Flow Decomposition by Shortcutting.

We describe our PRAM flow decomposition subroutine in this section, and we will begin by specifying
the relevant notation. Consider an s-t flow f specified by a weighted, directed graph H = (V,E, f)
containing a source vertex s 2 V , and sink vertex t 2 V , with the flow on any edge given by f : E ! R+.
Note that this flow network H is restricted to only the subset of edges that carry positive flow, and will
be iteratively updated by our algorithm as we make progress towards our flow-decomposition objective.
Moreover, while the initial graph H specifying the flow f does not contain any parallel edges, such
edges will inevitably end up being created in our flow-decomposition process. Therefore in this section,
we will more generally deal with multigraphs, whose edges are assumed to be uniquely indexed. Let
|f | :=

P
(s,v)2E f(s,v) �

P
(v,s)2E f(v,s) be the value of the s-t flow. Lastly, we use S = NH

out(s) to

denote the out-neighbors of s corresponding to the “source-side” vertices, and T = NH
in (t) to denote the

in-neighbors of t corresponding to the “sink-side” vertices.

11
If s 2 Q or t 2 Q, the partitions are not balanced, which does not meet the exact definition of Partition A. However,

there are only be 2 such paritionings, and so this can only increase the depth of the final tree by 2.
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Our goal is to determine how much flow in f is routed between each pair x 2 S, y 2 T . We do
so by computing pairwise demands12 d : S ⇥ T ! R+ such that kdk1 = |f | and d can be routed in H
exactly with f being the edge-capacity constraints, and as in the parallel setting, this objective more
easily admits a small work and low-depth implementation. We will build a DAG data structure that
implicitly encodes the necessary information.

Definition 8.1. (Flow Decomposition DAG) An `-layered directed graph D is a flow decomposition

DAG of an s-t flow f specified by a weighted, directed graph H i↵

1. Each node of D corresponds to a directed edge (not necessarily in H) between two vertices u, v in

V associated with a flow value h(u,v) 2 R+
. We use (u, v, h) to represent this node in D, dropping

the subscript (u, v) in the flow value h(u,v) when it is unambiguous for ease of exposition. Note that

there can be multiple nodes of the form (u, v, h(u,v)) at the same layer of D due to the existence of

parallel (u, v) edges, each with potentially di↵erent flow values h(u,v). We assume that all nodes in

D are uniquely indexed to avoid ambiguity.

2. The nodes (u, v, h) at the lowest layer 1 do not have any predecessors. In particular, each node

(u, v, h) in layer 1 corresponds to a directed edge (u, v) 2 E in H, and has the same flow value

h(u,v) = f(u,v) as in H.

3. Each node (u, v, h) in any other layer l 2 {2, . . . , `} has at most two predecessors in the previous

layer l�1. If (u, v, h) has two predecessors, then they have the form (u,w, g), (w, v, g0) corresponding
to a length-two path between u, v; this means that (u, v, h) is obtained by “merging” (a part of the)

flows (u,w, g) and (w, v, g0). If (u, v, h) has only one predecessor, it must have the form (u, v, g).
This means that (u, v, g) had some residual flow h  g that was not merged with any other node.

4. The nodes at each layer l 2 {1, . . . , `� 1} satisfy flow conservation with the succeeding layer l + 1,
i.e. for each node (u, v, h) at any layer l having successors ⇧(u, v, h) at layer l + 1, we haveP

(x,y,g)2⇧(u,v,h) g(x,y) = h(u,v).

5. The nodes at the top-most layer ` are only of the form (s, t, h), and have total flow value equal to

|f |, i.e. these nodes all correspond to parallel (s, t) edges, which together account for all of the s-t
flow f .

The size of this data-structure is measured in terms of the total number of nodes and edges it
contains, where the edges denote successor-predecessor relationships between nodes across consecutive
layers. If the size and the number of layers of a flow decomposition DAG are both low, we can e�ciently
perform various PRAM computations with low work and depth therein. Of particular importance to
our approximate max-flow algorithm, for a ⌘-size `-layer flow decomposition DAG, we can compute the
second vertex (which is a neighbor of s) and penultimate vertex (which is a neighbor of t) of every flow
path in layer ` simultaneously with O(⌘) work and O(`+ log ⌘) depth using a simple algorithm; we show
this in Lemma 8.2.

We now show that a small-size and low-depth flow decomposition DAG can indeed be found e�ciently
by slightly relaxing property 5 in Definition 8.1; specifically, given a parameter � 2 (0, 1), we have that
the nodes of the form (s, t, ·) (i.e. parallel (s, t) edges) in layer ` together account for a (1� �) fraction of
the s-t flow value |f | (at a small cost to its size and depth). This is su�cient for all our applications, since
we are only concerned with approximate max flows. The precise guarantees are given in the following
main theorem of this section.

12
For the objective of computing pairwise demands, we assume that the source and sink-side vertices are non-overlapping,

i.e. S \ T = ;, since this will always be the case in our application which is the implementation of the cut-matching game.

The parallel flow-decomposition result however, is more generally applicable.
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Theorem 8.1. (Parallel Flow Decomposition) There exists a PRAM algorithm flow-decomp that

given any parameter � 2 (0, 1) and a polynomially bounded s-t flow specified by a weighted, directed

graph H = (V,E, f) with flow value |f |, finds with high probability a flow decomposition DAG D of

` = O(log(n/�)) layers such that at the topmost layer `, the total value of the flow captured by nodes

(s, t, ·) representing (parallel) (s, t) edges is at least (1��)|f |. The algorithm flow-decomp has total work

O(m polylog(n) log(n/�)) and the total depth is O(polylog(n) log(n/�)). The total number of nodes, and

edges representing successor-predecessor relationships between nodes across consecutive layers in D are

both bounded by O(m log(n/�)).

The idea behind our proof of Theorem 8.1 can be illustrated by the following relatively intuitive
process13: repeatedly “shortcut” the flow graph H by replacing a length-two flow path u ! w ! v
with a single edge (u, v) having maximal flow value h(u,v) = min{g(u,w), g(w,v)}, and a residual edge
(x, y) 2 {(u,w), (w, v)} having flow value h(x,y) = |g(u,w) � g(w,v)| i↵ there is any non-zero leftover flow
not accounted for by this shortcut edge (u, v). Consequently in the flow-decomposition DAG, the nodes
(u,w, g(u,w)) and (w, v, g(w,v)) become the predecessors of this “shortcut edge” (u, v, h(u,v)), and the node
(x, y, g(x,y)) becomes the predecessor of the residual edge (x, y, h(x,y)) if there is any leftover flow. In
order to achieve low depth, our objective is to find a collection of length-two flow paths that together
account for a large fraction of the (total `1 norm of the) flow that does not directly go from s to t which
we can then shortcut in parallel. We show that we can find such a collection of flow paths e�ciently with
the following technical lemma.

Lemma 8.1. Let f be an s-t flow of value |f | specified by a weighted, directed multigraph H = (V,E, f)
containing source vertex s 2 V , sink vertex t 2 V with no edges directly connecting s to t and with no

self-loops, and the flow on any edge being given by f : E ! R+
. Then we can find in O(m polylog(n))

work and O(polylog(n)) depth, a collection of “shortcut paths” represented as tuples P :=
n
(e(1)i , e(2)i , hi)

o

where e(1)i 6= e(2)i 2 E, hi 2 R+
, along with a collection of “residual edges” given by R := {(ei, ri)} where

ei 2 E are disjoint, and ri 2 R+
such that

1. (Length-two paths) For each i 2 [|P|], e(1)i , e(2)i form a path of length two.

2. (Flow constraints) For each edge e 2 E, the total flow accounted for by the shortcut paths involving

this edge, which is given by the summation of hi over the tuples in P in which e appears along with

its residual capacity ri if any (if e is present in R), is exactly fe:

X
i2[|P|]:e2

n
e(1)i , e(2)i

o hi +
X

i2[|R|]:e=ei
ri = fe.

3. (Large `1-norm) With probability at least 1/15,
P

i2[|P|] hi � kfk1 /16.

4. (Non-increasing flow-support) |P|+ |R|  |E|.

Proof. (Theorem 8.1) Given a flow f specified by a weighted directed graph H = H1, we begin by creating
the lowest layer 1 of our flow decomposition DAG D from H1 as specified in property 2 of Definition 8.1.
It is easy to see that this can be achieved with O(m) total work and O(1) depth. We also create a set
S, initially empty, to track tuples of the form (s, t, h(s,t)) (i.e. direct (s, t) edges) which correspond to
“fully processed” s-t flow paths. If H1 contains such a direct edge, we delete it from H1 and add the
tuple (s, t, f(s,t)) to S. The subsequent proof (and algorithmic procedure) then follows from a repeated
application of Lemma 8.1; the l > 1-th iteration, given as input an s-t flow specified by a weighted,
directed multigraph Hl�1, we have:

13
This is only an illustration of our idea, see Section 8.1 and the proof of Proposition 8.1 for what we actually do.
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1. Invoke Lemma 8.1 on Hl�1 to find the desired collection of shortcut paths Pl =
n
(e(1)i , e(2)i , hi)

o
,

and residual edges Rl = {(ei, ri)}. Set Sl to be initially empty.

2. Construct a new flow graph Hl, initially empty, as follows: for each tuple (e(1)i , e(2)i , hi) 2 Pl, add a
directed edge (ui, vi) with flow value f(ui,vi) = hi, where ui, vi are the endpoints14 of the length-two

path (e(1)i , e(2)i ). For each residual edge (ei, ri) 2 Rl, add a directed edge ei with flow value ri. Note
that this may lead to the creation of parallel edges. Delete any edge (s, t) in Hl (may be multiple),
as these correspond to “fully processed” flow paths that will be tracked separately in Sl. Also delete
any self-loops (edges with both endpoints being the same vertex) from Hl.

3. Construct layer l of the flow-decomposition DAG D as follows: for each tuple {e(1)i , e(2)i , hi} 2 Pl,
add to the lth layer of D a node (ui, vi, hi), where ui, vi are the endpoints15 of the length-two

path (e(1)i , e(2)i ). We set the predecessors of (ui, vi, hi) to be the nodes (u(1)
i , v(1)i , f

(u(1)
i ,v(1)

i )
) and

(u(2)
i , v(2)i , f

(u(2)
i ,v(2)

i )
) from layer l� 1, where e(j)i = (u(j)

i , v(j)i ) for j 2 {1, 2}. For each residual edge

(ei, ri) 2 Rl, add to the lth layer of D, a node (ui, vi, ri) where ei = (ui, vi). We set the predecessor
of (ui, vi, ri) to be the node (ui, vi, f(ui,vi)) from layer l � 1. For each newly created node of the
form (s, t, h) at layer l, add this node to S. For each node (s, t, hi) 2 Sl�1, add to the lth layer of
D, a new node (s, t, hi), and set its predecessor to be the corresponding (s, t, hi) node from layer
l � 1. Finally, create Sl by adding all newly created (s, t, ·) tuples in S to Sl�1.

Observe that in each iteration, the updated flow specified by the multigraphHl (prior to deleting (s, t)
edges and self-loops if any) can trivially be routed in the preceding graph Hl�1 by simply “undoing” the
shortcutting that produced Hl. Moreover, after accounting for all the (s, t) edges specified by tuples
in Sl, the total flow value leaving s is preserved across all iterations in our procedure. Therefore,
the “routability” property desired of the flow decomposition procedure is trivially satisfied by our
aforementioned process.

We shall now prove the work and depth guarantees of this algorithm, along with the near linear-size
and polylogarithmic depth of the resulting flow-decomposition DAG D. Since in every iteration, the `1-
norm of the flow f reduces by

P
i2P hi, which by property (3) of Lemma 8.1 is at least a constant-fraction

of the `1-norm of the flow f at the start of the iteration with constant probability, we can deduce that

after ` = ⇥(log
nkfk1
�|f | ) = ⇥(log(n/�)) iterations of the above process, with polynomially high probability

(in n, follows by a straightforward Cherno↵ bound), the edges that remain in the flow graph H` (i.e.
that do not directly go from s to t) contribute at most a � fraction of the total (initial) amount of flow
|f | leaving s. Since in all our applications, we are only concerned with finding an approximate max-flow,
we can safely ignore this residual flow for small enough �. The second equality in the above bound
follows by observing that |f | � mine2E we, and kfk1 

P
e2E we  m ·maxe2E we, and the aspect ratio

maxe2E we/mine2E we is assumed to be polynomially bounded.
In each iteration l, our procedure involves obtaining the relevant collection of tuples Pl,Rl given an

input flow multigraph Hl�1, which in turn are used to add a new layer l to the flow-decomposition
DAG D, and to update the flow multigraph Hl�1 ! Hl. The total number of edges |El| in the
updated flow multigraph Hl is at most |Pl| + |Rl| � |Sl \ Sl�1|, which by property (4) of Lemma 8.1
is at most |El�1|, the total number of edges in the flow multigraph Hl�1 from the previous iteration
l � 1. Moreover, the total number of nodes added to layer l in D is at most |Pl| + |Rl| + |Sl�1| =
|Pl| + |Rl| � |Sl \ Sl�1| + |Sl \ Sl�1| + |Sl�1| � |El| + |Sl|. However, by property (4) of Lemma 8.1, we
also have that |Pl| + |Rl|  |El�1|, due to which we have that |Pl| + |Rl| + |Sl�1|  |El�1| + |Sl�1|.
Therefore, we can infer that the quantity |El0 | + |Sl0 | is non-increasing across l0, due to which we can

14
Since we are only guaranteed an approximate max-flow f , it may contain circulations that we may discover in this

process, i.e. the two endpoints ui, vi are identical. In this case, we can simply delete all the self-loops.

