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Abstract

We revisit the problem of federated learning (FL)
with private data from people who do not trust
the server or other silos/clients. In this context,
every silo (e.g. hospital) has data from several
people (e.g. patients) and needs to protect the
privacy of each person’s data (e.g. health records),
even if the server and/or other silos try to uncover
this data. Inter-Silo Record-Level Differential
Privacy (ISRL-DP) prevents each silo’s data from
being leaked, by requiring that silo ¢’s communica-
tions satisfy item-level differential privacy. Prior
work (Lowy & Razaviyayn, 2023a) characterized
the optimal excess risk bounds for ISRL-DP al-
gorithms with homogeneous (i.i.d.) silo data and
convex loss functions. However, two important
questions were left open: 1) Can the same excess
risk bounds be achieved with heterogeneous (non-
i.i.d.) silo data? 2) Can the optimal risk bounds be
achieved with fewer communication rounds? In
this paper, we give positive answers to both ques-
tions. We provide novel ISRL-DP FL algorithms
that achieve the optimal excess risk bounds in the
presence of heterogeneous silo data. Moreover,
our algorithms are more communication-efficient
than the prior state-of-the-art. For smooth loss
functions, our algorithm achieves the optimal ex-
cess risk bound and has communication complex-
ity that matches the non-private lower bound. Ad-
ditionally, our algorithms are more computation-
ally efficient than the previous state-of-the-art.
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1. Introduction

Federated learning (FL) is a distributed machine learning
paradigm in which multiple silos (a.k.a. clients), such as
hospitals or cell-phone users, collaborate to train a global
model. In FL, silos store their data locally and exchange fo-
cused updates (e.g. stochastic gradients), sometimes making
use of a central server (Kairouz et al., 2021). FL has been
applied in myriad domains, from consumer digital products
(e.g. Google’s mobile keyboard (Hard et al., 2018) and
Apple’s i0OS (Apple, 2019)) to healthcare (Courtiol et al.,
2019), finance (FedAl, 2019), and large language models
(LLMs) (Hilmkil et al., 2021).

One of the primary reasons for the introduction of FL was to
enhance protection of the privacy of people’s data (McMa-
han et al., 2017). Unfortunately, local storage is not suffi-
cient to prevent data from being leaked, because the model
parameters and updates communicated between the silos
and the central server can reveal sensitive information (Zhu
& Han, 2020; Gupta et al., 2022). For example, Gupta et al.
(2022) attacked a FL model for training LLMs to uncover
private text data.

Differential privacy (DP) (Dwork et al., 2006) guarantees
that private data cannot be leaked. Different variations of
DP have been considered for FL. Central DP prevents the
final trained FL model from leaking data to an external
adversary (Jayaraman & Wang, 2018; Noble et al., 2022).
However, central DP has two major drawbacks: 1) it does
not provide a privacy guarantee for each individual silo; and
2) it does not ensure privacy when an attacker/eavesdropper
has access to the server or to another silo.

Another notion of DP for FL is user-level DP (McMahan
etal., 2018; Geyer et al., 2017; Levy et al., 2021). User-level
DP mitigates the drawback 1) of central DP, by providing
privacy for the complete local data set of each silo. User-
level DP is practical in the cross-device FL setting, where
each silo is a single person (e.g. cell-phone user) with a large
number of records (e.g. text messages). However, user-level
DP still permits privacy breaches if an adversary has access
to the server or eavesdrops on the communications between
silos. Moreover, user-level DP is not well-suited for cross-
silo federated learning, where silos represent organizations
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Figure 1. ISRL-DP maintains the privacy of each patient’s record,
provided the patient’s own hospital is trusted. Silo 7’s messages
are item-level DP, preventing data leakage, even if the server/other
silos collude to decode the data of silo <.

like hospitals, banks, or schools that house data from many
individuals (e.g. patients, customers, or students). In the
cross-silo FL context, each person possesses a record, re-
ferred to as an “item,” which may include sensitive data.
Therefore, an appropriate notion of DP for cross-silo FL
should safeguard the privacy of each individual record (i.e.
“item-level differential privacy’’) within silo %, rather than
the complete aggregated data of silo 4.

Following Lowy & Razaviyayn (2023a); Lowy et al.
(2023a); Liu et al. (2022) (among others), this work consid-
ers inter-silo record-level DP (ISRL-DP). ISRL-DP requires
that the full transcript of messages sent by silo 7 satisfy item-
level DP, for all silos i. Thus, ISRL-DP guarantees the
privacy of each silo’s local data, even in the presence of an
adversary with access to the server, other silos, or the com-
munication channels between silos and the server. See Fig-
ure 1 for an illustration. If each silo only has one record, then
ISRL-DP reduces to local DP (Kasiviswanathan et al., 2011;
Duchi et al., 2013). However, in the FL setting where each
silo has many records, ISRL-DP FL is more appropriate and
permits much higher accuracy than local DP (Lowy & Raza-
viyayn, 2023a). Moreover, ISRL-DP implies user-level DP
if the ISRL-DP parameters are sufficiently small (Lowy &
Razaviyayn, 2023a). Thus, ISRL-DP is a practical privacy
notion for cross-silo and cross-device FL. when individuals
do not trust the server or other silos/clients/devices with
their sensitive data.

Problem Setup. Consider a FL environment with NV si-
los, where each silo has a local data set with n samples:
X; = («Ti,la <o ,:ci,n) for i € [N] = {17. .. ,N}. At the

beginning of every communication round 7, silos receive
the global model w,.. Silos then utilize their local data to
enhance the model, and send local updates to the server (or
to other silos for peer-to-peer FL). The server (or other silos)
uses the local silo updates to update the global model.

For each silo ¢, let D; be an unknown probability distribution
on a data domain X. Let f : W x X — R be a loss
function (e.g. cross-entropy loss for logistic regression),
where W C R is a parameter domain. Assume f(-,z) is
convex. Silo ¢’s local objective is to minimize its expected
population/test loss, which is

Fi(w) = Eq,op, [f(w, 23))]. (M

Our (global) objective is to find a model that achieves small
error for all silos, by solving the FL problem

. 1
min {F(w) = ZFZ(U/)} )

while maintaining the privacy of each silo’s local data under
ISRL-DP.

(FL)

Assume that the samples {2; ; };c[n],jc[n are independent.
The FL problem is homogeneous if the data is i.i.d.: i.e
D; = D for all 4,j € [N]. In this work, we focus on
the more challenging heterogeneous (non-i.i.d.) case: i.e.
the data distributions {D;}¥.; may be arbitrary. This case
arises in many practical FL settings (Kairouz et al., 2021).

Contributions. The quality of a private algorithm .4 for
solving Problem FL is measured by its excess risk (a.k.a.
excess population/test loss), E[F(A(X))] — F*, where
F* = inf,,cyy F(w) and the expectation is over the ran-
dom draw of the data X = (X3,...,Xy) as well as the
randomness of A. Lowy & Razaviyayn (2023a) character-
ized the minimax optimal excess risk (up to logarithms) for
convex ISRL-DP FL in the homogeneous (i.i.d.) case:

~ 1 1 dlog(1/6
®< (+ g1/ ))) ®
VN \vn en
where d is the dimension of the parameter space

and £,6 are the privacy parameters. For heteroge-
neous FL, the state-of-the-art excess risk bound is

4/5
0 (1/\/Nn+ (\/dlog(l/é)/(sn\/ﬁ)) > assuming
smoothness of the loss function (Lowy & Razaviyayn,

2023a). Lowy & Razaviyayn (2023a) left the following
question open:

Question 1. Can the optimal ISRL-DP excess risk in (2)
for solving Problem FL be attained in the presence of
heterogeneous silo data?
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Contribution 1. We give a positive answer to Question 1.
Moreover, we do not require smoothness of the loss function
to attain the optimal rate: see Theorem 3.1.

In practical FL settings (especially cross-device settings),
it can be expensive or slow for silos to communicate with
the server or with each other (Kairouz et al., 2021). Thus,
another important desiderata for FL algorithms is commu-
nication efficiency, which is measured by communication
complexity: the number of communication rounds R that
are required to achieve excess risk a. In the homogeneous
setting, the state-of-the-art communication complexity for
an algorithm achieving optimal excess risk is due to Lowy
& Razaviyayn (2023a, Theorem D.1):

. N 2.2
Rsora = O <min {Nn, T}) . 3)

Question 2. Can the optimal ISRL-DP excess risk in (2)
for solving Problem FL be attained in fewer communica-
tion rounds R, for R < Rsora?

Contribution 2. We answer Question 2 positively. For
smooth losses, our algorithm achieves optimal excess risk
with significantly improved communication complexity:

v N1/A4p1/2.1/2
Rymooth = O <m1n {(Nn)1/4, dl/4}) .4

Our communication complexity in (4) matches the non-
private lower bound of Woodworth et al. (2020) in the
high heterogeneity regime (Theorem 2.4), hinting at the
communication-optimality of our algorithm.

For non-smooth loss functions, our communication com-
plexity is

~( . N'/2ne
Rnon-smooth =0 <II11H {(Nn)1/27 d1/2 }) ) (5)

a major improvement over the prior state-of-the-art bound
in (3).

Moreover, we achieve these improved communication com-
plexity and optimal excess risk bounds without assuming
homogeneity of silo data.

When N = 1 in (FL), ISRL-DP FL reduces to central
DP stochastic convex optimization (SCO), which has been
studied extensively (Bassily et al., 2019; Feldman et al.,
2020; Asi et al., 2021; Zhang et al., 2022). In this centralized
setting, communication complexity is usually referred to as
iteration complexity. Even in the special case of N = 1,
our iteration complexity for smooth losses improves over
the prior state-of-the-art result (Zhang et al., 2022).

Another important property of FL algorithms is computa-
tional efficiency, which we measure by (sub)gradient com-

plexity: the number of stochastic (sub)gradients 7' that an
algorithm must compute to achieve excess risk a.

