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Abstract

Differential privacy (DP) ensures that training a
machine learning model does not leak private data.
In practice, we may have access to auxiliary pub-
lic data that is free of privacy concerns. In this
work, we assume access to a given amount of pub-
lic data and settle the following fundamental open
questions: 1. What is the optimal (worst-case) er-
ror of a DP model trained over a private data set
while having access to side public data? 2. How
can we harness public data to improve DP model
training in practice? We consider these questions
in both the local and central models of pure and
approximate DP. To answer the first question, we
prove tight (up to log factors) lower and upper
bounds that characterize the optimal error rates
of three fundamental problems: mean estimation,
empirical risk minimization, and stochastic con-
vex optimization. We show that the optimal error
rates can be attained (up to log factors) by ei-
ther discarding private data and training a public
model, or treating public data like it is private and
using an optimal DP algorithm. To address the
second question, we develop novel algorithms that
are “even more optimal” (i.e. better constants)
than the asymptotically optimal approaches de-
scribed above. For local DP mean estimation,
our algorithm is optimal including constants. Em-
pirically, our algorithms show benefits over the
state-of-the-art.

1. Introduction
Training machine learning models on people’s data can leak
sensitive information, violating their privacy (Fredrikson
et al., 2015; Shokri et al., 2017; Carlini et al., 2021). Dif-
ferential Privacy (DP) prevents such leaks by providing
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a rigorous guarantee that no attacker can learn too much
about any individual’s data (Dwork et al., 2006). DP has
been successfully deployed by various companies (Apple,
2016; Thakurta et al., 2017; Úlfar Erlingsson et al., 2014;
Ding et al., 2017), and by government agencies (U.S. Cen-
sus Bureau, 2020). However, a major hindrance to more
widespread adoption of DP is that DP-trained models are
less accurate than their non-private counterparts.

Leveraging public data—that is free of privacy concerns—
appears to be a promising and practically important avenue
for closing the accuracy gap between DP and non-private
models (Papernot et al., 2017; Avent et al., 2017; Feldman
et al., 2018; Amid et al., 2022). For example, large language
models (LLMs) are often pre-trained on public data and
fine-tuned on private data (Kerrigan et al., 2020b; Li et al.,
2021b; Yu et al., 2021a). Public data may be provided by
people who volunteer (e.g. product developers or early
testers) (Church, 2005; Feldman et al., 2018) or sell their
data. Data that is generated synthetically (Torkzadehmahani
et al., 2019; Vietri et al., 2020; Boedihardjo et al., 2022; He
et al., 2023) or released through a legal process (Klimt &
Yang, 2004) may serve as additional sources of public data.

The power and limitations of public data vary depending on
the particular learning problem and loss function/hypothesis
class. To calibrate the effectiveness of a public-data-assisted
DP algorithm, we can compare it against two naı̈ve base-
lines: 1) “throw away” the private data and run an optimal
non-private algorithm on the public data; 2) use an optimal
DP algorithm on the full data set, treating the public data
like it is private data. Some works have identified problems
where significant improvements over the naı̈ve approaches
are possible. For example, (Alon et al., 2019) show that for
agnostic PAC learning with a hypothesis class of finite VC-
dimension, it is possible to achieve asymptotically smaller
sample complexity than the naı̈ve baselines. (Bassily et al.,
2020) show a similar result for private query release with
finite VC-dimension. On the other hand, for certain prob-
lems it is impossible to do better than the naı̈ve approaches:
e.g., releasing binary decision stumps (Bassily et al., 2020).
Understanding what improvements, if any, over the naı̈ve ap-
proaches are possible for other problems (e.g. optimization)
and function classes is interesting.

This work considers DP model training with side access to
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public data: given a loss function, find model parameters
to approximately minimize the expected training or test
loss. We consider empirical risk minimization (ERM) and
stochastic convex optimization (SCO), which correspond to
minimizing training loss and expected test loss, respectively.
For population mean estimation and SCO, we assume access
to in-distribution public data. For ERM, the public data may
be out-of-distribution. We answer a fundamental question:

Question 1. What is the optimal (minimax) error of
DP model training with side access to public data? Is it
possible to achieve smaller error than the naı̈ve baselines?

Contribution 1: Limitations of Public Data for DP Model
Training To answer Question 1, we characterize the opti-
mal minimax error (up to constants or logarithms) of semi-
DP (Beimel et al., 2013; Alon et al., 2019) algorithms—
algorithms that are DP w.r.t. private data, but not necessarily
DP w.r.t. public data (Definition 3). We provide tight lower
and upper bounds for three fundamental training problems:
mean estimation of bounded random variables1, ERM and
SCO with Lipschitz convex functions.2 We consider both
the local (Kasiviswanathan et al., 2011; Duchi et al., 2013)
and central (Dwork et al., 2006) models of pure (δ “ 0)
and approximate (δ ą 0) semi-DP. We prove nine sets of
lower and upper bounds: see Figs. 1, 2 and 7. Our lower
bounds imply that it is impossible to obtain asymptotic im-
provements over the naı̈ve approaches for semi-DP model
training in the worst case.

In light of these negative results, it is natural to wonder
whether/how one can harness public data for more effective
DP model training. This leads us to Question 2:

Question 2. Can we provide improved performance
(e.g. theoretically smaller error and/or superior empirical
results) over the naı̈ve baselines?

Some prior works have tackled Question 2 by imposing
additional assumptions and/or shrinking the problem class.
For example, (Amid et al., 2022) shows that under certain
distributional assumptions, public data permits benefits over
DP-SGD in linear regression. Also, (Zhou et al., 2020;
Kairouz et al., 2021) show that by imposing certain “low-
rank subspace” assumptions on the gradients in DP-SGD,
public data can help attain dimension-independent rates
for DP ERM. In contrast, we consider Question 2 without
imposing any additional assumptions and without shrinking
the loss function/data distribution class.

Contribution 2: Power of Public Data for DP Model
Training To address Question 2, we develop novel (cen-
tral and local) semi-DP algorithms that add less noise than

1Our ε-semi-DP analysis extends to unbounded/heavy-tailed
distributions with bounded k-th order moment.

2Our results for ERM also cover non-convex loss functions.

would be necessary to privatize the full data set (including
public). By doing so, we can achieve optimal (worst-case)
error bounds with significantly improved constants over the
asymptotically optimal naı̈ve algorithms. Our local semi-DP
mean estimation algorithm is optimal including constants.

We complement our theoretical analyses with extensive nu-
merical experiments. Our experiments show that our al-
gorithms outperform the naı̈ve approaches, even when the
optimal DP algorithm is pre-trained on the public data. For
example, our Algorithm 1 achieves a significant improve-
ment in CIFAR-10 image classification tasks, reducing test
error by 8´9% for logistic regression and by at most 18.9%
for Wide-ResNet, compared with the naı̈ve approaches. We
also identify a linear regression problem in which DP-SGD
diverges, but our algorithm converges with small error us-
ing npub “ 0.1n public samples: see Figure 6. Moreover,
our algorithm consistently outperforms the state-of-the-art
public-data-assisted mirror-descent (PDA-MD) of (Amid
et al., 2022).

1.1. Techniques and Challenges

Lower bounds: We develop and utilize a variety of tech-
niques to prove our lower bounds.

To prove our central pε, δq-semi-DP SCO lower bound
in Theorem 12, we build upon the techniques of Dwork
et al. (2015); Bassily et al. (2020). A key challenge is find-
ing a distribution whose mean has small norm and proving
that this distribution is still hard enough for any semi-DP
algorithm to estimate in ℓ2-distance. To accomplish this, we
make three main innovations: First, we modify the tracing
attack of (Dwork et al., 2015) by incorporating more aggres-
sive truncation; this is used to infer membership of many
individuals in the data set, even under weak ℓ2-accuracy
guarantees. Second, we construct a novel distribution in
which the prior (mean) is drawn from a shorter interval
than the posterior (data). This innovation is crucial for ob-
taining our tight bounds, but also complicates the analysis.
Thus, we provide a novel generalization of the fingerprint-
ing lemma (Bun et al., 2014; 2017; Kamath et al., 2022b)
that permits analysis of our construction. We provide more
details on these proofs in Appendix E.

For our central pure ε-semi-DP population lower bounds in
Theorems 32 and 42, we develop a Semi-DP Fano’s method
(Theorem 33). In combination with the reduction from
estimation to testing, Theorem 33 generalizes DP Fano’s
method (Acharya et al., 2021) and strengthens classical
Fano’s method (Yu, 1997). We build on the tools of Barber
& Duchi (2014) in our proof of Theorem 33.

Our ERM lower bound (Theorem 10) uses a novel semi-DP
packing argument: we construct 2d{2 “hard” data sets with
well-separated sample means, and use the group privacy
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Learning 
problem Semi-DP error 

When is semi-DP 
error less than DP 

error?

Mean 
Estimation 
(Pop. MSE)

(Theorem 4)

or

SCO 
(Excess 

pop. risk)
(Theorem 12)

or

Learning 
problem

Semi-LDP error When is semi-LDP 
error less than LDP? 

error?

Mean 
Estimation 
(Pop. MSE)

(Theorem 14 & Remark 15)

or

SCO 
(Excess 

pop. risk)
(Theorem 18 & Remark 15)

or

Figure 1. Minimax optimal error rates for central pε, δq-semi-DP (up to logs) and (local) pε, δq-semi-LDP. n “ npriv ` npub, where npriv

(npub) denotes the number of private (public) samples. Dependence on δ, range and Lipschitz parameters, constraint set diameter omitted.
See Appendix for strongly convex SCO results.

Learning 
problem Semi-DP error 

When is semi-DP 
error less than DP?

error?

ERM 
(Excess 

emp. Risk)
(Theorem  10)

Figure 2. Minimax optimal error rates for ε-semi-DP ERM. See
Table 7 in Appendix for more ε-semi-(L)DP results (e.g. SCO).

property of DP to show that any semi-DP algorithm must
make large error on at least one of these data sets. Such
arguments have long been used to prove pure DP lower
bounds (Hardt & Talwar, 2010; Bassily et al., 2014). How-
ever, to the best of our knowledge, our proof is the first to
extend packing arguments to the semi-DP setting. The main
challenge is in carefully constructing the private and public
data sets so as to force semi-DP A to make large error, even
when A has access to public data.

For our local semi-DP lower bounds (Theorems 14 and 18),
we build on the sophisticated techniques of Duchi & Rogers
(2019). The main idea of our proofs is to combine Assouad’s
method (Duchi, 2021) with bounds on the mutual informa-
tion between the input and output of semi-DP algorithms.

Algorithms: We develop novel algorithms to obtain
smaller error (including constants) than the asymptotically
optimal naı̈ve algorithms. Our algorithms are simple. For
example, we propose a central pε, δq-semi-DP estimator that
puts different weights on the private and public samples
and adds (Gaussian) noise that is calibrated to the private
weight. We choose the weights depending on the privacy
level, dimension, and number of public samples to trade off
smaller sensitivity (less noise) with larger variance on the
public data. An optimal choice of weights minimizes the
variance of our unbiased estimator, leading to smaller error
than the optimal DP estimator. Our local semi-DP algorithm
simply applies the optimal local randomizer of Bhowmick
et al. (2018) only to the private samples, and averages the

noisy private data with the raw public data. For SCO, we
develop semi-DP stochastic gradient methods that use our
mean estimation algorithms to estimate the gradient of the
loss function in each iteration of training.

1.2. Preliminaries and Notation

Let } ¨ } be the ℓ2 norm and X denote a data universe. Func-
tion g : W Ñ R is µ-strongly convex if gpαw ` p1 ´

αqw1q ď αgpwq ` p1´ αqgpw1q ´
αp1´αqµ

2 }w ´ w1}2 for
all α P r0, 1s and all w,w1 P W . If µ “ 0, we say g
is convex. Function f : W ˆ X Ñ R is uniformly L-
Lipschitz in w if supxPX |fpw, xq´fpw1, xq| ď L}w´w1}.
B “ tx P Rd|}x} ď 1u denotes the unit ℓ2-ball in Rd.

Definition 1 (Differential Privacy (Dwork et al., 2006)). Let
ε ě 0, δ P r0, 1q. Randomized algorithm A : Xn Ñ W
is pε, δq-differentially private (DP) if for all X,X 1 P Xn

differing in one sample and all measurable subsets S Ď W ,
we have PpApXq P Sq ď eεPpApX 1q P Sq ` δ.

Definition 1 prevents attackers from learning much more
about an individual’s data than if the data had not been used
for training. If δ “ 0, we write ε-DP and say “pure” DP.

Definition 2 (Zero-Concentrated Differential Privacy
(zCDP) (Bun & Steinke, 2016)). A randomized algorithm
A : Xn Ñ W satisfies ρ-zero-concentrated differential pri-
vacy (ρ-zCDP) if for all pairs of adjacent data sets X,X 1 P

Xn and all α P p1,8q, we have DαpApXq||ApX 1qq ď ρα,
where DαpApXq||ApX 1qq is the α-Rényi divergence3 be-
tween the distributions of ApXq and ApX 1q.

zCDP is weaker than ε-DP, but stronger than pε, δq-DP: see
Proposition 20 in Appendix B.

We now define semi-DP (Beimel et al., 2013; Alon et al.,
3For distributions P and Q with probability density/mass func-

tions p and q, DαpP ||Qq :“ 1
α´1

ln
`ş

ppxqαqpxq1´αdx
˘

(Rényi,
1961).
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2019), a relaxation of DP that permits A to violate the
privacy of the public data:

Definition 3 (Semi-Differential Privacy (Beimel et al., 2013;
Alon et al., 2019)). Let n “ npub ` npriv. Consider an al-
gorithm A : Xn Ñ W that takes data X “ pXpriv, Xpubq P

Xnpriv ˆ Xnpub as input. A is (centrally) pε, δq-semi-DP if
Ap¨, Xpubq is pε, δq-DP for all Xpub P Xnpub .

We define ρ-semi-zCDP analogously. We define semi-LDP
in Section 3, which is a similar relaxation of local DP
(LDP) (Kasiviswanathan et al., 2011; Duchi et al., 2013). To
distinguish Definition 3 from semi-LDP, we sometimes refer
to algorithms that satisfy Definition 3 as centrally semi-DP.

1.3. Roadmap

We study the central model of semi-DP in Section 2. We
give tight error bounds for mean estimation in Section 2.1
and Appendix E.1.2, and a novel algorithm with better con-
stants than the asymptotically optimal algorithms in Sec-
tion 2.2. In Sections 2.3 and 2.4, we characterize the op-
timal excess risk of semi-DP ERM and SCO respectively.
We give an improved semi-DP algorithm for SCO in Sec-
tion 2.5. In Section 3, we turn to the local model of semi-DP.
We characterize the optimal error rates for semi-LDP mean
estimation in Section 3.1 and SCO in Section 3.4. We give
semi-LDP algorithms with improved error in Sections 3.2
and 3.5. We experimentally evaluate our algorithms in Sec-
tion 4 and Appendix G. In Appendix A, we discuss related
works in more detail. Due to the page limit, some results
and all proofs are presented in the Appendix.

2. Optimal Centrally Private Model Training
with Public Data

2.1. Optimal Semi-DP Mean Estimation

In this section, we determine the minimax optimal semi-DP
error rates for estimating the mean of a bounded distribution.

Consider the following problem: given npriv private sam-
ples Xpriv Ď B and npub public samples Xpub Ď B, drawn
i.i.d. from an unknown distribution P on B, estimate the
population mean ApXq « Ex„P rxs subject to the con-
straint that A satisfies semi-DP. Defining n “ npriv ` npub,
we will characterize the minimax squared error of popula-
tion mean estimation under pε, δq-semi-DP:

Mpoppε, δ, npriv, n, dq :“ inf
APAε,δpBq

sup
P

EA,X„Pn

“

}ApXq ´ Ex„P rxs}
2
‰

, (1)

where Aε,δpBq denotes the set of all pε, δq-semi-DP estima-
tors A : Bn Ñ B, and |Xpriv| “ npriv.

Theorem 4. Let ε À 1{ logpndq, δ ! 1{npriv. Then, there

is a constant C ą 0 such that

ℓpd, nqmin

"

1

npub
,

d

n2ε2
`

1

n

*

ď Mpoppϵ, δ, npriv, n, dq

ď Cmin

"

1

npub
,
d lnp1{δq

n2ε2
`

1

n

*

, (2)

where 1{ℓpd, nq is logarithmic in d and n.

Appendix E.1.2 has the proof of Theorem 4 and the pure
ε-semi-DP result.

Remark 5. Technically, our lower bound proof requires us
to assume that A “ pA1, . . . ,Adq is symmetric, meaning
Aj “ Al for all j, l P rds. This is a very reasonable as-
sumption: to our knowledge, every algorithm that has been
proposed in the literature (for ℓ2 geometry) is symmetric.
Further, the concurrent work of Ullah et al. (2024) gives an
alternative proof that eliminates this assumption.4

Naı̈ve algorithms attain the optimal rates: the throw-away
estimator ApXq “ 1

npub

ř

xPXpub
x has MSE Op1{npubq, and

the DP (hence semi-DP) Gaussian mechanism has MSE
rOpd{pεnq2 ` 1{nq. In the next subsection, we show that
these two algorithms have suboptimal constants: we provide
improved (smaller error) estimators.

2.2. An “Even More Optimal” Semi-DP Algorithm for
Mean Estimation

Before presenting our improved semi-DP algorithms, we
precisely describe the worst-case error of the optimal naı̈ve
algorithms discussed in the preceding subsection. We will
consider ρ-semi-zCDP, which facilitates a sharp character-
ization of the privacy of the Gaussian mechanism. Note
that the lower bound in (2) also holds for semi-zCDP, since
ε2{ lnp1{δq-zCDP implies pOpεq, δq-DP, by Proposition 20.

Definition 6. Let PpB, V q be the collection of all dis-
tributions P on Rd such that for any x „ P , we have
Varpxq “ V 2and }x} ď B, P -almost surely.

Lemma 7. The error of the ρ-semi-zCDP throw-away algo-
rithm ApXq “ 1

npub

ř

xPXpub
x is

sup
PPPpB,V q

EX„Pn

“

}ApXq ´ Ex„P rxs}
2
‰

“
V 2

npub
.

Further, let X̄ be the average of the public and private
samples. The minimax error of the ρ-zCDP Gaussian mech-

4The work of Ullah et al. (2024) appeared on arXiv March 6,
2024. The first version of our paper appeared on arXiv on June
26, 2023, while v2 added the d-dimensional pε, δq-semi-DP lower
bounds (Theorem 4 and Theorem 12) and appeared on February
14, 2024.
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anism GpXq “ X̄ `N
`

0, σ2Id
˘

is

inf
ρ-zCDP G

sup
PPPpB,V q

EG,X„Pn

“

}GpXq ´ Ex„P rxs}
2
‰

“
2dB2

ρn2
`

V 2

n
.

Intuitively, it seems like the naı̈ve estimators in Lemma 7 do
not harness the public and private data in the most effective
way possible, despite being optimal up to constants: Throw-
away fails to utilize the private data at all, while the Gaussian
mechanism gives equal weight to Xpriv and Xpub (regardless
of ρ, d, npriv), and provides unnecessary privacy for Xpub.
We now present a ρ-semi-zCDP estimator that is “even more
optimal” than the naı̈ve estimators, meaning our estimator
has smaller worst-case error (accounting for constants). We
define the family of Weighted-Gaussian estimators:

ArpXq :“
ÿ

xPXpriv

rx`
ÿ

xPXpub

ˆ

1´ nprivr

npub

˙

x

`N
ˆ

0,
2B2r2

ρ
Id

˙

, (3)

for r P r0, 1{nprivs. This estimator can recover both the
throw-away and standard Gaussian mechanisms by choos-
ing r “ 0 or r “ 1{n. Intuitively, as ρ{d shrinks, the
accuracy cost of adding privacy noise grows, so we should
choose smaller r to reduce the sensitivity of Ar. On the
other hand, smaller r increases the variance of Ar on Xpub.
By choosing r optimally (depending on ρ, d, npriv, B, V ),
Ar achieves smaller MSE than both throw-away and the
Gaussian mechanism:5

Proposition 8. Ar is ρ-semi-zCDP, and Dr ą 0 such that

sup
PPPpB,V q

EX„Pn

“

}ArpXq ´ Ex„P rxs}
2
‰

ă min

ˆ

V 2

npub
,
2dB2

ρn2
`

V 2

n

˙

. (4)

Further, if V 2

npub
ď 2dB2

ρn2 , then the advantage of Ar is

sup
PPPpB,V q

EX„Pn

“

}ArpXq ´ Ex„P rxs}
2
‰

ď

ˆ

q

q ` s2

˙

min

ˆ

V 2

npub
,
2dB2

ρn2
`

V 2

n

˙

, (5)

where q “ 2`
nprivρV

2

dB2 and s “
V npriv

?
ρ

B
?

dnpub
.

When V 2

npub
ď 2dB2

ρn2 , the throw-away estimator outperforms
the DP Gaussian mechanism and our Weighted Gaussian

5We find the optimal choice of r˚ explicitly in the proof of
Proposition 8 in Appendix E.1.3.

estimator outperforms both of these estimators by a factor of
at least q{pq`s2q. Also, q{pq`s2q P r1{2, 1s for allowable
s, q. For example, if n “ 10, 000, d “ n{100, B “ 25V ,
ρ “ 0.1, and npub “ 0.008n, then the MSE of our Weighted
Gaussian Ar is smaller than the MSE of throw-away and
standard Gaussian by a multiplicative factor of « 1.98.

Figures 12-14 in Appendix G.1.2 show that our estima-
tor outperforms both naı̈ve baselines for d-dimensional
Bernoulli data with ρ “ 0.5 (regardless of whether or not
throw-away outperforms the Gaussian mechanism).

For pure ε-semi-DP, using Laplace noise instead of Gaus-
sian noise in (3) yields an estimator with smaller error than
the ε-DP Laplace mechanism and throw-away.

2.3. Optimal Semi-DP Empirical Risk Minimization

For a given (fixed) X “ pXpriv, Xpubq P Xn and parameter
domain W , consider the ERM problem:

min
wPW

˜

pFXpwq :“
1

n

n
ÿ

j“1

fpw, xjq

¸

,

where fp¨, xq is a loss function and npriv “ |Xpriv| samples
are private. We discuss practical applications of semi-DP
ERM beyond ML in Appendix E.2. We measure the (in-
sample) performance of a training algorithm A : Xn Ñ W
on the data set X by its excess empirical risk

EA pFXpApXqq ´ pF˚
X “ EA pFXpApXqq ´ min

w1PW
pFXpw1q.

Definition 9. Let Fµ,L,D be the set of all functions f :
W ˆX Ñ R that are uniformly L-Lipschitz and µ-strongly
convex (µ ě 0) in w for some convex compact W Ă Rd

with ℓ2-diameter bounded by D ą 0 and some set X .

Let Aε contain all ε-semi-DP algorithms A : Xn Ñ W for
some X ,W . Define the minimax excess empirical risk of
ε-semi-DP (strongly) convex ERM as

RERMpε, npriv, n, d, L,D, µq (6)

:“ inf
APAε

sup
fPFµ,L,D

sup
tXPXnprivˆXnpubu

EA pFXpApXqq ´ pF˚
X .