15
If ui = vi, then skip this tuple without adding any nodes/edges.
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conclude that |El0 | + |Sl0 |  |E1| + |S1| = |E|. The above bounds, and the fact that the number of
edges |E| in the initial flow graph H provided as input to our algorithm is at most m combined with
the computational guarantees of Lemma 8.1 gives us that any iteration of our algorithm (finding tuples,
updating Hl�1 ! Hl, creating a new layer in D) can be implemented in O(m polylog n) work and
O(polylog n) depth. Moreover, each new layer created in the flow decomposition DAG has at most m
nodes, and at most 2m edges between it and the preceding layer (since every node has at most two

predecessors from the previous layer). Since there are a total of ⇥(log
nkfk1
�|f | ) = O(log(n/�)) iterations of

our algorithm for polynomially bounded flows, we have that the total work and depth of our algorithm is
O(m polylog(n) log(1/�)) and O(polylog(n) log(1/�)), respectively, and the size (number of nodes,edges)
and depth of the flow decomposition DAG D produced is at most O(m log(n/�)), and O(log(n/�)),
respectively as claimed.

8.1 Proof of Lemma 8.1. One can formulate the problem as a (uncapacitated) b-matching problem.
Specifically, we create a b-matching instance Hb from the flow multigraph H = (V,E, f) (with no edge
directly connecting s to t) as follows. For each edge e 2 E, we create a vertex ue with demand fe. Then
for every pair of edges e(1), e(2) that form a length-two path by sharing a vertex v 2 V , we connect their
corresponding vertices ue(1) , ue(2) with an edge of infinite capacity. It su�ces to find a large b-matching
whose size is a constant fraction of kfk1, the total `1-norm of the flow f .

First, we shall prove such a b-matching exists. To this end, let us consider a bipartite b-matching
instance H 0

b, constructed as follows. For each edge e 2 E, we create two vertex copies uein and ueout

both with demand fe. Then for every pair of edges (e(1), e(2)) that form a length-two path by sharing
a vertex v 2 V , we add an edge between u

e(1)in
and u

e(2)out
with infinite capacity. We claim that there is

a b-matching of size at least kfk1 /2, by the following simple construction. For each vertex v 2 V such
that v 6= s and v 6= t, we use a perfect b-matching between the vertices corresponding to the “in” copies
of the incoming edges of v and the vertices corresponding to the “out” copies of the outgoing edges of
v, whose existence is guaranteed by the flow conservation property. Then both vertices corresponding
to every edge e 2 E is fully matched except for the vertices corresponding to the “out” copies of edges
leaving the source s, and the vertices corresponding to the “in” copies of edges entering the sink t. By
a simple charging argument that assigns the b-matching value for every vertex v 2 V to the “in” copies
of the vertices corresponding to the incoming edges into v, we can bound the total demand of these
aforementioned unmatched edges by at most kfk1 /2, which gives us our claim. Now consider for each
edge e 2 E, keeping either uein or ueout uniformly at random and discarding the other vertex, letting
the resulting subsampled graph be Hb. Then in expectation, observe that the maximum b-matching in
the resulting subsampled graph is at least kfk1 /8, since each matched edge is kept with probability 1/4
(i.e. if its two end points, one of which is a vertex corresponding to the “in” copy of an incoming edge,
and the other is a vertex corresponding to the “out” copy of an outgoing edge are both sampled in the
subsampled graph Hb). Therefore, by a standard Markov argument, we have that with probability at
least 1/15, the matching size in the subsampled graph is at least kfk1 /16.

We can in fact algorithmically compute such a matching e�ciently in light of the above construction.
As described above, we can subsample the vertices corresponding to the edge-copies in the graph H 0

b and
find the maximum b-matching in the resulting graph by locally finding, for each vertex v 2 V \ {s, t},
the maximum b matching between the (subsampled) vertices corresponding to “in” copies of incoming
edges into v, and (subsampled) vertices corresponding to “out” copies of outgoing edges from v in H.
This is correct because after we keep either uein or ueout and discard the other for each e in H, the graph
becomes a union of disjoint connected components, where each component consists of the “in” copies of
the incoming edges and the “out” copies of the outgoing edges of a single vertex. It then remains to
show that we can e�ciently find the maximum b-matching locally for every component, along with the
non-increasing flow-support property for which it su�ces to prove the following proposition.

Proposition 8.1. Given two sets of elements A = {a1, . . . , anin} and B = {b1, . . . , bnout}, along with

a positive function f : A [ B ! R+
we can find in O((nin + nout) polylog(nin + nout)) total work and
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O(log(nin + nout)) depth, collections of tuples P := {(xi, yi, hi)} where xi 2 A, yi 2 B, hi 2 R+
, and

R := {(zi, ri)} where zi 2 A [B are disjoint and ri 2 R+
such that

1. (Flow constraints) For each a 2 A (and each b 2 B), we have

X

i2[|P|]:xi=a

hi +
X

i2[|R|]:a=zi

ri = fa, and

X

j2[|P|]:yj=b

hj +
X

j2[|R|]:b=zj

rj = fb.

2. (Non-increasing support) |P|+ |R|  nin + nout

3. (Maximality)
P

i2[|P|] hi = min
�P

a2A fa,
P

b2B fb
 
.

Proof. The proof is standard and it appeared in earlier work like [5], though we describe it explicitly
for completeness. We begin by computing the prefix sum of the values in both A and B; with some
abuse of notation, let Ak =

Pk
i=1 fai and Bk =

Pk
i=1 fbi . By a standard PRAM algorithm ([3]), this

procedure takes O(nin + nout) work and O(max{log nin, log nout}) = O(log(nin + nout)) depth. Next, we
rank (sort) all the values in {Ai}i2[nin] [ {Bj}j2[nout], which takes O((nin + nout) log(nin + nout)) work
and O(log(nin + nout)) depth; let Ck be the k-th ranked value in the resulting sorted prefix sum values,
with ck denoting the element ai or bj depending on whether Ck = Ai or Ck = Bj . If there are ties
(i.e. the total value Ai of the first i elements of A is exactly equal to the total value Bj of the first j
elements of B for some i, j), then set ck = ai, and drop the Ck0 term corresponding to Bj after setting
bj to be the successor of ck, which we define next. For each element ck, find its successor csucc-k to be
the element from the other array corresponding to the smallest prefix sum that is at least as large as Ck,
i.e., if ck = ai for some i (i.e. Ck = Ai), then the successor csucc-k = bj where j = argmin`:B`�Ck=Ai

B`.
If there is no such value (i.e. Ck = Ai > Bnout), then we set the successor csucc-k to be a dummy element
?. The case where ck = bj follows symmetrically. We also let C0 = 0 so that the subsequent process is
well defined. Finally let C be the resulting processed, sorted array, and let ntot be its length (i.e. array
C contains C0, C1, . . . , Cntot�1). This procedure can also be done in O((nin+nout) · log(nin+nout)) work
and O(log(nin+nout)) depth by the standard doubling trick. Now starting with both P,R being initially
empty, do the following: for each ` 2 {1, . . . , ntot� 1} in parallel: if c` = ai, and csucc-` 6=?, then add the
tuple (c`, csucc-`, C` �C`�1) to P; if c` = bj , and csucc-` 6=?, then add the tuple (csucc-`, c`, C` �C`�1) to
P; otherwise, add the tuple (c`, C` � C`�1) to R. This entire process requires just O(nin + nout) work
and O(1) depth. This proves our computational guarantees.

We shall now prove the flow constraint, non-increasing support, and maximality properties outlined
in the proposition statement. To prove the flow constraint property, consider any fixed element bj for
some j. By nature of our algorithm, bj appears in tuples due to one of two reasons: either (a) it was
the successor bj = csucc-k0 for some elements ck0 (the number of such elements is � 0), or (b) when
the element Ck = Bj was processed by itself (exactly once if Bj was not tied with some Ai, in which
case it was combined with its successor csucc-k to form a tuple and added to set P if csucc-k 6=?, and
to set R otherwise. If tied with some Ai, then this does not occur as there is no k : Ck = Bj). In
the former, observe that bj will be the successor of all elements ck0 = ai with value Ck0 = Ai where
Bj�1 < Ck0 = Ai  Bj . If we sum the hk0 values corresponding to all such k0, including the final hk

value (which occurs only if there is a k : Ck = Bj), we get
P

k0:Bj�1<Ck0Bj
hk0 + 1(9 k : Ck = Bj)hk =P

k0:Bj�1<Ck0Bj
(Ck0 � Ck0�1) + 1(9 k : Ck = Bj)(Ck � Ck�1) = Bj � Bj�1 = fbj , where the final

equality follows by telescoping summation. The argument where ck = ai follows symmetrically. The non
increasing support property trivially follows by observing that the total number of tuples added to P,R
together is exactly ntot� 1  nin +nout by definition of C. Lastly, to prove maximality, observe that the
largest term Cntot�1 must be achieved at either Anin or Bnout . Let us assume that it is Bnout , in which
case it must be the case that every Ck term corresponding to some Ai value will have a successor in B,
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in which case the total capacity of Anin =
Pnin

i=1 fai must be accounted for by the tuples in P, since no
ai element will end up in the residual set R. The argument for the other case where the largest term
Cntot�1 is achieved at Anin follows symmetrically.

8.2 Computing Fractional Matching. It remains to show how, for each neighbor u of s, we may
determine how much flow through u is routed through each neighbor of t. This allows us to use the flow
to compute a (fractional) matching between the neighbors of s and the neighbors of t, which we use in
the cut matching game (see Section B). Note also that in our use, the flow f that we want to decompose
never contains any edges connecting s directly to t. The following lemma shows that this can be done
using a flow-decomposition DAG; combined with Theorem 8.1, this lemma shows that this can be done
in logarithmic depth and near-linear work.

Lemma 8.2. Given a graph H, and vertices s, t 2 V (H), let S and T be the set of neighbors of s and t in
H, respectively. Given a flow f without edges connecting s directly to t and a flow-decomposition DAG

D of size ⌘ and depth `, let P be the set of flow paths corresponding to the nodes of the form (s, t, ·) at

the final layer `. There exists a O(`+ log ⌘) depth, O(⌘) work PRAM algorithm which computes rx,y for

each x 2 S and y 2 T such that a total of rx,y units of flow is routed by the flow paths in P whose second

vertex is x and penultimate vertex is y.

Proof. For each node u of the form (s, t, ·) at layer ` of the flow-decomposition DAG D, our goal is to
compute search(u), which is the set {x, y} such that x 2 S is the second node on the path represented by
u and y 2 T is the penultimate node. To aid in presentation, for each DAG node v of the form v = (s, a, ·)
where a 6= t, we define search(v) to be only the second node x 2 S along the path represented by v; we
analogously define search(v) to be only the penultimate node on the path when v = (a, t, ·). Note that
we are only interested in search(v) of nodes u = (v1, v2, ·) of D such that v1 = s or v2 = t.

Starting from each node u of the form (s, t, ·) at level `, in parallel we recursively compute search(u)
as follows:

• If u has exactly one predecessor p, return search(p).

• If u is at level 1 in D, then either u = (s, x, ·) for some x 2 S or u = (y, t, ·) for some y 2 T
(recall that the initial given flow f does not contain edges directly connecting s to t); return x (or
y, respectively).

• Otherwise, u has two predecessors u1 and u2.

– If u = (s, t, ·), then u1 = (s, a, ·) and u2 = (a, t, ·), for some a 2 V (H). Return
{search(u1), search(u2)}.

– Otherwise, u = (v1, v2, ·), where either v1 = s or v2 = t (but not both), and u1 = (v1, a, ·)
and u2 = (a, v2, ·) for some a 2 V (H). If v1 = s, return search(u1), and if v2 = t, return
search(u2).

The correctness follows by induction on the level of u. If u is at level 1, search(u) is trivially correct,
and if u has exactly one predecessor p, then search(u) = search(p), which is correct by induction.
Otherwise, suppose u has two predecessors u1 and u2. If u = (s, t, ·), then by the inductive hypothesis,
search(u1) is the second node on the path represented by u1 and search(u2) is the penultimate node on
the path represented by u2; since the path represented by u is the union of the paths represented by u1

and u2, it then follows that search(u) is also correct. The correctness of search(u) when u = (v1, v2, ·),
with v1 = s or v2 = t, follows similarly.

The depth of the algorithm is bounded by the depth of D, which is `. Similarly, for work, the work
to compute any one search(u) is at most O(`), as D has ` layers. So, the total work is O(⇣`) = O(⌘),
where ⇣ is the number of nodes at level `, and ⇣` = O(⌘) by property 4 of Lemma 8.1. The desired values
rx,y can then be computed by, for each u at level `, adding the flow value of u to rsearch(u) (which is
initially set to 0), which takes O(⌘) work O(log ⌘) depth by parallel summation.
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9 Applications.

In this section, we discuss some notable applications of our parallel approximate max-flow algorithm.
Namely, we show that our aforementioned result implies new or substantially improved parallel algorithms
for (balanced) sparsest cuts, minimum-cost hierarchical clustering [20], fair-cuts [51] and approximate
Gomory-Hu trees. The input instance to all these aforementioned problems are undirected, weighted
graphs G = (V,E, c) with positive edge-weights that are assumed to be polynomially-bounded (or
alternatively, a polynomially bounded ratio of maximum to minimum edge weights).