In the homogeneous case, the state-of-the-art gradient com-
plexity for an ISRL-DP FL algorithm that attains optimal
excess risk is due to Lowy & Razaviyayn (2023a, Theorem
D.1). For smooth losses and ¢ = ©(1), Lowy et al. (2023a)
obtain gradient complexity

_ ' n2 ' n2
Tsota=0 <N2 min {n, E} + N*% min {nS/Q, W}) .

Question 3. Can the optimal ISRL-DP excess risk in (2)
for solving Problem FL be attained with smaller gradient
complexity T' < Tsora?

Contribution 3. We give a positive answer to Question 3.
We provide an ISRL-DP FL algorithm with optimal excess
risk and improved gradient complexity (see Theorem 2.1).
When d = O(n) and ¢ = O(1), our gradient complexity
bound simplifies to

,-Tsmooth - 6 <N5/4n1/4 + (Nn)Q/S) . (7)

In Theorem 3.4, we also improve over the state-of-the-
art subgradient complexity bound of Lowy & Razaviyayn
(2023a, Theorem D.2) for non-smooth losses. Moreover, in
contrast to these earlier results, we do not assume homoge-
neous data.

‘We summarize our main results in Table 1 and Table 2.

Our Algorithms and Techniques. Our algorithms com-
bine and extend various private optimization techniques in
novel ways.

Our ISRL-DP Algorithm 1 for smooth FL builds on the
ISRL-DP Accelerated MB-SGD approach used by Lowy &
Razaviyayn (2023a) for federated empirical risk minimiza-
tion (ERM). We call this algorithm repeatedly to iteratively
solve a carefully chosen sequence of regularized ERM sub-
problems, using the localization technique of Feldman et al.
(2020). We obtain our novel optimal excess risk bounds for
heterogeneous FL with an algorithmic stability (Bousquet
& Elisseeft, 2002) argument. We make the key observation
that the stability and generalization of regularized ERM
in Shalev-Shwartz et al. (2009) does not require the data to
be identically distributed. By combining this observation
with a bound for ISRL-DP Accelerated MB-SGD, we obtain
our excess risk bound.

It is not immediately clear that the approach just described
should work, because the iterates of Accelerated MB-SGD
are not necessarily stable. The instability of acceleration
may explain why Lowy & Razaviyayn (2023a) used ISRL-
DP Accelerated MB-SGD only for ERM and not for min-
imizing the population risk. We overcome this obstacle
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Table 1. Comparison vs. SOTA for Smooth Loss Functions. In Tables 1-2, [LR’23] refers to Lowy & Razaviyayn (2023a); we omit logs
and fix M = N,d = O(n),e = ©(1), L = 8 = D = 1. See theorems and the appendix for more general cases.

Algorithm & Setting Excess Risk | Communication Complexity | Gradient Complexity
[LR*23] Alg. 2 (i.i.d.) optimal Nn N2n?
[LR’23] Alg. 1 (non-i.i.d.) | suboptimal N1/5pt/s Nn

Alg. 1 (non-i.i.d.) optimal N1/4pl/4 N5/Apt/t 4 (Nn)9/8

Table 2. Comparison vs. SOTA for Nonsmooth Loss Functions. First 3 algorithms use Nesterov smoothing.

Algorithm & Setting Excess Risk | Communication Complexity Gradient Complexity
[LR’23] Alg. 2 (i.i.d.) optimal Nn N2n?
[LR’23] Alg. 1 (non-i.i.d.) | suboptimal N1/3pl/3 Nn
Alg. 1 (non-i.i.d.) optimal N1i/2pt/2 Onmitted (see Section 3.1)
Alg. 4 (non-i.i.d.) optimal Nn N2n + N3/2p3/2
Algorithm 6 (non-i.i.d.) optimal Nnbd/4 N3/2p3/4 4 N5/Aptl/8

with an alternative analysis that leverages the stability of
regularized ERM, the convergence of ISRL-DP Accelerated
MB-SGD to an approximate minimizer of the regularized
empirical loss, and localization. This argument enables us
to show that our algorithm has optimal excess risk. By
carefully choosing algorithmic parameters, we also obtain
state-of-the-art communication and gradient complexities.

To extend our algorithm to the non-smooth case, we use two
different techniques. One is Nesterov smoothing (Nesterov,
2005), which results in an algorithm with favorable com-
munication complexity. The other approach is to replace
the ISRL-DP Accelerated MB-SGD ERM subsolver by an
ISRL-DP Subgradient Method. This technique yields an
algorithm with favorable (sub)gradient complexity. Third,
we use randomized convolution smoothing, as in Kulkarni
etal. (2021), to obtain another favorable gradient complexity
bound.

1.1. Preliminaries

Differential Privacy. Let X = X"*N and p : X2 —
[0, 00) be a distance between distributed data sets. Two dis-
tributed data sets X, X’ € X are p-adjacent if p(X,X') <
1. Differential privacy (DP) prevents an adversary from
distinguishing between the outputs of algorithm .4 when it
is run on adjacent databases:

Definition 1.1 (Differential Privacy (Dwork et al., 2006)).
Lete > 0, ¢ € [0,1). A randomized algorithm A : X — W
is (g, &)-differentially private (DP) for all p-adjacent data
sets X, X’ € X and all measurable subsets S C W, we
have

P(A(X) € S) < eP(AX)) € §) + 4. ®)

Definition 1.2 (Inter-Silo Record-Level Differential Pri-
vacy). Let p X% - 0,00), p(Xi, X)) =
>io1 L, 207} @ € [N]. A randomized algorithm A

is (¢,6)-ISRL-DP if for all ¢ € [N] and all p-adjacent silo
data sets X;, X/, the full transcript of silo ’s sent messages
satisfies (8) for any fixed settings of other silos’ data.

Notation and Assumptions. Let || - || be the {5 norm
and II)y(z) := argmin, ¢y [[w — 2||? denote the projec-
tion operator. Function A : W — R™ is L-Lipschitz if
[h(w) = h(w)|| < L|jlw — w'|, Yw,w" € W. A differ-
entiable function h(-) is S-smooth if its derivative Vh is
B-Lipschitz. For differentiable (w.r.t. w) f(w,z), we de-
note its gradient w.r.t. w by V f(w, ).

We write ¢ < bif 3C > 0 such that a < Cb. We use

~

a = O(b) to hide poly-logarithmic factors.
We assume the following throughout:

Assumption 1.3.

1. W C R¢is closed, convex. We assume ||w—w'|| < D,
Yw,w' € W.

2. f(-,x) is L-Lipschitz and convex for all z € X. In
some places, we assume that f(-, z) is S-smooth.

3. In each round r, a uniformly random subset S, C [N]
of M silos is available to communicate with the server.

For simplicity, in the main body, we often assume M = N.
The Appendix contains the general statements of all results,
complete proofs, and a further discussion of related work.

2. Localized ISRL-DP Accelerated MB-SGD
for Smooth Losses

We start with the smooth case. Combining iterative lo-
calization techniques of Feldman et al. (2020); Asi et al.
(2021) with the multi-stage ISRL-DP Accelerated MB-SGD
of Lowy & Razaviyayn (2023a), our proposed Algorithm 1
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Algorithm 1 Localized ISRL-DP Accelerated MB-SGD

Require: Datasets X; € X" for | € [N], loss function f,
constraint set VY, initial point wq, subroutine parameters
{(R}28 " N, (K < o),

Set 7 = [logy 1.

Set p = max(3 log,, (M) +1,3)

fori=1to 7 do
Set \; = \-20-VP n; = [n/2'], D; = 2L/ \;.
Each silo I € [N] draws disjoint batch B;; of n;
samples from Xj.

6:  Let Fi(w) = ﬁ Zi\i1 Zzl,jeBi,l flwsa;) +

G w —wiy .

7:  Call the multi-stage (¢, d)-ISRL-DP implementa-
tion of Algorithm 2 with loss function F;(w), data
Xl = Bi,l, R = Ri, K = Ki, initialization Wi—1,
constraint set W; = {w € W : [jw — w;_1]| < D;},
and p = \;. Denote the output by w;.

end for

9: return the last iterate w.

Dk

o]

achieves optimal excess risk and state-of-the-art commu-
nication complexity for heterogeneous FL under ISRL-DP.

We recall ISRL-DP Accelerated MB-SGD in Algorithm 2.
It is a distributed, ISRL-DP version of the AC-SA algo-
rithm (Ghadimi & Lan, 2012). For strongly convex losses,
the multi-stage implementation of ISRL-DP Accelerated
MB-SGD, given in Algorithm 5 in Appendix B, offers im-
proved excess risk (Lowy & Razaviyayn, 2023a). Algo-
rithm 5 is a distributed, ISRL-DP version of the multi-stage
AC-SA (Ghadimi & Lan, 2013).

Building on Algorithm 5, we describe our algorithm as fol-
lows (see Algorithm 1 for pseudocode). The distributed
learning process is divided into 7 = |log, n| phases. In
each phase i € [7], all silos work together (via communica-
tion with the central server) to iteratively solve a regularized
ERM problem with ISRL-DP. The regularized ERM prob-
lem in phase ¢ is defined over NV local batches of data, each
containing n; disjoint samples (cf. F;(w) in Line 6). To find
the approximate constrained minimizer of E; (w) privately,
we apply Algorithm 5 for a careful choice of the number
of rounds R; and the batch size K; € [n;] (cf. Line 7).
The output w; of phase 7 affects phase ¢ + 1 in three ways:
(1) regularization center used to define ﬁi—i—l; (ii) initializa-
tion for the next call of Algorithm 5; and (iii) constraint
set W;+1. We enforce stability (hence generalization) of
our algorithm via regularization and localization: e.g., as
i increases, we increase the regularization parameter \; to
prevent w; 1 from moving too far away from w; and w*.