Theorem 10. There are absolute constants 0 ă c ď C s.t.

cLDmin

"

npriv

n
,
d

nε

*

ď RERMpε, npriv, n, d, L,D, µ “ 0q

ď CLDmin

"

npriv

n
,
d

nε

*

. (7)

See Appendix E.2 for the µ ą 0 result and proofs.
Remark 11. The same minimax risk bound (7) holds up
to a logarithmic factor if we replace Fµ“0,L,D by set of
all Lipschitz non-convex loss functions in the definition (6).
However, the optimal semi-DP algorithms are inefficient for
non-convex loss functions. See Appendix E.2 for details.
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2.4. Optimal Semi-DP Stochastic Convex Optimization

In stochastic convex optimization (SCO), we are given n
i.i.d. samples from an unknown distribution X „ Pn

(with npriv of them being private), and aim to approxi-
mately minimize the expected population loss F pwq :“
Ex„P rfpw, xqs. We measure the quality of a learner A by
its excess population risk

EA,X„PnF pApXqq ´ F˚

:“ EA,X„PnEx„P rfpApXq, xqs´min
w1PW

Ex„P fpw
1, xq.

Denote the minimax optimal semi-DP excess risk by

RSCOpε, δ, npriv, n, d, L,D, µq

:“ inf
APAε,δ

sup
fPFµ,L,D

sup
P

EA,X„PnF pApXqq ´ F˚, (8)

where Aε,δ contains all pε, δq-semi-DP algorithms A :
Xn Ñ W for some X ,W , and |Xpriv| “ npriv.

Theorem 12. Let ε À 1{ logpndq and δ ! 1{n. Then, there
is a constant C ą 0 such that

ℓpd, nqLDmin

"

1
?
npub

,

?
d

nε
`

1
?
n

*

ď RSCOpε, δ, npriv, n, d, L,D, µ “ 0q

ď CLDmin

#

1
?
npub

,

a

d lnp1{δq

nε
`

1
?
n

+

,

where 1{ℓpd, nq is logarithmic in d and n.

We provide the δ “ 0 and µ-strongly convex results (µ ą

0), and proofs in Appendix E.3. Remark 5 also applies
to Theorem 12

Let us compare the semi-DP bound for SCO in Theorem 12
with the ERM bound in Theorem 10 when d “ 1 “ L “

D. Depending on the values of ε and npriv, the minimax
excess population risk (“test loss”) of SCO may either be
larger or smaller than the excess empirical risk (“training
loss”) of ERM. For example, if ε « 1, then the semi-DP
excess empirical risk Θp1{nq is smaller than the excess
population risk Θp1{

?
nq. On the other hand, suppose ε «

1{n and npriv « n2{3: then the semi-DP excess empirical
risk Θp1{n1{3q is larger than the excess population risk
Θp1{

?
nq. This is surprising: for both non-private learning

and DP learning (with npub “ 0), the optimal error of ERM
is never larger than that of SCO. While it may seem counter-
intuitive that minimizing the training loss can be harder than
minimizing test loss, there is a natural explanation: For SCO,
a small amount of public data gives us free information
about the private data, since X „ Pn is i.i.d. by assumption.
By contrast, for ERM, the public data does not give us any
information about the private data, since X is not i.i.d.

2.5. Semi-DP SCO with an “Even More Optimal”
Gradient Estimator

Our Algorithm 1 is a noisy stochastic gradient method that
uses the “even more optimal” Weighted-Gaussian estima-
tor (33) to estimate ∇F pwtq in iteration t.6 In Algorithm 1,
clipCpxq :“ argminyPRd,}y}ďC }x ´ y} is the Euclidean
projection onto the centered ℓ2-ball of radius C.

We give privacy and excess risk guarantees for Algorithm 1
and describe an accelerated variant of Algorithm 1 in Ap-
pendix E.3.1. The excess risk of our algorithm is smaller
than the state-of-the-art excess risk for a linear-time DP
algorithm whose privacy analysis does not require convex-
ity (Lowy & Razaviyayn, 2023b). We empirically evaluate
our algorithm in Section 4.

Algorithm 1 Semi-DP-SGD via Weighted-Gaussian Gradi-
ent Estimation

1: Input: T P N, clip threshold C ą 0, stepsizes
tηtutPrT s, batch sizes Kpriv P rnprivs, Kpub P rnpubs,
weight parameter α P r0, 1s, noise parameter σ2 ą 0.

2: Initialize w0 P W .
3: for t P t0, 1, ¨ ¨ ¨ , T ´ 1u do
4: Draw random batch of Kpriv private samples Bpriv

t .
5: Draw random batch of Kpub public samples Bpub

t .
6: Draw privacy noise vt „ N

`

0, σ2Id
˘

.

7: rgt Ð α
”

1
Kpriv

ř

xPBpriv
t

clipCp∇fpwt, xqq ` vt

ı

`

1´α
Kpub

ř

xPBpub
t

∇fpwt, xq.
8: Update wt`1 :“ ΠW rwt ´ ηtrgts.
9: end for

10: Output: wT or an average of the iterates twtutPrT s.

3. Optimal Locally Private Model Training
with Public Data

We now turn to a stronger privacy notion that we refer to
as semi-local DP (semi-LDP). Semi-LDP guarantees pri-
vacy for each private xi, without requiring person i to trust
others (e.g. central server). Semi-LDP generalizes LDP (Ka-
siviswanathan et al., 2011; Duchi et al., 2013), which has
been deployed in industry (Apple, 2016; Úlfar Erlingsson
et al., 2014; Ding et al., 2017).

Following Duchi & Rogers (2019), we permit algorithms
to be fully interactive: algorithms may adaptively query the
same person i multiple times over the course of T com-
munication rounds. For example, n cell phone users send
messages to a server over T rounds, and message Zi,t P Z
sent by user i in round t can depend on the previous mes-
sages tZj,tujďn,t1ďt. Semi-LDP requires the messages

6In Algorithm 1, we re-parameterize by setting r “ α
Kpriv

for
α P r0, 1s.
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tZi,tutPrT s to be semi-DP:
Definition 13 (Semi-Local Differential Privacy). The T -
round interactive algorithm A is pε, δq-semi-LDP if the
transcript Z “ tZi,tuiďn,tďT is pε, δq-semi-DP: i.e. for all
Xpub P Xnpub , all adjacent Xpriv „ X 1

priv and all S Ă ZnT ,
PpZ P S|X “ pXpriv, Xpubqq ď eεPpZ P S|X “

pX 1
priv, Xpubqq ` δ.

Definition 13 is stronger than Definition 3, since the latter
only requires the final output of A to be semi-DP.

3.1. Optimal Semi-LDP Mean Estimation

We will characterize the minimax squared error of ε-semi-
LDP d-dimensional mean estimation:

Mloc
poppε, npriv, n, dq

:“ inf
Aloc

ε pBq
sup
P

EA,X„Pn

“

}ApXq ´ Ex„P rxs}
2
‰

, (9)

where Aloc
ε pBq contains all (fully interactive) ε-semi-LDP

estimators A : Bn Ñ B, and |Xpriv| “ npriv.
Theorem 14. Let ε P p0, 1s. There are absolute constants
0 ă c ď C s.t.

cmin

"

1

npub
,

d

nε2

*

ď Mloc
poppε, npriv, n, dq

ď Cmin

"

1

npub
,

d

nε2

*

. (10)

Remark 15 (Approximate Semi-LDP). Theorem 14
still holds if we replace Aloc

ε in the definition of
Mloc

poppϵ, npriv, n, dq by the set of all pε, δq-semi-LDP esti-
mators A for which either δ ă 1{2 and A is “composi-
tional” (Duchi & Rogers, 2019) (e.g. sequentially interac-
tive (Duchi et al., 2013)) or δ ă 1{2d.

The upper bound in Theorem 14 is the minimum of the error
of the throw-away estimator and the optimal ε-LDP estima-
tor of Duchi et al. (2013). The LDP estimator of Duchi et al.
(2013) takes the form

ĂMDuchipXq “
1

n

n
ÿ

i“1

MDuchipxiq,

where MDuchipxiq samples a vector uniformly from a care-
fully chosen subset of B, depending on xi.

3.2. An “Even More Optimal” Semi-LDP Estimator

By applying MDuchi only to the private samples, we obtain
an ε-semi-LDP algorithm with smaller error than the asymp-
totically optimal ĂMDuchi. Define the Semi-LDP ASemi-Duchi:

ASemi-DuchipXq “
1

n

»

–

ÿ

xPXpriv

MDuchipxq `
ÿ

x1PXpub

x1

fi

fl .

(11)

Let P be a distribution on B with V 2 :“ E}x´Ex„P rxs}
2.

Lemma 16. Let c ą 0 such that Ex„P }MDuchipxq ´

Ex„P rxs}
2 “ cd

nε2 , so that EX„Pn}ĂMDuchipXq ´

Ex„P rxs}
2 “ cd

nε2 ` V 2

n . Then,

EX„Pn

”

}ASemi-DuchipXq ´ Ex„P rxs}
2
ı

“
npriv

n
¨
cd

nε2
`

npub

n
¨
V 2

n
.

The constant c in Lemma 16 that bounds the error of MDuchi
may depend on the distribution P . Lemma 16 shows that
given any P , the error of our semi-LDP estimator is smaller
than the error of ĂMDuchi. Quantitatively, the MSE of our
estimator is smaller than the MSE of ĂMDuchi by a factor of
npriv{n if the privacy noise error term is dominant (e.g. if
d " ε2q.

3.3. A Semi-LDP Estimator with Optimal Constants

In this subsection, we consider the task of estimating the
average of data X on the unit sphere Sd´1 Ă Rd. We give
a semi-LDP estimator that is truly optimal—i.e. our esti-
mator has the smallest MSE, including constants—among
a large class of unbiased semi-LDP estimators of X̄ . Our
semi-LDP estimator, Asemi-PrivU takes a similar shape to
rAsemi-Duchi, but uses PrivUnit (Bhowmick et al., 2018) in-

stead of MDuchi as the LDP randomizer in (11). We recall
PrivUnit in Algorithm 3 in Appendix F.

Proposition 17. Let R : Sd´1 Ñ Z be an ε-LDP
randomizer, Mpriv and Mpub be aggregation protocols, and
ApXq “ 1

n

“

MprivpRpx1q, . . . ,Rpxnprivqq `MpubpXpubq
‰

.
Assume E

“

MprivpRpx1q, ¨ ¨ ¨ ,Rpxnprivqq|Xpriv
‰

“
ř

xPXpriv
x and E rMpubpXpubq|Xprivs “

ř

xPXpub
x @X “

pXpriv, Xpubq P
`

Sd´1
˘n

Then,

sup
XPpSd´1q

n
EAsemi-PrivU

”

›

›Asemi-PrivUpXq ´ X̄
›

›

2
ı

ď sup
XPpSd´1q

n
EA}ApXq ´ X̄}2.

Proposition 17 is proved by extending the analysis of Asi
et al. (2022) to the semi-LDP setting.

3.4. Optimal Semi-LDP Stochastic Convex Optimization

We will characterize the minimax optimal excess population
risk of semi-LDP SCO

Rloc
SCOpε, npriv, n, d, L,D, µq

:“ inf
APAloc

ε

sup
fPFµ,L,D

sup
P

EA,X„PnF pApXqq ´ F˚, (12)
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where Aloc
ε denotes the set of all algorithms A : Xn Ñ W

that are ε-semi-LDP for some X and W , and exactly npriv
samples in X are private.

Theorem 18. Let ε P p0, 1s and hpε, npriv, n, d, L,Dq :“

LDmin
!

1
?
npub

,
b

d
nε2

)

. There are absolute constants c

and C with 0 ă c ď C, such that

c hpε, npriv, n, d, L,Dq ď Rloc
SCOpε, npriv, n, d, L,D, µ “ 0q

ď C hpε, npriv, n, d, L,Dq.

See Appendix F.2 for the µ ą 0 result and proofs. The first
term in the upper bound is achieved by throwing away Xpriv
and running SGD on Xpub (Nemirovski & Yudin, 1983).
The second term in the upper bound is achieved by the one-
pass LDP-SGD of Duchi et al. (2013). Remark 15 also
applies to Theorem 18.

3.5. “Even More Optimal” Semi-LDP SCO Algorithm

We give a semi-LDP algorithm, called Semi-LDP-SGD, with
smaller excess risk than the optimal LDP-SGD of Duchi
et al. (2013). Essentially, Semi-LDP-SGD runs as follows:
In each iteration t P rns, we draw a random sample xt P

X without replacement. If xt P Xpriv, update wt`1 “

ΠW rwt ´ ηMDuchi p∇fpwt, xtqqs; if xt P Xpub, instead
update wt`1 “ ΠW rwt ´ η∇fpwt, xtqs. See Algorithm 4
in Appendix F.2.1 for pseudocode.

Proposition 19. Let f P Fµ“0,L,D, let P be any distribu-
tion and ε ď d. Algorithm 4 is ε-semi-LDP. Further, there
is an absolute constant c such that the output ApXq “ w̄n

of Algorithm 4 satisfies

EA,X„PnrF pw̄nq ´ F˚s

ď c
LD
?
n
max

#

c

d

ε2

c

npriv

n
,

c

npub

n

+

. (13)

Thus, Algorithm 4 has smaller excess risk than LDP-SGD,
roughly by a factor of

a

npriv{n.

4. Numerical Experiments
In this section, we empirically evaluate the performance
of four different semi-DP algorithms: 1. Throw-away (i.e.
minimize the public loss). 2. DP-SGD (Abadi et al., 2016;
De et al., 2022). 3. PDA-MD (Amid et al., 2022), which is
the state-of-the-art semi-DP algorithm for training convex
models. 4. Our Algorithm 1. Unless otherwise noted, we
evaluate all algorithms with “warm start,” which means
finding a minimizer wpub of the public loss and initializing
training at wpub. The hyperparameters of each algorithm
were carefully tuned. See Appendix G for details on the
experimental setups and additional results.
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Figure 3. Test loss vs. npub{n. ε “ 2.
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Figure 4. Test loss vs. npub{n. ε “ 4.
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Figure 5. Test loss vs. npub{n. ε “ 4, without warm-
start.

Our Algorithm 1 achieves the smallest test loss among
the semi-DP baselines across different levels of ε (privacy)
and npub: Figures 3-4 show results for pε, δ “ 10´5q-semi-
DP linear regression with synthetic Gaussian data. In the
Appendix, we evaluate the algorithms in several other tasks:
e.g., logistic regression and Wide-ResNet: see Figures 15-18
and 19-20. Our results indicate that Algorithm 1 consistently
outperforms all baselines.

Our Algorithm 1 can converge even when DP-SGD di-
verges: Figure 6 gives an example in which DP-SGD di-
verges but Algorithm 1 converges. We used the following
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Figure 6. Test loss vs. iterations. npub
n

“ 0.1

parameters: d “ 50, n “ 1000, ε “ 0.01, and npub

n “ 0.1.

Algorithm 1 performs well even without “warm start”,
whereas PDA-MD performs poorly: e.g., Figures 5 and (in
Appendix) 11 show that PDA-MD even performs worse
than throw-away. By contrast, Algorithm 1 is resilient to
the “cold start” condition and outperforms all baselines. In
certain practical applications, such as advertising and health-
care, samples are often obtained in an online/streaming fash-
ion, precluding the possibility of “warm start”.

More public data always improves the performance of Al-
gorithm 1, but does not always benefit PDA-MD. The main
reason for this is that our algorithm more effectively handles
the increasing privacy noise that is needed to maintain semi-
DP with increasing npub{n. We give details and numerical
evidence of this explanation in Appendix G.1.1.

Appendix G contains other findings, too. For example, Fig-
ure 8 shows that PDA-MD is sensitive to Hessian regulariza-
tion parameter, which requires extra tuning on complicated
tasks. By contrast, Algorithm 1 does not use any Hessian
information.

5. Conclusion
We considered training DP models with side access to pub-
lic data. Theoretically, we characterized the optimal error
bounds (up to constants) for three fundamental problems:
mean estimation, empirical risk minimization, and stochas-
tic convex optimization. We show that it is impossible to
improve over the naı̈ve semi-DP algorithms asymptotically,
in the worst case. Algorithmically, we developed new opti-
mal methods for semi-DP learning that have smaller error
than the asymptotically optimal algorithms. Empirically, we
showed that our algorithms are effective in training semi-DP
models. Our work raises interesting open questions. For
instance, why do certain learning/optimization problems
benefit more from public data than others? Is there some
general underlying property that (don’t) permit asymptotic
benefits over the naı̈ve baselines? Also, what can be said

about semi-DP learning with out-of-distribution public data?
Lastly, it would be useful to have an extensive empirical
study that evaluates the efficacy of combining our semi-DP
algorithms with various other techniques, such as dimen-
sionality reduction (Yu et al., 2021b; Pinto et al., 2024).

Impact Statement
Our work provides algorithms for protecting the privacy of
individuals who contribute training data. Privacy is com-
monly regarded in a positive light and is even enshrined
as a fundamental right in various legal systems. However,
there is a risk that corporations or governments could exploit
our algorithms for nefarious purposes, such as unauthorized
collection of personal data. Furthermore, the use of semi-
privately trained models may result in decreased accuracy
compared to non-private models, which can have adverse
consequences. For instance, if a semi-DP model is utilized
to forecast the effects of pollution, but yields less precise and
overly optimistic outcomes, it could provide pretext for a
government to unjustly dismantle environmental safeguards.
Nonetheless, we firmly believe that the dissemination of
privacy-preserving machine learning algorithms, coupled
with enhanced understanding of these algorithms, ultimately
offers a net benefit to society.

Another potential misuse of our work would be using the ac-
curacy benefits of public data to argue for less stringent data
privacy policies, laws, or regulations. However, we want
to emphasize that even though public data can enhance the
accuracy of models, we firmly believe that privacy laws and
corporate policies should not be weakened. Differentially
private synthetic data generation (Torkzadehmahani et al.,
2019; Vietri et al., 2020; Boedihardjo et al., 2022; He et al.,
2023) is one possible avenue for generating public data in
an ethical, privacy-preserving manner.
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Appendix

A. Related Work
Many works have considered a variety of semi-DP learning problems, empirically and theoretically (Bassily et al., 2018;
Feldman et al., 2018; Bassily et al., 2020; Kairouz et al., 2021; Wang & Zhou, 2020; Zhou et al., 2020; Li et al., 2021a; Liu
et al., 2021; Papernot et al., 2017; 2018; Yu et al., 2021b; Alon et al., 2019; Bie et al., 2022; Ferrando et al., 2021; Amid
et al., 2022). Here we discuss the works that are most closely related to our own.

Sample complexity bounds for semi-DP learning and estimation: The works of Alon et al. (2019); Bassily et al. (2020)
give sample complexity bounds for semi-DP PAC learning and query release. Their upper bounds show that for hypothesis
classes with finite VC-dimension, asymptotic improvements over the naı̈ve approaches are possible. These results stand in
contrast with our lower bounds for model training/optimization with Lipschitz loss functions. Both of these works also
provide lower bounds. Below, we compare their results with our own lower bounds.

The negative result of Theorem 4.2 in (Alon et al., 2019) is similar in spirit to our lower bounds: no semi-DP algorithm can
achieve error better than the minimum of the optimal DP error and a term that depends on npub. That being said, there are
some significant and consequential differences between our lower bounds and (Alon et al., 2019, Theorem 4.2):

1. Different learning problems: (Alon et al., 2019) considers agnostic PAC learning/binary classification, whereas we
consider model training (mean estimation and optimization). We are not aware of any way to obtain our lower bounds
from the results of (Alon et al., 2019).

2. Quantitative differences in the lower bounds: The lower bound implied by (Alon et al., 2019, Theorem 4.2) is of
the form Ω pmin t1{npub, optimal DP erroruq. Our lower bounds do not always take this form. For example, consider
Theorem 10: the first term in our lower bound is npriv{n, which can imply a much larger error than the bound in (Alon
et al., 2019) (e.g., if d “ εn and npriv “ n{2). This illustrates how different learning problems can benefit more from
public data than others.

3. Central vs. Local Semi-DP: (Alon et al., 2019) only covers central semi-DP, whereas we cover both central and local
semi-DP.

4. Pure vs. Approximate Semi-DP: (Alon et al., 2019)’s proof technique cannot handle approximate semi-DP because
their Lemma 2.6 is limited to pure DP. By contrast, we give lower bounds for both pure and approximate semi-DP.

5. New Techniques: Our techniques differ substantially from those in (Alon et al., 2019). For example, we develop a novel
semi-DP Fano’s inequality and a novel semi-DP packing argument. For approximate semi-DP, we utilize fingerprinting
proofs. Also, our semi-LDP lower bound techniques are completely different from (Alon et al., 2019)’s techniques. We
hope that our novel techniques to find applications beyond those in our paper.

The result of Bassily et al. (2020, Theorem 13) showed (up to logarithmic factors) that no improvement over the naı̈ve
approaches is possible for approximate p1, δq-semi-DP releasing decision stumps. This implies a lower bound for p1, δq-semi-
DP mean estimation in the ℓ8 norm, but does not imply the tight lower bound for the ℓ2 setting that we provide in Theorem 4.
Moreover, (Bassily et al., 2018)’s results and techniques do not lead to tight lower bounds for pure ε-semi-DP decision
stumps or mean estimation. Thus, we develop novel techniques (e.g. semi-DP Fano and semi-DP packing arguments) for
pure semi-DP estimation and model training.

For semi-DP d-dimensional Gaussian mean estimation, (Bie et al., 2022) gave sample complexity bounds that do not
depend on the range parameters of the distribution if npub ě d ` 1; this is known to be impossible without public data.
The concurrent and independent work of Ben-David et al. (2023) established a lower bound for this problem. (Ben-David
et al., 2023) also explored the connection between semi-DP distribution learning of a class and the existence of a sample
compression scheme for that class.

DP model training (ERM and SCO) with public data: The works of Kairouz et al. (2021); Zhou et al. (2020) considered
DP ERM with public data and additional assumptions on the gradients lying in a certain low-dimensional subspace. Under
these additional assumptions, (Kairouz et al., 2021; Zhou et al., 2020) show that nearly dimension-independent excess
empirical risk bounds are possible (e.g. by using the public data to estimate the low-dimensional subspace and projecting
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noisy gradients onto this subspace). Our lower bounds show that these additional assumptions are strictly necessary: in
general, polynomial dependence on the dimension is necessary for semi-DP ERM and SCO. The work of Wang & Zhou
(2020) used public data to adjust the parameters of DP-SGD. Empirically, pre-training on public data sets and privately
fine-tuning the model (Li et al., 2021a; Kerrigan et al., 2020a; Mehta et al., 2022) has shown great promise for large-scale
ML.