9.1 Sparsest Cut and Balanced Min-cut. The sparsest cut problem is a classic problem in graph
theory that informally asks to partition a given graph while removing as little edge-mass as possible. More
precisely, given an undirected, weighted graph G = (V,E, c) the objective is to find a cut (X,V \X) of
minimum sparsity, which is formally defined as

�(X) =
c(E(X,V \X))

min {|X| , |V \X|} ,

where c(E(X,V \X)) is the total weight of edges going across the cut (X,V \X). A closely related problem,
the �-balanced minimum cut asks for a cut (X,V \X) such that the smaller side of the partition has at
least �n vertices for a given parameter � > 0, and the total edge weight c(E(X,V \ X)) is minimized
among all such partitions. The �-balanced sparsest cut is similarly defined as a cut whose i). smaller side
has at least �n vertices and ii). sparsity is minimized among all such partitions.

All the aforementioned problems are known to be NP-hard, and the best-known polynomial-time
algorithms achieve O(

p
log n)-approximation [6] to their corresponding objective, albeit at the expense of

a large (sequential) polynomial running time. For the balance constrained variants of these cut problems,
bicriteria approximations that allow multiplicative factors on both the balance parameter as well as the
cut size are also commonly studied. This notion can be formally defined as follows.

Definition 9.1. (Bicriteria approximation for balanced cut problems) Let �0 < �  1
2 be

real numbers, and let (X⇤, V \ X⇤) be an optimal �-balanced min-cut (resp. �-balanced sparsest cut of

G). We say that a cut (X,V \X) is an (↵,�0)-bicriteria approximation of the �-balanced min-cut (resp.

�-balanced sparsest cut) if

1. (X,V \X) is a �0
-balanced cut, and;

2. Approximation guarantees:

(a) For �-balanced sparsest cut, �(X)  ↵ · �(X⇤) .

(b) For �-balanced min-cut, c(E(X,V \X))  ↵ · c(E(X⇤, V \X⇤)) .

While algorithms for sparsest and balanced-min cuts have been developed for the distributed
CONGEST model of computation [47, 11], no parallel PRAM algorithms with nearly-linear work and
polylogarithmic depth are known. We resolve this state-of-the-a↵air by designing the first PRAM

(polylog n, polylog n)-bicriteria approximation for both problems using our parallel approximate max-
flow algorithm. Formally,

Theorem 9.1. There is a randomized PRAM algorithm that given an undirected weighted graph G =
(V,E, c), computes with high probability a cut (X,V \X) that achieves

• An O(log3 n)-approximation for sparsest cut;

• An

⇣
O
�
log3 n

�
, O
⇣

�
log2 n

⌘⌘
-bicriteria approximation for �-balanced sparsest cut;

• An

⇣
O
⇣

log3 n
�

⌘
, O
⇣

�
log2 n

⌘⌘
-bicriteria approximation for �-balanced min-cut.
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This algorithm has O(m · polylog n) work and O(polylog n) depth.

Our algorithm builds upon the cut-matching game framework developed by [45] that e↵ectively
reduces the computation of all of these aforementioned problems to polylogarithmically many single-
commodity max-flow computations (as well as a flow-decomposition of the corresponding max-flow
solutions). As a consequence, this framework provides algorithms for computing polylog n approximations
to all these cut problems with work and depth that matching that of the max-flow (and flow-
decomposition) oracle utilized in their implementations up to a polylog n factor. While the original idea
of [45] required an exact max-flow oracle in its implementation, [55] showed in a fairly straightforward
extension that an approximate max-flow oracle also su�ces to achieve morally the same result.

Our algorithm, formally described in Algorithm 9.1, is a straightforward extension of this afore-
mentioned result of [55] to the PRAM setting. By crucially utilizing our parallel approximate max-flow
result in Theorem 1.1, the parallel flow-decomposition result in Lemma 8.1, and the near-linear work,
logarithmic depth flow-rounding algorithm of [16], this algorithm achieves guarantees formally described
in Lemma 9.1, which in turn imply the guarantees claimed in Theorem 9.1.

Algorithm 9.1. Parallel cut-matching game for sparsest cuts(G,↵,�)
Input: Graph G = (V,E, c) with n = |V |,m = |E|, a sparsity parameter ↵, a balance parameter �.
Output:
Either Cut Case: a cut (X,V \X) such that �(X)  ↵ and �n  |X|  n

2 ;

Or Expander Case: a graph H embeddable in G with congestion at most O(log3 n/↵) such that every
(� log2 n)-balanced cut in H has sparsity at least ⌦(1).
Procedure:

1: for round t = 1, . . . , c1 log
2 n, where c1 is a su�ciently large constant do

2: // The cut player:
3: Sample a random n-dimensional unit vector r orthogonal to 1.
4: if t > 1 then
5: u  Mt�1(Mt(. . . (M1r))), where for any t0 < t, the (n ⇥ n) (sparse) matrix Mt0 is the

probability transition matrix corresponding to perfect matching output by the matching player in
round t0.

6: else
7: u  r
8: Return cut Xt  vertices corresponding to the smallest n/2 entries in u .
9: // Matching player:

10: Fix " = 1/10, and let c2 = c2(") be a su�ciently large constant.
11: for sub-round j = 1, . . . , c2 log n do
12: Maintain Sljt and Srjt : at the beginning, let Sl

1
t = Xt; Sl

j
t = Sljt \V (Mj�1

t ), where V (Mj�1
t ) is

the matching computed in the (j� 1)-th sub-round of the matching player. Update Srjt analogously.
13: // Note that the sizes of Sljt and Srjt always remain equal by construction across all sub-rounds.
14: Connect a source s to Sljt and a sink t to Srjt with edge capacities 1, and scale all other edge

capacities in G by ↵�1.
15: Compute a (1�")-approximate max-flow, and round the flow to be integral using the algorithm

in [16]; also obtain the corresponding approximate min-cut (Cj
t , V \ Cj

t ).
16: // by the dual variables of Sherman’s framework.

17: if c(E(Cj
t , V \ Cj

t )) <
���Sljt

���� �n then

18: Output (Cj
t , V \ Cj

t ) as the desired ↵-sparse cut and terminate the game.
19: else
20: Compute a partial matching M

j
t between the vertex sets Sljt , Sr

j
t given by the flow

decomposition.

21: Let SlJ+1
t = SlJt \ V (MJ

t ), and SrJ+1
t = SrJt \ V (MJ

t ), where J = c2 log n is the final sub-round
of the matching player.
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22: if
��SlJ+1

t

�� =
��SrJ+1

t

�� < �n then

23: Compute an arbitrary matching M
0
t between SlJ+1

t , SrJ+1
t .

24: Return the perfect matching Mt =
⇣S

M
j
t

⌘
[ M

0
t to be the union of the partial matchings

across all sub-rounds of the matching player.

25: If the matching player outputs a cut in any (sub)round, then it is the desired ↵-sparse cut; otherwise,
H =

S�
Mt \M0

t

�
is the graph embeddable in G with low congestion.

Lemma 9.1. (Parallel version of [55] Lemma B.18, cf. [45]) There is a randomized PRAM algo-

rithm that given an undirected, weighted graph G = (V,E, c), a sparsity parameter ↵ > 0, and a balance

parameter � = O( 1
log2 n ), with high probability computes

• either an ↵-sparse cut X such that �n  |X|  n
2 ;

• or a graph H embeddable in G with congestion at most O(log3 /↵) such that every (� log2 n)-balanced
cut in H has sparsity at least ⌦(1).

The algorithm has O(m · polylog n) work and O(polylog n) depth.

Proof. These aforementioned guarantees are achieved by Algorithm 9.1, and its correctness follows
directly from [55] with no change to the proofs. Specifically the correctness for an ↵-approximate
(unconstrained) sparsest cut follows from Lemma B.16 and Corollary B.21, and for an ↵-approximate,
�-balanced sparsest cut follows from Lemma B.18 and Corollary B.22.

We now show that this algorithm admits a O(m · polylog n) work and O(polylog n) depth PRAM

implementation. First, observe that in the tth round of the cut-matching game, the cut player’s strategy
can implemented in O(mt) work and O(t log n) depth as described in Lemma B.1. Now consider the
matching player’s strategy in the tth round of the cut-matching game, which consists of O(log n) sub-
rounds. We claim that each sub-round j of the matching player requires O(m · polylog n) work and
O(polylog n) depth. Observe that maintaining Sl and Sr and scaling edge weights can be done in O(m)
work and O(1) depth. Since we pick " = O(1), the (1 � ") max-flow algorithm runs in O(m · polylog n)
work and O(polylog n) depth as in Corollary 1.1. Rounding the flow to an integral solution can be done
in O(m) work and O(log n) depth by [16]. Finally, since the edge capacities are bounded polynomials,
we can use our parallel flow decomposition algorithm in Lemma 8.1 with � = "

kck1
. By Lemma 8.1, this

takes O(m · polylog n) work and O(polylog n) depth, and it preserves flow decomposition for a (1 � ")
approximate max-flow. Since there are at most O(log n) sub-rounds of the matching player in any (outer)
round of our cut-matching game, the cut-player’s strategy in the tth round can also be implemented in
O(m polylog n) work and O(polylog n) depth. Finally, since the number of rounds t of the cut-matching
game is bounded by O(log2 n), the total work and depth of our algorithm is bounded by O(m polylog n)
and O(polylog n), respectively.

The algorithm and analysis of Lemma 9.1. The algorithm follows from polylogarithmically-
many parallel applications of Lemma 9.1. Concretely, when setting �0 = �/(10c log2 n) (or �0 = 0 for
the sparsest cut), we can guess the value of ↵ as (cmin/n) · 2i for integer i and return the smallest guess
value that returns a sparse cut. Any graph G whose eligible cuts have sparsity less than ↵/ log3 n will
not be embeddable for H, which gives us a cut whose sparsity is at least an O(log3 n) approximation.
Finally, note that by the balance of partition, an ↵-approximation of the �-balanced sparsest is always
an O(↵/�)-approximation for the �-balanced min-cut.

To analyze the e�ciency, under the assumption that the ratio between the maximum and the
minimum capacities is polynomial, the geometrically-increasing guess can be done in parallel with an
O(log n) multiplicative factor of work and O(1) depth overhead. Each call to the algorithm of Lemma
9.1 takes O(m · polylog n) work and O(polylog n) depth, and so the complete algorithm has total work
O(m · polylog n) and depth O(polylog n).
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9.2 Minimum Cost Hierarchical Clustering. Hierarchical clustering is a fundamental data analysis
tool used to organize data into a dendogram. Given data represented as an undirected weighted graph
G = (V,E, c), where the vertices represent datapoints and (positive) edge weights represent similarities
between their corresponding end points, the goal is to build a hierarchy, represented as a rooted tree T ; the
leaves of this tree correspond to individual datapoints (vertices V ), and the internal nodes correspond to
a cluster S ✓ V consisting of their descendent leaves. Intuitively, this tree can be viewed as clustering the
vertices of G at multiple levels of granularity simultaneously, with the clustering becoming increasingly
fine-grained at deeper levels. [20] initiated the study of this problem from an optimization perspective
by proposing the following cost function for similarity-based hierarchical clustering-

costG(T ) =
X

(u,v)2E

cuv · |leaves(Tuv)|,(9.2)

where cuv is the weight (similarity) of the edge (u, v) 2 E and Tuv is the subtree of T rooted at the least
common ancestor of u and v, and |leaves(Tuv)| is the number of descendent leaves in this subtree Tuv.
Intuitively, this objective imposes a large penalty for separating “similar” vertices at higher levels in the
tree, thereby placing “similar” vertices closer together.

This minimization problem was shown to be NP-hard, and moreover, no polynomial time constant
factor approximation factor was shown to be possible for this objective assuming the small-set expansion

hypothesis [12]. Nevertheless, this objective is considered a reasonable one; [20] and a follow-up work by
[17] show that it satisfies several properties desired of a “good” hierarchical clustering. As a consequence,
this objective has been well studied in the literature (cf. [20, 12, 63, 13, 17, 7, 1], and references therein),
where it was shown to have strong algorithmic connections to the sparsest cut-problem. Specifically,
[20, 12, 17] show that recursively partitioning the subgraph induced at each internal node using any
↵-approximate sparsest cut oracle results in a cluster tree that is a O(↵) approximation for Dasgupta’s
objective.

While our results do imply a near-linear work, polylogarithmic depth parallel algorithm for computing
polylog-approximate sparsest cuts, this by itself does not su�ce to give a low-depth, work-e�cient parallel
algorithm for (approximately minimum-cost) hierarchical clustering. The reason is precisely that the
sparsest cut subroutine may produce highly imbalanced partitions, resulting in a cluster tree with super-
logarithmic depth. Due to the dependent nature of the recursively generated subgraphs on which the
sparsest cut oracle is invoked, the resulting clustering algorithm would have not just super-logarithmic
depth, but also super-linear work.

Fortunately, the solution is relatively simple, which is to recursively partition the graph using balanced
min-cuts (with � = ⌦(1)) instead, guaranteeing that the resulting hierarchy would have logarithmic
depth. When utilizing such a balanced min-cut subroutine, [12, 7] show morally the same guarantees
for the resultant hierarchical clustering as the unbalanced case. Specifically, they show that recursively
partitioning the subgraph induced at each internal node using any (↵,�0)-bicriteria approximation oracle
for �-balanced min-cuts (0 < �0  �  1/2) results in a hierarchy that is an O(↵/�0) approximation for
Dasgupta’s cost function.

This result in combination with our parallel O(��1 log3 n,� log�2 n)-bicriteria approximation algo-
rithm for �-balanced min-cuts presented in Theorem 9.1 directly gives us the first PRAM algorithm for
minimum-cost hierarchical clustering. Formally,

Theorem 9.2. There is a randomized PRAM algorithm that given an undirected weighted graph G =
(V,E, c), computes with high probability, a hierarchical clustering tree T that is a O(log5 n)-approximation

for Dasgupta’s objective (Eq (9.2)). This algorithm has O(m · polylog n) work and O(polylog n) depth.

