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Abstract

We provide a simple and flexible framework for
designing differentially private algorithms to find
approximate stationary points of non-convex loss
functions. Our framework is based on using a pri-
vate approximate risk minimizer to “warm start”
another private algorithm for finding stationary
points. We use this framework to obtain improved,
and sometimes optimal, rates for several classes
of non-convex loss functions. First, we obtain
improved rates for finding stationary points of
smooth non-convex empirical loss functions. Sec-
ond, we specialize to quasar-convex functions,
which generalize star-convex functions and arise
in learning dynamical systems and training some
neural nets. We achieve the optimal rate for this
class. Third, we give an optimal algorithm for
finding stationary points of functions satisfying
the Kurdyka-Eojasiewicz (KL) condition. For ex-
ample, over-parameterized neural networks often
satisfy this condition. Fourth, we provide new
state-of-the-art rates for stationary points of non-
convex population loss functions. Fifth, we obtain
improved rates for non-convex generalized linear
models. A modification of our algorithm achieves
nearly the same rates for second-order stationary
points of functions with Lipschitz Hessian, im-
proving over the previous state-of-the-art for each
of the above problems.

1. Introduction

The increasing prevalence of machine learning (ML) sys-
tems, such as large language models (LLMs), in societal
contexts has led to growing concerns about the privacy of
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these models. Extensive research has demonstrated that ML
models can leak the training data of individuals, violating
their privacy (Shokri et al., 2017; Carlini et al., 2021). For
instance, individual training examples were extracted from
GPT-2 using only black-box queries (Carlini et al., 2021).
Differential privacy (DP) (Dwork et al., 2006) provides a
rigorous guarantee that training data cannot be leaked. In-
formally, it guarantees that an adversary cannot learn much
more about an individual piece of training data than they
could have learned had that piece never been collected.

Differentially private optimization has been studied exten-
sively over the last 10—15 years (Bassily et al., 2014; 2019;
Feldman et al., 2020; Asi et al., 2021; Lowy & Razaviyayn,
2023b). Despite this large body of work, certain funda-
mental and practically important problems remain open. In
particular, for minimizing non-convex functions, which is
ubiquitous in ML applications, we have a poor understand-
ing of the optimal rates achievable under DP.

In this work, we measure the performance of an algorithm
for optimizing a non-convex function g by its ability to find
an a-stationary point, meaning a point w such that

[Vg(w)| < e

We want to understand the smallest o achievable. There
are several reasons to study stationary points. First, find-
ing approximate global minima is intractable for general
non-convex functions (Murty & Kabadi, 1985), but find-
ing an approximate stationary point is tractable. Second,
there are many important non-convex problems for which
all stationary (or second-order stationary) points are global
minima (e.g. phase retrieval (Sun et al., 2018), matrix com-
pletion (Ge et al., 2016), and training certain classes of
neural networks (Liu et al., 2022)). Third, even for prob-
lems where it is tractable to find approximate global minima,
the stationarity gap may be a better measure of quality than
the excess risk (Nesterov, 2012; Allen-Zhu, 2018).

Stationary Points of Empirical Loss Functions. A fun-
damental open problem in DP optimization is determining
the sample complexity of finding stationary points of non-
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convex empirical loss functions

Z f(w7 xi)7
=1

where X = (z1,...,x,) denotes a fixed data set. For con-
vex loss functions, the minimax optimal complexity of DP
empirical risk minimization is Fx (w) — min,, Fx(w') =
O©(4/dIn(1/5)/en) (Bun et al., 2014; Bassily et al., 2014;
Steinke & Ullman, 2016). Here d is the dimension of the pa-
rameter space and ¢, ¢ are the privacy parameters. However,
the algorithm of Bassily et al. (2014) was suboptimal in
terms of finding DP stationary points. This gap was recently
closed by (Arora et al., 2023), who shgwed that the optimal
rate for stationary points of convex Fx is E|VFx (w)| =
O(+/dIn(1/5)/en). For non-convex F, the best known
rate prior to 2022 was O((1/d In(1/8) /en)"/?) (Zhang et al.,
2017; Wang et al., 2017; 2019). In the last two years,
a pair of papers made progress and obtained improved
rates of O((1/dIn(1/5)/en)??) (Arora et al., 2023; Tran
& Cutkosky, 2022). Arora et al. (2023) gave a detailed dis-
cussion of the challenges of further improving beyond the

O((+/d1n(1/5)/en)??) rate. Thus, a natural question is:

Question 1. Can we improve the

O((x/d1n(1/5)/en)?/3) rate for DP stationary points of

smooth non-convex empirical loss functions?