The following theorem captures our main results of this
section: Algorithm 1 can achieve the optimal excess risk,

Algorithm 2 Accelerated ISRL-DP MB-SGD (Lowy &

Razaviyayn, 2023a)

Require: Datasets X; € X" for I € [N], loss func-
tion F(w) = LSV S o f(w,x), constraint
set W, initial point wy, strong convexity modulus
@ > 0, privacy parameteres (e, ), iteration count
R € N, batch size K € [n], step size parameters
{nr}rerr), {ar freqr) specified in Appendix B.

1: Initialize wg? = wo € Wand r = 1.
2: for r € [R] do

3:  Server updates and broadcasts
md _ (1—ar)(ptnr) ,wag + ar[(l—ar)ptn.]
r—1

Wr = o (1-ad)u Ao Wr-l
4:  fori € S, in parallel do
5: Silo i draws {x] j }szl from X; (with replacement)
and privacy noise u; ~ N(0,021,) for proper o2.
6: Silo i computes g' := + Z]K:1 Vf(wrd zf ;) +

Uj.

7:  end for

8:  Server aggregates g, := ﬁ > ies. g. and updates:
wy = argmingeyy {a, [(Grw) + 4w —w]?
+[(1—an)b + %] Jwr—1 — w|?}.

10:  Server updates and broadcasts
w = a,w, + (1 — ap)wy? .

11: end for

12: return: w}’.

regardless of the heterogeneity, in a communication-efficient
and gradient-efficient manner.

Theorem 2.1 (Upper Bound for Smooth Losses). Let f(-, )
be B-smooth and M = N. Assume ¢ < 21n(2/4),0 €
(0,1). Then, there exist parameter choices such that Al-
gorithm 1 is (e,6)-ISRL-DP and has the following excess
risk

EF (w, -F(w*)=0 (j% <\/lﬁ+a”zi<l/5)>> . (9)

Moreover, the communication complexity of Algorithm 1 is

_(vBDNYA ([ en 12
0 \E(mln{\/ﬁ,m}> +1

Assuming d = ©(n) and € = O(1), the gradient complexity
of Algorithm 1 is

O (N*/4nM/4(BD/L)? + Nn + (Nn)*/3(8D/L)/) .

For general d, n, e, the gradient complexity expression is
complicated, and is given in the Appendix C.1.

Remark 2.2 (Optimal risk in non-i.i.d private FL). The ex-
cess risk bound in (9) matches the optimal i.i.d risk bound
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up to log factors (cf. Theorem 2.2 in Lowy & Razaviyayn
(2023a)), even when silo data is arbitrarily heterogeneous
across silos. To the best of our knowledge, our algorithm
is the first to have this property, resolving an open question
of Lowy & Razaviyayn (2023a). The prior state-of-the-
art bound in Lowy & Razaviyayn (2023a, Theorem 3.1) is
suboptimal by a factor of O((v/d/(enV/'N))'/?).

Remark 2.3 (Improved communication and gradient com-
plexity). The communication and gradient complexities of
our Algorithm 1 significantly improve over the previous
state-of-the-art for ISRL-DP FL: recall (3), (4), (6), and (7).

Our algorithm has state-of-the-art communication com-
plexity, even in the simple case of N = 1, where ISRL-
DP FL reduces to central DP SCO. In fact, the prior
state-of-the-art iteration complexity bound for DP SCO
was O((8D/L) min{y/n,en/+/d1In(1/6)}) (Zhang et al.,
2022). By comparison, when N = 1, our algorithm’s com-
munication complexity is the square root of this bound. Note
that when NV = 1, our algorithm is essentially the same as
the algorithm of Kulkarni et al. (2021), but we do not incor-
porate convolution smoothing here since we are assuming
smoothness of the loss.

We can also compare our gradient complexity results against
the state-of-the-art central DP SCO algorithms when N = 1.
As an illustration, consider the interesting regime ¢ = O(1)
and d = ©(n). For smooth and convex losses, when (i)
B8 < O(y/nL/D), algorithms in both Feldman et al. (2020)
and Zhang et al. (2022) achieve optimal risk using 6(71)
gradient complexity. For (ii) 8 > Q(y/nL/D), the two
algorithms proposed by Feldman et al. (2020) fail to guar-
antee optimal risk, whereas (Zhang et al., 2022, Algorithm
2) continues to attain optimal risk with gradient complexity
O(n*/*\/BD/L). By comparison with these results, for
case (i), our Algorithm 1 achieves optimal risk with gradient
complexity O(n®/*). For case (ii), as in (Zhang et al., 2022),
our Algorithm 1 continues to achieve optimal risk with gradi-
ent complexity O(n%8(3D/L)"/* +n'/*(BD/L)"/? +n).
Thus, our algorithm is faster than the state-of-the-art result
of Zhang et al. (2022) when SD/L > n3/2. In the com-
plementary parameter regime, however, the algorithm of
Zhang et al. (2022) (which is not ISRL-DP) is faster. We
discuss possible ways to close this gap in Section 5.

Comparison with Non-Private Communication Com-
plexity Lower Bound. Theorem 2.1 trivially extends
to the unconstrained optimization setting in which D =
|lwo — w*|| for w* € arg min, cga F'(w). Moreover, our
excess risk bound is still optimal for the unconstrained
case: a matching lower bound is obtained by combining
the technique for unconstrained DP lower bounds in Liu &
Lu (2021) with the constrained ISRL-DP FL lower bounds
of Lowy & Razaviyayn (2023a).

Let us compare our communication complexity upper bound
against the non-private communication complexity lower
bound of Woodworth et al. (2020). Define the following
parameter which describes the heterogeneity of the silos at
the optimum w* = arg min, cra F'(w):

2 1 Y * (|2
¢ =5 S IVR@P.
i=1

The lower bound holds for the class of distributed zero-
respecting algorithms (defined in Appendix F), which in-
cludes most non-private FL algorithms, such as MB-SGD,
Accelerated MB-SGD, local SGD/FedAvg, and so on.
Theorem 2.4 (Communication Lower Bound (Woodworth
et al., 2020)). Fix M = N and suppose A is a distributed
zero-respecting algorithm with excess risk

._LD (1 dIn(1/9)
EF(A(X)) - F* < T~ (\/ﬁ + m)

in < R rounds of communications on any (-smooth FL
problem with heterogeneity . and ||\wy — w*|| < D. Then,

1/2
v/dIn(1/9) })
. (\/BD G >
X min | ——, .
VL ' BLD
Remark 2.5. Our communication complexity in Theo-

rem 2.1 matches the lower bound on the communication cost
in Theorem 2.4 when ¢, 2 #D (i.e., high heterogeneity).

R> N4 (min{\/ﬁ, o

There are several reasons why we cannot quite as-
sert that Theorem 2.4 implies that Algorithm 1 is
communication-optimal. First, the lower bound does not
hold for randomized algorithms that are not zero-respecting
(e.g. our ISRL-DP algorithms). However, Woodworth et al.
(2020) note that the lower bound should be extendable to
all randomized algorithms by using the random rotations
techniques of Woodworth & Srebro (2016); Carmon et al.
(2020). Second, the lower bound construction of Wood-
worth et al. (2020) is not L-Lipschitz. However, we believe
that their quadratic construction can be approximated by
a Lipschitz function (e.g. by using an appropriate Huber
function). Third, as is standard in non-private complex-
ity lower bounds, the construction requires the dimension
d to grow with R. This third issue seems challenging to
overcome, and may require a fundamentally different proof
approach. Thus, a rigorous proof of a communication com-
plexity lower bound for ISRL-DP algorithms and Lipschitz
functions is an interesting topic for future work.

Sketch of the Proof of Theorem 2.1. We end this sec-
tion with a high-level overview of the key steps needed to
establish Theorem 2.1.
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Proof sketch. Privacy: We choose parameters so that each
call to Algorithm 5 is (e, §)-ISRL-DP. Then, the full Algo-
rithm 1 is (e, §)-ISRL-DP by parallel composition, since silo
I samples disjoint local batches across phases (VI € [N]).

Excess risk: Following Feldman et al. (2020); Asi et al.
(2021), we start with the following error decomposition: Let
wo = w* for analysis only, and write

E[F(w,)] - F(w') = E[F(w,) — F(iy)]  (10)
+ ZE[F(@) — F(w;—1)], (11

i=1

where w; = argmin,, .y, Fi(w) for i € [r]. Then, it re-
mains to bound (10) and (11), respectively. To this end,
we first show that w; in Algorithm 1 is close to w; for all
i € [7]. Here, we mainly leverage the excess empirical risk
bound of Algorithm 5 for ERM with strongly convex and
smooth loss functions. In particular, by the empirical risk
bound in Lowy & Razaviyayn (2023a, Theorem F.1) and
A;-strongly convex of F}, we can show that the following
bound holds for all ¢ € [r]:

E [Hwi —wi\ﬂ < 5( L dlog(l/a)). (12)

NN nie?

We bound (10) via (12), Lipschitzness, and Jensen’s Inequal-
ity.

To bound (11), we first leverage a key observation that
stability and generalization of the empirical minimizer of
strongly-convex loss does not require homogeneous data.
This observation that allows us to handle the non-i.i.d. case
optimally. Specifically, by the stability result, we have

) A NE[||wi—1 —wi—1]/?] L2
E|F(w;)—F(w;— < .
[F (i)~ F (i) S 5 i

We obtain a bounds on (11) by combining the above inequal-
ity with (12). Finally, by putting everything together and
leveraging the geometrical schedule of \;, n;, we obtain the
final excess population risk bound. O

An alternative proof approach would be to try to show
that Algorithm 5 is stable directly, e.g. by using the tools
that Hardt et al. (2016) use for proving stability of SGD.
However, this approach seems unlikely to yield the same
tight bounds that we obtain, since acceleration may impede
stability of the iterates. Instead, we establish our stability
and generalization guarantee indirectly: We use the facts
that reguralized ERM is stable and that Algorithm 5 approx-
imates regularized ERM.