The work of Amid et al. (2022) developed a public data-assisted DP mirror descent (PDA-MD) algorithm that sometimes
outperforms DP-SGD empirically in training ML models, and theoretically in terms of excess risk for linear regression under
certain distributional assumptions. We use the PDA-MD of Amid et al. (2022) as a baseline in our experiments. (Amid et al.,
2022) also gave an “efficient approximation” of their PDA-MD in (Amid et al., 2022, Equation 1), which they used for
training non-convex models. While finalizing this manuscript, we became aware that this “efficient approximation” is nearly
equivalent to our Algorithm 1. However, there are differences in the implementation of our algorithm. For example, we use
a constant weight parameter α, whereas (Amid et al., 2022) uses decaying weights tαtu

T
t“1. Also, we clip both the private

and public gradients in our implementation of Algorithm 1, which empirically improves performance: see Appendix G.1.1
for further discussion. Our Algorithm 1 was derived in a different fashion from the algorithm in (Amid et al., 2022, Equation
1): we derived our algorithm as an application of our “even more optimal” mean estimator, while theirs was derived
as an approximation of their mirror descent method. Moreover, no theoretical analysis was provided for the “efficient
approximation” in (Amid et al., 2022). In the linear regression setting, the PDA-MD algorithm can be viewed as Newton’s
algorithm where the Hessian is estimated via public data. Then the Hessian is inverted and multiplied by privatized gradients
at each iteration. In other words, the update rule of the algorithm is given by wt`1 “ wt ´ αtpX

T
pubXpubq

´1pgt ` ntq

where Xpub is the public data, gt is the sampled gradient from private data, and nt is the added noise. When the number of
public data samples is small, the estimate of the Hessian becomes low rank (or inaccurate) and the (pseudo)inverse of it may
introduce additional error (even after proper regularization). On the other hand, when the number of public data samples
is large, but the number of private data is small, the PDA-MD algorithm can still suffer if it is not warm-started. This is
because, although the Hessian XTX is estimated accurately in this case, but there is not enough private data to generate
enough gradients to converge to optimal solution. This poor performance of PDA-MD when it is not warm started is also
observed in our experiments.

The work of Nasr et al. (2023) used public data to train a generative model for data augmentation and to estimate the center
of the clipping balls in DP-SGD. They did not provide any code for their experiments and thus we do not compare against
them as a baseline in our experiments. However, combining our algorithm with the tricks used in (Nasr et al., 2023) could
be a promising avenue for future empirical work.

Personalized DP: A related line of work is that of personalized DP (PDP) (Jorgensen et al., 2015; Golatkar et al., 2022;
Mühl & Boenisch, 2022; Fallah et al., 2022), a generalization of DP in which each person may have different privacy
parameters pεi, δiq. By letting εi “ 8 for some person i, PDP also generalizes semi-DP. We leverage this connection to
borrow techniques from the work of Fallah et al. (2022), which considers pure (δi “ 0) PDP estimation in one dimension
(d “ 1). We also note that the 1-dimensional pure (central) PDP mean estimation bound of Fallah et al. (2022) extends
easily to a 1-dimensional ε-semi-DP bound. However, our d-dimensional semi-DP lower bounds require a different set of
techniques. Additionally, the personalized LDP bound of Fallah et al. (2022) relies on the assumption εi ď 1 and does not
seem to extend to the ε-semi-LDP setting.

Concurrent and Subsequent Work: The work of Ullah et al. (2024) first appeared on arXiv a few weeks after v2
of our paper appeared.7 (Ullah et al., 2024) proves results that are very similar to Theorems 4 and 12. However, their
lower bound proofs do not require the (mild) symmetry assumption that our proof requires: see Remark 5. Moreover, in a
restricted parameter regime, Ullah et al. (2024) also provide lower bounds that are tighter by a logp1{δq factor. Ullah et al.
(2024) complement these lower bounds by giving novel algorithms for leveraging unlabeled public data in training private
generalized linear models (GLM) with dimension-independent rates.

The work of Liu et al. (2023), which appeared on arXiv 3 months after v1 of our paper, couples private and public gradients
in non-convex optimization via a similar weighting scheme to our own. They show benefits of their algorithm over standard
DP approaches both theoretically and empirically.

7The first version of our paper appeared on arXiv more than eight months before (Ullah et al., 2024). However, v1 of our paper did not
contain our tight high-dimensional approximate semi-DP population mean estimation and SCO lower bounds.
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Tang et al. (2023), which appeared on arXiv 18 days before v1 of our paper, explores how to improve the privacy-utility
tradeoff of DP-SGD by learning priors from images generated by random processes and transferring these priors to private
data.

Other Related Works: The work of Gu et al. (2023) gave an algorithm for selecting an appropriate public dataset that can
be used to enhance private optimization by projecting gradients onto a subspace prescribed by the this public datasaet.

Ganesh et al. (2023) provided an explanation for the empirically reported benefits of pre-training on public data, arguing
that non-convex optimization algorithms must go through two phases: (i) selecting a good “basin” in the loss landscape;
(ii) solving an easy optimization problem within that basin. They hypothesize that public pre-training can be helpful in
selecting a good basin. They also demonstrated a separation between pretrained and non-pretrained models by constructing
a non-convex optimization problem for which public pretraining is necessary to achieve non-trivial error.

B. Zero-Concentrated DP vs. Pure and Approximate DP
Proposition 20. (Bun & Steinke, 2016) If A is ρ-zCDP, then A is pρ` 2

a

ρ logp1{δq, δq-DP @δ ą 0. Moreover, if A is
ε-DP, then A is ε2{2-zCDP.

C. Summary table of pure semi-DP and semi-LDP results

Learning 
problem

Semi-DP error When is semi-DP 
error less than DP?

error?
Mean 

Estimation 
(Pop. MSE) (Theorem  32)

or

ERM 
(Excess 

emp. Risk)

(Theorem  3*)


(Theorem  10)

SCO 
(Excess 

pop. risk)
(Theorem  42)

or

Learning 
problem

Semi-LDP error When is semi-LDP 
error less than LDP? 

error?

Mean 
Estimation 
(Pop. MSE)

(Theorem  14)

or

SCO 
(Excess 

pop. risk)
(Theorem  18)

or

Figure 7. Minimax optimal error rates for central ε-semi-DP and (local) ε-semi-LDP SCO and mean estimation results. Dependence
on range and Lipschitz parameters, and constraint set diameter omitted. Mean estimation and SCO lower bounds are only tight if
npub “ Opnε{dq or d “ Op1q. Strongly convex ERM and SCO results are included later in this Appendix, but excluded from this table.

D. Notation
We recall notation from the main body and include some additional basic definitions below for convenience.

Let } ¨ } be the ℓ2 norm. W denotes a convex, compact subset of Rd with ℓ2 diameter D. X denotes a data universe.
Function g : W Ñ R is µ-strongly convex if gpαw ` p1´ αqw1q ď αgpwq ` p1´ αqgpw1q ´

αp1´αqµ
2 }w ´ w1}2 for all

α P r0, 1s and all w,w1 P W . If µ “ 0, we say g is convex. For convex fp¨, xq, denote any subgradient of fpw, xq w.r.t.
w by ∇fpw, xq P Bwfpw, xq: i.e. fpw1, xq ě fpw, xq ` x∇fpw, xq, w1 ´ wy for all w1 P W . Function f : W ˆ X Ñ R
is uniformly L-Lipschitz in w if supxPX |fpw, xq ´ fpw1, xq| ď L}w ´ w1}. Let B “ tx P Rd|}x} ď 1u denote the unit
ℓ2-ball. For functions a “ apθq and b “ bpϕq of input parameter vectors θ and ϕ, we write a À b or a “ Opbq if there is an
absolute constant C ą 0 such that a ď Cb for all values of input parameter vectors θ and ϕ.

E. Optimal Centrally Private Model Training with Public Data
E.1. Optimal Semi-DP Mean Estimation

We begin in Appendix E.1.1 with empirical mean estimation. This subsection was omitted from the main body due to space
constraints. Theorem 21 will be useful for proving our ERM bounds (Theorem 10). Then, in Appendix E.1.2, we turn to
population mean estimation (i.e. the proof of Theorem 4). Appendix E.1.3 contains proofs for Section 2.2.

16



Optimal Differentially Private Model Training with Public Data

E.1.1. ESTIMATING THE EMPIRICAL MEAN

For a given data set X Ă B :“ tx P Rd : }x} ď 1u, consider the problem of estimating X̄ “ 1
n

řn
i“1 xi subject to the

constraint that the estimator satisfies semi-DP. We will characterize the minimax squared error of d-dimensional empirical
mean estimation under ε-semi-DP:

Memppε, npriv, n, dq :“ inf
APAεpBq

sup
XPBn,|Xpriv|“npriv

EA
“

}ApXq ´ X̄}2
‰

, (14)

where AεpBq denotes the set of all ε-semi-DP estimators A : Bn Ñ B.

Theorem 21. Let ε ą 0, n, d P N, npriv P rns. There exist absolute constants c and C with 0 ă c ď C such that

cmin

"

npriv

n
,
d

nε

*2

ď Memppϵ, npriv, n, dq ď Cmin

"

npriv

n
,
d

nε

*2

.

Proof. Lower bound: We use a packing argument to prove our lower bound. Denote X “

”

´1?
d
, 1?

d

ıd

. Let A : Bn Ñ B

be ε-semi-DP. Choose K “ 2d{2 private data points txiu
K
i“1 Ă

!

˘ 1?
d

)d

such that }xi ´ xj} ě 1{8 for all i ‰ j. The

existence of such a set of points is well-known (see e.g. the Gilbert-Varshamov construction). Let n˚ “ nd
3εnpriv

.

Case 1: n ď n˚ (i.e. d ě 3εnpriv). In this case, we’ll show that E}ApXq ´ X̄}2 Á
`npriv

n

˘2
for some X P Xn. For i P rKs,

let Xi “ pxi, ¨ ¨ ¨ , xi,0n´nprivq consist of npriv copies of xi followed by n ´ npriv “ npub copies of 0 P Rd. Suppose for
the sake of contradiction that for every i P rKs, with probability ě 1{3 we have }ApXq ´ X̄} ă 1

32
npriv

n . That is, we are
supposing PpApXiq P Biq ě 1{3 for all i, where Bi “ tx P B : }x´ X̄i} ď

1
32

npriv

n u. Note that the sets tBiu
K
i“1 are disjoint

by construction. Since A is ε-semi-DP, group privacy implies that PpApX1q P Biq ě
1
3e

´εnpriv for all i P rKs. Thus,

K
1

3
e´εnpriv ď

K
ÿ

i“1

PpApX1q P Biq ď 1,

where the last inequality follows from disjointness of the balls Bi. Thus, we obtain lnpK{3q ď εnpriv. Assume for now
that d ě 8. (A 1-dimensional lower bound that is tight up to constant factors can be shown easily by following the proof
of the d-dimensional case but choosing K “ 16 instead of K “ 2d{2.) Then d{2 ď d ´ 4 ď εnpriv implies d ď 2εnpriv,
contradicting the assumption made in Case 1. Thus, we conclude that there exists a data set Xi such that with probability
at least 2{3, }ApXiq ´ X̄i} ą

1
32

npriv

n . Squaring both sides of this inequality and applying Markov’s inequality yields the
desired lower bound.

Case 2: n ą n˚.

Additionally, suppose for now that n˚ ď npriv. In this case, we’ll show that E}ApXq´ X̄}2 Á
`

d
nε

˘2
for some X P Xn. Let

rXi “ pxi, ¨ ¨ ¨ , xi,0n´n˚q consist of n˚ copies of xi followed by n´n˚ copies of 0 P Rd.8 Denoting the mean of a dataset
X by qpXq :“ 1

n

ř

xPX x for convenience, we see that qp rXiq “
n˚

n xi “
d

3nprivε
xi. Define the algorithm Â : Bn˚

Ñ B
by ÂpXq “ n

n˚ ApX,0n´n˚q. Since A is ε-semi-DP, we see that Â is ε-semi-DP by post-processing. Also, the domain
of Â is Xn˚

and n˚ ď n˚, so the argument in Case 1 applies to Â. Thus, by applying the result in Case 1, there exists
i P rKs such that with probability at least 2{3, }Âpxi, ¨ ¨ ¨ , xiq´ qpxi, ¨ ¨ ¨ , xiq} ě

1
32

npriv

n . (Here pxi, ¨ ¨ ¨ , xiq P Xn˚.) But
this implies }Ap rXiq ´ qp rXiq} ě

1
32

npriv

n
n˚

n “ 1
96

d
nε with probability at least 2{3. Again, squaring both sides and applying

Markov yields the desired lower bound.

Next, consider the complementary subcase where n˚ ą npriv. Define the algorithm Â : Bn˚

Ñ B by ÂpXq “ ApX,0n´n˚q.
Since A is ε-semi-DP, we see that Â is ε-semi-DP by post-processing. Also, the domain of Â is Xn˚

and n˚ ď n˚, so the
argument in Case 1 applies to Â. Thus, by applying the result in Case 1, there exists i P rKs such that with probability at least
2{3, }Âpxi, ¨ ¨ ¨ , xiq´ qpxi, ¨ ¨ ¨ , xiq} ě

1
32

npriv

n . (Here pxi, ¨ ¨ ¨ , xiq P Xn˚.) But this implies that }ApXiq´ X̄i} ě
1
32

npriv

n

8We assume without loss of generality that n˚
P N. If n˚ is not an integer, then choosing rn˚

s instead yields the same bound up to
constant factors.
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with probability at least 2{3. Again, squaring both sides and applying Markov yields the desired lower bound. Thus, the
lower bound holds in all cases.

Upper bound: For the first term in the minimum, consider the algorithm which throws away the private data and outputs
ApXq “ 1

n

ř

xPXpub
x. Clearly, A is semi-DP. Moreover,

}ApXq ´ X̄}2 “
1

n2

›

›

›

›

›

›

ÿ

xPXpriv

x

›

›

›

›

›

›

2

ď
npriv

n2

ÿ

xPXpriv

}x}2 ď

´npriv

n

¯2

.

For the second term, consider the Laplace mechanism ApXq “ X̄ ` pL1, ¨ ¨ ¨ , Ldq, where Li „ Lapp2
?
d{nεq are

i.i.d. mean-zero Laplace random variables. We know A is ε-DP by (Dwork et al., 2014), since the ℓ1-sensitivity is
supX„X1 }X̄ ´ X̄ 1}1 “ 1

n supx,x1 }x´ x1}1 ď 2
?
d

n . Hence A is ε-semi-DP. Moreover, A has error

E}ApXq ´ X̄}2 “ d VarpLapp2
?
d{nεqq “

8d2

n2ε2
.

Combining the two upper bounds completes the proof.

E.1.2. ESTIMATING THE POPULATION MEAN

Approximate pε, δq-Semi-DP Mean Estimation

Theorem 22 (Formal statement of Theorem 4). Let ε À 1{ logpndq, δ ! 1{npriv. Then, there is an absolute constant C ą 0
such that

ℓpd, nqmin

"

1

npub
,

d

n2ε2
`

1

n

*

ď Mpoppϵ, δ, npriv, n, dq ď Cmin

"

1

npub
,
d lnp1{δq

n2ε2
`

1

n

*

, (15)

where 1{ℓpd, nq is logarithmic in d and n. The lower bound holds for symmetric algorithms A “ pA1, . . . ,Adq such that
Aj “ Al for all j, l P rds.

For the lower bound, we will first prove a stronger result in Theorem 23, in which we construct a hard distribution whose
mean is small—scaling with the accuracy lower bound that we aim to prove. This “small mean” property will be needed for
our semi-DP SCO lower bound (Theorem 12), even though it is not necessary for the proof of Theorem 22.

Theorem 23. Let X “

!

˘ 1?
d

)d

, ε À 1{ logpndq, and δ ! 1{npriv. Then, for any symmetric pε, δq-semi-DP A, there exists

a product distribution P on X with }Ex„P rxs} ď min
´

1
?
npub

,
?
d

εnpriv

¯

such that

E
“

}ApXq ´ Ex„P rxs}
2
‰

“ rΩ

˜

min

#

1

npub
,

d

ε2n2
priv

`
1

n

+¸

.

For any symmetric A and any distribution P with X „ Pn, we have

E}ApXq ´ Ex„P rxs}
2 “ E}ApXq ´ EApXq}2 ` }EApXq ´ Ex„P rxs}

2

ě }EApXq ´ Ex„P rxs}
2

“ d|EA1pXq ´ Erx1s|, (16)

where the last equality used assumption that A is symmetric. For a P R, scalar random variable xj „ Pa with mean
Erxjs “ a and Xj „ Pn

a denote
BiasapAq :“ |EAjpXjq ´ a|.

Definition 24 (Low bias algorithms). We say symmetric A is low bias if for every a P R,

BiasapAq2 ď
1

d
min

ˆ

1

npub
,
1

n
`

d

n2ε2

˙

.

18



Optimal Differentially Private Model Training with Public Data

We can assume without loss of generality that A is low bias when we are proving the lower bound in Theorem 22: if A is
not low bias, then inequality (16) implies that the worst-case MSE of A is lower bounded as in (15).

To prove Theorem 23 for low bias and symmetric A, we will use Theorem 25.9 This result shows that any sufficiently
accurate A is vulnerable to an attack that traces many individuals in the data set with high probability.
Theorem 25. Let a P p0, 1s. Consider the product distribution on t˘1ud defined in the following way: for j P rds,
independently draw θj „ Unif pr´a, asq and xj

i „ Pθ such that xj
i P t˘1u with mean Exj

i„Pθj
rxj

i s “ θj for i P rns.

Denote X “ px1, . . . , xnq „ Pn
θ where θ “ pθ1, . . . , θdq and Pθ “ Πd

j“1Pθj . Let A : t˘1ud Ñ r´a, asd satisfy

EX„Pn
θ
rApXqs “ θ and E}ApXq ´ θ}2 ď α2 for

b

d
n ď α ď a

?
d

100 . Assume d ą 400αn
a

lnp2{δq. Moreover, assume that

ApXq “ pA1pXq, . . . ,AdpXqq with Aj “ Al for all j, l P rds. Then, the attack I : t˘1ud ˆ r´a, asd Ñ tIN,OUT u

described in Algorithm 2 satisfies the following properties: a) if y „ Pθ independently of X , then P pIpy, rApXqq “ INq ď

δ; and b) P p|ti P rns : Ipxi, rApXqq “ INu| ě d
106α2 q ě 1 ´ δ, where rA is p rOpεq, rOpζqq-semi-DP if and only if A is

pε, ζq-semi-DP, and EX„Pn
θ
r rApXqs “ θ.

The proof of Theorem 25 uses a convenient reduction in Lemma 27: for any low bias and symmetric A that has small
expected mean squared error (in ℓ2-norm), there exists another low bias mechanism rA that has even smaller ℓ8 accuracy
with high probability. Moreover, A is pε, δq-semi-DP if and only if rA is p rOpεq, rOpδqq-semi-DP. This lemma allows us to:
construct a new product distribution whose mean is small, modify the attack of Dwork et al. (2015), and derive a generalized
fingerprinting lemma (Lemma 26) in order to prove Theorem 25.

With Theorem 25 in hand, we leverage the proof technique of Bassily et al. (2020) to show that any sufficiently accurate rA
must leak the data of more than npub individuals and thus cannot be p rOpεq, rOpδqq-semi-DP. But by Lemma 27, this means
that A cannot be pε, δq-semi-DP. Below, we discuss the attack that we use and then fill in the details of the proof.

The attack in Algorithm 2 is a modification of the robust tracing attack of Dwork et al. (2015). The attacker in Algorithm 2
receives as input the output q „ ApXq of a mechanism, a target point y, and the mean of the data distribution P ,
θ “ Ex„P rxs. (An estimate of the true mean or access to sufficiently many independent draws from P would also suffice in
lieu of θ.) The target y is either a data point used by ApXq (i.e. y P X) or an independent draw from the distribution P that
X was drawn from. The attacker aims to infer whether or not y was in X . If the attacker outputs IN when y is in X and
OUT when y is not in X (i.e. the attack succeeds) with high probability, then the algorithm A is not private. The truncation
parameter is η “ 2α{

?
d, where α is the expected ℓ2-error of the mechanism A. The parameter δ can be chosen by the

attacker.

Algorithm 2 Tracing Attack Against ℓ2-Accurate Mechanisms
1: Input: Target y P t˘1ud, mean θ P r´a, asd, output of mechanism q „ ApXq.
2: Let η :“ 2α{

?
d.

3: Let tq ´ θsη P r´η, ηsd denote the entrywise truncation of q ´ θ.
4: Compute xy ´ θ, tq ´ θsηy “

řd
j“1py

j ´ θjqtq ´ θsjη .
5: if xy ´ θ, tq ´ θsηy ą τ :“ 2η

a

d lnp1{δq then
6: Output: IN.
7: else
8: Output: OUT.
9: end if

Compared to (Dwork et al., 2015), we choose a smaller truncation parameter to handle the ℓ2 case (η “ 2α{
?
d instead of

2α). We also scale the “IN/OUT” decision threshold τ accordingly. Moreover, since we are not concerned with the size of
the reference sample, we assume that the attacker knows the mean of the data distribution. Thus, we use θ in place of the
average of reference samples to give a simpler attack than the one in (Dwork et al., 2015). This is not necessary for our
attack to work: the attacker just needs a sufficiently close approximation to the true mean (which can be attained with access
to enough reference samples) for our proof to go through.

Theorem 25 builds on (Dwork et al., 2015, Theorem 17), which gave a similar result for ℓ8-accurate mechanisms and θ
drawn from a so-called strong distribution (see (Dwork et al., 2015, Definition 5)). By contrast, Theorem 25 only requires a

9For convenience, we work with data drawn from t˘1ud and then re-scale to obtain the final mean estimation lower bound.
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weaker ℓ2-accuracy guarantee and uses a distribution which is not “strong” in the sense required by (Dwork et al., 2015,
Theorem 17). Our generalization of the fingerprinting lemma (Bun et al., 2017), given below, allows us to handle such a
distribution, and is the first step towards proving Theorem 25:
Lemma 26 (Generalized Fingerprinting Lemma). Let a P p0, 1s. Draw θ „ Unif pr´a, asq and xi „ Pθ be such that
xi P t˘1u with mean Exi„Pθ

rxis “ θ for i “ 1, . . . , n. Denote X “ px1, . . . , xnq „ Pn
θ . Then, for any f : t˘1un Ñ R

that does not depend directly on θ, we have

E

«

pfpXq ´ θq
n
ÿ

i“1

pxi ´ θq

ff

ě
a2

3
´ E

“

pfpXq ´ θq2
‰

`
1´ a2

2a

”

EX„Pn
a
rfpXqs ´ EX„Pn

´a
rfpXqs

ı

,

where all expectations are over the random draw of θ and X „ Pn
θ unless otherwise indicated.

Proof. Define g : r´a, as Ñ R by gpθq :“ EX„Pn
θ
rfpXqs. Our first claim is

EX„Pn
θ
rpfpXq ´ θq

n
ÿ

i“1

pxi ´ θqs “ g1pθqp1´ θ2q. (17)

To prove (17), write

gpθq “
ÿ

XPt˘1un

fpXq

n
ź

i“1

1` pθ{xiq

2

and

g1pθq “
ÿ

XPt˘1un

fpXq
d

dθ

«

n
ź

i“1

ˆ

1` pθ{xiq

2

˙

ff

“
ÿ

XPt˘1un

fpXq

n
ÿ

i“1

d

dθ

ˆ

1` pθ{xiq

2

˙

ź

kPrnsztiu

ˆ

1` pθ{xkq

2

˙

“
ÿ

XPt˘1un

fpXq

n
ÿ

i“1

1

xi ` θ

ź

iPrns

ˆ

1` pθ{xiq

2

˙

“ EX„Pn
θ

«

fpXq

n
ÿ

i“1

1

xi ` θ

ff

“ EX„Pn
θ

«

fpXq

n
ÿ

i“1

xi ´ θ

1´ θ2

ff

.