Combined with the simulation result of [40, 35], the above result implies the first fully-scalable MPC

algorithm for this problem; our algorithm computes a O(log5 n)-approximate minimum cost hierarchical
clustering in O(polylog n) rounds, where each machine has local-memory O(n�) for any constant � > 0,
and the total memory is O(m polylog n). Prior to this work, the state-of-the-art MPC algorithm for this
problem required ⌦(n polylog n) local (per-machine) memory [1].
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9.3 Fair Cuts and Approximate Gomory-Hu Trees. In a recent work, [51] introduced the notion
of fair cuts and showed that it is useful in several applications, one of them being the constructing
approximate Gomory-Hu trees. Formally, a fair cut is defined as follows.

Definition 9.2. (Fair Cut [51]) Let G = (V,E, c) be an undirected graph with edge capacities c 2 RE
>0.

For any two vertices s and t, and parameter ↵ � 1, we say that a cut (S, T ) is a ↵-fair (s, t)-cut if there
exists a feasible (s, t)-flow such that f(u, v) � 1

↵ · c(e) for every e 2 E(S, T ).

Note that an ↵-fair (s, t)-cut is also an ↵-approximate (s, t)-min-cut but not vice-versa. We show that
the results presented in our paper also extend to this stronger notion of approximate min-cuts, improving
upon the algorithmic result of [51]. In particular, [51] give a PRAM algorithm for computing a (1 + ")-
fair cut with no(1)/poly(") depth and m1+o(1)/poly(") work. Importantly, the computational bottleneck
in their approach is the construction and resultant quality of a congestion approximator for the input
graph, in the sense that their algorithm has depth and work poly(↵, "�1, log n), and m poly(↵, "�1, log n),
respectively, plus the depth and work required to construct such an ↵-congestion approximator. The same
bottleneck persists in the application of their fair cut idea for computing isolating cuts and approximate
Gomory-Hu trees. In their work, [51] utilize a boundary-linked expander decomposition of [11, 36] as
their congestion approximator, which requires no(1) depth and m1+o(1) work to construct, producing a
no(1)-congestion approximator which gives them their PRAM result16. Our new polylogarithmic depth,
near-linear work construction of congestion approximators from Theorem 2.1 when used as a blackbox in
the algorithm of [51] immediately imply the following improvements.

Theorem 9.3. There is a randomized PRAM algorithm that given as input an undirected, weighted graph

G = (V,E, c), vertices s, t 2 V , and desired precision " > 0, with high probability, computes a (1+ ")-fair
(s, t)-cut in O(m poly("�1, log n)) work and O(poly("�1, log n)) depth.

Theorem 9.4. There is a randomized PRAM algorithm that given as input an undirected, weighted graph

G = (V,E, c), and desired precision " > 0, computes with high probability a (1+ ")-approximate Gomory-

Hu tree in O(m poly("�1, log n)) work and O(poly("�1, log n)) depth.
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[36] Gramoz Goranci, Harald Räcke, Thatchaphol Saranurak, and Zihan Tan. The expander hierarchy and its
applications to dynamic graph algorithms. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 2212–2228. SIAM, 2021.

[37] Dorit S Hochbaum. The pseudoflow algorithm: A new algorithm for the maximum-flow problem. Operations
research, 56(4):992–1009, 2008.

[38] David R Karger. Minimum cuts in near-linear time. Journal of the ACM (JACM), 47(1):46–76, 2000.
[39] David R Karger and Cli↵ord Stein. A new approach to the minimum cut problem. Journal of the ACM

(JACM), 43(4):601–640, 1996.
[40] Howard J. Karlo↵, Siddharth Suri, and Sergei Vassilvitskii. A model of computation for mapreduce. In Moses

Charikar, editor, Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 938–948. SIAM, 2010.

[41] Alexander V Karzanov. On finding maximum flows in networks with special structure and some applications.
Matematicheskie Voprosy Upravleniya Proizvodstvom, 5:81–94, 1973.

[42] Tarun Kathuria, Yang P. Liu, and Aaron Sidford. Unit capacity maxflow in almost O(m4/3) time. In 2020
IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pages 119–130, 2020.

[43] Jonathan A Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. An almost-linear-time algorithm
for approximate max flow in undirected graphs, and its multicommodity generalizations. In Proceedings of
the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, pages 217–226. SIAM, 2014.

[44] Jonathan A Kelner, Gary L Miller, and Richard Peng. Faster approximate multicommodity flow using
quadratically coupled flows. In Proceedings of the forty-fourth annual ACM symposium on Theory of
computing, pages 1–18, 2012.

[45] Rohit Khandekar, Satish Rao, and Umesh V. Vazirani. Graph partitioning using single commodity flows.
In Jon M. Kleinberg, editor, Proceedings of the 38th Annual ACM Symposium on Theory of Computing,
Seattle, WA, USA, May 21-23, 2006, pages 385–390. ACM, 2006.

[46] Ioannis Koutis, Gary L. Miller, and Richard Peng. Approaching optimality for solving SDD linear systems.
SIAM J. Comput., 43(1):337–354, 2014.

[47] Fabian Kuhn and Anisur Rahaman Molla. Distributed sparse cut approximation. In Emmanuelle
Anceaume, Christian Cachin, and Maria Gradinariu Potop-Butucaru, editors, 19th International Conference
on Principles of Distributed Systems, OPODIS 2015, December 14-17, 2015, Rennes, France, volume 46 of
LIPIcs, pages 10:1–10:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015.

[48] Yin Tat Lee, Satish Rao, and Nikhil Srivastava. A new approach to computing maximum flows using
electrical flows. In Proceedings of the forty-fifth annual ACM symposium on Theory of computing, pages
755–764, 2013.

[49] Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving linear programs in
o (vrank) iterations and faster algorithms for maximum flow. In 2014 IEEE 55th Annual Symposium on
Foundations of Computer Science, pages 424–433. IEEE, 2014.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4042

D
ow

nl
oa

de
d 

07
/1

3/
24

 to
 1

08
.4

.2
35

.8
7 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



[50] Jason Li. Faster parallel algorithm for approximate shortest path. In Proceedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing, pages 308–321, 2020.

[51] Jason Li, Danupon Nanongkai, Debmalya Panigrahi, and Thatchaphol Saranurak. Near-linear time
approximations for cut problems via fair cuts. In Nikhil Bansal and Viswanath Nagarajan, editors,
Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy,
January 22-25, 2023, pages 240–275. SIAM, 2023.

[52] Yang P Liu and Aaron Sidford. Faster energy maximization for faster maximum flow. In Proceedings of the
52nd Annual ACM SIGACT Symposium on Theory of Computing, pages 803–814, 2020.

[53] Aleksander Madry. Fast approximation algorithms for cut-based problems in undirected graphs. In
Proceedings of the 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, page 245–254.
IEEE Computer Society, 2010.

[54] Aleksander Madry. Computing maximum flow with augmenting electrical flows. In 2016 IEEE 57th Annual
Symposium on Foundations of Computer Science (FOCS), pages 593–602. IEEE, 2016.

[55] Danupon Nanongkai and Thatchaphol Saranurak. Dynamic spanning forest with worst-case update time:
adaptive, las vegas, and O(n1/2�")-time. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors,
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal,
QC, Canada, June 19-23, 2017, pages 1122–1129. ACM, 2017.

[56] James B. Orlin and Xiao-Yue Gong. A fast maximum flow algorithm. Networks, 77(2):287–321, 2021.
[57] Richard Peng. Approximate undirected maximum flows in O(mpolylog(n)) time. In Robert Krauthgamer,

editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2016, Arlington, VA, USA, January 10-12, 2016, pages 1862–1867. SIAM, 2016.

[58] Richard Peng and Daniel A Spielman. An e�cient parallel solver for sdd linear systems. In Proceedings of
the forty-sixth annual ACM symposium on Theory of computing, pages 333–342, 2014.

[59] Yossi Peretz and Yigal Fischler. A fast parallel max-flow algorithm. Journal of Parallel and Distributed
Computing, 169:226–241, 2022.

[60] Seth Pettie and Vijaya Ramachandran. A randomized time-work optimal parallel algorithm for finding a
minimum spanning forest. SIAM Journal on Computing, 31(6):1879–1895, 2002.
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A PRAM Primitives.

A.1 Eulerian Tours and Subtree Sum. Consider a tree T , and for each undirected edge (u, v)
create two anti-parallel arcs (u, v) and (v, u); call this new graph T 0. Then, T 0 admits an Eulerian tour,
which can also be viewed as DFS traversal of T . This Eulerian tour can be used to compute a number of
properties of T e�ciently in parallel, and in this section we describe several of use to us. Most of these
results are folklore and can be found in several textbooks on parallel algorithms, such as [3].

Theorem A.1. (Eulerian Tour [3]) There is a O(1) depth, O(n) total work PRAM algorithm which

outputs an ordered list of nodes corresponding to an Eulerian tour of a tree T with n nodes starting at a

root r.

Eulerian tours are usually computed via a linked list representation, where each directed arc points to the
next element in the tour. This can also be converted to a random access ordered array, which is useful
in several results below.

It is also known that one can compute all prefix sums of an array in O(log n) depth.

Theorem A.2. (Prefix Sums [3]) Given a list of values a1, . . . , an, there is an O(log n) depth, O(n)
work PRAM algorithm which outputs a new list b1, . . . , bn such that bk =

P
ik ai

Using prefix sums and Eulerian tours, we can compute several useful properties of nodes in a tree.

Theorem A.3. ([3]) Let T be a tree rooted at r. Then, there is a PRAM algorithm which in O(log n)
depth and O(n) total work computes

1. The first and last time each node is visited by an Eulerian tour starting at r

2. The parent of each node

3. The depth of each node

whenever there are at least ⌦(n) processors.

Proof. Note that the length of the Eulerian tour array is always O(n), as each original edge is traversed
exactly twice and all trees over n nodes have n� 1 edges. To find the first time each node is visited by a
tour starting at r, assign one processor to each pair of consecutive elements in the list. Let u, v be these
elements, appearing at indices i � 1, i. The processor assigned to the pair then sets b[(u, v)] = i, where
b is a new lookup table for the ordering of edges. To determine the first time a node u is visited by the
tour, it su�ces to compute minv b[(v, u)], and similarly the last time can be determined by maxv b[(u, v)].
These minimums and maximums can then be computed in depth O(log n) [3]. The parent of any node
first visited at position i in the list is the i� 1 element in the Eulerian tour list.

For the depth each node, we say (u, v) is a “forward” arc if u is the parent of v, and a “reverse” edge
if v is the parent of u. In the ordered list of arcs traversed by the Eulerian tour, assign each forward arc
a value of +1 and each reverse arc a value of �1. Then, run prefix sum. Any cycle in the tour must have
zero sum, since it must use both copies of each undirected edge it visits, and so the prefix sum whenever
the tour vists v is the depth of v. Using the previously computed first time each node is visited, we may
in parallel output the depth of every node.

One of the most useful results of this this section is that we can compute sumtree sums.

Theorem A.4. (Subtree Sum) Let T be a tree where each node v is associated with a weight wv. Then,

there is a PRAM algorithm with O(log n) depth and O(n) total work that computes, for every node u, the
sum of the wv in the subtree rooted at u.
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Proof. As in the proof of Theorem A.3, classify each arc in the Eulerian tour of T as either forward or
reverse. Set the weight of each reverse arc to be 0, and the weight of each forward arc (u, v) to wv. Then,
run prefix sum on the Eulerian tour list of arcs. At the last occurrence of u, all arcs in the subtree of u
must have already been traversed (since the Eulerian tour uses each arc exactly once, and does not visit
u again), so the prefix sums includes the sum of all weights in this subtree. Moreover, between the first
and last visit to u, the tour cannot leave the subtree of u; if it did, then one of the arcs between u and its
parent must have been used at least twice. So, the sum of the subtree is exactly wu + p[u(�1)]� p[u(1)],
where p is the array of prefix sums and u(�1), u(1) are the indices of the last and first occurrences of u in
the tour, respectively. The prefix sum along with first and last occurrences of each node can be computed
in O(log n) depth and O(n) work, and the final sum requires only O(1) depth and O(n) work.

For example, subtree sums can be used to find the LCA of two nodes in a tree, which we use in
Section D.

Theorem A.5. Let T be a tree rooted at r. Then, for any u, v 2 T , there is an O(log n) depth, O(n)
work PRAM algorithm to find the least-common ancestor of u and v.

Proof. The algorithm first sets weights of 0 on all nodes besides u and v, and sets weight 1 on u and v
before computing subtree sums. Using the algorithm of Theorem A.3, also compute the depth of each
node. Then, output the lowest-depth (i.e. furthest from the root) node who has subtree sum 2.

Computing the subtree sum and depth of each node can be done in O(log n) work and O(n) work.
Identifying all nodes with sum 2 can be done in O(1) depth and O(n) work, and taking the max depth
of these can be done in O(log n) depth and O(n) work, so the entire algorithm has the desired runtime.

For correctness, the algorithm computes the lowest-depth node whose subtree contains both u and
v, which is exactly the LCA of u and v.

A.2 Tree Separators. As also defined in Section 5.2, a tree separator node of a tree is a node whose
removal results is a forest with components of at most half the size of the original tree.

Definition A.1. (Tree Separator Node, Definition 5.3) A node q in a tree T is called a tree

separator node of T if the forest induced by T \ {q} consists of trees with at most |T |/2 nodes.

A very useful folklore results shows that every tree contains at least one tree separator node.

Lemma A.1. (folklore) For all trees T , there exists a node q 2 T such that q is a tree separator node

of T .