3. Error-Optimal Heterogeneous ISRL-DP FL
for Non-Smooth Losses

In this section, we turn to the case of non-smooth loss func-
tions. We modify Algorithm 1 to obtain two algorithms that
can handle the non-smooth case. Our algorithms are the
first to achieve the optimal excess risk for heterogeneous
ISRL-DP FL with non-smooth loss functions.

3.1. Error-Optimal and Communication-Efficient
ISRL-DP FL for Non-Smooth Losses

Our first algorithm is based on the technique of Nesterov
smoothing (Nesterov, 2005): For a non-smooth function f,
Moreau- Yosida regularization is used to approximate f by
the B-smooth -Moreau envelope

: B
fs(w) := min (f(v) + 5||w —|? ).
We then optimize this smooth function using our Algo-
rithm 1. See Appendix E for details.

Theorem 3.1 (Non-smooth FL via smoothing). Let M = N.
Then the combination of Algorithm I with Nesterov smooth-
ing yields an (e, §)-ISRL-DP algorithm with optimal excess
population risk as in (9). The communication complexity is

~ ) en
0 (mmm{\/ﬁ’dln(l/é)} +1> )

Remark 3.2 (Optimal excess risk in non-i.i.d. private FL).
Theorem 3.1 gives the first optimal rate for non-smooth
heterogeneous FL under ISRL-DP. Note that the current
best result for heterogeneous FL in Lowy & Razaviyayn
(2023a) is suboptimal and holds only for the smooth case.
One can combine the same smoothing technique above with
the algorithm in Lowy & Razaviyayn (2023a) to obtain a
risk bound of O(1/v/nN + (/dIn(1/5)/env/N)?/3) for
the non-smooth case, which is again suboptimal.

Remark 3.3 (Improved communication complexity). The
communication complexity bound in Theorem 3.1 improves
over the previous state-of-the-art result for an algorithm
achieving optimal excess risk (Lowy & Razaviyayn, 2023a);
recall (3). Moreover, the result of Lowy & Razaviyayn
(2023a) assumed i.i.d. silo data, whereas our result holds
for the non-i.i.d. case.

We have omitted the gradient complexity for this smoothing
approach. This is mainly because the gradient computation
of fz needs additional computation in the form of the prox
operator. One may consider using an approximate prox
operator to get a handle on the total gradient complexity as
in Bassily et al. (2019). However, this approach would still
introduce an additional ©(n?) gradient complexity per step.
Thus, a natural question is whether we can design a more
computation-efficient algorithm for the non-smooth case —
providing a motivation for our next algorithm.
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Algorithm 3 Noisy ISRL-DP MB-Subgradient Method

Algorithm 4 Localized ISRL-DP MB-Subgradient Method

Require: Datasets X; € X™ for [ € [N], loss function
F(w) = 55 S ok, f(w,z), constraint set W,
initial point wg, privacy parameters (,0), iteration
count R € N, batch size K € [n], step sizes {7, }11-}
initial point wy € W.
forr € {0,1,...,R—1} do
for [ € S, in parallel do

Server sends global model w,. to silo [.

Silo [ draws K samples z; ; uniformly from X;

(for j € [K]) and noise u; ~ N(0,0%1,) for

proper o2.
5: Silo [ computes g'. := % Zjil g,ln’ ;i and sends

>

b

to server, where ¢!, ; € 0f (wy, xj ;) (subgradient).
end for
Server aggregates g, 1=y~ > s, Or-
Server updates w11 := Iyy[w, — ¥,-Gr)-
end for
10: Output: Wr = prry SE rw,.

AR e A

3.2. Error-Optimal and Computationally Efficient
ISRL-DP FL for Non-Smooth Losses

We propose another variation of Algorithm 1 that uses sub-
gradients to handle the non-smooth case in a computation-
ally efficient way: see Algorithm 4. Algorithm 4 follows
the same structure as Algorithm 1: we iteratively solve a
carefully chosen sequence of regularized ERM problems
with a ISRL-DP solver and use localization. Compared to
Algorithm 1 for the smooth case, Algorithm 4 does not use
an accelerated solver (due to non-smoothness). Instead, we
use ISRL-DP Minibatch Subgradient method (Algorithm 3)
to solve the non-smooth strongly convex ERM problem in
each phase of Algorithm 4. There are two key differences
between our subroutine Algorithm 3 and the ISRL-DP MB-
SGD of Lowy & Razaviyayn (2023a): (i) Instead of the
gradient, a subgradient of the non-smooth objective is used
in Line 5; (ii) A different and simpler averaging step in
Line 10 is used for strongly convex non-smooth losses.
Theorem 3.4 (Non-smooth FL via subgradient). Let M =
N. Then, there exist parameter choices such that Algo-
rithm 4 is (¢, 0)-ISRL-DP and achieves the optimal excess
population risk in (9). The communication complexity is

~ 2,2
O (min (nN, Nsdn ) + 1) .

Assuming ¢ = O(1), the subgradient complexity is

O| Nn+ N?min (n7n2>+N3/2min(n3/27nQ> )
Z Vi

Remark 3.5 (Improved gradient complexity). The above
subgradient complexity improves over the state-of-the-art

Require: Dataset X; € X", | € [N], constraint set W,
1 > 0, subroutine parameters (specified in Appendix)
including batch size K;, number of rounds R;, noise
parameters o;.
Choose any wg € W.
Set 7 = |log, n|, p = max(3 log, (M) + 1,3).
fori=1to7 do
Set m; = n/2%, n; = n/2', N\ = 1/(qing), D; =
2L/ \;.
5. Eachsilo ! € [N] draws disjoint batch B;; of n;
samples from X;.
6 Let Fi(w) = gl Y, cp, flwimy) +
3 |lw —wi— ||
7. Call the (e, §)-ISRL-DP Algorithm 3 with loss func-
tion Fz(w) data X; = B;;, R = R;, K = K, step
sizes 7y, = ﬁ forr =0,1,..., R; — 1, initial-
ization w;_1, and constraint set W; = {w € W :
||lw —w;—1|| < D;}. Let w; denote the output.
end for
9: return the last iterate w..

Ll > e

o]

gradient complexity (Lowy & Razaviyayn, 2023a) for an
ISRL-DP FL algorithm with optimal excess risk. Lowy &
Razaviyayn (2023a) apply Nesterov smoothing to ISRL-DP
MB-SGD. As discussed earlier, implementing the smooth-
ing approach is computationally costly. Moreover, the re-
sults in Lowy & Razaviyayn (2023a) assume i.i.d. silo data.
The subgradient complexity result in Theorem 3.4 also im-
proves over the gradient complexity of Algorithm 1 with
smoothing.

An alternative approach is to use the convolutional smooth-
ing technique (Kulkarni et al., 2021) to optimize non-smooth
functions. For certain regimes, this approach improves the
gradient complexity over the subgradient method, with a
worse communication complexity compared to the Nesterov
smoothing approach. See Appendix D for details.

Depending on the FL application, communication or com-
putation may be more of a bottleneck. If communication ef-
ficiency is more of a priority, the smoothed version of Algo-
rithm 1 should be used. On the other hand, if computational
efficiency is more pressing, Algorithm 4 or Algorithm 6 is
recommended.

4. Numerical Experiments

We validate our theoretical findings with numerical experi-
ments on MNIST data. As shown in Figures 2 and 3, our
algorithm consistently outperforms Lowy et al. (2023a). We
use a similar experimental setup to Lowy et al. (2023a), as
outlined below.
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Task/model/data set: We run binary logistic regression
with heterogeneous MNIST data: each of the N = 25 silos
contains data corresponding to one odd digit class and one
even digit class (e.g. (1, 0), (3, 2), etc.) and the goal is to
classify each digit as odd or even. We randomly sample
roughly 1/5 of MNIST data to expedite the experiments. We
borrow the code from Woodworth et al. (2020) to transform
and preprocess MNIST data.

Preprocessing: We preprocess MNIST data, flatten the
images, and reduce the dimension to d = 50 using PCA.
We use an 80/20 train/test split, yielding a total of n = 1734
training samples.

Our algorithm: Localized ISRL-DP MB-SGD, which is a
practical (non-accelerated) variant of our Algorithm 1: For
simplicity and to expedite parameter search, we use vanilla
MB-SGD in place of accelerated MB-SGD as our regular-
ized ERM subsolver in our implementation of Algorithm 1.

Baseline: We compare our algorithm against the One-pass
ISRL-DP MB-SGD of Lowy et al. (2023a). Recall that Lowy
et al. (2023a) did not provide theoretical guarantees for their
multi-pass ISRL-DP MB-SGD with heterogeneous silos.

Hyperparameter tuning and evaluation: We evaluate the
algorithms across a range of privacy parameters € and fix
§ = 1/n?. For each algorithm and each setting of €, we
search a range of step sizes 7).

Simulating unreliable communication: In addition to the
reliable communication setting where all silos communi-
cate in each round M = N = 25, we simulate unreliable
communication by randomly selecting a subset of silos to
communicate in each round. In each communication round,
M = 18 of the N = 25 silos are chosen uniformly at
random to communicate with the server.

Evaluation: Each evaluation consists of 5 trials, each with
different data due to random sampling. In each trial, for
each parameter setting, we repeat 3 runs and choose the
hyperparameters with the lowest average loss, and record
the average test error as the test error. We plot the average
test error and the standard deviation across trials.

As shown in the plots, in both reliable and unreliable com-
munication settings, our localized ISRL-DP MB-SGD algo-
rithm outperforms the baseline one-pass ISRL-DP MB-SGD
algorithm across all privacy parameters. Despite being an
algorithm designed to achieve theoretical guarantees, our
algorithm evidently performs well in practice.