Since EX„Pn
θ
rθ
řn

i“1pxi ´ θqs “ 0, (17) is proved.

Next, we claim: for any differentiable function g : r´a, as Ñ R, we have

Eθ„Unifr´a,asrg
1pθqp1´ θ2qs “ 2Eθ„Unifr´a,asrgpθqθs `

1´ a2

2a
rgpaq ´ gp´aqs. (18)

To prove (18), let upθq “ 1´ θ2 and use the product rule and fundamental theorem of calculus to write

Eθ„Unifr´a,asrg
1pθqp1´ θ2qs “

1

2a

ż a

´a

g1pθqupθqdθ

“
1

2a

ż a

´a

„

d

dθ
pgpθqupθqq ´ gpθqu1pθq

ȷ

dθ

“
1

2a
rgpaqupaq ´ gp´aqup´aqs ´

1

2a

ż a

´a

gpθq ¨ p´2θqdθ

“
1´ a2

2a
rgpaq ´ gp´aqs ` 2Eθ„Unifr´a,asrgpθqθs.
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Now we will apply (17) and (18) with the differentiable function g : r´a, as Ñ R, gpθq :“ EX„Pn
θ
rfpXqs to obtain

E

«

pfpXq ´ θq
n
ÿ

i“1

pxi ´ θq

ff

“ Eθ„Unifr´a,asrg
1pθqp1´ θ2qs

“ 2Eθ„Unifr´a,asrθgpθqs `
1´ a2

2a
rgpaq ´ gp´aqs.

Moreover,

ErpfpXq ´ θq2s ě ´2Ergpθqθs ` Erθ2s

“ ´2Ergpθqθs `
a2

3
.

Combining the above pieces completes the proof.

We state a lemma that will allow us to conveniently assume without loss of generality that the given mechanism A is
ℓ8-accurate:

Lemma 27. Consider θ „ Unifpr´a, asdq and X „ Pn
θ be distributed as described above. Suppose E}ApXq ´ θ}2 ď

α2, where A : t˘1ud Ñ r´a, asd, ApXq “ pA1pXq . . . ,AdpXqq. Assume that ApXq is a low bias estimator of θ
and that Aj “ Al for all j, l. Then, for any 0 ă β ď min

`

α2{4d, 1{pn2d2q
˘

, there exists a low bias rA such that
P p| rAjpXq ´ θj | ą 2α?

d
q ď β, rAj “ rAl for all j, l P rds, and E} rApXq ´ θ}2 ď 5α2. Also, A is pε, δq-semi-DP if and only

if rA is p rOpεq, rOpδqq-semi-DP.

Proof. By the assumption that Aj “ Al for all j, l and the fact that X is drawn from a product distribution, we have

E}ApXq ´ θ}2 “ dE|A1pXq ´ θ1|2.

Thus, E}M jpXq ´ θj |2 ď α2

d for all j. (We are also assuming without loss of generality here that Aj depends only on Xj :
if this is not the case, then it’s easy to see by the choice of distribution that there exists another algorithm with smaller error
than A satisfying this assumption.) Also,

P

ˆ

|AjpXq ´ θj | ą
2α
?
d

˙

ď
E|AjpXq ´ θj |2

p2α{
?
dq2

ď
1

4
, (19)

by Chebyshev’s inequality. To construct rAj we will use the well-known “median trick”: run each Aj for m “ Oplogp1{βqq
times, each time using a batch Xi of n{m independent samples in X . Then take the median of the m “ Oplogp1{βqq

outputs: rAjpXq “ medianpAj
1pX1q, . . . ,Aj

mpXmqq. Then, P p| rAjpXq ´ θj | ą 2α?
d
q ď β by a Chernoff/Hoeffding bound.

Applying the law of total expectation with β ď min
`

α2{4d, 1{pn2d2q
˘

establishes the expected ℓ2-accuracy claim for rA.
Moreover, rA is low bias since for all j P rds, we have rAjpXq P Aj

i pXiq for some i P rms with probability 1 and A is low
bias.

We now prove the privacy claim. First note that A is pε, δq-semi-DP if and only if Aj is p rOpε{
?
dq, Opδ{dqq-semi-DP by

the advanced composition theorem (Dwork et al., 2014), since Aj “ Al for all j, l P rds. Also, Aj is pε1, δ1q-semi-DP
if and only if rAj is p rOpε1q, rOpδ1qq-semi-DP by parallel composition of (semi) DP (McSherry, 2009) and the fact that
m “ rOp1q. Since rAj “ rAl for all j, l by construction, we can conclude that A is pε, δq-semi-DP if and only if rA is
p rOpεq, Opδqq-semi-DP.

By Lemma 27 and the preceding discussion, it suffices to assume that the given mechanism A is low bias, 2α{
?
d-ℓ8-

accurate with probability at least 1´ β for any β ą 0, Aj “ Al for all j, l, and that A has expected ℓ2-mean-squared-error
bounded by α2, for the remainder of the proof of Theorem 25. We also assume in what follows that θ is drawn uniformly at
random from r´a, asd and that conditional on θ, the data X is drawn i.i.d. from the product distribution Pθ, as described in
the statement of Theorem 25.

Now, we will use Lemma 26 to lower bound the sum of expected scores
řn

i“1 Exxi ´ θ, tq ´ θsηy:
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Lemma 28. Let 1 ě a ą 100α{
?
d. Suppose E}ApXq ´ θ}2 ď α2, Aj “ Al is low bias for all j, l P rds, and

P p|AjpXq ´ θj | ą ηq ď 1{48n. Then,

E

«

n
ÿ

i“1

pxj
i ´ θjqtApXq ´ θsjη

ff

ě
1

24

for all j P rds.

Proof. Note that ErpAjpXjq ´ θjq2s ď α2

d because Aj “ Al for all j, l and E}ApXq ´ θ}2 ď α2. By Lemma 26, we have

E

«

n
ÿ

i“1

pxj
i ´ θjqpAjpXjq ´ θjq

ff

ě
a2

3
´ ErpAjpXjq ´ θjq2s

`
1´ a2

2a

´

EXj„Pn
a
rAjpXjq ´ as ´ EXj„Pn

´a
rAjpXjq ` as

¯

` 1´ a2

ě 1´
2

3
a2 ´

α2

d
ě 1{6,

since Aj is low bias and using the assumptions on the values of a and α.

Also, by the law of total expectation, we have

E

«

`

pApXqj ´ θjq ´ tApXq ´ θsjη

˘

n
ÿ

i“1

pxj
i ´ θjq

ff

ď 2nE
”

`

pApXqj ´ θjq ´ tApXq ´ θsjη

˘

ˇ

ˇ

ˇ
|ApXqj ´ θj | ą η

ı 1

48n

ď
1

12
.

Combining the above inequalities completes the proof.

As mentioned earlier, P p|AjpXq ´ θj | ą ηq ď 1{48n (and the other assumptions in the lemma) can be ensured by
Lemma 27.

Below we obtain a high probability lower bound on the sum of the scores:

Proposition 29. Let 1 ě a ą 100α{
?
d. Suppose E}ApXq ´ θ}2 ď α2, Aj “ Al is low bias for all j, l P rds, and

P p|AjpXq ´ θj | ą ηq ď 1{48n. If d ě 200αn
a

lnp1{δq, then

P

«

n
ÿ

i“1

xxi ´ θ, tApXq ´ θsηy ě
d

48

ff

ě 1´ δ.

Proof. We use the concentration inequality of Dwork et al. (2015, Theorem 36) and Lemma 28. Specifically, Lemma 28
implies that the assumptions of Dwork et al. (2015, Theorem 36) are satisfied with Xi,j “ xj

i ´ θj , c “ 1{2, Yj “

tApXq ´ θsjη , γj “ 1{24, α Ñ η, and a “ 1n as the vector of all 1’s. Thus, for any λ ą 0, we have

P

«

n
ÿ

i“1

xxi ´ θ, tApXq ´ θsηy ă
d

24
´ λ

ff

ď exp

ˆ

´
λ2

8dη2n2

˙

“ exp

ˆ

´
λ2

8α2n2

˙

.

Choosing λ “ αn
a

8 lnp1{δq ď d{48 completes the proof.

Next, we provide a high probability upper bound on the sum of the squared scores:
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Proposition 30. (Dwork et al., 2015) Fix θ P r´1, 1sd and let X „ Pn
θ . Assume d ě 64pn`

a

lnp1{δqq. Then,

P

«

n
ÿ

i“1

xxi ´ θ, tApXq ´ θsηy
2 ą 4η2d2

ff

ď δ.

Proof. This is immediate from Dwork et al. (2015, Lemma 22 and Proposition 23) and the proofs of these results.

The next elementary lemma is taken verbatim from (Dwork et al., 2015, Lemma 24):

Lemma 31. (Dwork et al., 2015) Let σ P Rn satisfy
řn

i“1 σi ě A and
řn

i“1 σ
2
i ď B2. Then,

ˇ

ˇ

ˇ

ˇ

"

i P rns : σi ě
A

2n

*
ˇ

ˇ

ˇ

ˇ

ě

ˆ

A

2B

˙2

.

We are now prepared to prove Theorem 25:

Proof of Theorem 25. For notational convenience, we will assume that rA “ A is low bias, symmetric (Aj “ Al), and
accurate in both expected ℓ2 norm and high probability ℓ8 norm. This is without loss of generality, by Lemma and
Lemma 27. We first prove a): Assume y is independent of X (drawn from the same distribution). By Hoeffding’s inequality,

P pIpy,ApXqq “ INq “ P
´

xy ´ θ, tApXq ´ θsηy ą τ “ 2η
a

d lnp1{δq
¯

ď exp

ˆ

´
2τ2

dp4ηq2

˙

ď δ.

Next, we prove b): Note that the assumptions on d and α imply that d ě 64pn`
a

lnp1{δqq. Proposition 29 implies that

n
ÿ

i“1

xxi ´ θ, tApXq ´ θsηy ě
d

48
“: A

with probability at least 1´ δ. Proposition 30 implies that

n
ÿ

i“1

xxi ´ θ, tApXq ´ θsηy
2 ď 4η2 “: B2

with probability at least 1´ δ. By a union bound, both of the above events occur with probability at least 1´ 2δ. Then,
Lemma 31 implies that

ˇ

ˇ

ˇ

ˇ

"

i P rns : xxi ´ θ, tApXq ´ θsηy ě
d

96n

*
ˇ

ˇ

ˇ

ˇ

ě

ˆ

A

2B

˙2

ě
d

106α2
.

Moreover, d
96n ě τ “ 4α

a

lnp1{δq by the assumption d ą 400αn
a

lnp1{δq. This completes the proof.

Now we are ready to prove Theorem 23:

Proof of Theorem 23. We will first prove a lower bound that is larger than the one stated in Theorem 23 by a factor of d
for distributions on X 1 :“ t˘1ud and }Ex„P rxs} ď

?
da, where a :“ min

´

1
?
npub

,
?
d

εnpriv

¯

. We will re-scale at the end to
obtain Theorem 23.

By a standard reduction (see e.g. (Bun et al., 2014, Lemma 2.5)), it suffices to prove the lower bound for ε “ 1. Let Pθ

be the product distribution described in Theorem 25 with θj „ Unifpr´a, asq for j P rds and a “ min
´

1
?
npub

,
?
d

εnpriv

¯

. Let

A “ pA1, . . . ,Adq be p1, op1{nprivqq-semi-DP with E}ApXq ´ θ}2 ď α2 :“ supP EX„Pn}ApXq ´ Ex„P rxs}
2, where

the supremum is taken over all distributions on X 1. By Lemma 27 and our earlier discussions, we assume without loss of
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generality that A is low bias, Aj “ Al for all j, l P rds, and that }ApXq ´ Ex„Pθ
rxs}8 ď 2α{

?
d with arbitrarily high

probability.

Note that α2 Á d
n always holds by the non-private lower bound. Moreover, if α2 ą da2{10000, then we are done. Thus, we

may assume α2 ď da2{10000. We will derive a contradiction under this assumption.

Let Xpriv “ px1, . . . , xnprivq denote the private samples in X and Xpub “ pw1, . . . , wnpubq denote the public samples in
X “ pXpriv, Xpubq “ pz1, . . . , znq „ Pn

θ . Let r “ d

400α
?

lnp2{γq
, t “ d

106α2 , and γ ď 1
pr`tq2 . We will show that if α ! d

npriv

and α !

b

d
npub

, then A is not p1, op1{nprivqq-semi-DP. Assume npriv ă r, npub ă t{2´ 1, and t ă n ă r`pt{2´ 1q. Thus,
the assumptions in Theorem 25 hold. We will show that the attack given in Algorithm 2 succeeds at identifying at least
npub ` 1 people in X with high probability: By part b) of Theorem 25 with δ “ γ, we have

P p|ti P rns : Ipzi,ApXqq “ INu| ě npub ` 1q ě P p|ti P rns : Ipzi,ApXqq “ INu| ě t{2q

ě 1´
1

pr ` tq2

ě 1´
1

n2
priv

.

That is, I identifies at least npub`1 individuals in the data set with high probability ě 1´1{n2
priv. Let vi “ 1tIpzi,ApXqq“INu

be the indicator of the event Ipzi,ApXqq “ IN . By Markov’s inequality, we have

E

«

n
ÿ

i“1

vi

ff

“

npriv
ÿ

i“1

P pIpxi,ApXqq “ INq `

npub
ÿ

i“1

P pIpwi,ApXqq “ INq ě pnpub ` 1qp1´ 1{n2q.

Now,
řnpub

i“1 P pIpwi,ApXqq “ INq ď npub, which implies that

n
ÿ

i“1

P pIpxi,ApXqq “ INq ě pnpub ` 1qp1´ 1{n2q ´ npub

ě 1´ 1{npriv

ě 1{2.

Thus, there exists a private sample xi˚ P Xpriv such that

P pIpxi˚ ,ApXqq “ INq ě 1{2npriv.

Now consider the adjacent data set X 1 obtained by replacing xi˚ with an independent sample y „ Pθ. Then, part a) of
Theorem 25 implies

P pIpxi˚ ,ApX 1qq “ INq ď
1

pr ` tq2
ď

1

n2
ď

1

n2
priv

,

where the probability is taken over the random independent draws of all the data points (including y) and the mechanism A.
Thus, A cannot satisfy pε, 1{4nprivq-semi-DP unless

1

2npriv
ď eε

1

n2
priv

`
1

4npriv
ùñ lnpn{4q ď ε.

In particular, if npriv ě 11, then A cannot be p1, op1{nprivqq-semi-DP, which contradicts our earlier hypothesis. This proves
the unscaled lower bound on X 1: α2 “ rΩ

`

dmin
`

1{npub, d{pεnprivq
2 ` 1{n

˘˘

.

Now we will scale the lower bound: Let X “

!

˘1{
?
d
)d

. Draw θj uniformly from r´a{
?
d, a{

?
ds for all j P rds and then

let Pθ be the distribution on X that has mean θ P r´a{
?
d, a{

?
dsd. Note that }Ex„Pθ

rxs} ď min
´

1{
?
npub,

?
d{εnpriv

¯

for

any θ. Moreover, for any pε, δq-semi-DP A : Xn Ñ r´a{
?
d, a{

?
dsd, there exists pε, δq-semi-DP A1 : pX 1qn Ñ r´a, asd
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such that ApXq “ 1?
d
A1pX 1q for X “ 1?

d
X 1. Applying our lower bound for the MSE of A1, we have

sup
θPr´a{

?
d,a{

?
dsd

EX„Pn
θ

“

}ApXq ´ θ}2
‰

“ sup
θ1Pr´a,asd

EX„Pn
θ1

›

›

›

›

1
?
d
pA1pXq ´ θ1q

›

›

›

›

2

“
1

d
sup

θ1Pr´a,asd
EX„Pn

θ1

›

›A1pXq ´ θ1
›

›

2

ě
1

d
rΩ
`

dmin
`

1{npub, d{pεnprivq
2
˘˘

“ rΩ

˜

min

#

1

npub
,

d

ε2n2
priv

`
1

n

+¸

,

as desired.

With Theorem 23 in hand, we can easily complete the proof of Theorem 22 by giving a matching upper bound (up to log
factors):

Proof of Theorem 22. Lower bound: This was proved in Theorem 23.

Upper bound: First, the throw-away estimator ApXq “ 1
npub

ř

xPXpub
x is clearly p0, 0q-semi-DP and has MSE

EX„Pn }ApXq ´ Ex„P rxs}
2
“ EX„Pn

›

›

›

›

›

›

1

npub

ÿ

xPXpub

px´ Ex„P rxsq

›

›

›

›

›

›

2

“
1

n2
pub

ÿ

xPXpub

Ex„P }x´ Ex„P rxs}
2

ď
1

npub
.

To get the second term in the minimum in (15), consider the Gaussian mechanism ApXq “ X̄ ` N p0, σ2Idq, where
σ2 “

8 lnp2{δq
ε2n2 . We know A is pε, δq-DP (by e.g. (Dwork et al., 2014)) since the ℓ2-sensitivity is supX„X1 }X̄ ´ X̄ 1}2 ď 2

n .
Hence A is pε, δq-semi-DP. Moreover, the MSE of A is

EX„Pn }ApXq ´ Ex„P rxs}
2
“ E}ApXq ´ X̄}2 ` E

›

›X̄ ´ Ex„P rxs
›

›

2

ď
8d lnp2{δq

ε2n2
`

1

n
.

This completes the proof of Theorem 22.

Next, we turn to the pure ε-semi-DP case.

Pure ε-Semi-DP Mean Estimation
Theorem 32 (Pure ε-semi-DP mean estimation). Let ε ď d{8 and either npub À nε

d or d À 1. Then, there exist absolute
constants c and C, with 0 ă c ď C, such that

cmin

"

1

npub
,

d2

n2ε2
`

1

n

*

ď Mpoppϵ, δ “ 0, npriv, n, dq ď Cmin

"

1

npub
,

d2

n2ε2
`

1

n

*

. (20)

Moreover, the upper bound in (20) holds for any npub, d.

The restriction on npub is needed for our lower bound proof—via Theorem 33—to work. It seems challenging to remove this
restriction, but we do believe the same lower bound holds in the complementary parameter regime. Proving this may require
the invention of new techniques, making it an interesting direction for future work.

The proof of (20) will require the following intermediate result, Theorem 33, which can be viewed as a “semi-DP Fano’s
inequality.”
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Theorem 33. Let tPvuvPV Ă P be a family of distributions on X . Let P0 be a distribution and p P r0, 1s such that
Pθv :“ p1´ pqP0 ` pPv P P for all v P V . Denote θv :“ Ex„Pθv

rxs and ρ˚pVq :“ min t}θv ´ θv1} | v, v1 P V, v ‰ v1u.
Let pθ : Xn Ñ X be any ε-semi-DP estimator. Draw V „ UnifpVq; then conditional on V “ v, draw an i.i.d. sample
X|V “ v „ Pn

θv
containing npriv private samples and npub samples. Then,

1

|V|
ÿ

vPV
Pθv

´
›

›

›

pθpXq ´ θv

›

›

›
ě ρ˚pVq

¯

ě
p|V| ´ 1qe´εrnprivpsp1´ pqnpub

2
`

1` p|V| ´ 1qe´εrnprivps
˘ (21)

Remark 34. Note that the right-hand-side of (21) is similar to the second term on the right-hand-side of DP Fano’s
inequality (Acharya et al., 2021, Equation 5), after aligning notation. The main differences are that (21) has an extra factor
of p1´ pqnpub , and npriv in place of n.

Proof of Theorem 33. Our proof builds on the techniques of Barber & Duchi (2014). A key step in the proof is (22): if A is
a measurable set and v, v1 P V , then

Pθv p
pθpXq P Aq ě eεrnprivps

„

Pθv1 p
pθ P Aq ´ 1`

p1´ pqnpub

2

ȷ

. (22)

Let us now prove (22): We will use upper case letters to denote random variables and lower case letters to denote the values
that the random variables take. Let B “ tBiu

n
i“1 be i.i.d. Bernoullippq random variables. Assume that the random variables

X “ tXiu
n
i“1 are generated in the following way: first draw W 0

1 , . . . ,W
0
n „ P0 i.i.d. and draw W v

1 , . . . ,W
v
n „ Pv i.i.d.

For each i, if Bi “ 0, set Xi “ W 0
i ; if Bi “ 1, set Xi “ W v

i . Thus, conditional on V “ v, the random variables Xi are
each distributed according to Pθv “ p1 ´ pqP0 ` pPv. For fixed v1 P V , generate a different sample X 1 “ tX 1

iu
n
i“1 by

drawing W v1

i „ Pv1 i.i.d. and setting X 1
i “ W 0

i p1´Biq `W v1

i Bi. Note that if Bi “ 0, then Xi “ X 1
i. Thus, the hamming

distance between X and X 1 is

dhampX,X 1q ď BT
1 “

n
ÿ

i“1

Bi.

Now let Q denote the conditional distribution of the ε-semi-DP estimator pθ given input data (X or X 1). For notational
convenience, assume without loss of generality that X “ pX1, . . . , Xnpriv , Xpubq and X 1 “ pX 1

1, . . . , X
1
npriv

, X 1
pubq. Then,

for any fixed sequence b “ pb1, . . . , bnpriv ,0npubq P t0, 1unpriv ˆ t0unpub , we have

Qppθ P A|Xi “ W 0
i p1´ biq `W v

i bi @i P rnsq ě e´εbT 1Qppθ P A|X 1
i “ W 0

i p1´ biq `W v1

i bi @i P rnsq (23)
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by group privacy, since bi “ 0 @i ą npriv implies Xpub “ X 1
pub. Thus,

Pθv p
pθ P Aq

“
ÿ

bPt0,1un

P pB “ bq

ż

Qppθ P A|Xi “ w0
i p1´ biq ` wv

i bi @i P rnsqdPn
0 pw

0
1:nqdP

n
v pw

v
1:nq

ě
ÿ

bPt0,1u
nprivˆt0u

npub ,

bT1ďrnprivps

P pB “ bq

ż

Qppθ P A|Xi “ w0
i p1´ biq ` wv

i bi @i P rnsqdPn
0 pw

0
1:nqdP

n
v pw

v
1:nq

“
ÿ

bPt0,1u
nprivˆt0u

npub ,

bT1ďrnprivps

P pB “ bq

ż

Qppθ P A|Xi “ w0
i p1´ biq ` wv

i bi @i P rnsqdPn
0 pw

0
1:nqdP

n
v pw

v
1:nqdP

n
v1pwv1

1:nq

ě
ÿ

bPt0,1u
nprivˆt0u

npub ,

bT1ďrnprivps

P pB “ bq

ż

”

e´εbT1Qppθ P A|X 1
i “ w0

i p1´ biq ` wv1

i bi @i P rnsqdPn
0 pw

0
1:nq

¨ ¨ ¨ dPn
v pw

v
1:nqdP

n
v1pwv1

1:nq

ı

“
ÿ

bPt0,1u
nprivˆt0u

npub ,

bT1ďrnprivps

P pB “ bqe´εbT1Pθv1

´

pθ P A|B “ b
¯

ě
ÿ

bPt0,1u
nprivˆt0u

npub ,

bT1ďrnprivps

P pB “ bqe´εrnprivpsPθv1

´

pθ P A|B “ b
¯

ěe´εrnprivpsPθv1

´

pθ P A,Bpiąnprivq “ 0npub , B
T
1 ď rnprivps

¯

ěe´εrnprivps
”

Pθv1

´

pθ P A
¯

´ P
´

Bpiąnprivq ‰ 0npub

ď

BT
1 ą rnprivps

¯ı

,

where the second inequality used (23) and the last inequality used a union bound. Now, by independence of tBiu
n
i“1, we

have

P
´

Bpiąnprivq ‰ 0npub

ď

BT
1 ą rnprivps

¯

“1´ P
´

Bpiąnprivq “ 0npub

č

BT
1 ď rnprivps

¯

“1´ P
`

Bpiąnprivq “ 0npub

˘

P
`

BT
1 ď rnprivps

ˇ

ˇBpiąnprivq “ 0npubq

“1´ P
`

Bpiąnprivq “ 0npub

˘

P
´

BT
piďnprivq

1 ď rnprivps

¯

“1´ p1´ pqnpubP
´

BT
piďnprivq

1 ď rnprivps

¯

ď1´ p1´ pqnpub ¨
1

2
,

since the median of BT
piďnprivq

1 „ Binomialpnpriv, pq is no larger than rnprivps. Putting together the pieces, we get

Pθv p
pθ P Aq ě e´εrnprivps

„

Pθv1

´

pθ P A
¯

´ 1` p1´ pqnpub ¨
1

2

ȷ

,

establishing (22).