Proof. Suppose for contradiction T does not contain a tree separator node. Define Mu for each node
u 2 T to be the size of the largest component of T \ {u}, and let u0 = argminu2T Mu. By assumption,
Mu0 > |T |/2, and let C 0 be the component of T \ {u0} with size Mu0 . Since T is a tree, there is a unique
neighbor of u0 in C; call this node v. |C 0| > |T |/2, so |T \ C 0|  |C 0| + 1 and |T \ (C 0 [ {u0})|  |C 0|.
Thus, C 0 \ {v} must be the largest component in T \ {v}, as the sum of all other components can be at
most |C 0|� 1. But then we have Mv < Mu0 , contradicting that Mu0 is minimal.

We now give an algorithm to find a tree separator node with logarithmic depth and linear work, and
uses the subtree sum algorithm of Theorem A.4.

Lemma A.2. There is a O(log k) depth, O(k) work PRAM algorithm to find a tree separator node of any

tree with k nodes.

Proof. Let T be a tree with k nodes, and arbitrarily root T . The algorithm first assigns every node weight
1, and uses the algorithm of Theorem A.4 to compute subtree sums. Let su be the value of this subtree
sum at node u. Then, in parallel, for each u 2 T , check if sv  k/2 for all v children of u, and check that
k � su  k/2. Output any such u as a tree separator node.
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Removing any tree separator node, by definition, results in a forest with components of size at most
k/2, which is the exact condition the algorithm checks. A tree separator node exists for all trees (Lemma
A.1), so the algorithm always outputs a tree separator node. The depth of the algorithm comes from the
fact that the subtree sums and examining all nodes can be done in O(log k) depth. For work, note that
the value of every node u needs to be checked twice: once when determining if k � su  k/2, and once
when its (unique) parent checks if su  k/2. So, combined with the O(k) work for subtree sums, the
total work is O(k).

B Parallel Implementation of the Cut-Matching Game of [61].

In this section, we discuss the implementation of partition-A1 in Section 6.1, which in turn is built
on top of the cut-matching game in [61]. In the remainder of this section, note that we always operate
over the subdivision graph as defined in Definition 4.5, i.e., we have V 0 = V [XE where XE is the set
of split vertices of the edges in E, E0 =

S
e=(u,v)2E {(u, xe), (xe, v)}, and c0(u,xe)

= c0(v,xe)
= ce for every

edge e 2 E. Moreover, for ease of exposition, whenever we refer to a set of edges Y , we in fact refer to
the subdivision vertices XY corresponding to set Y . It is straightforward to see that constructing the
subdivision graph only takes O(m) work and O(1) depth.

All the algorithms that are presented in this section are identical to that of [61]; we merely discuss
them for the sake of completeness and showing that they admit a O(m polylog n) work and O(polylog n)
depth PRAM implementation. This entire process requires a blackbox access to only two subroutines: a
(1�")-approximate max-flow algorithm F" that also returns the (1+")-approximate minimum cut, and a
(1� �)-approximate flow-path decomposition algorithm D� (whose implementation is given in Section 8).
We shall henceforth refer to the work and depth of these algorithms A 2 {F",D�} on an m-edge graph
as T (A,m), and D(A,m). To build intuition, we begin by discussing the implementation specifics for
the uncapacitated case in Appendix B.1 through Appendix B.4, and extend our result to the general
capacitated case in Appendix B.5.

Using a cut-matching game to find well-linked edges. Before discussing [61], we shall find
it useful to first understand the cut-matching game framework of [45]. It is a technical tool connecting
the problem of approximating sparsest cuts or alternatively, certifying expansion to max flows, and is
vital in the aforementioned result of [61]. Conceptually, it is an alternating game between a cut-player
and a matching-player, where the former produces a bisection of the vertices, and the latter responds
by producing a perfect matching across this bisection that does not necessarily belong to the underlying
graph, but can be embedded in it17. The game ends when either the cut player produces a bisection for
which the matching player cannot find a perfect matching that can be embedded in it (i.e. a sparse cut has
been found), or the union of the perfect matchings produced thus far form an expander (i.e. an expander
can be embedded in the underlying graph, certifying its expansion). The objective of the cut player is to
terminate this game as quickly as possible, whereas the matching player seeks to delay this. In their work,
[45] showed that there is a near-linear time strategy for the cut-player that guarantees that this game
terminates in O(log2 n) rounds, regardless of the matching player’s strategy, and it is easiest to understand
when viewed as the following multicommodity flow problem: initially, every vertex starts o↵ with a unit
of its own unique commodity (which we can represent as a n-dimensional one-hot encoded vector, which
we shall henceforth refer to as a flow vector held by the vertex), and the goal is to uniformly distribute
these commodities across all vertices with low congestion. In each round of the game, every matched
pair of vertices (according to the perfect matching produced by the matching player) mix (average) their
currently held commodities with each other through the matching edge. Since the perfect matching could
be embedded into the underlying graph, this operation is guaranteed to be feasible. Now supposing in
some round, every vertex ended up with a (near) uniform spread over all unique commodities, then we
are done; it implies that the union of the perfect matchings must induce an expander, which moreover
can be embedded into the underlying graph. A good cut strategy therefore must find bisections that

17
Roughly speaking, we say a matching can be embedded into the graph, if there exist flow paths connecting every pair

of matched nodes such that the net flow does not exceed the capacity of any edge.
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mix these commodities quickly, and the key to arguing its existence is a potential function that measures
the total distance of each vertex’s currently held commodities from uniform. In particular, one can show
that there always exists a bipartition that guarantees a multiplicative (1� ⌦(1/ log n)) factor reduction
in this potential, regardless of the perfect matching produced by the matching-player, guaranteeing that
the game terminates in just O(log2 n) rounds. Moreover, this bisection can be found e�ciently. While
this sketches the analysis, this procedure would be far too ine�cient to implement as it would require
explicitly maintaining the vector of currently held commodities for every vertex (which would naively take
O(n2) work). Fortunately, [45] showed that it su�ces to consider a sketch that is a random projection of
these flow vectors in every round and still obtain the same convergence guarantees with high probability.
The matching players strategy is essentially a max-flow computation with the sources and sinks being
the two sides of the bipartition. If the max flow value is n/2, then we can obtain a perfect matching via
a flow-path decomposition. Otherwise, a perfect matching cannot be embedded into this cut.

The above cut-matching game provides the basis of the algorithm of [61] for finding well linked edges;
intuitively, a set F of edges is well-linked if we can embed an expander between the subdivision vertices of
these edges, and the cut-matching game is precisely the technical tool used to verify this. The algorithm
of [61] starts o↵ with a candidate set of edges F , and the cut-matching game is used to either certify
well-linkedness of this set F , or to produce a witness of non-expansion (a highly congested cut), in which
case F is updated to a new set Fnew (intuitively, to the edges in the most congested cut). However,
in the event that F is updated, the entire game would have to restart, which would be too expensive
(unless the updated set is a constant factor smaller than the old candidate set, in which case it is okay
because the number of restarts would be bounded by O(log n)). The modified game of [61] circumvents
this issue by reusing rounds of the old game in the event that the candidate set F does not change by
much. This is achieved by moving flow vectors from the old candidate set F to the new set Fnew along
paths of constant congestion (found by the flow decomposition algorithm D). However, not all edges in
the new set Fnew may end up receiving a flow vector from the old set F . Following the notation of [61],
we shall therefore denote all candidate sets F := A ] R, where A refers to the set of active edges that
have a flow vector, and R refers to the remaining edges in F . The exact details of this matching player
are discussed in Appendix B.3. The cut-player is also slightly di↵erent from the one in [45], where instead
of a strict bipartition, the player produces a disjoint edge sets corresponding to the “source” side and
“sink” side satisfying certain necessary properties. The exact details of this cut player are discussed in
Appendix B.2.

B.1 Computing the projections of flow vectors. We first discuss how to e�ciently compute the
sketch, i.e. random projection of current state of the flow vectors held by every active edge (which evolves
starting with a one-hot encoded vector, mixing and moving in every round depending on the matching
player’s strategy in that round). We remind the reader that given a candidate set of active edges A,
there are |A| flow vectors, each in Rm, and the naive way to average and move flow vector would take
O(|A| ·m) = O(m2) work. However, we note that in the algorithmic process, the flow vectors are only
used for cut player to find the sources and sinks, and the procedure is implemented by a projection onto
a random unit vector which we show can be simulated in nearly-linear work. We give a subroutine for
such an implementation.

Lemma B.1. Let r be any unit vector of dimension m, and let Mt = MtMt�1 · · ·M1 be a m⇥m matrix

such that each Mi is supported over at most m0
non-zero coordinates, and let {v i}mi=1 be m standard

basis vectors that represent indicators for each of the m unique commodities. Then, there exists a

PRAM algorithm that computes µ(t)
i = rT Mt v i for every i, in O(t log n) depth and O((m+m0)t) work.

Proof. We perform the multiplication from left to right: µ(t)
i = ((rTMt)Mt�1)Mt�2 . . ., where each time

we multiply a vector with a matrix of at most m0 nonzeros, which takes O(log n) depth and O(m0) work.
Summing over t iterations gives the desired result.

As we will see shortly, the operations on the flow vectors in the tth round of the cut-matching

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4047

D
ow

nl
oa

de
d 

07
/1

3/
24

 to
 1

08
.4

.2
35

.8
7 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



game can all be simulated by matrix multiplication of rT
Mt v i as prescribed in Lemma B.1. Moreover,

in all applications where the above subroutine is invoked, we always have the sparsity property
m0 = O(m polylog n) for each matrix Mi since they correspond to fractional matrices that mix or
move flows produced by the flow decomposition algorithm D, and t = O(polylog n) due to the convergence
guarantees of the cut-matching game in [61]. We will refer to these matricesMi’s as mix-or-move matrices.
We remark that the idea was implemented by both [45] and [61], albeit it was less explicitly stated.

B.2 Parallel implementation of the cut player. We now describe the parallel implementation of
a single iteration of the cut player that achieves the guarantees in Lemma 3.3 in [61]. Recall that the cut
player’s strategy given a set of active edges A, is to find two di↵erent subsets AS ✓ A and AT ✓ A whose
commodities are not well-mixed. This is done in the following way: for every edge e 2 A, let fe be the
flow vector currently held by e. In round t of the game, this is precisely given by fe = MtMt�1 . . .M1ve,
where ve is the indicator (one-hot encoded vector) of edge e’s unique commodity, and each Mi represents
the fractional mix-or-move matrix representing the matching player’s strategy (i.e. mixing or moving)
in round i. Let µ := (1/|A|)

P
e2A fe represent the average flow vector in that round. Given these

quantities (neither explicitly computed), and a random vector r , for every edge e 2 A, let µe = hfe , ri,
and µ̄ := hµ , ri denote the projection of the flow vector of edge e, and the average flow vector onto the
random vector, respectively. For any B ✓ A, the potential PB is defined as

PB :=
X

f2B

(µf � µ̄)2 .

Now given a set of active edges A, the cut player precisely seeks to identify a set of source edges AS , a
set of sink edges AT , along with a value ⌘ such that (rf. Lemma 3.3 in [61])

1. ⌘ separates the sets, i.e. maxe2AS µe  ⌘  minf2AT µf or mine2AS µe � ⌘ � maxf2AT µf ,

2. |AS |  |A|/8 and |AT | � |A|/2

3. for every source edge e 2 AS , |µe � ⌘|2 � (1/9)|µe � µ̄|2,

4.
P

e2AS
|µe � µ̄|2 � (1/160)

P
e2A |µe � µ̄|2,

Note that, unlike [45], AS and AT does not need to be an exact bi-partition of A. The following
procedure describes implementation of the cut player’s strategy that meets the above requirements in
detail.

Subroutine find-sources-and-sinks [61]

Input: subdivision graph G0 = (V 0, E0); a set of active edges A ✓ E; a sequence of t mix-or-move
matrices Mt, . . . ,M1 each of dimension m ⇥m and supported over at most O(m polylog n) non-zero
coordinates.

Output: a set of source edges AS ⇢ A, a set of sink edges AT ⇢ A, and a separation value ⌘.

Procedure:

1. Sample a unit vector r uniformly at random, and project the flow vector of each e 2 A to r to
get µe = hMtve , ri, where Mt = MtMt�1 . . .M1. This step is executed by initializing length-m
flow vectors with ve the indicator vector of e, and then running the algorithm from Lemma B.1.

2. Assuming w.l.o.g that |{e 2 A | µe < µ̄}|  |{e 2 A | µe � µ̄}|, pick L = {e 2 A | µe < µ̄}, and
let R = A \ L.

3. Compute PL and PR. If PL � 1
20PA, set AS as the |A| /8 edges (or all edges in L if there are

fewer than |A| /8 edges in L) with the smallest µe values from L, AT as R, and ⌘ as µ̄.
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4. Otherwise:

(a) Let ` =
P

e2L |µe � µ̄|, and let ⌘ = µ̄+ 4`/ |A|.
(b) Let AT be the edges whose µe is at most ⌘.

(c) Construct new sets R0 = {e 2 A | µe � µ̄+6`/ |A|}, and let AS be the |A|/8 edges with the
largest µe values from R0.

This subroutine is used repeatedly during the cut-matching game in the hierarchical decomposition
procedure of [61]. We now show this subroutine can be implemented e�ciently in the PRAM setting.

Claim B.1. There is a PRAM implementation of the subroutine find-source-and-sinks that, given an

arbitrary sequence of t matrices, each with support over O(m polylog n) nonzero entries, has O(t log n)
depth and O(tm polylog n) work.