5. Concluding Remarks and Open Questions

We have studied private federated learning in the absence
of a trusted server. We characterized the minimax opti-
mal excess risk bounds for heterogeneous ISRL-DP FL,

—— Our Algorithm
0.26 4 —— Lowy et al. (2023)

0.24 4

0.22 4

Test Error

0.0 25 5.0 75 100 125 150 175
Epsilon

Figure 2. Reliable Communication

—— Our Algorithm

0.300 A —— Lowy et al. (2023)

0.275

0.250

0.225 A

Test Error

0.200

0.175 A

0.150

T T T T T T T T
0.0 2.5 5.0 7.5 10.0 12,5 15.0 17.5
Epsilon

Figure 3. Unreliable Communication

answering an open question posed by Lowy & Razaviyayn
(2023a). Further, our algorithms advanced the state-of-the-
art in terms of communication and computational efficiency.
For smooth losses, the communication complexity of our
optimal algorithm matches the non-private lower bound.

To conclude, we discuss some open problems that arise
from our work. (1) A rigorous proof of a ISRL-DP com-
munication complexity lower bound. (2) Is there an op-
timal ISRL-DP algorithm with O(nN) gradient complex-
ity? A promising approach may be to combine Algorithm 1
with ISRL-DP variance-reduction. (Note that the gradient-
efficient variance-reduced central DP algorithm of Zhang
et al. (2022) uses output perturbation, which requires a
trusted server.) (3) Is it possible to achieve both optimal
communication complexity and optimal gradient complex-
ity simultaneously with a single algorithm? Even in the
simpler centralized setting (/N = 1), this question is open.
(4) What are the optimal rates for ISRL-DP FL problems
beyond convex and uniformly Lipschitz loss functions?
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A. Further Discussion of Related Work

DP Optimization. There is a large and growing body of work on DP optimization. Most of this work focuses on the
centralized setting, with Lipschitz convex loss functions in /5 geometry (Bassily et al., 2014; 2019; Feldman et al., 2020;
Zhang et al., 2022) and ¢,, geometry (Asi et al., 2021; Bassily et al., 2021). Recently, we have started to learn more about
other central DP optimization settings, such as DP optimization with non-uniformly Lipschitz loss functions/heavy-tailed
data (Lowy & Razaviyayn, 2023b), non-convex loss functions (Gao & Wright, 2023; Lowy et al., 2024), and min-max
games (Boob & Guzman, 2023). There has also been work on the interactions between DP and other ethical desiderata,
like fairness (Lowy et al., 2023b) and robustness (Wu et al., 2023), as well as DP optimization with side access to public
data (Lowy et al., 2023c). Despite this progress, much less is known about DP distributed optimization/federated learning,
particularly in the absence of a trustworthy server.

DP Federated Learning. There have been many works attempting to ensure privacy of people’s data during the federated
learning (FL) process. Some of these works have utilized user-level differential privacy (McMahan et al., 2018; Geyer
etal., 2017; Levy et al., 2021), which can be practical for cross-device FL with a trusted server. Several works have also
considered inter-silo record-level DP (ISRL-DP) or similar notions to ensure privacy without a trusted server (Heikkild et al.,
2020; Liu et al., 2022; Lowy & Razaviyayn, 2023a; Lowy et al., 2023a; Zhou & Chowdhury, 2023).

The state-of-the-art theoretical bounds for convex ISRL-DP FL are due to Lowy & Razaviyayn (2023a). Lowy & Razaviyayn
(2023a) gave minimax error-optimal algorithms and lower bounds for the i.i.d. setting, and suboptimal algorithms for the
heterogeneous setting. We close this gap by providing optimal algorithms for the heterogeneous setting. Additionally, we
improve over the communication complexity and gradient complexity bounds in Lowy & Razaviyayn (2023a).

B. Multi-Stage Implementation of ISRL-DP Accelerated MB-SGD

Algorithm 5 Multi-stage Accelerated Noisy MB-SGD (Lowy & Razaviyayn, 2023a)

Require: Inputs: Constraint set VW, L-Lipschitz and p-strongly convex loss function F.Uc¢ [R] such that Zgzl R® <R
for R*) defined below; wg € W, A > F(wg) — F*, and gy = 0.
1: for k € [U] do

2
2: R(k) = ’Vma.X{LLQ/%,BHAlgS%}“

uv2 1/2
3: VUV =1max 2/87 |:3A2*(k*1)R(k)(R(k)+1)(R(k)+2)i|

o, = %, Ny = %, forr € [R(k)].

Call Algorithm 2 with R = R*®), using wy = ¢)._1, and {ar}re(ron) and {1y },.cgow defined above.
Set gy, to be the output of stage k.

end for

return q;;.

® RN B

We will need the following result for the excess risk bound, which is due to (Lowy & Razaviyayn, 2023a) (Theorem F.1).

Lemma B.1 (Smooth ERM Upper Bound for Algorithm 5). Assume f(-, ) is B-smooth and \-strongly convex for all x.
Lete <21In(2/6),6 € (0,1). Then, there exist algorithmic parameters such that Algorithm 5 is (¢, 0)-ISRL-DP. Moreover,
Algorithm 5 has the following excess empirical risk bound

_ L?dlnu/a)) %)

E[F(QU)—ﬁ*]=5<)\ SRy

and the communication complexity is

B AXMe?n? e?n?
- 1y 2m (2285 e b 14
R maX{ ’\/:I1 [2d ) PME<NT R aIn(1/6) (14)

13
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C. Precise Statement and Proof of Theorem 2.1

Theorem C.1 (Precise Statement of Theorem 2.1). Assume f (-, x) is B-smooth for all x. Let ¢ < 21n(2/6), § € (0,1).
i 2

Choose R,‘ ~ Imax ( ﬁJ/\r:\L In (AiAiLJ\deZH?) a]l{MKi<Nni}Ki%n£/5)>’ where LD Z Al Z Fi(wi_l) — FZ(UA]l),
eng 9 256L%R; In(33%)In(2/5)
4,/2R; In(2/5)’ 90 = nie? » and
L v/dIn(1/4
A= max < \/n, Van(1/9) ) (15)
Dnv M €
Then, the output of Algorithm 1 is (e, 0)-ISRL-DP and achieves the following excess risk bound:
~( LD 1 dlog(1/6
EF(w,) — Fw') = 0 | Z2 (L 4 vdlos(1/o) ) ) (16)
VM \ V/n en
The communication complexity is
VBDM*4 en e en
O | max ¢ 1,————— | min n, ———— ,1 _—_ , 17
NG ( {‘F /dIn(1/5) }) BT din(1/5) an

when K; = n;. If d = ©(n), M = N, and ¢ = ©(1), then the gradient complexity is

O (N0 /4(BD/L)1/2 + Nn + (Nn)/*(3D/L)"/*).
Remark C.2. In Theorem 2.1, we state the results only for the case M = N. Here, we do not assume M = N, and present
the complete results. The complete analysis of gradient complexity for other regimes can be found in Appendix C.1.

Before proving the theorem, we need several lemmas.

1. We first show the following result.
Lemma C.3. Let w; = arg min, ¢y, Fl(w) We have ; € W; and F is 3L-Lipschitz, (8 + \;)-smooth.

Proof. The optimality of w; implies that

1 M n; M n;

A
oD ) + 5 i~ el €SS fwisim) 40

=1 j=1 i1 =1

By rearranging and using the L-Lipschitzness of f(-,z), We obtain

Ai .
5 Nl = wi||* < L [Jd; — w; -

It follows that w; € W; = {w Clw —wi—q || < %}

For Lipschitzness, the norm of the derivative of the regularizer r;(w) = 3¢ |lw — w;_1 % is A ||w — wi_q|| < A\ D; = 2L.

The hessian of the regularizer is ;1.

Therefore r;(w) is 2L-Lipschitz and A;-smooth. It follows that F;is 3L-Lipschitz and (8 + A;)-smooth. O

2. We have the following bounds that relate the private solution w; and the true solution w; of Fi.
Lemma C.4. In each phase i, the following bounds hold:

i (I din(1)s)

E[F;(w;) — F;(;)] = O <)\iM : 6%%) ; (18)
.2 ~( L* dlog(1/6)

E[||wi—wi||}so(A%M~ e ) (19)

14



Private FL Without a Trusted Server Revisited

Proof. Applying Lemma B.1 to F;, we have

A A ~ 2 n
Blfi(w) - Fi(0)] =0 (53 T )

By using the \;-strong convexity, we have

N [lws 0] < BLEx(wr) B,

The bound (19) follows. O

3. As a consequence, we have the following bound.
Lemma C.5. Let w € W. We have

< ME[[[w — wi||?] LA (3L)*
- 2 Ain; M

Proof. Applying the stability result in Lemma H.1 to F, with m = Mn,, which is A;-strongly convex and 3 L-Lipschitz, we

have
A~ A~ . 2

It follows from the definition of Fi that

B[P ()] - Flu) = E[F (o] - 2000l (Fﬁ(w) B ]>
< NE[[|w ; wi—1f?] + E[F; () — Fi(w)] o
o ME[lw—wi ] 4 (3L)?
> 2 Aing M )
]

By putting these results together, prove the theorem.

Proof of Theorem C.1. Privacy. By the privacy guarantee of Algorithm 5 given in Lemma B.1, each phase of the algorithm
is (¢,0)-ISRL-DP. Since the batches {B; ;}7_, are disjoint for all [ € [N], the privacy guarantee of the entire algorithm
follows by parallel composition of differential privacy (McSherry, 2009).