Now, with (22) in hand, we proceed as in the proof of Barber & Duchi (2014, Theorem 3): Let Bαpθq :“ tθ1 P X :
}θ ´ θ1} ď αu. Note that the balls Bρ˚pVqpθvq are disjoint for v P V by definition of ρ˚pVq. Denote the average probability
of success for the estimator pθ by

Psucc :“
1

|V|
ÿ

vPV
Pθv

´

pθ P Bρ˚pVqpθvq
¯

.
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Then by a union bound and disjointness of the balls tBρ˚pVqpθvquvPV , we have

Psucc ď 1´
1

|V|
ÿ

vPV

ÿ

v1PV,v1‰v

Pθv

´

pθ P Bρ˚pVqpθv1q

¯

.

An application of (22) yields

Psucc ď 1´
1

|V|
ÿ

vPV

ÿ

v1PV,v1‰v

„

e´εrnprivpsPθv1

´

pθ P Bρ˚pVqpθv1q

¯

´

ˆ

1´
p1´ pqnpub

2

˙ȷ

ď 1´ e´εrnprivpsp|V| ´ 1qPsucc ` e´εrnprivpsp|V| ´ 1q

ˆ

1´
p1´ pqnpub

2

˙

.

Re-arranging this inequality leads to

Psucc ď
1` p|V| ´ 1q

´

1´ p1´pq
npub

2

¯

e´εrnprivps

1` p|V| ´ 1qe´εrnprivps

and hence

1´ Psucc ě
p|V| ´ 1qe´εrnprivps ¨

p1´pq
npub

2

1` p|V| ´ 1qe´εrnprivps
.

This last inequality is equivalent to the inequality stated in Theorem 33.

While we state Theorem 33 for mean estimation, it holds more generally for estimating any population statistic θ : P Ñ Θ.
However, this additional generality will not be necessary for our purposes. With Theorem 33 in hand, we now turn to the
proof of Theorem 22.

Proof of Theorem 32. Lower Bounds: We begin by proving (20). First suppose npub À nε
d and d ě 8.

Choose a finite subset V Ă Rd such that |V| ě 2d{2, }v} “ 1, and }v ´ v1} ě 1
8 for all v, v1 P V, v ‰ v1. The existence of

such a set of points is well-known (see e.g. the Gilbert-Varshamov construction). Define P0 to be the point mass distribution
on tX “ 0u and Pv to be point mass on tX “ vu for v P V . For v P V , let Pθv :“ p1´ pqP0 ` pPv for some p P r0, 1s to
be specified later. Note that if X „ Pθv , then }X} ď 1 with probability 1. Thus, Pθv is a valid distribution in the class P of
bounded (by 1) distributions on B that we are considering. Also, note that θv :“ EPθv

rXs “ pv. Further,

ρ˚pVq :“ min
␣

}θv ´ θv1}|v, v1 P V, v ‰ v1
(

ě
p

8

by construction.

Now we use the classical reduction from estimation to testing (see (Barber & Duchi, 2014) for details) to lower bound the
MSE of any ε-semi-DP estimator pθ by

sup
PPP

EX„Pn,pθ

›

›

›

pθpXq ´ Ex„P rxs
›

›

›

2

ě ρ˚pVq2 1

|V|
ÿ

vPV
Pθv

´

}pθpXq ´ θv} ě ρ˚pVq
¯

ě

´p

8

¯2 p|V| ´ 1qe´εrnprivpsp1´ pqnpub

2
`

1` p|V| ´ 1qe´εrnprivps
˘

ě
p2

64

p2d{2 ´ 1qe´εrnprivpsp1´ pqnpub

2
`

1` p2d{2 ´ 1qe´εrnprivps
˘

where we used Theorem 33 in the second inequality. Since we assumed d ě 8, we have 2d{2 ´ 1 ě ed{4 and hence

sup
PPP

EX„Pn,pθ

›

›

›

pθpXq ´ Ex„P rxs
›

›

›

2

ě
p2

64
¨
p1´ pqnpub

2
¨

ed{4´εrnprivps

1` ed{4´εrnprivps

ě
p2

64
¨
p1´ pqnpub

4
.
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for any p ď d
4nε ´ 1

n . Now choose

p “ min

ˆ

d

4nε
´

1

n
,

1

2
?
npub

˙

.

By assumption, there exists an absolute constant k such that npub ď k nε
d . Thus, if nε ě 2, then

p1´ pqnpub ě

ˆ

1´
d

εn

˙knε{d

“

«

ˆ

1´
d

εn

˙nε{d
ffk

ě

«

ˆ

1´
1

2

˙2
ffk

“
1

4k
.

On the other hand, if nε ă 2, then npub ď 2k ùñ p1´ pqnpub ě
`

1´ 1
2

˘2k
“ 1

4k
. Also, note that p ě min

´

d
8εn ,

1
2
?
npub

¯

by the assumption that d ě 8ε. Therefore,

sup
PPP

EX„Pn,pθ

›

›

›

pθpXq ´ Ex„P rxs
›

›

›

2

ě
1

256 ¨ 4k
min

ˆ

d

8εn
,

1

2
?
npub

˙2

.

Combining the above inequality with the non-private lower bound of Ωp1{nq for mean estimation proves the lower bound
in (20).

Now consider the alternative case in which d À 1 (i.e. d ď k for some absolute constant k P N), but npub P rns is arbitrary.
Then we will prove that the lower bound in (20) holds for d “ 1, for any δ P r0, εs and ε ď 1. By taking a k-fold product
distribution, this will suffice to complete the proof of the lower bound in (20). To that end, we will use Le Cam’s method and
build on the techniques in (Barber & Duchi, 2014; Fallah et al., 2022). The key novel ingredient is the following extension
of Fallah et al. (2022, Lemma 3) to the pε, δq-semi-DP setting:

Lemma 35. Let pθ : Xn Ñ X be pε, δq-semi-DP and let P1, P2 be distributions on X such that P1 is absolutely continuous
w.r.t. P2. Denote the conditional distribution of pθ given X by Q and let QjpAq “

ş

Qppθ P A|x1:nqdP
n
j px1:nq for any

measurable set A. Then

}Q1 ´Q2}TV ď min

"
c

n

2
DKLpP1, P2q, 2}P1 ´ P2}TV nprivpe

ε ´ 1` δq `

c

npub

2
DKLpP1, P2q

*

.

Let us defer the proof of Lemma 35 for now. We will now use Lemma 35 to prove the lower bound in (20) for d “ 1 and
ε ď 1. Define distributions P1, P2 on t´1, 1u as follows:

P1p´1q “ P2p1q “
1` γ

2
, P1p1q “ P2p´1q “

1´ γ

2

for some γ P r0, 1{2s to be chosen later. Clearly P1, P2 P P (i.e. they are bounded by 1 with probability 1). Also,
EP1

rxs “ ´γ and EP2
rxs “ γ, so tP1, P2u is a γ-packing of t´1, 1u. Thus, by Le Cam’s method (see (Barber & Duchi,

2014) for details), for any pε, δq-semi-DP pθ, we have

sup
PPP

EX„Pn,pθ

›

›

›

pθpXq ´ Ex„P rxs
›

›

›

2

ě
γ2

8
p1´ }Q1 ´Q2}TVq .
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Now, applying Lemma 35 and the assumption δ ď ε ď 1 yields

sup
PPP

EX„Pn,pθ

›

›

›

pθpXq ´ Ex„P rxs
›

›

›

2

(24)

ě
γ2

8

„

1´min

"
c

n

2
DKLpP1, P2q, 6}P1 ´ P2}TV nprivε`

c

npub

2
DKLpP1, P2q

*ȷ

ě
γ2

8

„

1´min

"
c

n

2
3γ2pP1, P2q, 6γnprivε`

c

npub

2
3γ2

*ȷ

“
γ2

8

«

1´ γmin

#

c

3n

2
, 6nprivε`

c

3npub

2

+ff

. (25)

In the second inequality we used the fact that }P1 ´ P2}TV “ 1
2

`ˇ

ˇ

1`γ
2 ´

1´γ
2

ˇ

ˇ ¨ 2
˘

“ γ and DKLpP1, P2q ď 3γ2 for
γ ď 1{2.

Now we will choose γ to (approximately) maximize the right-hand side of (24). Suppose min

"

b

3n
2 , 6nprivε`

b

3npub

2

*

“

b

3n
2 . Then choosing γ “ 1

3

b

2
3n yields

sup
PPP

EX„Pn,pθ

›

›

›

pθpXq ´ Ex„P rxs
›

›

›

2

ě
k

n

for some absolute constant k ą 0. Our assumption that min

"

b

3n
2 , 6nprivε`

b

3npub

2

*

“

b

3n
2 implies that there exists

k1 ą 0 such that n ď k1 max
´

n2
privε

2, npub

¯

. Thus, k{n ě k
k1 min

´

1
n2

privε
2 ,

1
npub

¯

, which gives the desired lower bound
in (20).

Suppose instead that min

"

b

3n
2 , 6nprivε`

b

3npub

2

*

“ 6nprivε `
b

3npub

2 . Then choose γ “ 2
3

ˆ

6nprivε`
b

3npub

2

˙´1

.

Then, there are constants k, c ą 0 such that

sup
PPP

EX„Pn,pθ

›

›

›

pθpXq ´ Ex„P rxs
›

›

›

2

ě
γ2

8

«

1´ γmin

#

c

3n

2
, 6nprivε`

c

3npub

2

+ff

ě
k

n2
privε

2 ` npub

ě cmin

˜

1

n2
privε

2
,

1

npub

¸

.

Combining the above inequality with the non-private lower bound Ωp1{nq completes the proof of the lower bound in (20),
assuming the truth of Lemma 35.

It remains to prove Lemma 35. To that end, fix = k P t0, nprivu and denote by rQ the marginal distribution of pθ given
X1, . . . , Xk „ P1 (i.i.d.) and Xk`1, . . . , Xn „ P2 (i.i.d.); i.e. for measurable A,

rQpAq :“

ż

Qppθ P A|X1:n “ x1:nqdP
k
1 px1:kqdP

n´k
2 pxk`1:nq.

Note that if k “ 0, then rQ “ Q2. We have

}Q1 ´Q2}TV ď }Q1 ´ rQ}TV
loooooomoooooon

a⃝
`} rQ´Q2}TV
loooooomoooooon

b⃝
.
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Also,

min
kPt0,nprivu

c

n´ k

2
DKLpP1, P2q ` 2}P1 ´ P2}TV min

kPt0,nprivu
kpeε ´ 1` δq (26)

ď min

"
c

n

2
DKLpP1, P2q, 2}P1 ´ P2}TV nprivpe

ε ´ 1` δq `

c

npub

2
DKLpP1, P2q

*

,

so it suffices to upper bound the sum of the terms of a⃝ + b⃝ by the left-hand-side of (26). First, we deal with a⃝: for any k,
we have

}Q1 ´ rQ}2TV ď }Pn
1 ´ P k

1 P
n´k
2 }2TV (27)

ď
1

2
DKL

`

Pn
1 , P

k
1 P

n´k
2

˘

(28)

ď
n´ k

2
DKLpP1, P2q, (29)

by the data processing inequality for f -divergences, Pinsker’s inequality, and the chain-rule for KL-divergences (see,
e.g. (Duchi, 2021) for a reference on these facts). Thus, it remains to show

} rQ´Q2}TV ď 2}P1 ´ P2}TV min
kPt0,nprivu

kpeε ´ 1` δq (30)

for k P t0, nprivu. If k “ 0, (30) is trivial. Assume k “ npriv. Now, for any measurable A, we may write

rQpAq ´Q2pAq “

ż

Rnpub
∆pxnpriv`1:nqdP

npub
2 pxnpriv`1:nq, (31)

where
∆pxnpriv`1:nq :“

ż

Rnpriv
Qppθ P A|X1:n “ x1:nq

`

dP
npriv
1 px1:nprivq ´ dP

npriv
2 px1:nprivq

˘

.

By (31), it suffices to show that |∆pxnpriv`1:nq| ď 2}P1 ´ P2}TV nprivpe
ε ´ 1` δq for all xnpriv`1:n P Xnpub . To do so, let

xi
1:n :“ px1, . . . , xi´1, x

1
i, xi`1, . . . , xnq for some i ď npriv. Then

|Qppθ P A|X1:n “ x1:nq ´Qppθ P A|X1:n “ xi
1:nq| ď peε ´ 1qQppθ P A|X1:n “ xi

1:nq ` δ (32)

since pθ is pε, δq-semi-DP. Moreover, by the proof of Fallah et al. (2022, Lemma 3), we have

∆pxnpriv`1:nq “

npriv
ÿ

i“1

ż

Rnpriv

”

Qppθ P A|X1:n “ x1:nq ´Qppθ P A|X1:n “ xi
1:nq

ı

¨ ¨ ¨ dP i´1
2 px1:i´1q pdP1pxiq ´ dP2pxiqq dP

npriv´i
1 pxi`1:nprivq.

Applying the triangle inequality and (32), we get

|∆pxnpriv`1:nq|

ď

npriv
ÿ

i“1

ż

Rnpriv

”

peε ´ 1qQppθ P A|X1:n “ xi
1:nq ` δ

ı

dP i´1
2 px1:i´1q |dP1pxiq ´ dP2pxiq| dP

npriv´i
1 pxi`1:nprivq

ď2}P1 ´ P2}TV nprivpe
ε ´ 1` δq,

as desired. This completes the proof of Lemma 35 and hence the proof of the lower bound in (20).

Upper bound: First, the throw-away estimator ApXq “ 1
npub

ř

xPXpub
x is clearly p0, 0q-semi-DP and has MSE

EX„Pn }ApXq ´ Ex„P rxs}
2
“ EX„Pn

›

›

›

›

›

›

1

npub

ÿ

xPXpub

px´ Ex„P rxsq

›

›

›

›

›

›

2

“
1

n2
pub

ÿ

xPXpub

Ex„P }x´ Ex„P rxs}
2

ď
1

npub
.
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To get the second term in the minimum in (20), consider the Laplace mechanism ApXq “ X̄ ` pL1, . . . , Ldq, where
Li „ Lapp2

?
d{nεq are i.i.d. mean-zero Laplace random variables. We know A is ε-DP by (Dwork et al., 2014), since the

ℓ1-sensitivity is supX„X1 }X̄ ´ X̄ 1}1 “ 1
n supx,x1 }x´ x1}1 ď 2

?
d

n . Hence A is ε-semi-DP. Moreover, A has MSE

EX„Pn }ApXq ´ Ex„P rxs}
2
ď 2E}ApXq ´ X̄}2 ` 2E

›

›X̄ ´ Ex„P rxs
›

›

2

ď 2d VarpLapp2
?
d{nεqq `

2

n

“
16d2

n2ε2
`

2

n
.

This completes the proof of (20).

E.1.3. AN “EVEN MORE OPTIMAL” SEMI-DP ALGORITHM FOR MEAN ESTIMATION

Lemma 36 (Re-statement of Lemma 7). Recall the definition of PpB, V q (Definition 6): PpB, V q denotes the collection of
all distributions P on Rd such that for any x „ P , we have }x} ď B P -almost surely and Varpxq “ V 2. Then, the error of
the ρ-semi-zCDP throw-away algorithm ApXq “ 1

npub

ř

xPXpub
x is

sup
PPPpB,V q

EX„Pn

“

}ApXq ´ Ex„P rxs}
2
‰

“
V 2

npub
.

The minimax error of the ρ-semi-zCDP Gaussian mechanism GpXq “ X̄ `N
`

0, σ2Id
˘

is

inf
ρ-zCDP G

sup
PPPpB,V q

EG,X„Pn

“

}GpXq ´ Ex„P rxs}
2
‰

“
2dB2

ρn2
`

V 2

n
. (33)

Proof. For throw-away, the i.i.d. data assumption implies

E}ApXq ´ Ex}2 “
1

n2
pub

ÿ

xPXpub

E}x´ Ex}2 “
V 2

npub
.

The Gaussian mechanism G˚pXq :“ X̄ `N
´

0, 2B2

ρn2 Id

¯

is ρ-zCDP by (Bun & Steinke, 2016, Proposition 1.6) since the

ℓ2-sensitivity is bounded by ∆2 “ supX„X1 }X̄ ´ X̄ 1}2 ď 2B
n . Moreover, this sensitivity bound is tight: consider any P

such that x “ pB, 0d´1q and x1 “ p´B, 0d´1q are in the support of P . Then fix any y in the support of P and consider the
adjacent data sets X “ px, y, ¨ ¨ ¨ , yq and X 1 “ px1, y, ¨ ¨ ¨ , yq. We have }X̄ ´ X̄ 1}2 “ 1

n}x´ x1}2 “ 2B
n . Additionally, if

the variance of the additive isotropic Gaussian noise σ2 is smaller than ∆2
2

2ρ “ 2B2

ρn2 , then the Gaussian mechanism is not
ρ-zCDP (Bun & Steinke, 2016). Thus, G˚pXq is the ρ-zCDP Gaussian mechanism with the smallest noise variance σ2.
Hence the infimum in (33) is attained by G˚. Finally, for any P P PpB, V q, the MSE of G˚ is

EG,X„Pn

“

}G˚pXq ´ Ex„P rxs}
2
‰

“ E}G˚pXq ´ X̄}2 ` E

›

›

›

›

›

1

n

n
ÿ

i“1

xi ´ Exi

›

›

›

›

›

2

“
2dB2

ρn2
`

V 2

n
.

Proposition 37 (Re-statement of Proposition 8). Recall the definition of Ar from (3). Ar is ρ-semi-zCDP. Also, there exists
r ą 0 such that

sup
PPPpB,V q

EX„Pn

“

}ArpXq ´ Ex„P rxs}
2
‰

ă min

ˆ

V 2

npub
,
2dB2

ρn2
`

V 2

n

˙

. (34)
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Further, if V 2

npub
ď 2dB2

ρn2 , then the quantitative advantage of Ar is

sup
PPPpB,V q

EX„Pn

“

}ArpXq ´ Ex„P rxs}
2
‰

ď

ˆ

q

q ` s2

˙

min

ˆ

V 2

npub
,
2dB2

ρn2
`

V 2

n

˙

, (35)

where q “ 2`
nprivρV

2

dB2 and s “
V npriv

?
ρ

B
?

dnpub
.

Proof. Privacy: Note that the ℓ2-sensitivity of MpXq “
ř

xPXpriv
rx`

ř

xPXpub

´

1´nprivr
npub

¯

x is

∆2 “ sup
Xpriv„X1

priv

›

›

›

›

›

›

ÿ

xPXpriv

rx`
ÿ

xPXpub

ˆ

1´ nprivr

npub

˙

x´
ÿ

xPX1
priv

rx´
ÿ

xPXpub

ˆ

1´ nprivr

npub

˙

x

›

›

›

›

›

›

“ sup
x,x1

}rx´ rx1} ď 2rB.

Recall that the Gaussian mechanism guarantees ρ-zCDP whenever σ2 ě
∆2

2

2ρ (Bun & Steinke, 2016, Proposition 1.6). Thus,

Ar is ρ-semi-zCDP for σ2
r ě

p2rBq
2

2ρ “ 2B2r2

ρ .

Error bounds: Let P P PpB, V q. We have

EX„Pn

“

}ArpXq ´ Ex„P rxs}
2
‰

“
2dB2r2

ρ
` E

›

›

›

›

›

›

ÿ

xPXpriv

rpx´ Exq `
ÿ

xPXpub

ˆ

1´ nprivr

npub

˙

px´ Exq

›

›

›

›

›

›

2

“
2dB2r2

ρ
`

ÿ

xPXpriv

r2V 2 `
ÿ

xPXpub

ˆ

1´ nprivr

npub

˙2

V 2

“
2dB2r2

ρ
` nprivr

2V 2 `
p1´ nprivrq

2

npub
V 2, (36)

using independence of the Gaussian noise and the data, basic properties of variance, and the fact that the data is i.i.d.

To prove (34), let

Jprq :“
2dB2r2

ρ
` nprivr

2V 2 `
p1´ nprivrq

2

npub
V 2.

We compute first and second derivatives of J :

d

dr
Jprq “ 2r

ˆ

2dB2

ρ
` nprivV

2

˙

´ 2npriv
V 2

npub
p1´ nprivrq

and
d2

dr2
Jprq “ 2

ˆ

2dB2

ρ
` nprivV

2

˙

` 2n2
priv

V 2

npub
.

Since J is strongly convex, it has a unique minimizer r˚ which satisfies d
drJpr

˚q “ 0. We find

r˚ “
nprivV

2

npub

˜

2dB2

ρ
` nprivV

2 `
n2

privV
2

npub

¸´1

.

One can verify that r˚ ‰ 0 and r˚ ‰ 1
n , since 1 ď npriv ă n and ρ ă 8 by assumption. Thus, Jpr˚q ă minpJp0q, Jp1{nqq,

which yields (34) by Lemma 7.
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To prove (35), we will choose a different r: r :“
K

?
ρV

B
?

dnpub
for K ą 0 to be determined. Then by (36), we have

EX„Pn

“

}ArpXq ´ Ex„P rxs}
2
‰

“
2dB2r2

ρ
` nprivr

2V 2 `
p1´ nprivrq

2

npub
V 2

“ K2 V 2

npub

ˆ

2`
nprivρV

2

dB2

˙

`
V 2

npub

˜

1´
KV

B

?
ρnpriv

a

dnpub

¸2

“
V 2

npub

¨

˝qK2 `

˜

1´
KV

B

?
ρnpriv

a

dnpub

¸2
˛

‚,

where q “ 2`
nprivρV

2

dB2 . Now, letting s “
V npriv

?
ρ

B
?

dnpub
and choosing K “ s

q`s2 gives

EX„Pn

“

}ArpXq ´ Ex„P rxs}
2
‰

ď
V 2

npub

¨

˝qK2 `

˜

1´
KV

B

?
ρnpriv

a

dnpub

¸2
˛

‚

ď
V 2

npub

ˆ

q2 ` qs2

q2 ` 2qs2 ` s4

˙

.