ﬁX(w) =

S|

Contribution 1. We answer Question 1 affirmatively, giving
a novel DP algorithm that finds a O((+/dIn(1/8)/en)d"/6)-
stationary point. This rate improves over the prior state-of-
the-art whenever d < ne.

Contribution 2. We provide algorithms that achieve the
optimal rate O((1/dIn(1/§)/en)) for two subclasses of
non-convex loss functions: quasar-convex functions (Hin-
der et al., 2020), which generalize star-convex func-
tions (Nesterov & Polyak, 2006), and Kurdyka-tojasiewicz
(KL) functions (Kurdyka, 1998), which generalize Polyak-
Lojasiewicz (PL) functions (Polyak, 1963). Quasar-convex
functions arise in learning dynamical systems and train-
ing recurrent neural nets (Hardt et al., 2018; Hinder et al.,
2020). Also, the loss functions of some neural networks
may be quasar-convex in large neighborhoods of the mini-
mizers (Kleinberg et al., 2018; Zhou et al., 2019). On the
other hand, the KL condition is satisfied by overparameter-
ized neural networks in many scenarios (Bassily et al., 2018;
Liu et al., 2020; Scaman et al., 2022). This is the first time
that the optimal rate has been achieved without assuming
convexity. To the best of our knowledge, no other DP algo-
rithm in the literature would be able to get the optimal rate
for either of these function classes.

Second-Order Stationary Points. Recently, Wang & Xu
(2021); Gao & Wright (2023); Liu et al. (2023) provided

DP algorithms for finding a-second-order stationary points
(SOSP) of functions g with p-Lipschitz Hessian. A point w
is an a-SOSP of g if w is an a-FOSP and

V2g(w) > —Japl,.

The state-of-the-art rate for «-SOSPs of empirical
loss functions is due to Liu et al. (2023): o =
O((1/d1n(1/8)/en)?3), which matches the state-of-the-art
rate for FOSPs (Arora et al., 2023; Tran & Cutkosky, 2022).

Contribution 3. Our framework readily extends to SOSPs
and achieves an improved O((+/d In(1/§)/en)d"/%) second-
order-stationarity guarantee.

Stationary Points of Population Loss Functions. Mov-
ing beyond empirical loss functions, we also consider find-
ing stationary points of population loss functions

F(w) :=Egpup[f(w, )],

where P is some unknown data distribution and we are given
n i.i.d. samples X ~ P™. The prior state-of-the-art rate for
finding SOSPs of F is O(1/n'/® + (v/d/en)?7) (Liu et al.,
2023).

Contribution 4. We give an algorithm that improves over
the state-of-the-art rate for SOSPs of the population loss in
the regime d < ne. When d = ©(1) = ¢, our algorithm is
optimal and matches the non-private lower bound Q(1/+/n).

We also specialize to (non-convex) generalized linear mod-
els (GLMs), which have been studied privately in (Song
et al., 2021; Bassily et al., 2021a; Arora et al., 2022; 2023;
Shen et al., 2023). GLM:s arise, for instance, in robust regres-
sion (Amid et al., 2019) or when fine-tuning the last layers
of a neural network. Thus, this problem has applications in
privately fine-tuning LLMs (Yu et al., 2021; Li et al., 2021).
Denoting the rank of the design matrix X by r < min(d, n),
the previous state-of-the-art rate for finding FOSPs of GLMs
was O(1/+/n +min{(y/7/en)??,1/(en)?°}) (Arora et al.,
2023).

Contribution 5. We provide improved rates of finding
first- and second-order stationary points of the popula-
tion loss of GLMs. Our algorithm finds a O(1/4/n +
min{(y/r/en)r/6 1/(en)?"}-stationary point, which is
better than Arora et al. (2023) when r < ne.

A summary of our main results is given in Table 1.

1.1. Our Approach

Our algorithmic approach is inspired by Nesterov, who pro-
posed the following method for finding stationary points in
non-private convex optimization: first run 7 steps of accel-
erated gradient descent (AGD) to obtain wg, and then run T'
steps of gradient descent (GD) initialized at wy (Nesterov,
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Figure 1. Summary of results for second-order stationary points (SOSP). All bounds should be read as min(1, ...). SOTA = state-of-the-art.
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2023) only finds FOSP, not SOSP.

2012). Nesterov’s approach provided improved stationary
guarantees for convex loss functions, compared to running
either AGD or GD alone.