Excess risk. Recall that we define wo = w*. Write

EF(w,) - F(w*) = E[F(w,) — F(@,)] + Y E[F(i;) — F(ibi_1)).
=1

Since 7 = |logy 1|, we have n, = ©(1) and A, = ©(An?). By (19) and Jensen’s Inequality EZ < vEZ?2, we bound the
first term as follows:

E[F(w,) — F(i,)] < LE [|lw, — -] < O < L W)

VM, €
~ L? dlog(1/6)
<O .
a <)\nP\/M €
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where the last step is due to the choice of A, per (15). Now recall p = max(% log,, (M) + 1, 3). We have

1
773 > /i o OD) — v/l 1)

It follows that E[F (w,) — F(i,)] < O (m)

Note that \;n? = ©(An? - 2(P=2)%) and p > 3. We know that Ain? and \;n; increase geometrically. By combining
Lemma C.5 and (18), we obtain

ZE[F(@Z») Pl < Z ()\i]E[wi—12— i) n 4)\1235\12[ )

i=1

~ ~ L*  dlog(1/8) ¢
<O | AD?
<0 ( i ; NI T e Z N )

~ L? log(1 L?

An2M g2 AnM
Setting A as per (15) gives the result.

Communication complexity. When we use the full batch in each round, that is, K; = n;, hiding logarithmic factors,
communication complexity is

zT:R Zmax B+ \i I AN, Me?n? e2n?
v \i L2d {M<N}nld1n(1/5)

N 2
=0 (max { [logy 1], \/? 1{M<N}d1§(1n/5)}> (22)

1/2
_ 1/4
= O | max 1,@ min \/ﬁ,gin YNy =n
1/6) dln

N3 dIn( (1/6)

For gradient complexity, we defer the analysis to the following section. O

C.1. Gradient Complexity of Algorithm 1 under Different Parameter Regimes
Theorem C.6. When N = M and the full batch K; = n; is used, the gradient complexity of Algorithm 1 is

;NniRi =0 (Nnmax{l, f})

n-v/BDN%4 Jn en 12
VI Y Jam)e)

When we choose K; < n; the communication cost can be worse due to the second term of R; =

BHAi 1y AidiMe?n ,1 e However, under some regimes, the gradient complexity can
by 74 {MK;<Nn:} Rda(1/s) [ ; gumes, the g plexity

(23)
=0 Nn +

max { 1,
be better than that of the full batch. In the case where M < N, the second case will always be present. Now we relax the
assumption M = N, and discuss general results.

For simplicity, let us assume ¢ = O(1), keep terms involving £, M, n, and d only and omit O. We summarize the results as
follows:

. ) 3/4 . L
e When d < n, there are two subcases to consider: lf d 2 Apa then gradient complexity is
. ni/A pT/s n?
mln{(M+M5/4 1/4) max (M1/4d, Ml/g,l) , M" } Ifd < Ml/4, the complexity is M1~

16
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. . 2/3 . . .
e When d = n, there are two subcases to consider: if d = 1775 then gradient complexity is
. 5/4,1/2 3/2 3/4 41/8
min((M—i—Mdli/Z) 1nax<M?/4d3/4,"M1d/s ,1) ) Ifd < M1/3,1h6 complexity is Mn.

In particular, when d = O(n), the gradient complexity is M®/*n'/* + (Mn)°/8. More precisely, the complexity is

%) (N5/4nl/4(m)/L)1/2 + Nn+ (Nn)9/8(5D/L)1/4) (24)

Proof. The bound in (23) is an immediate consequence of Theorem 2.1.

Since terms in the sum decrease geometrically, we only need to consider the first term where 7 = 1. For simplicity we drop
the index 1.

1/2
We write R = max(R’, R”) + 1, where we let R = Q@ - <m1n {f \/W}) , R' = ﬁrgm, and Q :=

1/4
VBDM?Y*/\/L /L. Recall the batch size constraint K > " \/m

We analyze the complexity for (1)d <n, (2)d 2> n

separately below. We omit O for simplicity.

1. When d < n, we hatvemin{\/ﬁ7 \/EHHEW} =0 (yv/n).

2, 7/4

la. If K 2 aomzsy = HKa» we have R’ 2 R” and R = R’ + 1. The constraint on the batch size simplifies to
K > \/ﬁ : Ky when K, < n. Together the gradient complexity is M (R’ + 1) max(K,, Kp, 1)).

1b. Otherwise if K < K, we have R = R 4 1. The constraint on the batch size simplifies to K 2> v/ Kd. Therefore,
we need d < K < n, which is already assumed. In this case, K = d, and the gradient complexity is M(R" + 1) - K =

Md+ M - dln(l/&)

2. When d 2 n, we have min {f \/W} <dliua>>

/
2a. f K 2 #j;)w =: K., we have R’ 2 R” and R = R’ + 1. The constraint on the batch size reduces to

JagL/
K2 % =: K. In the case when K4 > n, we will use the full batch. Therefore, the gradient complexity is

M(R' + 1) max(K,, min(Kg4,n),1) if K. < n.

2b. If K < K, we have R = R”+1. Asinthe case 1b., we need d < n, which contradicts with our assumption d = Q(n )
this case, we need to use the full batch. We have K = n and the gradient complexity is M (R" +1)-K = Mn+M - 5 E n”

In(1/6)"
We summarize as follows.

1. When d < n, the gradient complexity is min {M(R’ + 1) max(K,, Kp, 1), Md + M -
Md+ M - if K,

}1fK < n, and

(1/5)

dln(l/é)

2. When d 2 n, the gradient complexity is min {M(R' + 1) max(K,, min(K4,n),1)), Mn + M - m} ifK.<Sn

and Mn + M - dln(l/&) if K.

Keeping terms involving e, M, n, and d only, we have Q = M'/%, R = M'/* min{n'/%, Zi;: LK, = ’;Z;id K, = A’}%//SS,
3/2 3/4 41/8

K, = Ml”/f/dwl, K;=12 ]\//Ild/s/ . The results follow by plugging in the expressions. It is straightforward to verify the

complexity for the special case d = ©(n). O
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D. Optimize Non-Smooth Losses via Convolutional Smoothing

D.1. Preliminaries for Convolutional Smoothing

We first provide a brief overview of convolutional smoothing and its key properties. For simplicity, let /s denote the uniform
distribution over the ¢5 ball of radius s.

Definition D.1 (Convolutional Smoothing). For ERM with convex loss f, that is F'(w) = LS f(w,x;). We define the

convolutional smoother of f with radius s as fs := Eyu, f(w + v, ;). Then the ERM smoother is defined accordingly, as
follows, Fy(w) = % S Epetr, fw + v, ;).

We have the following properties of the smoother F‘n (Kulkarni et al., 2021):

Lemma D.2. Suppose {f(-,2)}sc= is convex and L-Lipschitz over K + By(0,s). For w € K, Fy(w) has following
properties:

1. F(w) < Fy(w) < F(w) + Ls;

2. Fy(w) is L-Lipschitz;

3. Fy(w)is LT\/E—Smooth;

4. For random variables v ~ Uy and x uniformly from {1,2, ... n}, one has
E[Vf(w +v,z)] = VFy(w)

and
E [HVFS(w) —Vf(w+ U,:c)Hﬂ < L2

Definition D.3 (Poisson Sampling for Convolutional Smoothing). Since the smoother takes the form of an expectation,
we can (independently)sample v; id Us, and compute V f(w + v;, ;) for an estimate of the gradient of fs (w, ;). Similar
calculation can be done for stochastic gradient. Let K denote the batch size (in expectation). With Poisson sampling of a
rate p = K /n, we compute an estimate of the stochastic gradient of the ERM smoother

Ll o
§= E;zwmuz,:cz), (25)

where Z; S Bernoulli(p) and v; S U,. Each sample z; is included in the sum independently with probability p.

Similar to the case for the regular stochstic gradient, we can obtain a O(L?/m) bound for the variance of the estimate of the
smoother, proved as follows.

Theorem D.4. With Poisson sampling of a rate p = K /m, let § denote the estimate of the above ERM smoother (25). Then
§ is an unbiased estimator of VI, (w), and the variance of the estimate is 4L/ K.

Proof. By boundedness of V f, we can interchange the gradient and the expectation. We have E[V f(w + v;, ;)] =
VE,,~u, f(w+ v;,x;) = fs. Therefore, by linearity of expectation, we have

E[g] = % Y EIZ:9f(w+ ;2] = VE(w).

The variance of the estimate is

V :=El|lg — VE,(w)|?

1 n ~ 2 (26)
— ﬁE Z (Z,Vf(w + v;, T4) —pVFs(’LU))

i=1
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Algorithm 6 Convolutional Smoothing-Based Localized ISRL-DP Accelerated MB-SGD

Require: Datasets X; € X" for [ € [N], loss function f, constraint set W, initial point wg, subroutine parameters

(R} o N, (K112 ¢ [n], smoothing parameter s.

Set 7 = [log, 1.

Set p = max(3 log,, (M) +1,3)

fori =1to 7 do

Set \; = \-20-VP n; = [n/2'|, D; = 2L/ \;.

Each silo ! € [N] draws disjoint batch B; ; of n; samples from X.

Let £(w) = W%N Ef\il Doe J€Bi fslw; zp5) + %Hw — w;_1 |2, where f; is the convolutional smoother of f with
radius s.

7. Call the multi-stage (e, §)-ISRL-DP implementation of Algorithm 7 with loss function F(w), data X; = B,
R = R;, K = K, initialization w;_1, constraint set W; = {w € W : ||w — w;_1|| < D;}, and p = \;. Denote the
output by w;.

8: end for

9: return the last iterate w.

SANE AR s

Since E [Z,LV flw+ v, x;) — pVFs(w)} = 0 and the samples (Z;, v;) are independent, the cross terms in the expectation
vanish. We have

1 — ~
V=5 D BIZiVf(w+ v, i) - pVE(w)|?
=1

= > (vEIV o+ vz = pVE ) + (1= PEIVFy )]
' 27)

< K?Z (1+p)2L? + (1 — p)p°L?)

2
_Lidp . A7
K - K

where the second line follows by conditioning on Z;, and the third line is due to the Lipschitz property of f and F,. O

D.2. Algorithm and Analysis

For nonsmooth loss, we apply Algorithm 1 to the convolutional smoother with radius s, where s is to be determined. We
describe the algorithm in Algorithm 6 and the subroutine in Algorithm 7. The changes compared to Algorithm 1 are listed
below.