Finally, the assumption V 2

npub
ď 2dB2

ρn2 implies V 2

npub
“ min

´

V 2

npub
, 2dB2

ρn2 ` V 2

n

¯

, completing the proof.

E.2. Optimal Semi-DP Empirical Risk Minimization

Practical Applications of Semi-DP ERM Beyond ML: Semi-DP ERM has numerous applications beyond training ML
models. For example, consider semi-DP optimization of energy consumption in smart grids or semi-DP optimization of
the total capacity of a multi-user wireless communication system. In these systems, the goal is to optimize the current
performance of the system given existing users (e.g., optimize current beamforming strategies in wireless communications).
Some users may opt-in to share their data (e.g. electricity consumption pattern) and some users may not. Thus, the problem
is naturally a semi-DP ERM problem.

Theorem 38 (Complete statement of Theorem 10). There exist absolute constants c0 and C0, with 0 ă c0 ď C0, such that

c0LDmin

"

npriv

n
,
d

nε

*

ď RERMpε, npriv, n, d, L,D, µ “ 0q ď C0LDmin

"

npriv

n
,
d

nε

*

.

Further, if µ ą 0, then there exist absolute constants 0 ă c1 ď C1 such that

c1LDmin

"

npriv

n
,
d

nε

*2

ď RERMpε, npriv, n, d, L,D, µq ď C1
L2

µ
min

#

npriv

n
,
d
a

lnpnq

nε

+2

.

Proof. Lower Bounds: Given a lower bound for empirical mean estimation, Bassily et al. (Bassily et al., 2014) show how
to prove excess risk lower bounds for convex and strongly convex ERM by reducing these problems to mean estimation.
Thus, our lower bounds follow immediately by combining the lower bound in Theorem 21 with the reduction in (Bassily
et al., 2014). Roughly, the reduction works as follows:

In the strongly convex case, we simply take fpw, xq “ 1
2}w ´ x}2 on W “ X “ B; fp¨, xq is 1-uniformly-Lipschitz and

1-strongly convex. Moreover, for any ε-semi-DP A with output wpriv “ ApXq, we have

E pFXpwprivq ´ pF˚
X “

1

2
E}ApXq ´ X̄}2.

Applying Theorem 21 and then scaling f Ñ L
Df and W Ñ DW and X Ñ DX completes the proof.
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For the convex case, we take fpw, xq “ ´xw, xy on W “ X “ B. Then w˚ :“ argminwPW
pFXpwq “ X̄

}X̄}
and

pFXpwprivq ´ pF˚
X ě

1

2
}X̄}}wpriv ´ w˚}2.

Also, the proof of Theorem 21 shows that there exists a dataset X P Xn such that }X̄} “ M{n :“ min
`npriv

n , d
3nε

˘

and

E}A1pXq´ X̄}2 Á min
`npriv

n , d
nε

˘2
for any ε-semi-DP A1. Note that A1 :“ M

n wpriv is ε-semi-DP by post-processing. Thus,

E pFXpwprivq ´ pF˚
X ě

M

2n
E
“

}wpriv ´ w˚}2
‰

“
M

2n

´ n

M

¯2

E
“

}A1pXq ´ X̄}2
‰

Á
n

M
min

ˆ

npriv

n
,
d

nε

˙2

Á min

ˆ

npriv

n
,
d

nε

˙

.

A standard scaling argument (see (Bassily et al., 2014) for details) completes the proof.

Upper Bounds: The second terms in each minimum follows by running the ε-DP algorithms in (Bassily et al., 2014):
these achieve the desired excess empirical risk bounds and are automatically ε-semi-DP.

We now prove the first term in each respective minimum. Denote pFpubpwq “ 1
n

ř

xPXpub
fpw, xq and pFprivpwq “

1
n

ř

xPXpriv
fpw, xq, so that pFX “ pFpub ` pFpriv. The algorithm we will use simply returns any minimizer of the public

empirical loss: ApXq “ w˚
pub P argminwPW

pFpubpwq. (It will be easy to see from the proof that any approximate minimizer

would also suffice.) A is clearly ε-semi-DP. Next, we bound the excess risk of A. Let w˚ P argminwPW
pFXpwq.

Convex Upper Bound: We have

pFXpw˚
pubq ´

pFXpw˚q “ pFXpw˚
pubq ´

pFpubpw
˚
pubq `

pFpubpw
˚
pubq ´

pFpubpw
˚q

` pFpubpw
˚q ´ pFXpw˚q

ď
1

n

ÿ

xPXpriv

fpw˚
pub, xq ` 0´

1

n

ÿ

xPXpriv

fpw˚, xq

ď
1

n

ÿ

xPXpriv

L}w˚
pub ´ w˚}

“ L}w˚
pub ´ w˚}

npriv

n

ď LD
npriv

n
.

Strongly Convex Upper Bound: By the above, pFXpw˚
pubq ´

pFXpw˚q ď L}w˚
pub ´ w˚}

npriv

n . Now we will use strong
convexity to bound }w˚

pub ´ w˚}. To do so, we use the following lemma, versions of which have appeared, e.g. in (Lowy &
Razaviyayn, 2021; Chaudhuri et al., 2011):

Lemma 39. (Lowy & Razaviyayn, 2021) Let Hpwq, hpwq be convex functions on some convex closed set W Ď Rd and
suppose that Hpwq is µH -strongly convex. Assume further that h is Lh-Lipschitz. Define w1 “ argminwPW Hpwq and
w2 “ argminwPW rHpwq ` hpwqs. Then }w1 ´ w2} ď

Lh

µH
.

We apply the lemma with hpwq “ pFprivpwq and Hpwq “ pFpubpwq. Then the conditions of the lemma are satisfied with
Lh ď

npriv

n L and µH “
npub

n µ. Thus,

}w˚ ´ w˚
pub} ď

Lh

µH
ď

L

µ

npriv

npub
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This leads to
pFXpw˚

pubq ´
pFXpw˚q ď

L2

µ

n2
priv

nnpub
.

Combining the two strongly convex upper bounds with the upper bound LD
npriv

n ď L2

µ
npriv

n (which holds for any convex
function), we have an algorithm A with the following excess risk:

E pFXpApXqq ´ pF˚
X À

L2

µ
min

˜

npriv

n
,
n2

priv

nnpub
,
d2 lnpnq

n2ε2

¸

. (37)

We will show that (37) is equal to the strongly convex upper bound stated in Theorem 10 up to constant factors. First,
suppose npub Á n: i.e. there is a constant k ą 0 such that npub ě kn for all n ě 1. Then, clearly (37) and the strongly

convex upper bound stated in Theorem 10 are both equal to Θ
´

L2

µ min
´

n2
priv

n2 ,
`

d
nε

˘2
lnpnq

¯¯

.

Next, suppose npub ! n: i.e. for any k ą 0, there exists n ě 1 such that npub ă kn. Then we claim that

min

"

npriv

n ,
d
?

lnpnq

nε

*2

Á min

"

1,
d
?

lnpnq

nε

*2

. If we prove this claim, then we are done. There are two subcases to

consider: A) npriv{n ă
d
?

lnpnq

εn ; and B) npriv{n ě
d
?

lnpnq

εn . In subcase B), the claim is immediate. Consider subcase A): if
npriv Á n, then we’re done. If not, then we have npriv ! n and npub ! n, so n “ npriv ` npub ! n, a contradiction. This
completes the proof.

Remark 40 (Details of Remark 11). The same minimax risk bound (7) holds up to a logarithmic factor if we replace
Fµ“0,L,D by the larger class of all Lipschitz non-convex (or convex) loss functions in the definition (6): First, the lower
bound in Theorem 10 clearly still holds for non-convex loss functions. For the upper bound, the ε-DP (hence semi-DP)
exponential mechanism achieves error OpLD d

nε lnpnqq (Bassily et al., 2014; Ganesh et al., 2022). Further, the proof
of Theorem 10 reveals that convexity is not necessary for the throw-away algorithm to achieve error OpLDnpriv{nq. However,
the optimal algorithms are inefficient for non-convex loss functions: to the best of our knowledge, all existing polynomial time
implementations of the exponential mechanism require convexity for their runtime guarantees to hold. Further, computing
« argminwPW

pFpubpwq in the implementation of throw-away may not be tractable in polynomial time for non-convex pFpub.

E.3. Optimal Semi-DP Stochastic Convex Optimization

Approximate pε, δq-Semi-DP SCO
Theorem 41 (Complete Version of Theorem 12). Let ε À 1{ logpndq and δ ! 1{n. Then, there is a constant C ą 0 such
that

ℓpd, nqLDmin

"

1
?
npub

,

?
d

nε
`

1
?
n

*

ď RSCOpε, δ, npriv, n, d, L,D, µ “ 0q ď CLDmin

#

1
?
npub

,

a

d lnp1{δq

nε
`

1
?
n

+

,

and

ℓpd, nqLDmin

"

1
?
npub

,

?
d

nε
`

1
?
n

*2

ď RSCOpε, δ, npriv, n, d, L,D, µq ď C
L2

µ
min

#

1
?
npub

,

a

d lnp1{δq

nε
`

1
?
n

+2

,

where 1{ℓpd, nq is logarithmic in d and n. Our lower bounds hold for symmetric A “ pA1, . . . ,Adq.

Proof. Lower bounds: Let A be pε, δq-semi-DP and symmetric, and denote wpriv “ ApXq.

Strongly convex lower bounds: We begin with the strongly convex lower bounds, which can be proved by reducing strongly
convex SCO to mean estimation and applying Theorem 4. In a bit more detail, let f : W ˆ X Ñ R be given by

fpw, xq “
L

2D
}w ´ x}2,

where W “ X “ DB. Note that fp¨, xq is L-uniformly Lipschitz and L
D -strongly convex in w for all x. Further,

w˚ :“ argminwPW tF pwq “ Ex„P rfpw, xqsu “ Ex„P rxs. By a direct calculation (see e.g. (Kamath et al., 2022a,
Lemma 6.2)), we have

EF pwprivq ´ F pw˚q “
L

2D
E}wpriv ´ w˚}2. (38)
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We can lower bound E}wpriv ´ w˚}2 “ E}ApXq ´ Ex„P rxs}
2 via Theorem 4 (and its proof, to account for the re-scaling).

Specifically,

E}wpriv ´ w˚}2 ě ℓpd, nqD2 min

"

1

npub
,

d

n2ε2
`

1

n

*

,

for a logarithmic function ℓpd, nq of d and n, by Theorem 4. Applying (38) yields the desired excess risk lower bound for
δ ą 0.

Convex lower bounds: We will begin by proving the lower bounds for the case in which L “ D “ 1, and then scale our
construction to get the lower bounds for arbitrary L,D.

Let X “

!

˘ 1?
d

)d

Ă Rd and W “ B. Define
fpw, xq “ ´xw, xy,

which is convex and 1-uniformly-Lipschitz in w on X . Let Pθ be the hard distribution used to prove Theorem 23, which
satisfies Ex„Pθ

rxs “ θ P r´a{
?
d, a{

?
dsd and }θ} ď a “ min

´

1
?
npub

,
?
d

nprivε
` 1

n

¯

. Further, w˚
θ “ argminwPW rFθpwq :“

Ex„Pθ
fpw, xq “ ´xw, θys “ θ

}θ} . A direct calculation (see e.g. (Kamath et al., 2022a, Equation 14)) shows

sup
θ

EFθpwprivq ´ F˚
θ ě

1

2
E
“

}θ}}wpriv ´ w˚
θ }

2
‰

(39)

“
1

2
sup
θ

E
„

1

}θ}
}w̃priv ´ θ}

2

ȷ

, (40)

where w̃priv “ rAθpXq is the output of the algorithm rAθ : Xn Ñ }θ}W defined by rAθpXq :“ }θ}ApXq. Note that rAθ is
pε, δq-semi-DP by post-processing, for any θ. Now, we invoke Theorem 23 to obtain

sup
θ

E
”

}w̃priv ´ θ}
2
ı

ě rΩ

˜

min

#

1

npub
,

d

n2
privε

2
`

1

n

+¸

for }θ} ď min
´

1
?
npub

,
?
d

nprivε
` 1

n

¯

. This implies the desired lower bound when L “ D “ 1.

For general L and D, we scale the problem instance as follows: let ĂW “ DW , rX “ LX , and rx „ ĂPθ ðñ rx “ Lx for
x „ Pθ. Define rf : ĂW ˆ rX Ñ R by rfp rw, rxq :“ fp rw, rxq “ ´x rw, rxy. Then rfp¨, rxq is L-Lipschitz and convex. Moreover, if
F pwq “ Ex„Pθ

rfpw, xqs, rF p rwq “ E
rx„ rP rfp rw, rxqs, rw “ Dw, and rθ “ E

rx„ĂPθ
rrxs “ Lθ, then Dw˚ P argmin

rwPĂW
rF p rwq

and

rF p rwq ´ rF˚ “ ´x rw, rθy ` x rw˚, rθy

“ Dxrθ, w˚ ´ wy

“ LDxθ, w˚ ´ wy

“ LD rF pwq ´ F˚s .

This shows that excess risk scales by LD, completing the lower bound proofs.

Upper bounds: Convex upper bounds: Consider the 0-semi-DP throw-away algorithm that discards Xpriv and runs npriv
steps of one-pass SGD (stochastic approximation) using Xpub. This algorithm has excess risk O

`

LD{
?
npub

˘

(Nemirovski &
Yudin, 1983). To obtain the second term in the convex pε, δq-semi-DP upper bound, one can use, e.g. pε, δq-DP-SGD (Bassily
et al., 2019).

Strongly convex upper bounds: Consider the 0-semi-DP throw-away algorithm that discards Xpriv and runs npriv steps of

one-pass SGD (stochastic approximation) using Xpub. This algorithm has excess risk O
´

L2

µnpub

¯

(Nemirovski & Yudin,
1983). The second term in the strongly convex pε, δq-semi-DP upper bound can be attained, e.g. by pε, δq-DP-SGD (Lowy
& Razaviyayn, 2023b).

Next, we provide minimax optimal excess risk bounds for pure ε-semi-DP SCO.
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Pure ε-Semi-DP SCO
Theorem 42 (Pure ε-Semi-DP SCO). Suppose ε ď d{8, and either npub À nε

d or d À 1. If µ “ 0 (convex case), then there
exist absolute constants 0 ă c0 ď C0 such that

c0LDmin

"

1
?
npub

,
d

nε
`

1
?
n

*

ď RSCOpε, δ “ 0, npriv, n, d, L,D, µ “ 0q ď C0LDmin

"

1
?
npub

,
d

nε
`

1
?
n

*

.

If µ ą 0, there are constants 0 ă c1 ď C1 such that

c1LDmin

"

1

npub
,

d2

n2ε2
`

1

n

*

ď RSCOpε, δ “ 0, npriv, n, d, L,D, µq ď C1
L2

µ
min

"

1

npub
,
d2 lnpnq

n2ε2
`

1

n

*

.

The above upper bounds hold for any npub, d.

Proof of Theorem 42. Lower bounds: Let A be ε-semi-DP and denote wpriv “ ApXq.

Strongly convex lower bound: We begin with the strongly convex lower bound, which can be proved by reducing strongly
convex SCO to mean estimation and applying Theorem 32. In a bit more detail, let f : W ˆ X Ñ R be given by

fpw, xq “
L

2D
}w ´ x}2,

where W “ X “ DB. Note that f is L-uniformly Lipschitz and L
D -strongly convex in w for all x. Further, w˚ :“

argminwPW tF pwq “ Ex„P rfpw, xqsu “ Ex„P rxs. By a direct calculation (see e.g. (Kamath et al., 2022a, Lemma 6.2)),
we have

EF pwprivq ´ F pw˚q “
L

2D
E}wpriv ´ w˚}2. (41)

We can lower bound E}wpriv ´w˚}2 “ E}ApXq ´Ex„P rxs}
2 via Theorem 32 (and its proof, to account for the re-scaling).

Specifically, if δ “ 0, ε ď maxp1, d{8q, and either d “ Op1q or npub “ Opnε{dq, then Theorem 32 and its proof imply

E}wpriv ´ w˚}2 ě cD2 min

ˆ

1

npub
,

d2

n2ε2
`

1

n

˙

.

Combining this with (41) leads to the desired excess risk lower bound for δ “ 0.

Convex lower bound: We will begin by proving the lower bound for the case in which L “ D “ 1, and then scale our
construction to get the lower bounds for arbitrary L,D.

Assume δ “ 0, ε ď d{8, and either npub À nε{d or d À 1. Let X “ t0u
Ť

!

˘ 1?
d

)d

Ă Rd and W “ B. Define

fpw, xq “ ´xw, xy,

which is convex and 1-uniformly-Lipschitz in w on X . Choose V to be a finite subset of Rd such that |V| ě 2d{2,
}v} “ 1 for all v, and }v ´ v1} ě 1{8 for all v ‰ v1 (see e.g. the Gilbert-Varshamov construction). Following the proof
of Theorem 4, we define Pθv “ p1´ pqP0 ` pPv for all v P V , where p P r0, 1s will be chosen later, P0 is point mass on
tX “ 0u and Pv is point mass on tX “ vu. Denote the mean θv :“ Ex„Pθv

rxs “ pv. Note that }θv} “ p for all v. Let
Fvpwq “ Ex„Pθv

rfpw, xqs and w˚
v P argminwPW Fvpwq “

θv
}θv}

“ v. A direct calculation (see e.g. (Kamath et al., 2022a,
Equation 14)) shows

EFvpwq ´ F˚
v ě

1

2
E
“

}θv}}w ´ w˚
v }

2
‰

(42)

for any w P W, v P V . Also,

ρ˚pVq “ min
␣

}w˚
v ´ w˚

v1} : v, v1 P V, v ‰ v1
(

“ min
␣

}v ´ v1} : v, v1 P V, v ‰ v1
(

ě
1

8
.
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Thus, by combining (42) with the reduction from estimation to testing and Theorem 33 (see the proof of Theorem 4 for
details), we have

sup
vPV

E rFvpwprivq ´ F˚
v s ě

1

2
sup
vPV

E
“

}θv}}wpriv ´ w˚
v }

2
‰

“
p

2
sup
vPV

E
“

}wpriv ´ w˚
v }

2
‰

ě
p

2
ρ˚pVq2 1

|V|
ÿ

vPV
Pθv

´

}pθpXq ´ θv} ě ρ˚pVq
¯

ě
p

128

p|V| ´ 1qe´εrnprivpsp1´ pqnpub

2
`

1` p|V| ´ 1qe´εrnprivps
˘

ě
p

128

p2d{2 ´ 1qe´εrnprivpsp1´ pqnpub

2
`

1` p2d{2 ´ 1qe´εrnprivps
˘

ě
p

512
p1´ pqnpub min

"

1,
2d{2 ´ 1

eεpnprivp`1q

*

.

Now, assume d ě 4 so that 2d{2 ´ 1 ě ed{4. Then, as detailed in the proof of Theorem 4, choosing

p “ min

ˆ

d

4nε
´

1

n
,

1

2
?
npub

˙

and assuming npub ď knε{d for some absolute constant k implies

sup
vPV

E rFvpwprivq ´ F˚
v s ě cmin

ˆ

1
?
npub

,
d

nε

˙

for some absolute constant c ą 0. Combining this with the non-private SCO lower bound (Nemirovski & Yudin, 1983)
yields

sup
P

E rF pwprivq ´ F˚s ě c1 min

ˆ

1
?
npub

,
d

nε
`

1
?
n

˙

,

where F pwq :“ Ex„P rfpw, xqs.

Suppose instead that 0 ď δ ď ε and d À 1 (i.e. d ď k for some absolute constant k ě 1), but npub P rns is arbitrary. We
will prove the lower bound for d “ 1; by taking the k-fold product distribution, this is sufficient to complete the proof of the
unscaled ε-semi-DP lower bound. Define distributions P1, P2 on t´1, 1u as follows:

P1p´1q “ P2p1q “
1` γ

2
, P1p1q “ P2p´1q “

1´ γ

2

for some γ P p0, 1{2s to be chosen later. Note θ1 :“ EP1rxs “ ´γ and θ2 :“ EP2rxs “ γ, so |θj | “ γ for j “ 1, 2. Let
Fjpwq “ Ex„Pj

fpw, xq and w˚
j “

θj
|θj |

“
θj
γ P argminwPW Fjpwq. Then by (42), we have

max
jPt1,2u

E
“

Fjpwprivq ´ F˚
j

‰

ě
1

2
max
jPt1,2u

E
“

|θj ||wpriv ´ w˚
j |

2
‰

“
γ

2
max
jPt1,2u

E
“

|wpriv ´ w˚
j |

2
‰

“
1

2γ
max
jPt1,2u

E
“

|w1
priv ´ θj |

2
‰

,

where w1
priv :“ γwpriv is semi-DP iff wpriv is semi-DP (by post-processing). Thus, by applying Le Cam’s method and

Lemma 35 (see the proof of Theorem 4 for details), we get

max
jPt1,2u

E
“

Fjpwprivq ´ F˚
j

‰

ě
1

2γ

«

γ2

8

˜

1´ γmin

˜

c

3n

2
, 6nprivε`

c

3npub

2

¸¸ff

.
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Now we will choose γ to (approximately) maximize the right-hand side of the above inequality. If

min

"

b

3n
2 , 6nprivε`

b

3npub

2

*

“

b

3n
2 , then choosing γ “ 1

3

b

2
3n yields

max
jPt1,2u

E
“

Fjpwprivq ´ F˚
j

‰

ě
k
?
n

for some absolute constant k ą 0. If instead min

"

b

3n
2 , 6nprivε`

b

3npub

2

*

“ 6nprivε `

b

3npub

2 , then we choose

γ “ 2
3

ˆ

6nprivε`
b

3npub

2

˙´1

. This choice implies

max
jPt1,2u

E
“

Fjpwprivq ´ F˚
j

‰

ě k1 min

ˆ

1

nprivε
,

1
?
npub

˙

for some absolute constant k1 ą 0. Combining the pieces above with the non-private SCO lower bound (Nemirovski &
Yudin, 1983) yields

sup
P

E rF pwprivq ´ F˚s ě cmin

ˆ

1
?
npub

,
1

nε
`

1
?
n

˙

,

where F pwq :“ Ex„P rfpw, xqs.

A standard scaling argument completes the lower bound proofs (see e.g. the proof of Theorem 41 for details).

Upper bounds: Convex upper bounds: Consider the 0-semi-DP throw-away algorithm that discards Xpriv and runs npriv
steps of one-pass SGD (stochastic approximation) using Xpub. This algorithm has excess risk O

`

LD{
?
npub

˘

(Nemirovski
& Yudin, 1983). To obtain the second term in the convex ε-semi-DP upper bound, use the ε-DP (hence semi-DP) regularized
exponential mechanism of Ganesh et al. (2022).

Strongly convex upper bounds: Consider the 0-semi-DP throw-away algorithm that discards Xpriv and runs npriv steps of

one-pass SGD (stochastic approximation) using Xpub. This algorithm has excess risk O
´

L2

µnpub

¯

(Nemirovski & Yudin,
1983). To obtain the second term in the strongly convex ε-semi-DP upper bound, one can use, e.g. the ε-DP (hence semi-DP)
iterated exponential mechanism of Ganesh et al. (2022).