Proof. By Lemma B.1, computing the projections µe’s takes O(log n) depth and O(m polylog n) work
since the support size of each mix-or-move matrix Mi is O(m polylog n). The steps that compute the
average and the potential all take O(log n) depth and O(m polylog n) work. Finally, taking a subset from
A (resp. L and R) by checking the µ values also takes O(log n) depth and O(m) work. Summarizing the
above steps gives the desired O(log n) depth and O(m polylog n) work.

B.3 Parallel implementation of the matching player. We now discuss the parallel implementa-
tion of the matching player. The matching player takes as input the source edges AS and the sink edges
AT computed by the cut player, and computes a partial fractional matching M between the subdivision
nodes XAS and XAT in the subdivision graph G0. The matching player uses a (1� ")-approximate max-
flow algorithm F"

18 to ensure that the matching can be routed in G0 with constant congestion, and uses
the (1� �)-approximate flow-path decomposition algorithm D� to construct a matching from the output
of the flow algorithm. At this point, we remind the reader that the cut-matching game in [61] deviates
from that of [45]. In [61], the matching player chooses to perform either a matching step or a deletion

step and the choice is made by flipping a fair random coin. The matching step is similar to [45] where
the flow vectors of the matched edges are mixed resulting in a reduction in potential. The deletion step
deletes the flow vectors on some edges (potentially moving them to new edges) resulting in a new set of
active edges which again leads to potential reduction. The following procedure describes the matching
player’s strategy from [61] in detail.

Subroutine match-or-delete [61]

Inputs: subdivision graph G0 = (V 0, E0); a set of candidate edges F ✓ E, active edges A ✓ E,
remaining edges R ✓ E; source edges AS ⇢ A; sink edges AT ⇢ A; set of edges B.
Output: a m⇥m mix-or-move matrix M with support size at most O(m polylog n); new candidate
edges Fnew; new active edges Anew; new remaining edges Rnew; set Bnew.

Procedure:

1. Construct a capacitated graph G0
st: add a super-source s and connect s to all subdivision vertices

x 2 XAS with capacity 1; add a super-sink t and connect t to all subdivision vertices x 2 XAT

with capacity 1
2 ; add capacity 2 to all edges in G0 that are not incident on s or t.

2. Run the flow algorithm F" on G0
st with " =

1
3 log3 n to obtain a flow f ; let C 0 2 E0 be the set of

18
We assume that F" is such that it also outputs an approximate min-cut. Note that Sherman’s algorithm [66] satisfies

this assumption.
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edges that correspond to the approximate min cut, and let C 2 E be the corresponding set of
cut edges in G.

3. Run the flow-decomposition algorithm D� on f with � = 1
3 log3 n , and let G be the data-structure

encoding the flow paths (see Lemma 8.1). For every edge (s, x) where x 2 XAS with flow
f(s,x) � 1/2, rescale the flow such that f(s,x) = 1. For every flow path p that uses edge
(s, x), rescale the flow on p by 1/f(s,x) to make the flow path consistent, which can be done
by propagating this rescaling top-down in G. Adjust capacities in G0

st to make this new flow
feasible.

4. With probability 1
2 , enter the matching case:

(a) Let M0 be the matrix of the fractional matching between XAS , XAT induced at the top-
level of G. If M0 is a partial matching, then make it perfect by adding self loops. Then, the
mix-or-move matrix is given by M  1

2M0 +
1
2I where I is the identity matrix.

(b) return mix-or-move matrix M , candidate edges Fnew = F = A ]R, set Bnew = B

5. With probability 1
2 , enter the deletion case:

(a) If ((A [ R) \ AT ) [ C induces a balanced clustering in G, return new candidate edges
Fnew = ((A [ R) \ AT ) [ C. In this case, |Fnew|  (7/8)|F | due to which the cut-matching
game restarts from scratch, and the remaining return values are not useful.

(b) Else set Fnew = ((A[R) \AS)[C: Let M0 be the fractional matching between XAS , XAT

induced at the top level of G. For each matched pair (x, x0) 2 (XAS ⇥XAT ) in M0, identify
the first edge y in C on the flow path x  x0 using the data-structure G and construct a
mix-or-move matrix M which moves the flow vector (instead of mixing it) from x to y. If
the total flow received by y from all x 2 AS exceeds 1, rescale this total flow to have value
1. Otherwise, zero out this flow, and add this edge y to set CB .

(c) Set Anew = (A \AS) [ (C \ CB)a, Rnew = Fnew \Anew.

(d) return mix-or-move matrix M , Fnew, Anew, Rnew, Bnew = B [ CB .

a
Note that this update is mentioned as Anew = (A \AT ) [ (C \ CB) in [61] which is a typo.

Note that although the flow decomposition is an approximation version, the total flow value induced
by the decomposition is at least (1 � 1

3 log3 n )
2 � (1 � 1

log3 n ) of the max-flow value (assuming n � 6),

which satisfies the desired requirement as in [61]. We now show that the matching-or-deletion subroutine
can be implemented under the PRAM setting e�ciently.

Claim B.2. There is a PRAM implementation of the subroutine match-or-delete using depth

O (D(F",m) +D(D�,m) + polylog n) and work O
�
T (F",m) + T (D�,m) +m polylog n

�
, where D(A,m)

and T (A,m) are the depth and work required by the algorithm A 2 {F",D�} for ", � = 1/(3 log3 n),
respectively.

Proof. The first step in the algorithm is the construction of the graph G0
st which can be done in O(1)

depth and O(m) work. The set C 0 is returned by F", and C can be constructed from C 0 in O(1) depth
and O(m polylog n) work. There are at most O(m polylog n) flow paths. Hence, using the data structure
G returned by the flow decomposition algorithm D�, re-scaling of the flows and adjusting capacities takes
O(log n) depth and O(m polylog n) work. We now analyze the required depth and work for both the
matching and the deletion cases:

• In the matching case, since the fractional matching matrix has support size O(m polylog n), adding
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self-loops and computing the mixing matrix M takes O(m polylog n) work and O(1) depth.

• In the deletion case, checking whether an induced clustering is balanced in Line 5a can be
done by simply deleting the candidate edges and checking the sizes of the resulting connected
components which takes O(m) work and O(log n) depth. If we enter Line 5b, since there are at
most O(m polylog n) matched pairs (x, x0), identifying the first edge in C on the flow path x x0

for every matched pair requires O(polylog(n)) depth and O(m polylog(n)) work using the data
structure G. The moving matrix M can then be computed in O(m polylog n) work and O(1)
depth. Rescaling and deleting flows can also be performed using O(m polylog n) work and O(1)
depth.

Taking the worst-case work and depth among the cases gives us the desired statement.

B.4 Putting it together: partition-A1. In this section we combine the implementation of the cut
and matching players to achieve the guarantees of Lemma 3.1 in [61]. This is also the algorithm that
achieves the guarantees we claim in Lemma 6.1. Specifically, given a set of edges F that induces a 3/4-
balanced clustering of the graph, the goal of Lemma 3.1 is to find a new set of edges Fnew such that (rf.
Lemma 3.1 in [61])

1. either |Fnew|  7
8 |F |;

2. or Fnew = A[R such that |A|  |F |, |R|  2
lognA, and the edges in A are ⌦(1/ log2 n)-well-linked.

The following presents the details of the algorithm that is used to prove Lemma 3.1 in [61].

Subroutine partition-A1

Input: Subdivision graph G0 = (V 0, E0) of G = (V,E); a set of edges F ✓ E that induce a 3/4-balanced
partition of V .
Output: A new set of edges Fnew that also induces a 3/4-balanced partition of V such that either

1. |Fnew|  (7/8)|F |, or

2. Fnew = A [ R with A,R disjoint such that edges in A are ⌦(1/ log2 n)-well-linked, and
|R|  2|A|/ log n.

Procedure (cut-matching game):

1. Initialize matching matrix M0 corresponding to self-loops; A = F ; R = ;; B = ;.

2. For t = 1, 2, . . . , O(log2 n):

(a) (AS , AT , ⌘) find-source-and-sinks(G0, A, {Mi}0i<t).

(b) (Mt, Fnew, Anew, Rnew, Bnew) match-or-delete(G0, F, A,R,AS , AT , B).

(c) If |Fnew|  (7/8)|F |: return Fnew (return condition 1).

(d) Else, update B = Bnew, A = Anew, R = Rnew.

(e) Compute potential PA of active edges A.

(f) If PA  1/(16n2) (flow vectors in A have mixed):

i. If |B|  2|A|/ log n: return Fnew = A [B (return condition 2).

ii. Else, we necessarily have |A [ R|  (7/8)|F |: return Fnew = A [ R (return condition
1).
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With Claims B.1 and B.2, it is not di�cult to check that the whole procedure of step 2 can be
implemented in poly-logarithmic depth and nearly-linear work. We formalize this as follows.

Lemma B.2. There is a PRAM implementation of the above algorithm that has depth

O ((D(F",m) +D(D�,m)) · polylog n) and work O
�
(m + T (F",m) + T (D�,m)) · polylog n

�
for ", � =

O(1/ log3 n).

Proof. Firstly, the number of iterations of the cut-matching game is upper bounded by O(log2 n). Then
the lemma follows immediately from the work and depth calculations of the cut and matching steps in
Claims B.1 and B.2, respectively.

B.5 Extending to the capacitated case. Although [61] states that their results hold for capacitated
graphs, they do not detail this extension. However, for completeness, we sketch the implementation of the
cut matching game in [61] on capacitated graphs, and discuss how they can be implemented in PRAM.
Throughout this section we assume graphs have integer capacities bounded by poly(n).

We note that the analysis of the cut matching game follows by viewing each edge e of capacity ce as
ce uncapacitated parallel copies. It thus remains to show that the cut matching game can be implemented
with O(m polylog n) work and polylog n depth, assuming a (1� ")-approximate maxflow algorithm with
the same work and depth. We first describe a key subroutine that we need throughout the cut matching
game, namely averaging of flow vectors, and then describe the changes we make to the cut and matching
players.

Averaging flow vectors. Note that naively, treating each capacitated edge as uncapacitated copies
can potentially lead to a large number of edges, and maintaining flow vectors on them will be too costly.
Therefore we will always maintain the invariant that the parallel copies of the same capacitated edge
carries the same flow vector. Whenever this variant gets violated (e.g. after a flow mixing or deletion
step), we restore it by averaging out the flow vectors across the parallel copies. Thereby, we never store
more than O(m polylog(n)) flow vectors at any point. Notice that in the actual implementation of the
cut matching game, we never explicitly store the flow vectors but only store their projections; and thus
we only need to average the projections of these vectors, which is equivalent to first averaging the flow
vectors and then taking projections by linearity. The averaging of the projections can be done in O(log n)
depth and near-linear work by parallel summation.

Moreover, as we show in the claim below, the potential function only decreases after the averaging of
any collection of flow vectors. Recall that in a graph with m0 uncapacitated edges e1, . . . , em0 with flow
vectors fe1 , . . . , fem0

on them, the potential function in [61] is defined to be

�f :=min
c

m0X

i=1

kfei � ck2 =
m0X

i=1

kfei � µk2 ,

where µ = 1
m0

Pm0

i=1 fei is the average of all flow vectors.

Claim B.3. Let E0 ✓ E be any collection of uncapacitated edges. Define new flow vectors f 0
e1 , . . . , f

0
em0

by averaging out the flow vectors on edges in E0
, namely,

f 0
e =

(
1

|E0|
P

e2E0 fe e 2 E0

fe e /2 E0 .

Then the potential function can only decrease going from f to f 0
:

�f � �0
f .

Proof. Let µ = 1
m0

Pm0

i=1 fei be the average flow vector of all edges. Note that this is also the average flow
vector with respect to f 0, since averaging the flow vectors of edges in E0 does not change the total sum

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4052

D
ow

nl
oa

de
d 

07
/1

3/
24

 to
 1

08
.4

.2
35

.8
7 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



of the flow vectors. Thus it su�ces to compare the contribution of edges in E0 to the potential function
with respect to f, f 0 respectively. To this end, we write the contribution with respect to f 0 as

X

e2E0

kf 0
e � µk2 =

X

e2E0

�����
1

|E0|
X

e2E0

fe � µ

�����

2

=|E0| ·

�����
1

|E0|
X

e2E0

fe � µ

�����

2

.

Letting D denote the uniform distribution over edges in E0, we can write the above contribution as

|E0| · kEe2D [fe]� µk2 .

Notice that the function f(x) = kx� µk2 is quadratic and hence also convex. Therefore we can apply
Jensen’s inequality and obtain

|E0| · kEe2D [fe]� µk2 |E0| · Ee2D

h
kfe � µk2

i

=
X

e2E

kfe � µk2 .

That is, the contribution of edges in E0 with respect to f 0 is at most that with respect to f , implying
that the potentail of f 0 can only be smaller than that of f , as desired.

The cut and matching players. The cut player uses the exact same strategy to find the sources
and sinks, except that now they do not explicitly operate all parallel copies, but rather manipulate the
parallel copies of the same edge together, by exploiting the fact that they all have the same flow vectors.
For example, when computing projection of the flow vectors, we only need to do the computation once
for the parallel copies of the same edge; when computing the average of the flow vectors, we just need
to compute a weighted average where each flow vector is weighted by the capacity of the corresponding
edge. Notice that when choosing AS , we could end up only choosing a subset of the parallel copies of
the same edge, but leaving the remaining parallel copies out. Then the matching player will create a
flow graph by connecting super source to the split vertex of the edge with capacity being the number of
parallel copies in AS .