In the main algorithm, f is replaced by the smoother f5. For the subroutine call in Line 7, we modify Algorithm 2 as follows.
Let 5 |lw — wo||? be the regularizer applied for the subroutine call.

* We change the subsampling regime to Poisson sampling with rate p = K/n in line 5. For silo i, we sample

Zi s Bernoulli(p) for j € [n] and include z; ; in the sum with probability p. DP noise is sampled u; ~ N (0, 021,)
as before.

* We change the gradient computation in Line 6. We sample v; ; ig U, and compute the estimate of the gradient of the
smoother an die1 ZigV fs(w 4 v g, 25) + Mw — wo) + uj.

For the analysis of the algorithm, we note that using Poisson sampling does not change the privacy analysis (up to some
constant factors). We can apply the same proof in Appendix C to the smoother f except for one minor change in (18), since
Lemma B.1 does not directly apply as we have changed the gradient estimator computation. However, by Theorem D.4, the

variance of the estimate of the smoother is still O ( ) without considering the DP noise. Therefore, the conclusion of
Lemma B.1 still holds for our smoother.
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Algorithm 7 Accelerated ISRL-DP MB-SGD for Convolutional Smoother

Require: Datasets X; € X™ for | € [N], initial point wy, loss function F'(w) = 1 Zf\il D eex, fo(w,z)+ 2w —wo||?,
constraint set W, strong convexity modulus x > 0, privacy parameteres (€, §), iteration count R € N, (expected) batch
size K € [n], step size parameters {7, },.c[r], { @ }r¢[r) Specified in Appendix B.

1: Initialize wi? = wo € Wand r = 1.
2: for r € [R] do
3:  Server updates and broadcasts

md _ (1_0‘7)(l‘+nr) + Qr [(1 ar)l‘+77r]

T mt(—a2)u Wr= 1 FA—oZ)p Wr-l

for i € S, in parallel do

Let the Poisson sampling rate be p = K/n.

4
5
o iid . , iid .
6: Silo ¢ draws Z; ; ~ Bernoulli(p), j € [n] and v; ; ~ Uy, j € [n]
7
8
9

w.

Sample privacy noise u; ~ N (0, 0%1,) for proper 2.

Silo 4 computes g. := 7 Y7y Zi jV f(w 4 v; j, 27 ;) + Mw™ — wo) + ;.
. end for

10:  Server aggregates g, := ﬁ > ies, g' and updates:
11w, = argming, ey {ar [(Gr, w) + §|lw® —w|?] +[(1— )b + %] w1 — w|?}.
12:  Server updates and broadcasts

w = a,w, + (1 — ap)wy? .
13: end for
14: return: w3’

By the first property in Lemma D.2 that relates F} to F'. Tt suffices to choose s to match the difference Ls with the excess
risk bound. We have the following result for nonsmooth loss via convolutional smoothing.

Theorem D.5 (Non-smooth FL via convolutional smoothing). Assume only that f(-,x) is L-Lipschitz and convex for all
x € X. Lete < 2In(2/0), § € (0,1). Choose the following convolutional smoothing parameter:

_ D i_'_ dlog(1/6)
TV \va en '

2,2

Let 8 = L\/d/s and choose R; ~ max( ﬁJr)‘i In (AM’"LJZ[;Q%) : Kidel:('il/é)) where LD > A; > Ej(w;_1) — Fi (i),

256L2R; ln(25R )In (2/5)

) en; 2 —
Kiz 4,/2R; 1n(2/3)’ 90 = nje? » and
L v/dIn(1/4
A= max < \/n, Van(1/9) ) (28)
Dnv M €
Then, the output of Algorithm 6 is (¢, 0)-ISRL-DP and achieves the following excess risk bound:
~( LD 1 dlog(1/8
EF(w,) — Fw*) =0 | 22 [ 4 Vdlos(1/0) ) ) (29)
VM \ V/n en

The communication complexity is

~ 1 . en en
0] (max{l,d / \/Mmln{\/ﬁ, T (0] }  dIn(1/5) }) , (30)

when K; = n;. When d = O(n), and ¢ = O(1), the gradient complexity is

0O <M3/2n3/4 4 M5/4n11/8> .

We present the complete proof below. Let 3 := Lv/d /7. By properties of the smoother (D.2), we know that f is convex,
L-Lipschitz and 5-smooth. We can thus reuse Lemma C.3, restated below.
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Lemma D.6. Let w; = argmin,, ¢y, Fl(w) We have w; € W; and F is 3L-Lipschitz and (8 + \;)-smooth.

2. We have the following bounds (same as Lemma C.4) that relate the private solution w; and the true solution w; of Fi.

Lemma D.7. In each phase 1, the following bounds hold:

. . ~ 2 n
Blfi(e) ~ Fio0] = 0 (7 - o). 61

(32)

E [”wl —@iHQ} < 6( L? dlog(1/6)> .

XM nZe?

i

To prove this, it suffices to show that the results Lemma B.1 hold for the multi-stage implementation of Algorithm 7. The
proof is essentially the same as that in (Lowy et al., 2023a) by noticing that the variance of the estimate is still O(L?/m) by
Theorem D.4.

For simplicity and consistency with the proof in Appendix C, we will redefine F as the smoother F in the following and
use Fj to denote the original loss function. We will apply the following bound for the multi-stage implementation.

Lemma D.8. Let f : W — RY be p-strongly convex and [3-smooth, and suppose that the unbiased stochastic gradients
g(w,) at each iteration v have bounded variance E||g(w,) — VF(w)||* < V2 If @ is computed by R steps of the
Multi-Stage Accelerated MB-SGD, then

T V2
EF(I/U\%Q)—F*,SAQXP (— ﬁR) +7R,
o

where A = F(wgy) — F*.

Proof. By Definition D.3, we know that our gradient estimator in Algorithm 7

i . 1 = m r 1
Gr = AMw! dfwo)+m > ZiyVf(w; d+vi7jv%‘,j)+ﬁ > i
€8y j=1 i€Sy

is an unbiased estimator of V F’ (wm4), and the variance of the estimate has the bound V' := % + dMi, where the first
term is the variance bound in Theorem D.4, and the second term is due to the DP noise.
Applying Lemma D.8 to E;, with 3 replaced by 5 + A;, p set to A;, we get the following the excess risk bound

R o A L? 1 dIn®*(R;6
E[Fi(w;) — Fi ()] S A exp (- : Ri> +3 (MKR + Mg(Qn2 >> :

The excess risk bound (31) follows by plugging in our choice of 1?;. The bound (32) then follows from the inequality below
due to \;-strong convexity,
s

SE [lws — nl*] < BIFi (wi) - Fi(i)].

3. As a consequence, we can reuse Lemma C.5, restated below.
Lemma D.9. Let w € W. We have

< AE[Jw —wia|P] | 4-(3L)%

Putting these results together, we now prove the theorem.
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Proof. We note that the proof is essentially the same as that in Appendix C.

Privacy. Note that using Poisson sampling does not change the privacy analysis (up to some constant factors). By our choice
of 0;, each phase of the algorithm is (e, §)-ISRL-DP. Since the batches {B; ;}7_, are disjoint for all [ € [M], the privacy
guarantee of the entire algorithm follows from parallel composition.

Excess risk. Given the lemmas introduced above, by the identical reasoning as in Appendix C, we have the following excess
risk bound for the smoother,

. ~( LD [ 1 dlog(1/9)

By Lemma D.2, we can relate this to the true loss Fy as follows
EFy(w;) - Fo(w®) < EF(w;) = F(w") + Ls.

The bound then follows from our choice of s.

Complexity. When we use the full batch in each round, that is, when K; = n;, hiding logarithmic factors, communication
complexity is
i T B+ X\ AN Me?n? e2n?
Ri = 1, 1 L 9 L
; ; ax { N o\ 2 nyd1n(1/5)

= 6 (max { Ung TZJ, \/?, d].rf(]%}) (33)

= O [ max 1/4 min n n e*n
_O< {Ld VM {f’,/dln(l/é)}’dln(l/&})’

where in the last step is due to our choice of 3 = Lv/d/s and .

For gradient complexity, we can follow the same analysis in Appendix C.1 except that due to Poisson sampling our gradient
complexity will be in expectation, instead of deterministic. We only consider the case when d = O(n) and ¢ = ©(1) here to

make it simple. Keep terms involving M, n only and drop O for simplicity. We have s = \/%, B=LVd/s= %.

Plugging [ into Equation (24), we obtain the gradient complexity of 0] (M 3/2p3/4 4 MO/ A1t/ 8).

E. Precise Statement and Proof of Theorem 3.1

Lemma E.1. (Nesterov, 2005) Let f : W — R® be convex and L-Lipschitz and 8 > 0. Then the 3-Moreau envelope
fa(w) = min, ey (f(v) + gHw - v||2> satisfies:

(1) fg is convex, 2L-Lipschitz, and B-smooth;

(2)VweW, fa(w) < f(w) < fa(w) + L&

(3)Yw eW, Vfz(w) = f(w — proxf/ﬁ(w));

where the prox operator of f : W — R? is defined as prox ;(w) := argmin, (f(v) + 3w - v|\2).

Our algorithm for non-smooth functions uses Lemma E.1 and Algorithm 1 as follows: First, property (1) above allows us to
apply Algorithm 1 to optimize fg and obtain an excess population risk bound for f3, via Theorem 2.1. Inside Algorithm 1,
we will use property (3) to compute the gradient of fz. Then, property (2) enables us to extend the excess risk guarantee to
the true function f, for a proper choice of 3.