E.3.1. SEMI-DP SCO WITH AN “EVEN MORE OPTIMAL” GRADIENT ESTIMATOR

Proposition 43. We provide privacy guarantees for Algorithm 1:

1. Suppose we sample with replacement in line 4 of Algorithm 1. Then, there exist constants c1, c2 such that for any

ε ă c1

´

Kpriv

npriv

¯2

T , Algorithm 1 is pε, δq-semi-DP for any δ ą 0 if we choose σ2 ě c2
C2 lnp1{δqT

ε2n2
priv

.

2. Suppose we sample without replacement in line 4 and choose T ď n
Kpriv

. Then Algorithm 1 is ρ-semi-zCDP if

σ2 ě 2C2

ρK2
priv

.

Proof. Note that the ℓ2-sensitivity of the private stochastic gradient query is

∆ “ sup
Xpriv„X1

priv

›

›

›

›

›

›

α

Kpriv

ÿ

xPBpriv
t

clipCp∇fpwt, xqq ´
α

Kpriv

ÿ

x1PBpriv
t

clipCp∇fpwt, x
1qq

›

›

›

›

›

›

2

ď
2αC

Kpriv
.

1. Consider sampling with replacement. Then we are randomly subsampling from the private data uniformly with sampling
ratio Kpriv{a. Thus, the theorem follows from (Abadi et al., 2016, Theorem 1).

2. Consider sampling without replacement. Then by the ρ-zCDP guarantee of the Gaussian mechanism (Bun & Steinke,
2016, Proposition 1.6) and the sensitivity bound above, rgt is ρ-semi-zCDP for every t. Moreover, since we are sampling
without replacement, the privacy of every x P Xpriv is only affected by rgt for a single t P rT s. Thus, semi-zCDP of
Algorithm 1 follows by parallel composition (McSherry, 2009).
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Excess risk of By Proposition 8, there exists a choice of α such that the variance of our unbiased estimator in line 7 is
always less than the variance of both the throw-away gradient estimator 1

Kpub

ř

x ∇fpwt, xq and the DP-SGD estimator
1

Kpriv`Kpub

ř

xPBt
∇fpwt, xq ` ut, where ut is appropriately scaled (to ensure DP) Gaussian noise. Consequently, if we

choose T and K “ Kpriv`Kpub such that n “ TK and sample without replacement (i.e. one pass), then Algorithm 1 always
has smaller excess risk than both the throw-away SCO algorithm and one-pass DP-SGD. Moreover, if the loss function has
Lipschitz continuous gradient, then one can combine the stochastic gradient estimator of line 7 with acceleration (Ghadimi
& Lan, 2012) to obtain a linear-time semi-DP algorithm that always outperforms the accelerated DP algorithm of Lowy &
Razaviyayn (2023b). This is because the variance of our gradient estimator (hence our excess risk) is strictly smaller than
that of Lowy & Razaviyayn (2023b), by Theorem 8. For example, for β-smooth, µ-strongly convex loss functions, one-pass
Algorithm 1 achieves excess risk that is optimal up to a factor of Op

a

β{µq and improves over (Lowy & Razaviyayn,
2023b). Moreover, (Lowy & Razaviyayn, 2023b) has the smallest excess risk among linear-time (one-pass) DP algorithms
whose privacy analysis does not require convexity. Thus, our algorithm can be used for deep learning. In our numerical
experiments, we implement the with-replacement sampling version of Algorithm 1.

We also note that near-optimal excess risk bounds for non-convex loss functions that satisfy the (Proximal) PL inequal-
ity (Polyak, 1963; Karimi et al., 2016) can be derived by combining a proximal variation of Algorithm 1 with the techniques
of Lowy et al. (2023a). Further, if fp¨, xq is not uniformly Lipschitz, but has stochastic gradients with bounded k-th order
moment for some k ě 2, then excess risk bounds can still be derived for Algorithm 1 via techniques in (Lowy & Razaviyayn,
2023a). Our algorithm can also be extended to a variation of noisy stochastic gradient descent ascent, which could be used,
e.g. for fair semi-DP model training (Lowy et al., 2023b). We leave it as future work to explore these and other potential
applications of our gradient estimator in efficiently training private ML models with public data.

F. Optimal Locally Private Model Training with Public Data
Notation and Setup: Following Duchi & Rogers (2019), we permit algorithms to be fully interactive. That is, algorithms
may adaptively query the same individual i multiple times over the course of T “communication rounds.” We denote i’s
message in round t by Zi,t P Z . Person i’s message Zi,t P Z in round t may depend on all previous communications
Bptq :“ pZďn,t, B

pt´1qq and on i’s own data: Zi,t „ Qi,tp¨|xi, Zăi,t, B
pt´1qq. If i’s data is private, then Zi,t is a

randomized view of xi distributed (conditionally) according to Qi,t. If i’s data is public, then Zi,t may be deterministic.
Full interactivity is the most general notion of interactivity. If T “ 1, then we say the algorithm is sequentially interactive.
If, in addition, each person’s message Zi,1 depends only on xi and not on xj‰i, then we say the algorithm is non-interactive.
Semi-LDP (Definition 13) essentially requires that the messages tZi,tutPrT s be DP for all private xi P Xpriv.

F.1. Optimal Semi-LDP Mean Estimation

Theorem 44 (Re-statement of Theorem 14). Let ε P p0, 1s. There are absolute constants 0 ă c ď C s.t.

cmin

"

1

npub
,

d

nε2

*

ď Mloc
poppε, npriv, n, dq ď Cmin

"

1

npub
,

d

nε2

*

.

Proof. Lower bound: We will actually prove a more general lower bound than the one in Theorem 14; namely, we will
show a lower bound on the minimax ℓ1-error for estimation of distributions on Xr “ t˘rud for r ą 0. To that end, let
γ P p0, 1q and

P1 :“

#

r with probability 1`γ
2

´r with probability 1´γ
2

and

P´1 :“

#

r with probability 1´γ
2

´r with probability 1`γ
2

.

We define our hard distribution on Xr by first drawing V „ Unifpt˘1udq and then—conditional on V “ v—drawing
Xi,j „ Pv “ Πd

j“1Pvj for i P rns, j P rds, where Pv denotes the product distribution. We have Markov chains

Vj Ñ Xi,j Ñ Z for all j P rds, i P rns, where Z is the semi-LDP transcript. Note that
ˇ

ˇ

ˇ
ln
´

dP1

dP´1

¯
ˇ

ˇ

ˇ
ď ln

´

1`γ
1´γ

¯

fi b and

eb ď 3 for any γ P p0, 1{2s. Now we will use the following lemma from Duchi & Rogers (2019):
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Lemma 45. (Duchi & Rogers, 2019, Lemma 24) Let V Ñ X Ñ Z be a Markov chain, where X „ Pv conditional on
V “ v. If

ˇ

ˇ

ˇ
ln dPv

dPv1

ˇ

ˇ

ˇ
ď α for all v, v1, then

IpV ;Zq ď 2peα ´ 1q2IpX;Zq.

Thus, for Vj „ Unifpt˘1uq, Lemma 45 implies IpVj ;Zq ď
8γ2

p1´γq2 IpXi,j ;Zq. Hence the strong data processing con-

stant (Duchi & Rogers, 2019, Definition 9) is β :“ βpP1, P´1q ď
8γ2

p1´γq2 .

Now, θvj
:“ Ex„Pvj

rxs “ γrvj for any vj P t˘1u. Moreover, letting θv “ pθv1
, ¨ ¨ ¨ , θvd

q for v P t˘1ud and θ P Rd, we
have

}θ ´ θv}1 “

d
ÿ

j“1

|θj ´ rγvj | “ rγ
d
ÿ

j“1

ˇ

ˇ

ˇ

ˇ

θj
rγ

´ vj

ˇ

ˇ

ˇ

ˇ

ě rγ
d
ÿ

j“1

1tsignpθjq‰vju.

Thus, t˘1ud induces an rγ-Hamming separation, so Assouad’s lemma (Duchi et al., 2018, Lemma 1) yields

inf
APAloc

ε

sup
PPPr

E}ApXq ´ θpP q}1 ě rγ
d
ÿ

j“1

inf
V̂

PpV̂jpZq ‰ Vjq,

where Z is the communication transcript of A, the infimum on the RHS is over all estimators of V , θpP q “ Ex„P rxs, and
Pr is the set of distributions on Xr

Assume WLOG that the private samples are the first npriv samples of X: Xpriv “ px1, ¨ ¨ ¨ , xnprivq. To lower bound
řd

j“1 inf V̂ PpV̂jpZq ‰ Vjq, we use a slight extension of Duchi & Rogers (2019, Theorem 10):

d
ÿ

j“1

inf
V̂

PpV̂jpZq ‰ Vjq ě
d

2

«

1´

c

7peb ` 1q

d
β pIpXpriv;Z|V q ` IpXpub;Z|V qq

ff

.

This follows since V Ñ Xpriv Ñ Z and V Ñ Xpub Ñ Z are both Markov chains and the other assumptions in (Duchi &
Rogers, 2019, Theorem 10) all hold. Combining this bound with Assouad’s lemma (Duchi et al., 2018, Lemma 1) and
substituting the definitions of b and β given above gives us

inf
APAloc

ε

sup
PPPr

E}ApXq ´ θpP q}1 ě
rγd

2

«

1´

c

896

d
γ2 pIpXpriv;Z|V q ` IpXpub;Z|V qq

ff

for any γ P p0, 1{2s. It remains to upper bound the conditional mutual information IpXpriv;Z|V q and IpXpub;Z|V q.

Now for any ε-semi-LDP algorithm with communication transcript Z, we have IpXpriv;Z|V q ď npriv minpε, 4ε2q, by an
easy extension of Duchi & Rogers (2019, Lemma 12). Also, IpXpub;Z|V q ď HpXpub|V q ď logp|Xnpub |q “ dnpub, where
Hp¨|¨q denotes conditional entropy. Thus,

inf
APAloc

ε

sup
PPPr

E}ApXq ´ θpP q}1 ě
rγd

2

«

1´

c

4000

d
γ2 pnpriv minpε, ε2q ` dnpubq

ff

.

Choosing γ2 “ cmin
´

1
npub

, d
npriv minpε,ε2q

¯

for some small constant c ą 0 yields

inf
APAloc

ε

sup
PPPr

E}ApXq ´ θpP q}1 Á rdmin

˜

1
?
npub

,

d

d

npriv minpε, ε2q

¸

,

whence

inf
APAloc

ε

sup
PPPr

E}ApXq ´ θpP q}2 Á r
?
dmin

˜

1
?
npub

,

d

d

npriv minpε, ε2q

¸

.
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By applying the non-private mean estimation lower bound, we get

inf
APAloc

ε

sup
PPPr

E}ApXq ´ θpP q}2 Á r
?
dmin

˜

1
?
npub

,

d

d

npriv minpε, ε2q
`

1
?
n

¸

.

Choosing r “ 1{
?
d ensures that Pr Ă PpBq and yields

inf
APAloc

ε

sup
PPPpBq

E}ApXq ´ θpP q}2 Á min

˜

1
?
npub

,

d

d

nminpε, ε2q
`

1
?
n

¸

.

Applying Jensen’s inequality completes the proof of the lower bound in Theorem 14. Since we assumed ε ď 1 ď d, the
minimum in the denominator simplifies to ε2 and the 1{

?
n term is non-dominant.

Upper bound: The first term in the minimum can be realized by the algorithm that throws away the private data and returns
ApXq “ 1

npub

ř

xPXpub
x, which is 0-semi-LDP. Also,

E}ApXq ´ Ex}2 “
1

n2
pub

ÿ

xPXpub

E}x´ Ex}2 ď
1

npub
.

The second term in the upper bound can be realized by the ε-LDP (hence ε-semi-LDP) estimator of Duchi et al. (2013),
which has worst-case MSE upper bounded by O

`

d
nε2

˘

.

Algorithm 3 PrivUnitpp, γq (Bhowmick et al., 2018)

1: Input: v P Sd´1, γ P r0, 1s, p P r0, 1s. Bp¨; ¨, ¨q below is the incomplete Beta function Bpx; a, bq “
şx

0
ta´1p1´tqb´1dt

and Bpa, bq “ Bp1; a, bq.
2: Draw z „ Bernoullippq
3: if z “ 1 then
4: Draw V „ Uniftu P Sd´1 : xu, vy ě γu
5: else
6: Draw V „ Uniftu P Sd´1 : xu, vy ă γu
7: end if
8: Set α “ d´1

2 and τ “
1`γ
2

9: Calculate normalization constant

m “
p1´ γ2qα

2d´2pd´ 1q

ˆ

p

Bpα, αq ´Bpτ ;α, αq
`

1´ p

Bpτ ;α, αq

˙

10: Return 1
m ¨ V

F.1.1. AN “EVEN MORE OPTIMAL” SEMI-LDP ESTIMATOR

Lemma 46 (Re-statement of Lemma 16). Let P be a distribution on B with V 2 “ E}x´ Ex„P rxs}. Let c ą 0 such that
Ex„P }MDuchipxq ´ Ex„P rxs}

2 “ cd
nε2 , so that EX„Pn}ĂMDuchipXq ´ Ex„P rxs}

2 “ cd
nε2 ` V 2

n . Then,

EX„Pn

”

}ASemi-DuchipXq ´ Ex„P rxs}
2
ı

“
npriv

n
¨
cd

nε2
`

npub

n
¨
V 2

n
.

Proof. We have

E} rAsemi-DuchipXq ´ Ex„P rxs}
2 “

1

n2

»

–

ÿ

xPXpriv

E}MDuchipxq ´ Ex„P rxs}
2 `

ÿ

xPXpub

E}x´ Ex„P rxs}
2

fi

fl

“
ncd

ε2n2
`

npubV
2

n2
,

by independence of the data and the assumptions in the statement of the lemma.

43



Optimal Differentially Private Model Training with Public Data

F.1.2. A SEMI-LDP ESTIMATOR WITH OPTIMAL CONSTANTS

Proposition 47 (Re-statement of Proposition 17). Let ApXq “ 1
n

“

MprivpRpx1q, ¨ ¨ ¨ ,Rpxnprivqq `MpubpXpubq
‰

be a
ε-semi-LDP algorithm, where R : Sd´1 Ñ Z is an ε-LDP randomizer and Mpriv : Znpriv Ñ Rd and Mpub : Znpub Ñ Rd

are aggregation protocols such that EMpriv,R
“

MprivpRpx1q, ¨ ¨ ¨ ,Rpxnprivqq
‰

“
ř

xPXpriv
x and EMpub rMpubpXpubqs “

ř

xPXpub
x for all X “ pXpriv, Xpubq P

`

Sd´1
˘n

. Then,

sup
XPpSd´1q

n
EAsemi-PrivU}Asemi-PrivUpXq ´ X̄}2 ď sup

XPpSd´1q
n
EA}ApXq ´ X̄}2.

Proof. First, Asi et al. (Asi et al., 2022, Proposition 3.4) showed that PrivUnit (with a proper choice of pp, γq) has the
smallest worst-case variance among all unbiased ε-LDP randomizers:

sup
xPSd´1

E}Rpxq ´ x}2 ě sup
xPSd´1

E}PrivUnitpxq ´ x}2 (43)

for all ε-LDP randomizers R such that ErRpxqs “ x for all x P Sd´1.

Now, let R be a ε-LDP randomizer and Mpriv and Mpub be aggregation protocols such that the assumptions in Proposition 17
are satisfied. We claim that there exists an unbiased ε-LDP randomizer R1 : Sd´1 Ñ Z such that

sup
XPpSd´1q

n
EA

›

›

›

›

›

nApXq ´
ÿ

xPX

x

›

›

›

›

›

2

ě sup
XPpSd´1q

n
ER1

›

›

›

›

›

›

ÿ

xPXpriv

R1pxq ´
ÿ

xPXpriv

x

›

›

›

›

›

›

2

. (44)

To prove (44), we follow the idea in the proof of Asi et al. (2022, Proposition 3.3). Let P denote the uniform distribution on
Sd´1. We have

sup
XPpSd´1q

n
EA

›

›

›

›

›

nApXq ´
ÿ

xPX

x

›

›

›

›

›

2

ě EX„Pn,A

›

›

›

›

›

nApXq ´
ÿ

xPX

x

›

›

›

›

›

2

ěE

›

›

›

›

›

›

MprivpRpx1q, ¨ ¨ ¨ ,Rpxnprivqq ´
ÿ

xPXpriv

x

›

›

›

›

›

›

2

` E

›

›

›

›

›

›

MpubpXpubq ´
ÿ

xPXpub

x

›

›

›

›

›

›

2

,

since the cross-term (inner product) vanishes by independence of Xpub and Xpriv, and unbiasedness of Mpub. Now, (Asi
et al., 2022, Lemma A.1) shows that there exist ε-LDP randomizers tR̂xuxPXpriv such that ErR̂xpvqs “ v for all v P Sd´1

and

EXpriv„P
npriv

›

›

›

›

›

›

MprivpRpx1q, ¨ ¨ ¨ ,Rpxnprivqq ´
ÿ

xPXpriv

x

›

›

›

›

›

›

2

ě
ÿ

xPXpriv

Ev„P }R̂xpvq ´ v}2.

Hence

sup
XPpSd´1q

n
EA

›

›

›

›

›

nApXq ´
ÿ

xPX

x

›

›

›

›

›

2

ě
ÿ

xPXpriv

Ev„P }R̂xpvq ´ v}2.

Define R1
xpvq :“ UT R̂xpUvq for v P Sd´1, where U is a uniformly random rotation matrix such that UTU “ Id. Note that

R1
x is an ε-LDP randomizer such that ErR1pvqs “ v for all v P Sd´1, x P Xpriv. Moreover, for any fixed v P Sd´1, x P Xpriv,

we have

E}R1
xpvq ´ v}2 “ EU }R̂xpUvq ´ Uv}2

“ Ev1„P }R̂xpv
1q ´ v1}2
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Let x˚ :“ argminxPXpriv
supvPSd´1 E}R1

xpvq ´ v}2 and R1pvq :“ R1
x˚pvq. Then putting the pieces together, we have

sup
XPpSd´1q

n
EA

›

›

›

›

›

nApXq ´
ÿ

xPX

x

›

›

›

›

›

2

ě
ÿ

xPXpriv

sup
vPSd´1

E}R1
xpvq ´ v}2

ě npriv sup
vPSd´1

E}R1pvq ´ v}2

“ sup
XprivPpSd´1q

npriv
ER1

›

›

›

›

›

›

ÿ

xPXpriv

R1pxq ´
ÿ

xPXpriv

x

›

›

›

›

›

›

2

,

by conditional independence of tR1pxquxPXpriv given X . This establishes (44). Thus,

n2 sup
XPpSd´1q

n
EA

›

›ApXq ´ X̄
›

›

2
“ sup

XPpSd´1q
n
EA

›

›

›

›

›

nApXq ´
ÿ

xPX

x

›

›

›

›

›

2

ě sup
XPpSd´1q

n
ER1

›

›

›

›

›

›

ÿ

xPXpriv

R1pxq ´
ÿ

xPXpriv

x

›

›

›

›

›

›

2

ě sup
XPpSd´1q

n
E

›

›

›

›

›

›

ÿ

xPXpriv

PrivUnitpxq ´
ÿ

xPXpriv

x

›

›

›

›

›

›

2

“ n2 sup
XPpSd´1q

n
EAsemi-PrivU}Asemi-PrivUpXq ´ X̄}2,

where we used (43) in the last inequality. Dividing both sides of the above inequality by n2 completes the proof.

F.2. Optimal Semi-LDP Stochastic Convex Optimization

If µ “ 0 (convex case), we denote Rloc
SCOpε, npriv, n, d, L,Dq :“ Rloc

SCOpε, npriv, n, d, L,D, µ “ 0q.
Theorem 48 (Complete statement of Theorem 18). Let ε P p0, 1s. There exist absolute constants c and C, with 0 ă c ď C,
such that

cLDmin

#

1
?
npub

,

c

d

nε2

+

ď Rloc
SCOpε, npriv, n, d, L,Dq ď CLDmin

#

1
?
npub

,

c

d

nε2

+

,

and
cLDmin

"

1

npub
,

d

nε2

*

ď Rloc
SCOpε, npriv, n, d, L,D, µq ď C

L2

µ
min

"

1

npub
,

d

nε2

*

.

Proof. Lower bounds: Let A be ε-semi-LDP and denote wpriv “ ApXq.

Strongly convex lower bound: We begin with the strongly convex lower bounds, which can be proved straightforwardly by
reducing strongly convex SCO to mean estimation and applying Theorem 14. In a bit more detail, let f : W ˆ X Ñ R be
given by

fpw, xq “
L

2D
}w ´ x}2,

where W “ X “ DB. Note that f is L-uniformly Lipschitz and L
D -strongly convex in w for all x. Further, w˚ :“

argminwPW tF pwq “ Ex„P rfpw, xqsu “ Ex„P rxs. By a direct calculation (see e.g. (Kamath et al., 2022a, Lemma 6.2)),
we have

EF pwprivq ´ F pw˚q “
L

2D
E}wpriv ´ w˚}2. (45)

We can lower bound E}wpriv ´w˚}2 “ E}ApXq ´Ex„P rxs}
2 via Theorem 14 (and its proof, to account for the re-scaling).

Specifically, there is a distribution P on X such that

EX„Pn,wpriv}wpriv ´ w˚}2 ě cD2 min

ˆ

1

npub
,

d

nε2

˙

.
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Combining this with (45) leads to the desired excess risk lower bound.

Convex lower bound: We will begin by proving the lower bounds for the case in which L “ D “ 1, and then scale our
construction to get the lower bounds for arbitrary L,D.

Let W “ B, X “

!

˘ 1?
d

)d

, and
fpw, xq “ ´xw, xy,

which is convex and 1-uniformly-Lipschitz in w on X . For any ε-semi-LDP A1pXq “ w1
priv and any γ P p0, 1q, the proof

of Theorem 14 constructs a distribution Pγ on X with mean Ex„Pγ
rxs “ θ P t˘

γ
?
d
ud such that

Ew1
priv,X„Pn

γ

”

›

›w1
priv ´ θ

›

›

2
ı

ě
γ2

4

«

1´

d

4000γ2

ˆ

nprivε2

d
` npub

˙

ff

. (46)

Now, let Fγpwq “ Ex„Pγ rfpw, xqs and w˚
γ “ argminwPW Fγpwq “

θ
}θ} . A direct calculation (see e.g. (Kamath et al.,

2022a, Equation 14)) shows

EFγpwq ´ F˚
γ ě

1

2
E
“

}θ}}w ´ w˚
γ }

2
‰

ě
1

2}θ}
E
“

}w1 ´ θ}2
‰

“
1

2γ
E
“

}w1 ´ θ}2
‰

(47)

for any w P W, w1 :“ w}θ}. Note that ApXq “ wpriv is ε-semi-DP if and only if A1pXq “ w1
priv :“ }θ}wpriv “ γwpriv is

ε-semi-DP, by post-processing. Thus, (46) and (47) together imply that any ε-semi-DP w1
priv has worst-case excess risk that

is lower bounded by

ErFγpw
1
privq ´ F˚

γ s ě
γ

8

«

1´

d

4000γ2

ˆ

nprivε2

d
` npub

˙

ff

.