The matching player also adopts almost the same strategy as the uncapacitated case, with the
following modifications:

1. Most notably, in both matching case and deletion case, where we mix or move flow vectors, we
average the flow vectors of parallel copies of the same edge afterwards. This is because di↵erent
copies of the same edge could be matched di↵erently, resulting in di↵erent flow vectors after
mixing/moving. However, since the matching we found has support size O(m polylog(n)), the
total number of distinct flow vectors is always bounded by O(m polylog(n)). Notice that once
again, we never explicitly average the flow vectors but only average their projections.

2. At Line 3 of match-or-delete, after we find a flow decomposition, we scale the flow paths as
follows. For every edge (s, x) with flow f(s,x) � (1/2)c(s,x), rescale the flow such that f(s,x) = c(s,x);
For every flow path p that uses edge (s, x), rescale the flow on p by c(s,x)/f(s,x) to make the flow path
consistent, which can be done by propagating this rescaling top-down in the flow decomposition
DAG in O(m polylog(n)) work and polylog(n) depth. Adjust capacities in G0

st accordingly.

3. At Line 5b of match-or-delete, if the total flow received by y exceeds cy, rescale this total flow
to have value cy. Otherwise, zero out this flow, and add (the parallel copies of) this edge y to set
CB . Notice that the rescaling of the flow can again be done by propagating it top-down in the flow
decomposition DAG in O(m polylog(n)) work and polylog(n) depth.
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C Parallel Implementation of Sherman’s Algorithm.

In this section, we discuss the implementation details of vanilla Sherman’s algorithm [66] in the PRAM

model, which forms the basis of the near-linear work, polylogarithmic depth approximate max-flow
subroutine invoked in our cutting-scheme in Section 6. This algorithm consists of an outer-algorithm
that makes O(logm) many iterative calls to an inner procedure AlmostRoute that actually performs the
gradient descent. At the end of these calls, we are left with a minimum congestion flow that is almost

feasible, in the sense that there is a negligible residual demand that can be routed in the flow network
with O(1/poly(m)) congestion. This outer-algorithm terminates by routing this residual demand along
a maximum spanning tree, achieving feasibility of the superimposed flows (i.e. the resultant flow routes
the desired demands b). This relatively simpler outer algorithm is described below, with the bulk of the
technical detail being contained in the AlmostRoute subroutine that implements gradient descent.

Algorithm C.1. approximate maximum flow(G,R, b,↵, ")
Input: Graph G = (V,E, c); ↵-congestion approximator R that is a hierarchical decomposition of G;
vertex demands b 2 RV ; quality of the congestion approximator ↵ = O(polylog n); precision " > 0.
Output: A (1 + ")-approximate minimum congestion flow f 2 RE that routes demands b; (1 � ")-
approximate maximum congested cut S.
Procedure:

1: b0  b; compute B, the vertex-edge incidence matrix of G.
2: (f0, S0) AlmostRoute(G,R, b0,↵, ")
3: for i 1 . . . log(2m) do
4: bi  bi�1 �Bfi�1

5: (fi, Si) AlmostRoute(G,R, bi,↵, 1/2). . subsequent Si are not needed

6: Let t = log(2m) be the final iteration counter of the above loop; set bT  bt �Bft.
7: Compute the maximum spanning tree T of G.
8: Let fT be the flow obtained by routing demands bT on the tree T
9: return flow f = fT +

Plog(2m)
i=1 fi; cut S = (S0, S0).

It is easy to see that the above outer-algorithm admits an e�cient PRAM implementation,
assuming that the subroutine AlmostRoute admits a PRAM implementation with near-linear work and
polylogarithmic depth; there are only O(log n) many iterations in the outer algorithm, and lines 1,4,6,
and 8 can easily be implemented with O(m) work and O(1) depth, and the maximum spanning tree
construction in line 7 has a known O(m) work, O(polylog n) depth PRAM algorithm [60].

We next discuss the implementation specifics of the subroutine AlmostRoute which actually performs
the optimization and is more involved. The key idea behind this subroutine is to transform the constrained
optimization problem (for undirected graphs) given in Eqn. 1.1 into an unconstrained one using the
following congestion potential function

�(f) = lmax(C�1f) + lmax(2↵R(b�Bf)),

where for any x 2 Rk,

lmax(x) := log

 
kX

i=1

(exi + e�xi)

!

is the symmetric softmax function, a di↵erentiable approximation of || · ||1. Algorithmically, this is
achieved via a standard gradient descent which finds a (1 � ")-approximate maximum flow f after at
most O("�3↵2 log n) iterations. Therefore, an e�cient PRAM implementation of this algorithm e↵ectively
reduces to finding an e�cient implementation of a single iteration of the descent step within this algorithm,
a formal description of which is given below.

Algorithm C.2. AlmostRoute(G,R, b,↵, ")
Input: Graph G = (V,E, c); ↵-congestion approximator R that is a hierarchical decomposition of G;
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vertex demands b 2 RV ; quality of the congestion approximator ↵ = O(polylog n); precision " > 0.
Output: A (1 + ")-approximate minimum congestion flow f 2 RE that routes demands b; (1 � ")-
approximate maximum congested cut S.
Procedure:

1: Initialize f  0; compute kb  (16 log n)/(2↵"||Rb||1); scale b kb · b.
2: repeat
3: Set kf  1; scaling factor s 17/16.
4: while �(f) < 16"�1 log n do
5: Scale kf  s · kf ; f  s · f ; b s · b.
6: Set �  

P
e2E

���ce · @�(f)
@fe

���.
7: if � � "/4 then

8: For each edge e 2 E, update fe  fe � sign
⇣

@�(f)
@fe

⌘
· �ce
1+4↵2 .

9: else
10: Undo scaling f  f/kf , b b/(kbkf ).
11: Compute the maximum congested cut (S, S) from the (n�1) threshold cuts of vertex potentials

{⇡v}v2V induced due to @�(f)/@fe (described shortly).
12: return flow f , cut S .

13: until termination

Observe that implementing the above algorithm requires us to compute (i) the value of the potential
function �(f), and (ii) the partial derivatives @�(f)/@fe of the potential with respect to the flow on
each edge in the graph. Additionally, we also need to bound the total number of iterations of the above
algorithm (lines 2, 4), for which we directly leverage the result of Sherman (Lemma 2.5 in [66]), which
shows that the total number of iterations until termination (line 2) is O(↵2"�3 log n), and within each
iteration, the total number of times we scale the flow and demands (line 4) is O(log↵). We now show
how to compute the value of the potential, and its partial derivatives. In order to do so, we shall find it
instructive to understand the structure of the congestion approximator R.

The congestion approximator R 2 Rx⇥n is a matrix with each row i 2 [x] corresponding to a cut
in the graph, and each column corresponding to a vertex. For any cut i = (Si, Si) considered by the
congestion approximator, entry Ri,v 2 {0, 1} indicates whether vertex v lies on the Si side of the cut,
normalized by the total capacity c(Si, Si) of the cut, i.e. the sum of capacities of all edges crossing this
cut. Therefore, the product [Rb0]i of this row of the congestion approximator with any demand vector b0

gives the congestion that would be induced by routing these demands across the cut (Si, Si). However,
we cannot explicitly construct this matrix due to work and depth constraints, and instead shall use the
specific structure of the congestion approximator to e�ciently compute these congestion values for all
cuts explicitly considered by the approximator.

The congestion approximator in our case is a O(log n) depth rooted tree T corresponding to a
hierarchical decomposition of the flow instance G = (V,E) upon which Sherman’s algorithm is invoked,
with the leaves corresponding to the vertices v 2 V in the flow network, and the internal nodes
corresponding to a cluster consisting of the leaf vertices in the subtree rooted at that internal node.
This hierarchical decomposition tree T can equivalently be viewed as a set of cuts in the input graph;
each node i 2 T in this tree corresponds to a cut (Si, Si), where Si is the set of vertices corresponding to
the leaves in the subtree rooted at node i in the tree T . In the following analysis, we shall leverage this
view of the congestion approximator in order to e�ciently compute the value of the congestion potential,
as well as its partial derivatives.

We begin by decomposing the congestion potential into its two components

�(f) = �1(f) + �2(f); where �1(f) = lmax(C�1f), and �2(f) = lmax(2↵R(b�Bf)).

To compute the first component �1(f), we can simply compute the congestion fe/ce of every edge e 2 E
in parallel, followed by an aggregation step, which can be done with O(m) total work and O(log n) depth.
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To compute the second component �2(f), we can compute the residual demands bv �
P

e2�(v) Bv,efe
for every vertex v 2 V where �(v) corresponds to the set of edges incident on vertex v. This also requires
O(m) total work and O(log n) depth (with every vertex first reading the flow values of incident incoming
edges followed by those of incident outgoing edges in two separate passes to avoid read collisions). The
total demand of any subset of vertices in the congestion approximator (rooted-tree) can then be computed
with eO(n) total work and O(log n) depth using subtree sums. Given the capacity c(Si, Si) of every cut
i = (Si, Si) represented by the internal nodes in our congestion approximator, the second term can then
be computed via an aggregation, which can be done with O(m) total work and O(log n) depth.

To compute the partial derivatives, we first consider the component �1(f) in our congestion potential.
Then we have that for any edge e 2 E, the partial derivative

@�1(f)

@fe
=

exp(fe/ce)� exp(�fe/ce)
ce · exp(�1(f))

which can easily be computed with O(m) work and O(1) depth when the potential �1(f) is known (its
computation is described above).

To compute the partial derivative of the second component �2(f), let I be the set of all cuts (rows)
considered by our congestion approximator, and for any cut i = (Si, Si) 2 I, let yi = 2↵[R(b � Bf)]i
be the congestion induced by the residual demands across cut i = (Si, Si). Then we have for any edge
e 2 E, the partial derivative

@�2(f)

@fe
=
X

i2I

@�2(f)

@yi
· @yi
@fe

=
X

i2I

exp(yi)� exp(�yi)
exp(�2(f))

· 2↵BSi,e

c(Si, Si)
,

where c(Si, Si) is the capacity of the cut i = (Si, Si) considered in our congestion approximator, and
(with some abuse of notation) BSi,e =

P
v2Si

Bv,e 2 {�1, 0, 1} is an indicator of whether in cut i, edge e
is an incoming edge (1), outgoing edge (�1) or does not cross it (0). The cuts I are not arbitrary. Rather,
they are induced by a single rooted hierarchical decomposition tree T , which we can use to e�ciently
compute this partial derivative for every edge. For an edge e = (u, v) 2 E, let Tu,v be the unique path
between u, v in T . Then we have that

@�2(f)

@fe
=
X

i2Tu,v

exp(yi)� exp(�yi)
exp(�2(f))

· 2↵BSi,e

c(Si, Si)
.

Now observe that for any internal node i (corresponding to some cut (Si, Si)) that is encountered on the
path Tu,x between u and the least-common-ancestor x of u, v in the rooted tree T , we have BSi,e = �1,
and for any internal node i that is encountered on the path Tx,v between v and x in T , we have BSi,e = +1.
Now for any internal node j in T , let Tj,r denote the unique path in T from the root r of T to node j.
Then we can define for every internal node j in T , a node potential ⇡j as

⇡j :=
X

i2Tj,r

exp(yi)� exp(�yi)
exp(�2(f))

· 2↵

c(Si, Si)
,

which is easy to compute with O(n) total work and O(log n) depth through a prefix sum on an Eulerian
tour of T that starts and ends at the root r of T . This is achieved by setting the weight of the forward edge
entering an internal node i from its parent to be +(exp(yi)� exp(�yi))/(exp(�2(f))) · (2↵/c(Si, Si)) and
the reverse edge leaving the internal node i going to its parent to be �(exp(yi)�exp(�yi))/(exp(�2(f))) ·
(2↵/c(Si, Si)). Therefore, sum corresponding to subtrees in the prefix sums evaluate to 0, leaving just
the sum of the root r to node i path. Given these node potentials, it is now easy to compute the partial
derivatives of any edge e = (u, v) as

@�2(f)

@fe
= ⇡v � ⇡u,
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which requires just O(m) total work and O(log n) depth.
Lastly, Sherman shows that these vertex potentials ⇡v induced by the flow when it is approximately

optimal (i.e. when the subroutine terminates) also allow us to e�ciently recover the approximate
minimum cut (equivalently, the approximate maximum congested cut). Specifically, one of the threshold
cuts with respect to the vertex potentials is an approximate min-cut, and this can be computed e�ciently
in eO(m) total work and O(log n) depth by sorting the vertices by their potential values and returning the
most congested cut from the resulting n�1 threshold cuts. Therefore, we have that Sherman’s algorithm
admits an e�cient implementation in the PRAM model.

D Computing Min Cut on Trees.

To compute a hierarchical decomposition on trees in Section 5.2, we need to compute an exact s-t min-cut
cut on a congestion approximator tree with the addition of a super-source s and super-sink t. In this
section, we show how to compute the exact min-cut when the tree has O(log n) depth, which is simpler,
before extending it to trees with arbitrary depth.

The easy case: O(log n) depth. Let T be a tree rooted at r with O(log n) depth, let s 62 T be a
super-source, and t 62 T be a super-sink; s and t may be connected arbitrarily to T and these edges may
have arbitrary capacity. For a s-t min-cut (S, S̄) of T [ {s, t}, without loss of generality s 2 S and t 2 S̄.
As such, it remains to determine which nodes of T are in S and which are in S̄, and so we consider finding
a s-t min-cut as a tree problem. To account for the capacities of edges incident on s or t, for each u 2 T ,
we set node weights ws

u = cus and wt
u = cut, where cus, cut are the capacities of the (u, s) and (u, t) edges,

respectively, or 0 if no such edge exists.
To find the min-cut capacity, we can use dynamic programming. For each u 2 T , define cuts(u)

and cutt(u) as the s-t min-cut capacity of the subtree rooted at u with the restriction that u is on
the s side of the cut (i.e. u 2 S) or u is on the t side of the cut (i.e. u 2 S̄), respectively. The
recurrence relations are then cuts(u) = wt

u +
P

v2D(u) min{cuts(v), cuv + cutt(v)} and cutt(u) =

ws
u+
P

v2D(u) min{cuv+cuts(v), cutt(v)}, where D(u) is the set of children of u. Since we assume T has

O(log n) depth, standard dynamic programming techniques allow us to compute min{cuts(r), cutt(r)},
which is the s-t min-cut capacity, in O(log n) depth and O(n) work. For brevity, we have presented
computing only the capacity of the min-cut, but the actual cut may be found by storing the argmin for
each minimum taken in the recurrence relations.