Theorem E.2 (Precise Statement of Theorem 3.1). Let ¢ < 2In(2/6), § € (0,1). Choose R, =
max( B‘;\‘fw In (AU\IL]\;[;QR?) ,]]-{MK7;<N7Li}[(idE+n£/5))r where LD > A; > Fi(wi_l) - Fl(’uA}Z), K, > en;

"= 4y/2R;In(2/5)’
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o 256L%R; In(335i)1In(2/5)

i n%sz

, and

L v/dIn(1/4
= max \/ﬁ7 ni(/) .
Dnv M €
There exist choices of [ such that running Algorithm 1 with fz(w,z) := min,ew (f(v, x) + gHw — v|\2) yields an
(e,8)-ISRL-DP algorithm with optimal excess population risk as in (16). The communication complexity is

~ i en e2n
o} (max{l,mmln{\/ﬁ7 (jln(l/(;)}’]l{M<N}dln(1/6)}> )

Proof. Privacy. For any given [, the privacy guarantee is immediate since we have already showed that Algorithm 1 is
(e,8)-ISRL-DP.

Excess risk. By Lemma E.1 part 2, we have

EF(w,) — F(w*) <EF(w;) — F(w") + —.

It suffices to choose 8 = Lr min {\f m}
og(

Communication complexity. The result follows by plugging in our choice of 3 into (17).

F. More Details on the Communication Complexity Lower Bound (Theorem 2.4)

We begin with a definition (Woodworth et al., 2020):

Definition F.1 (Distributed Zero-Respecting Algorithm). For v € R, let supp(v) := {j € [d] : v; # 0}. Denote the
random seed of silo m’s gradient oracle in round ¢ by z;*. An optimization algorithm is distributed zero-respecting with
respect to f if for all ¢ > 1 and m € [N], the ¢-th query on silo m, w}"* satisfies

supp(w}") C [ Jsupp(VS(wl 20 | U supp(VF(wl”,2"),

s<t m'#m s<m, (t,m’)

where 7, (¢, m’) is the most recent time before ¢ when silos m and m’ communicated with each other.

Theorem F.2 (Re-statement of Theorem 2.4). Fix M = N and suppose A is a distributed zero-respecting algorithm with

excess risk
LD dIn(1/9)
EF(A(X < —|—=++——-—=-
(AX) - F7 5 2 ( R
in < R rounds of communications on any 3-smooth FL problem with heterogeneity . and |jwy — w*|| < D. Then,

1/2
14 [ min e min @ &
RN ( {f’ d1n(1/5)}> 8 ( N ’m)'

Proof. Denote the worst-case excess risk of A4 by
a:=EF(A(X)) - F*.

Now, (Woodworth et al., 2020, Theorem 4) implies that any zero-respecting algorithm has

En

Plugging in o = \L/—% <\/15 + ”dln(l/é)) proves the lower bound. O

23



Private FL Without a Trusted Server Revisited

G. Precise Statement and Proof of Theorem 3.4
Theorem G.1 (Precise statement of Theorem 3.4). Choose
DvVM 1 €
N= " min g =, e (34)
L V' /dIn(1/6)

256L°R; In(2:2E)In(2/5)
n2e?

K; > max (1, En) R; = min (Mm, Me?n} ) +1, and 0% = fori € [klin Algorithm 4.

44/2R1n(2/6)
Then, Algorithm 4 is (¢, 0)-ISRL-DP and achieves the following excess risk bound.:

oo (LD (1 Jdoa)o)
IEF(wT)—F(w)—O<m<\/ﬁ+ - ))

Further, the communication complexity is
M 2,2
ZR O(mln(nM Edn >—|—1>,
i=1
and the gradient complexity is

- ~ 2. e*n? 3/2 3/2 e’n?
ZRiKle:O M + M* min | n, e +eMn+ M? “min | en W .
i=1

We need the following result in convex optimization to bound the excess risk in each call of ISRL-DP MB-Subgradient
Method.

Lemma G.2. (Bubeck et al., 2015, Theorem 6.2) Let g be \-strongly convex, and assume that the stochastic subgradient
oracle returns a stochastic subgradient g(w) such that Eg(w) € 0g(w) and E||g(w)||3 < B2 Then, the stochastic
subgradient method w,11 = w, — v,.g(w,) with v, = )\(%1) satisfies

R
2r N 2B2
Eg <; R(R—i—l)w7> —g(w") < m (35)

As a consequence, we have the following result:
Lemma G.3. In each phase i of Algorithm 4, the following bounds hold:

. B ~(L*n;  dLn
E[Fi(w;) — F;(@;)] = O ( T Mmgg) (36)
~ (L?n?n;  dL?n?
~ 112 3 ' 7
)P <O L .
E [le i } < 0( T = ) (37)

Proof. Note that the second moment of each noisy aggregated subgradient in round r of Algorithm 3 is bounded by

2
<2 2do?
Elg" = M Z va Wr, T §2L2+W'

€S,

Given our choice of step sizes in Algorithm 4, we can verify the assumptions in Lemma G.2 are met for F}. Recall w; is the
output of each phase and w; = arg min, ¢y, F;(w). It follows from Lemma G.2 that,

2 2do?
= (9?4 e
Xi(R; +1) ( MY >

-5 L2n;n; dL?n;
a Ri M’ni€2
A L2771 dL2771
=0 < M + Mni€2) ’
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as desired (36), where the last step is due to our choice of R; = min (M ni, ME;”?> + 1.

Using the \;-strong convexity, we have

2R s — ] < LA () — Fu()]

The bound (37) follows. O

Now we are ready to prove the theorem.

Proof of Theorem G.1. Privacy. The privacy analysis of (Lowy & Razaviyayn, 2023a, Theorem D.1) for ISRL-DP MB-SGD

holds verbatim in the nonsmooth case when we replace subgradients by gradients: the only property of f(-,x) thatis used in
256L2R1n(2 5R/6) In(2/9)

the proof is LlpSChltZ continuity. Thus, Algorithm 3 is (¢, §)-ISRL-DP if the noise variance is 02 >
By our choice of 02, we see that phase i of Algorithm 4 is (¢, §)-ISRL-DP on data {B; ;},. Since the batches {Bi}I_1
are disjoint for all l € [N], the full Algorithm 4 is (g, §)-ISRL-DP by parallel composition (McSherry, 2009).

Excess Risk. Define wg = w* and write
EF(w,) — F(w) = E[F (w,) ~ F(i,)] + Y E[F (i) ~ Fibi-1)]

Since 7 = |log, ], we have n, = ©(1) and n, = n©(n~P). By (37) and Jensen’s Inequality EZ < v/EZ?2, we bound the
first term as follows

VM VMe
~( L*n | VdL*p
© (nl’\/ﬂ * \/anz-:)

~( LD ~( LD
<O <0 ,
- (np—§> N (\/nM)

where the last two steps are due to the choice of 7 per (34) and (21).

E[F(w,) — F(i,)] < LE [||w, — d,]]] <O (LQWT\/E N \/aL%,)

IN

By (36) and using the fact that 1/n; and 7); decrease geometrically, we have

ANiE[[lwi—y —w;1]]*] | 4-(3L)*
E[F 1)) <

I M e R

L2 7]1 dLQm T L2771-

<+ZZ M Mn gﬁZ M

/D2 L% IL*d
<O —+—" .
- (nn + M + MnsQ)

Plugging in the choice of 7 per (34) gives the desired excess risk.

Communication complexity. Summing geometric series, we obtain the communication complexity as follows

T ~ 2.2
ZRi:O (min (nM, Medn )) + 1.

i=1

Gradient complexity. Recall K; > max (1, 5"7) . Choosing the minimum K;, we have

4y/2R; In(2/8)
i R,K; - M= O (max (RM7 snM\/R)>

i=1
n2 £2n2

+enM + M3/2 min <sn3/2 >) .
=) 7

_ 2
:O<M—|—M2min(n £
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H. A Stability Result

In order to bound the excess risk of the function F;, we require the following generalization of Theorem 6 from (Shalev-
Shwartz et al., 2009) which provides a stability result.

Lemma H.1. Let g(w, ), w € W be \-strongly convex and L-Lipschitz in w for all x € X. Let X = (x1,x2,...,Zm)
be a set of m independent samples such that x; is sampled from their corresponding distribution D; for i € [m]. We write
X ~ D for short.

Let G(w) LS g(w,x;) and let 0 = argminggy, G(w) be the empirical minimizer. Let G(w) =

= m
Ex~p [% 1 9(w,x;)] and let w* = argmin G(w) be the population minimizer. Then, for any w € W, we have

4172
E[G(w)] — Glw) < —.
()]~ Ow) < 5o
Proof. We will use a stability argument. Let X' = (2,25, ..., be a set of m independent samples from D, and let
X0 = (21,...,2_1,2},2i11,. - -, Tm) be the dataset with the i-th element replaced by /.

Let G (w) = L (f(w, ;) + 22 flw, xj)) and @ = min G (w) be its minimizer. We have

Zj;éi (g<w(i)7 Zi) - g(?f), Zl))

IN

IA
|

where the first inequality follows from the definition of the minimizer w(?), and the second inequality follows from the
Lipschitzness of g.

By strong convexity of G, we have
_ 2
9 —

GwW) > G() + %

Therefore, we have Hw@‘) — wH < 4L/(Am). Thus, ERM satisfies 4L /Am uniform argument stability, and (by Lipschitz
continuity of g(-, z)) 4L?/Am uniform stability.

Next, we show that this stability bound implies the desired generalization error bound (even if the samples are not drawn
from an identical underlying distribution). Note that X and X’ are independently sampled from D. By symmetry (renaming
x; to x}), we know that Ex x/[g(w0, z;)] = Ex x[g(10®, 2)]. Therefore, we have

E[G(w)] = Ex
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where by Lipschitz continuity of f, we have

n

0= EX,X’% Z (g(@(z)’x;) - g(UA],J?;))

=1
1 & ,
<k 3 i o -]
=1

L2
<=
m

>

Now for given w € W we have G(w) = E[G(w)] > E[G()], by definition of <. Therefore, we conclude that

4172
< —.
- m

E[G(@)] = G(w)
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