Choosing γ2 “ cmin
´

d
nprivε2

, 1
npub

¯

for some small c P p0, 1{16000q implies

ErFγpw
1
privq ´ F˚

γ s ě c1 min

˜
d

d

nprivε2
,

1
?
npub

¸

for some c1 ą 0. This proves the desired lower bound for the case when L “ D “ 1. In the general case, we scale
our hard instance, as in the proof of Theorem 4: Let ĂW “ DW , rX “ LX , and rx „ rP ðñ rx “ Lx for x „ P .
Define rf : ĂW ˆ rX Ñ R by rfp rw, rxq :“ fp rw, rxq “ ´x rw, rxy. Then rfp¨, rxq is L-Lipschitz and convex. Moreover, if
F pwq “ Ex„P rfpw, xqs, θ :“ Ex„P rxs, w˚ :“ argminwPW F pwq “ θ

}θ} , rF p rwq “ E
rx„ rP rfp rw, rxqs, rw “ Dw, and

rθ :“ E
rx„ rP rrxs “ Lθ, then rw˚ “ Dw˚ P argmin

rwPĂW
rF p rwq and

rF p rwq ´ rF˚ “ ´x rw, rθy ` x rw˚, rθy

“ Dxrθ, w˚ ´ wy

“ LDxθ, w˚ ´ wy

“ LD rF pwq ´ F˚s .

This shows that the excess risk of the scaled instance scales by LD, completing the lower bound proofs.

Upper bounds: The first term in each of the upper bounds (LD{
?
npub for convex, and L2{pµnpubq for strongly convex) is

attained by the throw-away algorithm that runs npub steps of (one-pass) SGD on Xpub (Nemirovski & Yudin, 1983).

The second term in the convex upper bound follows from the ε-LDP (hence semi-LDP) upper bound of Duchi et al. (2013,
Proposition 3).

46



Optimal Differentially Private Model Training with Public Data

For the second term in the strongly convex upper bound, we run ε-LDP-SGD as in (Duchi et al., 2013). We also return a
non-uniform weighted average ŵn of the iterates w1, . . . , wn as in (Rakhlin et al., 2012) to obtain

EF pŵnq ´ F˚ ď C
G2

µn
,

where G2 “ suptPrns E}MDuchip∇fpwt, xtqq}
2 À L2

`

1` d
ε2

˘

(Duchi et al., 2013). Thus,

EF pŵnq ´ F˚ ď C 1L
2

µ

ˆ

d

nε2

˙

,

since d ě 1 ě ε2. This completes the proof.

F.2.1. AN “EVEN MORE OPTIMAL” SEMI-LDP ALGORITHM FOR SCO

Algorithm 4 Semi-LDP-SGD
1: Input: clip threshold C ą 0, stepsize η, privacy parameter ε P p0, 1s.
2: Initialize w0 P W .
3: for t P t0, 1, ¨ ¨ ¨ , n´ 1u do
4: Draw random sample xt from X without replacement.
5: if xt P Xpriv then
6: rgt Ð MDuchipclipCp∇fpwt, xtqqq.
7: else
8: rgt Ð ∇fpwt, xtq

9: end if
10: Update wt`1 :“ ΠW rwt ´ ηrgts.
11: end for
12: Output: w̄n “ 1

n

řn
i“1 wi.

Proposition 49 (Re-statement of Proposition 19). Let f P Fµ“0,L,D and P be any distribution and ε ď d. Algorithm 4 is
ε-semi-LDP. Further, there is an absolute constant c such that the output ApXq “ w̄n of Algorithm 4 satisfies

EA,X„PnF pw̄nq ´ F˚ ď c
LD
?
n
max

#

c

d

ε2

c

npriv

n
,

c

npub

n

+

.

Proof. Privacy: Since MDuchi is an ε-LDP randomizer and we are applying MDuchi to the gradients of all the private
samples x P Xpriv, Algorithm 4 is ε-semi-LDP.

Excess risk: Choose C ą L: i.e. we don’t clip, since stochastic subgradients are already uniformly bounded by the
L-Lipschitz assumption. By the classical analysis of the stochastic subgradient method (see e.g. (Bubeck et al., 2015)), we
can obtain

EF pw̄nq ´ F˚ ď
1

n

n
ÿ

t“1

ErrgTt pwt ´ w˚qs

ď
D2

ηn
`

η

n

`

nprivG
2
a ` npubG

2
b

˘

,

where G2
a :“ supt E}MDuchip∇fpwt, xtqq}

2 and G2
b :“ supt E}∇fpwt, xtq}

2. By the uniform Lipschitz assumption, we
have G2

b ď L2. By (Duchi et al., 2013), we have G2
a ď c2L2 d

ε2 for some absolute constant c ą 0. Thus, choosing

η “ D
L min

´b

ε2

nprivc2d
, 1
?
npub

¯

yields

EF pw̄nq ´ F˚ ď 3
LD
?
n
max

˜

c

c2d

ε2

c

npriv

n
,

c

npub

n

¸

.

This completes the proof.

47



Optimal Differentially Private Model Training with Public Data

G. Numerical Experiments
Code for all of the experiments is available here: https://github.com/
optimization-for-data-driven-science/DP-with-public-data.

G.1. Central Semi-DP Experiments

G.1.1. SEMI-DP LINEAR REGRESSION WITH GAUSSIAN DATA

Data Generation: We implement Algorithm 1 on synthetic data designed for a linear regression problem of dimension
2, 000, using the squared error loss: fpw, xq “ pxw, xp1qy´xp2qq2, where xp1q P Rd denotes the feature vector and xp2q P R
is the target. Here, d “ 2, 000. Our synthetic dataset consists of n “ 30, 000 training samples, 7500 validation samples, and
37, 500 test samples. The feature vectors xi :“ x

p1q
i and the optimal parameter vector w˚ are drawn i.i.d. from a multivariate

Gaussian distribution N p0, I2000q. We generate predicted values xp2q
i from a Gaussian distribution N pxw˚, xiy, 1q. Thus,

the optimal linear regression model has which ensures an optimal mean squared error of 1.

Experimental Setup: Our experiments investigate two phenomena: 1) the effect of the ratio npub

n on test loss when
ε P t2, 4u is fixed, for values of npub

n ranging from 0.01 to 0.95, see Figures 3-4; and 2) the effect of privacy (quantified by ε)
on test loss, for fixed npub

n P t0.1, 0.25u, and varying ε P t0.1, 0.5, 1.0, 2.0, 4.0, 8.0u, see Figures 9-10 . We maintain the
privacy parameter δ at a constant value of 10´5 throughout our experiments. We set the private batch size Kpriv “ 500,
public batch size Kpub “ 200, and iterations T “ 5000. All algorithms undergo extensive hyperparameter tuning using
the validation dataset, and the performance of each tuned algorithm is subsequently assessed using the test dataset. (See
“Hyperparameter Tuning” paragraph below for details on the tuning process.)

Details on Implementations of Algorithms: We compare four different semi-DP algorithms: 1. Throw-away. 2. DP-
SGD (Abadi et al., 2016; De et al., 2022). 3. PDA-MD (Amid et al., 2022, Algorithm 1). 4. Our Algorithm 1—specifically,
the sample-with-replacement version of our algorithm. If npub ě d, the Throw-away algorithm simply returns a minimizer
wpub of the public loss: wpub “ pXT

pubXpubq
´1XT

pubypub. Otherwise, we used pretrained warm-start models with all public
samples. (See “warm-start” paragraph below for details.) DP-SGD adds noise to all (public or private) gradients. We use the
state-of-the-art (for image classification) implementation of DP-SGD of (De et al., 2022). We adopt the re-parameterization
of DP-SGD in (De et al., 2022, Equation 3) to ease the hyperparameter tuning. For PDA-MD, we implement (Amid et al.,
2022, Algorithm). We use their exact Mirror descent form by multiplying the inverse of the hessian XT

pubXpub by the private
gradient (Amid et al., 2022). In their original implementation, they added a small constant, Hessian Regularization, times
the identity matrix to the Hessian before calculating the inverse for numerically stable. We choose the hessian regularization
constant as 0.01, the same value in their original implementation.

Effect of increasing ratio npub{npriv: More public data always improves the performance of Algorithm 1, but does not always
benefit PDA-MD. The primary reason for this is that our algorithm more effectively handles the increasing privacy noise
that is needed to maintain semi-DP with increasing ratio npub{n. Our algorithm achieves this by using the weight parameter
to reduce the variance of the increasingly noisy private gradients and leverage public gradients. By contrast, as npub{n ratio
rises, the efficacy of PDA-MD may diminish due to its over-reliance on increasingly noisy private gradients. We verify our
reasoning numerically in Appendix G.3: Tables 11 and 12 record the standard deviation σ of the privacy noise for different
ratios.

Effect of hessian regularization parameter on PDA-MD: Upon reproducing the results of PDA-MD, we discovered a high
sensitivity to the choices of Hessian Regularization, especially when the ratio of the largest and the smallest eigenvalue
of the data matrix is large. We test PDA-MD on the dataset proposed in the original study as well as on our own dataset.
The results of these tests are displayed in Fig. 8. We see PDA-MD is sensitive to hessian regularization parameter, which
requires extra tuning on complicated tasks. We implement PDA-MD with the optimal regularization value of 0.01.

Details on warm-start and cold-start: In our evaluation, we adopt a “warm start” strategy for all algorithms: we first
find a minimizer wpub of the public loss, and then initialize the training process with wpub. Note that there are two
cases: npub ě n and npub ă n. In the case of npub ě n, the minimizer wpub of the public loss can be obtained via

wpub “

´

XT
pubXpub

¯´1

XT
pubypub. In the case of npub ă n, we run SGD on linear regression with all npub. Specifically, we

minimize wpub of the public loss by running the SGD with public batch size Kpub “ 200, stepsize ηt “ 0.5, and iterations
T “ 50000 to allow the models fully converge. For cold start scenarios, we initialize all model parameters w to 0. The cold
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Figure 8. Loss v.s. PDA-MD Regularization Parameter. Left: Results on proposed dataset in (Amid et al., 2022). Right: Results on our
dataset. PDA-MD is sensitive to hessian regularization parameter, which requires extra tuning on complicated tasks.

start experiment results can be seen in Figure 5 and Figure 11.

Clipping public gradients improves performance: We have empirically found that a slight modification of Algorithm 1 offers
performance benefits. Namely, it is beneficial to project the public gradients onto the ℓ2-sphere of radius C; that is, we
re-scale the public gradients to have ℓ2-norm equal to C. Note that semi-DP still holds regardless of whether or not the
public gradients are re-scaled. Re-scaling the public gradients helps balance the effects of the public and private gradients
on the optimization trajectory. In the original method stated in Algorithm 1, if unclipped public gradients and the private
gradient are of very different magnitudes, then one gradient direction might dominate the optimization procedure, leading to
a sub-optimal model. Thus, our public gradient re-scaling technique promotes a more balanced update, which gracefully
combines the public and private data in each iteration. To the best of our knowledge, this technique is novel.

Privacy accounting: We compute the privacy loss of each algorithm by using the moments acccountant of Abadi et al. (Abadi
et al., 2016). For a fixed clip threshold C, privacy level pε, δq is determined by three parameters: the variance of privacy noise
σ2, the private sampling ratio q :“ Kpriv{npriv, and the total number of iterations T . In our setting, the privacy parameters
pε, δq are given, and we use the moments accountant to compute an approximation of σ2 for any choice of hyperparameters
T and q. We utilize the implementation of the privacy accountant provided by the Pytorch privacy framework, Opacus.

Hyperparameter Tuning: The results reported are for each algorithm with the hyperparameters (step size and α in
Semi-DP) that attain the best performance for a given experiment. For simplicity and computation efficiency, we keep clip
threshold C “ 1 for all of our experiments. Preliminary experiments found that a clip threshold of C “ 1 worked well for
all algorithms. To tune all algorithms, we use grid search. See Tables 1 and 2 in Appendix G.2 for detailed descriptions of
the hyperparameter search grids.
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Figure 11. Test loss vs. ε. npub
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“ 0.1, without warm-
start.
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G.1.2. SEMI-DP MEAN ESTIMATION

We present an experiment with mean estimation: We fix ρ-semi-zCDP with privacy parameter ρ “ 0.5. We draw n
i.i.d. samples from a pd “ 1000q-dimensional Bernoullipp “ 1{2q product distribution. We investigated the effect of the
ratio npub

n on mean ℓ2 error, for values of npub

n ranging from 0.05 to 0.95. We presented the experiment in three different
high-dimensional and low-dimensional settings: n ă d, n “ d, and n ą d. Fig. 12 shows that when n ă d, throw-away
outperforms Gaussian mechanism. Fig. 13 and Fig. 14 show that when d ď n, throw-away outperforms Gaussian mechanism
except when npub

n “ 0.05. Moreover, our Weighted Gaussian estimator outperforms both throw-away and the Gaussian
mechanism in every case.
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Figure 12. d “ 1000, n “ 500
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Figure 13. d “ 1000, n “ 1000
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Figure 14. d “ 1000, n “ 2000

G.1.3. SEMI-DP LOGISTIC REGRESSION WITH CIFAR-10

We evaluate the performance of Algorithm 1 in training a logistic regression model to classify digits in the CIFAR-10
dataset (Krizhevsky et al., 2009). We compare Algorithm 1 against DP-SGD and throw-away. Note that PDA-MD does not
have an efficient implementation for logistic regression. This is because there does not exist a closed form update rule for
the mirror descent step. Thus, we do not compare against PDA-MD.

We flatten the images and feed them to the logistic (softmax) model. Cross-entropy loss is used here; therefore, the model
is convex. Implementations of the algorithms are similar to the linear regression case. However, in this case, throw-away
consists of running non-private SGD on Xpub to find an approximate minimizer wpub. For all three algorithms, we fixed
batch-size 256 and privacy parameter δ “ 10´6. The remaining hyperparameters are tuned by grid search, using the same
grid for each algorithm. Also, in contrast to the linear regression experiments, we do not use warm-start for any of the
algorithms and we use SGD for all algorithms in these experiments. See Table 3 in Appendix G.2 for detailed descriptions
of the hyperparameter search grids.

Results are reported in Figs. 15 to 18. Our Algorithm 1 always outperforms the baselines in terms of minimizing test
accuracy/error. The advantage of Algorithm 1 over these baselines is even more pronounced than it was for linear regression.
This might be partially due to the fact that we did not use warm-start.
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Figure 15. Test error rate vs. npub
n

. Left: ε “ 0.1. Middle: ε “ 0.5. Right: ε “ 1.0
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Figure 16. Test error rate vs. npub
n

. Left: ε “ 2.0. Middle: ε “ 4.0. Right: ε “ 8.0
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Figure 17. Test error rate vs. ε. Left: npub
n

“ 0.01. Middle: npub
n

“ 0.02. Right: npub
n

“ 0.04
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Figure 18. Test error rate vs. ε. Left: npub
n

“ 0.1. Middle: npub
n

“ 0.2. Right: npub
n

“ 0.3

G.1.4. SEMI-DP WIDE-RESNET-16-4 WITH CIFAR-10

To evaluate the performance of Algorithm 1 in training non-convex (neural) models, we use the Wide-ResNet with 16 layers
and a width factor of 4 (WRN-16-4) (Zagoruyko & Komodakis, 2017). When trained non-privately on CIFAR-10 dataset,
this model achieves an error rate of 5.02 (Zagoruyko & Komodakis, 2017).

Experimental Setup: We followed the same experimental setup as (De et al., 2022). For all algorithms, we used a
constant learning rate and did not use momentum, weight decay, or dropout. We fixed the batch size of 256 and privacy
parameter δ “ 10´5. For simplicity and to isolate the effects of the weighted gradient estimator, we used the WRN-16-4
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without batch/group normalization or data augmentation.10We split the CIFAR-10 dataset (Krizhevsky et al., 2009) of 50,000
training examples into 40,000 training samples and 10,000 validation samples. We used their 10,000 test images as our test
set. Same as Appendix G.1.3, we did not use warm-start here.

Hyperparameter Tuning: We selected the hyperparameters settings with the highest validation accuracy for all algorithms
and reported their test accuracy on the official test set. To tune the hyperparameters, we used the bayesian hyperparameter
optimization technique. That is, we build a probability model of the objective function and use it to select the most promising
hyperparameters to evaluate in the true objective function. See Table 4 in Appendix G.2 for detailed descriptions of the
hyperparameter search range.

Results: We investigate two cases: 1) the effect of the ratio of public samples npub

n on accuracy when ε “ 8 is fixed. We
test values of npub

n ranging from 0.01 to 0.3; and 2) the effect of privacy (quantified by ε) on accuracy, for fixed npub

n “ 0.04.
We vary ε P t0.1, 0.5, 1.0, 2.0, 4.0, 8.0u. Results are reported in Figs. 19 and 20. Our Algorithm 1 always outperforms the
baselines (DP-SGD and Throw-away) in terms of minimizing test error, across all experimental setups.
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Figure 19. Left: Test error rate vs. npub
n

. Right: Validation error rate vs. npub
n

. ε “ 8
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Figure 20. Left: Test error rate vs. ε. Right: Validation error rate vs. ε. npub
n

“ 0.04

G.2. Hyperparameters Search Grids

hyperparameter learning-rate

value 0, 0.01, 0.03, 0.05, 0.07, 0.09, 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9

Table 1. Grid used for hyperparameter search for PDA-MD and DP-SGD in Appendix G.1.1

10We believe that accuracy could be improved by combining these tricks with our semi-DP gradient estimator (De et al., 2022; Nasr
et al., 2023).
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hyperparameter learning-rate α

value 0, 0.01, 0.03, 0.05, 0.07, 0.09, 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9 0, 0.1, 0.2 . . . 1

Table 2. Grid used for hyperparameter search for Algorithm 1 in Appendix G.1.1

hyperparameter value

iterations 2000, 4000, 6000, . . . , 20000
learning-rate 0.005, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 5

α 0, 0.1, 0.2, . . . , 1

Table 3. Grid used for hyperparameter search for DP-SGD and Semi-DP in Appendix G.1.3

hyperparameter iterations learning-rate α

value r3000, 7000s r0.1, 3s r0, 1s

Table 4. Range used for Bayesian hyperparameter search for DP-SGD and Semi-DP in Appendix G.1.4

G.3. Exact Numerical Results

npub{n Algorithm 1 PDA-MD DP-SGD Throw-away

0.01 2.3526 1689.5905 2.7935 1689.5905
0.03 1.9719 1084.2257 2.1457 1084.2256
0.04 1.7626 776.1302 2.1417 776.1301
0.1 1.1648 1.1880 1.1695 3.1133

0.25 1.1260 1.1306 1.1346 1.3691
0.5 1.1043 1.1394 1.1065 1.1539

0.75 1.0946 1.1013 1.0937 1.1013
0.9 1.0787 1.0787 1.0787 1.0788

0.95 1.0725 1.0725 1.0725 1.0725

Table 5. Exact training results of curves reported in Figure 3.

npub{n Algorithm 1 PDA-MD DP-SGD Throw-away

0.01 1.5020 1689.5905 1.5206 1689.5905
0.03 1.3363 1084.2257 1.3769 1084.2256
0.04 1.3196 776.1302 1.3776 776.1302
0.1 1.1201 1.1376 1.1221 3.1133

0.25 1.1030 1.1090 1.1103 1.3691
0.5 1.0911 1.1019 1.0999 1.1539

0.75 1.0863 1.1013 1.0877 1.1013
0.9 1.0787 1.0787 1.0787 1.0788

0.95 1.0725 1.0725 1.0725 1.0725

Table 6. Exact training results of curves reported in Figure 4.
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ε Algorithm 1 PDA-MD DP-SGD Throw-away

0.10 2.9509 3.1133 3.1133 3.1133
0.50 1.6841 1.9602 1.8588 3.1133
1.00 1.3125 1.3201 1.3158 3.1133
2.00 1.1648 1.1880 1.1695 3.1133
4.00 1.1201 1.1376 1.1221 3.1133
8.00 1.1088 1.1120 1.1104 3.1133

Table 7. Exact training results of curves reported in Figure 9.

ε Algorithm 1 PDA-MD DP-SGD Throw-away

0.10 1.3691 1.3691 1.3691 1.3691
0.50 1.2647 1.3691 1.2679 1.3691
1.00 1.1764 1.2099 1.1880 1.3691
2.00 1.1260 1.1306 1.1346 1.3691
4.00 1.1030 1.1090 1.1103 1.3691
8.00 1.0976 1.1023 1.1041 1.3691

Table 8. Exact training results of curves reported in Figure 10.

npub{n Algorithm 1 PDA-MD DP-SGD Throw-away

0.01 1.5175 2010.2422 1.5411 1689.5905
0.03 1.4225 2010.2422 1.5411 1084.2256
0.04 1.3989 2010.2422 1.5413 776.1302
0.1 1.3371 5.3822 1.5413 3.1133

0.25 1.2574 2.6205 1.5411 1.3691
0.5 1.1539 5.9698 1.5411 1.1539

0.75 1.1013 78.9970 1.5411 1.1013
0.9 1.0787 1053.6185 1.5411 1.0788

0.95 1.0725 1662.3572 1.5413 1.0725

Table 9. Exact training results of curves reported in Figure 5.

ε Algorithm 1 PDA-MD DP-SGD Throw-away

0.10 3.1133 1956.6069 1830.1820 3.1133
0.50 3.1133 1092.1338 213.6728 3.1133
1.00 2.1843 306.5518 15.8089 3.1133
2.00 1.6313 34.4665 2.7226 3.1133
4.00 1.3359 5.3648 1.4746 3.1133
8.00 1.1986 2.4319 1.2472 3.1133

Table 10. Exact training results of curves reported in Figure 11.

npub{n 0.01 0.03 0.04 0.1 0.25 0.5 0.75 0.9 0.95

σ 2.490 2.529 2.568 2.744 3.252 4.805 9.531 23.672 47.344

Table 11. Standard Deviation σ of the private noise vt used in experiment shown in Figure 3.
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npub{n 0.01 0.03 0.04 0.1 0.25 0.5 0.75 0.9 0.95

σ 1.470 1.489 1.509 1.597 1.860 2.671 5.176 12.812 25.586

Table 12. Standard Deviation σ of the private noise vt used in experiment shown in Figure 4 and 5.

H. Limitations
Limitations of Theoretical Results: Our theoretical results rely on certain assumptions (e.g convex, Lipschitz loss, i.i.d.
data for SCO), that may be violated in certain applications. We leave it as future work to investigate the questions considered
in this work under different assumptions (e.g. non-convexity, semi-DP SCO with out-of-distribution public data). Also,
we reiterate that our theoretical results describe the optimal worst-case error. It might be the case that the worst-case
distributions we construct in our lower bound proofs are unlikely to appear in practice. Thus, another interesting direction
for future work would be to analyze “instance-optimal” (Asi & Duchi, 2020a;b) semi-DP error rates.

Limitations of Experiments: It is important to note that pre-processing and hyperparameter tuning were not done in a DP
manner, since we did not want to detract focus from evaluation of the (fully tuned) semi-DP algorithms.11 As a consequence,
the overall privacy loss for the entire experimental process is higher than the ε indicated in the plots: the ε indicated in the
plots solely reflects the privacy loss from running the algorithms with fixed hyperparameters and (pre-processed) data.

11See, e.g. (Liu & Talwar, 2019; Papernot & Steinke, 2022) and the references therein for discussion of DP hyperparameter tuning.
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