Before continuing to the arbitrary depth case, we introduce a (slightly) generalized problem where
some vertices are constrained to be in S, or S̄, an extension useful when extending to trees of arbitrary
depth.

Definition D.1. ((Fs, Ft)-Restricted s-t Min-Cut) Let T be a tree, let s be a super-source and let

t be a super-sink. Then, given disjoint subsets Fs, Ft of nodes of T , a (Fs, Ft)-Restricted s-t Min-Cut of

T [ {s, t} is a minimum s-t cut (S, S̄) under the restriction that Fs [ {s} ✓ S and Ft [ {t} ✓ S̄.

The DP presented before can be easily modified to also solve this extended version when T has
O(log n) depth, using recurrence relations

res cuts(u) =

(
wt

u +
P

v2D(u) min{res cuts(v), cuv + res cutt(v)} if u 62 Ft

1 if u 2 Ft

(D.1)

res cutt(u) =

(
ws

u +
P

v2D(u) min{cuv + res cuts(v), res cutt(v)} if u 62 Fs

1 if u 2 Fs

(D.2)

where again D(u) is the set of children of u 2 T .

Lemma D.1. Let T be a tree on n nodes rooted at r with depth O(log n), and let res cuts and

res cutt be defined as in (D.1) and (D.2). Then, given disjoint subsets Fs, Ft of vertices of T ,
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min{res cuts(r), res cutt(r)} is the capacity of an (Fs, Ft)-Restricted s-t Min-Cut on T [ {s, t}.
Moreover, this value can be computed using an O(log n) depth and O(n) total work PRAM algorithm.

Proof. By straightforward dynamic programming, since T has O(log n) depth, res cuts(r) and
res cutt(r) can be computed in O(log n) depth and O(n) work. For correctness, first note that the
base cases are correct: the cost of any solution where x 2 Fs is placed in S̄ is infinite (and analogously for
Ft and S) and, by construction, ws

u is the capacity of the edge between u and s, if it exists (and similarly
for wt

u). The correctness then follows by induction.

Extending to arbitrary depth trees. When T has super-logarithmic depth, we modify the DP and
divide into subproblems based on tree separator nodes (see Definition 5.3) rather than children. For a
DP subproblem to find the s-t min-cut on a tree T 0, we compute a tree separator node q and recurse on
each tree of T 0 \ {q}. From the definition of a tree separator node, this results in subproblems on trees
which are at most half the size of T 0.

When combining subproblems, we use the recursive calls to determine the min-cut capacity when
q 2 S and the min-cut capacity with q 2 S̄, and return the lower value. To do this, we must also
determine for each u 2 �(q) (i.e. each neighbor of q in T 0) whether u 2 S or u 2 S̄, in order to determine
whether to add the capacity of the (u, q) edge to the cut. As such, for every neighbor u of q, we compute
2 subproblems on the connected component of T 0 \ {q} containing u: one where we constrain u 2 S,
and one where we constrain u 2 S̄. Due to recursion, in any given subproblem there might be multiple
vertices which are constrained to be in S or S̄; we call these the tracked vertices. Each subproblem then
takes as input a tree T 0, a set of tracked vertices A, and subset S ✓ A, where the goal of the subproblem
is to compute a s-t min-cut (S, S̄) on T 0 under the restriction that S ✓ S and (A \ S) ✓ S̄.

However, there are 2|A| possible subsets S ✓ A, and so the number of possible subproblems (and
thus total work) is exponential in the number of tracked vertices. As such, we must bound the number
of tracked vertices in any subproblem. To do this, if we ever have a subproblem with 3 tracked vertices,
rather than recursing on the components formed by removing a tree separator node, we recurse on the
trees formed by removing the LCA of 2 tracked vertices. By rooting every subtree at a tracked vertex,
this results in new subproblems with at most 2 tracked vertices, and so all subproblems have at most 3
tracked vertices. Importantly, these additional steps to reduce the number of tracked vertices at most
double the depth of the recursion, leading to O(log n) levels of recursion. Since each level of recursion
can be implemented in O(log n) depth and O(n) work via dynamic programming, we obtain a O(log2 n)
depth, Õ(n) work PRAM algorithm.

Below we present the full algorithm for general trees. For brevity, we present computing the capacity
of the min-cut; the actual cut may be found by storing the argmin for each min taken in the recurrence
relation. We reuse the notation from the algorithm for O(log n) depth, with S denoting the side of the
cut containing s and ws

u, w
t
u denoting the capacity of the (u, s) or (u, t) edge, respectively, and 0 if no

such edge exists.

Min Cut on Trees Subroutine
Inputs: Tree T with root r, super-source s 62 T and super-sink t 62 T , both connected arbitrarily to T .

Goal: For T 0 a subtree of T , A ✓ T 0 a set of tracked vertices and S ✓ A, recursively compute
cut(T 0,A,S), which is the capacity of a s-t min-cut (S, S̄) on T 0 [ {s, t} such that S [ {s} ✓ S and
(A \ S) [ {t} ✓ S̄.

Output: cut(T, ;, ;) as the s-t min-cut capacity.

Computing cut(T 0,A,S):
If the depth of T 0 is at most 10 log n, run the algorithm of Lemma D.1 on T 0 [ {s, t}, with Fs = S and
Ft = A \ S (and T 0 rooted arbitrarily).
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Otherwise, with T 0 rooted at any tracked vertex when |A| 6= ; and arbitrarily otherwise:

1. Compute a split vertex q:

(a) If |A|  2, set q to be a tree separator node of T 0, using the algorithm of Lemma A.2.

(b) If |A| = 3, set q as the LCA of 2 non-root tracked vertices, using the algorithm of Theorem
A.5.

2. Compute the connected components of T 0\{q}, and for each u 2 �(q)a define Cu as the component
containing u.

3. For each u 2 �(q), update tracked vertices Au = (A \ Cu) [ {u} and Su = S \Au.

4. Compute the min-cut capacity conditioned on q 2 S:

cutq2S = wt
q +

X

u2�(q)

min{wt
u + cut(Cu,Au,Su [ {u}), ws

u + cuq + cut(Cu,Au,Su)}

5. Similarly, compute the min-cut capacity conditioned on q 2 S̄:

cutq2S̄ = ws
q +

X

u2�(q)

min{wt
u + cuq + cut(Cu,Au,Su [ {u}), ws

u + cut(Cu,Au,Su)}

6. If q 62 A, return
cut(T 0,A,S) = min{cutq2S , cutq2S̄}

7. If q 2 A and q 2 S, return cut(T 0,A,S) = cutq2S .

8. If q 2 A and q 62 S, return cut(T 0,A,S) = cutq2S̄ .

a
�(q) is the set of neighbors of q in T

0

Lemma D.2. (Min Cut on Trees) The algorithm Min Cut on Trees computes the s-t min-cut capacity

of a tree T with the addition of a super-source s and super-sink t in O(log2 n) depth and Õ(n) work.

Proof. To bound the depth and work of the algorithm, we first show that the number of tracked vertices
in any subproblem is always at most 3. The algorithm begins with a call that has no tracked vertices,
and each recursive call adds at most one additional tracked vertex to each subproblem. So, to bound the
number of tracked vertices, it su�ces to show that if a subproblem has 3 tracked vertices, the number
of tracked vertices in each recursive call is at most 2. Consider the call cut(T 0,A,S) with |A| = 3, and
let q be the LCA computed in Line 1. By the definition of an LCA and the fact that we always root
T 0 at a tracked vertex, it follows that the path in T 0 between any 2 tracked vertices passes through q.
As such, after removing q from T 0, each element of A is in a separate connected component. Thus, the
tracked sets used in the recursive calls each have at most 2 elements: at most one element from A, and
one neighbor of q.

We claim there are at most O(log n) recursive levels of the algorithm, where recursive level i consists
of all subproblems resulting from i consecutive recursive calls to cut(T, ;, ;). Consider a subproblem to
compute cut(T 0,A,S) with at most 2 tracked vertices (i.e. |A|  2). In this case, we recurse on subtrees
which are connected components after the removal of a tree separator node. By the definition of a tree
separator node (Definition 5.3), this removal results in subtrees which are at most half the size of T 0.
So, there can be at most O(log n) such steps before the recursion terminates. Now, suppose |A| = 3 and
the subproblem cut(T 0,A,S) occurs at level i. The resulting subproblems in level i + 1 have at most 2
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tracked vertices, and so in level i+2, the size of the resulting subtrees is at most half the size of T 0. Thus,
there are O(log n) total levels. Each recursive level can be processed in parallel, in O(log n) depth (to
compute connected components, subtree sums, and combining recursive calls), making the total depth of
the algorithm O(log2 n).

The subtrees (i.e. all distinct T 0 from subproblems) at each level of recursion form a partition of
the nodes of T . Moreover, by rooting trees and computing the split vertex q deterministically, every
subproblem on T 0 has the same set of tracked vertices. So, since there are at most 3 tracked vertices in
any subproblem, there are at most 8 possible sets S ✓ A, and thus at most 8 subproblems using any one
subtree. The work to compute a k node subtree, outside of recursion, is at most O(k). So, the total work
at each level is O(n), and as there are O(log n) levels, the complete work is Õ(n).

For subtrees with depth O(log n), the correctness follows from Lemma D.1. For trees with larger
depth, we must have either q 2 S or q 2 S̄, where q is the split vertex computed in Line 1. By induction
and the setting of the edge weights ws

u, w
t
u, cutq2S is the min-cut with the restrictions on A imposed

by S when q 2 S (and similarly for cutq2S̄). So, as we take the min of cutq2S , cutq2S̄ when q 62 A,
cut(T 0,A,S) is the correct min-cut capacity.

E Ensuring Polynomial Aspect Ratio.

In this section, we give a O(log n) depth, Õ(m) work PRAM algorithm which, given s, t and " converts
any capacitated graph G into one with with poly(n/") aspect ratio that preserves the s-t maximum flow
up to a (1� ") factor.

Algorithm E.1. lower-aspect-ratio(G, s, t, ")
Input: Graph G with arbitrary capacities, s, t 2 V (G), error parameter ".
Output: Graph G0 with poly(n/") aspect ratio. Moreover, with f the max s-t flow value in G and f 0

the max s-t flow value in G0, (1� ")f  f 0  f .
Procedure:

1: Initialize G0  G.
2: Let T be a maximum spanning tree of G, computed using the algorithm of [60].
3: Compute c0 as the capacity of the lowest capacity edge on the unique s-t path in T .
4: For any edge e in G0 with capacity larger than mc0, reduce its capacity to mc0.
5: For any edge e in G0 with capacity less than "c0/m, delete e.
6: return G0

The algorithm of [60] has O(log n) depth and O(m) work and finding all edges on the s-t path in T
can be done in O(log n) depth and Õ(m) work using subtree sums, so computing c0 and modifying the
capacities can be done in O(log n) depth and Õ(m) work. Moreover, by construction, the modified graph
G0 has aspect ratio m2/" = poly(n/") and no capacities have been increased, so it remains to show that
the maximum s-t flow does not reduce by more than a (1� ") factor.

For this, we first need the following simple lemma about maximum spanning trees.

Lemma E.1. Let G be a capacitated graph and let T be a maximum capacity spanning tree of G. Let P
be the unique s-t path in T (which is also a path in G), and let P 0

be any other s-t path in G. Then,

min
e2P

ce � min
e2P 0

ce

where ce is the capacity of edge e.

Proof. Let c0 = mine2P ce, and suppose for contradiction there exists in G a s-t path P 0 such that for
all e 2 P 0, ce > c0. Let e0 be an edge on P with capacity c0. Removing e0 from T results in exactly
two connected components S and V \ S (with s 2 S and t 2 V \ S). Since P 0 is an s-t path, it must
contain an edge h = (u, v) such that u 2 S and v 2 V \ S, so removing e0 from T while adding h results
in a spanning tree T 0. But ch > ce0 by assumption, and so the capacity of T 0 is greater than that of T ,
contradicting that T is a maximum spanning tree of G.
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This then allows us to show the procedure decreases the maximum flow by at most a " factor.

Lemma E.2. Let G be a capacitated graph and let G0 = lower-aspect-ratio(G, s, t, "). Suppose it

possible to route f units of flow from s to t in G. Then, it is possible to route (1� ")f units of flow from

s to t in G0
.

Proof. Let T be a maximum spanning tree of G, and let c0 be the capacity of the minimum capacity edge
on the unique s-t path in T . By Lemma E.1, all other s-t paths in G have minimum capacity at most c0;
thus, every s-t path can support at most c0 units of flow. There can be at most m disjoint paths from
s to t, and so it follows that f  c0m. Thus, reducing the capacity of all edges with capacity greater
than mc0 to mc0 does not a↵ect the maximum flow. Similarly, clearly f � c0, as there is a s-t path with
minimum capacity c0. Thus, as the sum flow on edges of capacity at most "c0/m is at most "c0, deleting
edges of capacity at most "c0/m reduces the flow by at most "f . It then follows that the max flow in G0

must have value at least (1� ")f .
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