We generalize and extend Nesterov’s approach to private
non-convex optimization. We first observe that there is noth-
ing special about AGD or GD that makes his approach work.
As we will see, one can obtain improved (DP) stationar-
ity guarantees by running algorithm B after algorithm A4,
provided that: (a) A moves us in the direction of a global
minimizer, and (b) the stationarity guarantee of B benefits
from a small initial suboptimality gap. Intuitively, the algo-
rithm A functions as a “warm start” that gets us a bit closer
to a global minimizer, which allows B to converge faster.

1.2. Roadmap

Section 2 contains relevant definitions, notations, and as-
sumptions. In Section 3, we describe our general algorith-
mic framework and provide privacy and stationarity guar-
antees. The remaining sections contain applications of our
algorithmic framework to non-convex empirical losses (Sec-
tion 4), quasar-convex losses (Section 5), KL losses (Sec-
tion 6), population losses (Section 7), and GLMs (Section 8).

2. Preliminaries

We consider loss functions f : R x X — R, where X
is a data universe. For a data set X € X", let Fx(w) :=
LS | f(w, ;) denote the empirical loss function. Let
F(w) := Ez~p[f(w,z)] denote the population loss func-
tion with respect to some unknown data distribution P.

Assumptions and Notation.

Definition 2.1 (Lipschitz continuity). Function g : R? — R

) r := rank(X ). We omit logarithms, Lipschitz and smoothness paramaters. The GLM algorithm of (Arora et al.,

is L-Lipschitz if |g(w) — g(w')] < L|w — w'| for all
w,w’ € RY.
Definition 2.2 (Smoothness). Function ¢ : R? — R is -

smooth if g is differentiable and has S-Lipschitz gradient:
IVg(w) = Vg(w)a < Blw = w']s.

We assume the following throughout:

Assumption 2.3. 1. f(-,z)is L-Lipschitz for all x € X.

2. f(-,x)is B-smooth for all z € X.

3. ﬁ)"; = infy, Fy (w) > —oo for empirical loss opti-
mization, or F'* := inf,, F'(w) > —oo for population.
Definition 2.4 (Stationary Points). Let o > 0. We say w
is an a-first-order-stationary point (FOSP) of function ¢
if [Vg(w)| < a. If the Hessian V?2g is p-Lipschitz, then
w 1s an a-second-order-stationary point (SOSP) of g if
[Vg(w)| < aand VZg(w) > —,/pa 1.

For functions a = a(f) and b = b(¢) of input parameter
vectors f and ¢, we write a < b if there is an absolute
constant C' > 0 such that a < Cb for all values of input
parameter vectors 6 and ¢. We use O to hide logarithmic
factors. Denote a A b = min(a, b).

Differential Privacy.

Definition 2.5 (Differential Privacy (Dwork et al., 2006)).
Lete > 0, 0 € [0,1). A randomized algorithm A : X™ —
W is (e, d)-differentially private (DP) if for all pairs of data
sets X, X’ € X" differing in one sample and all measurable
subsets S € W, we have

PA(X) e S) < eP(A(X') e S) +6.

An important fact about DP is that it composes nicely:
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Algorithm 1 DP-SPIDER (Arora et al., 2023)

Algorithm 2 Warm-Start Meta-Algorithm for ERM

Input: Data X € X", loss function f(w,z), (g,9),
initialization wy, stepsize 7, iteration number 7', phase
length ¢, noise variances 0%, 03, 53, batch sizes by, bo.
fort=0,..., T —1do
if ¢|t then
Sample batch S; of size by
Sample gt ~ N(0,0%1,)
Vi=¢ LY s, Vi (we,z) + gt
else
Sample batch S; of size by
Sample hi ~ N(0, min{o3|w;, — wy_1|?, 52 }14)
Ay =4 LY wes, [V (w, @) = V(w1 2)] + by

Vi=Vi 1+ A
end if
Wiy = Wy —NVy
end for

Return: @ ~ Unif(wy, ..., wr).

Lemma 2.6 (Basic Composition). If A is (g1, 01)-DP and
Bis (82, (52)—DP, then Bo A is (81 + 9,01 + (52)-DP.

3. Our Warm-Start Algorithmic Framework

For ease of presentation, we will first present a concrete in-
stantiation of our algorithmic framework for ERM, built
upon the DP-SPIDER algorithm of Arora et al. (2023),
which is described in Algorithm 1.

For initialization wy € R¢, denote the suboptimality gap by
Ay, = Fx(wo) — F%.

We recall the guarantees of DP-SPIDER below:

Lemma 3.1. (Arora et al., 2023) There exist algorithmic
parameters such that Algorithm 1 is (¢/2,8/2)-DP and re-
turns W satisfying

(VA m

E|VFx (0 ()
| L/dn(1/5)
En

Typically, the first term on the RHS of (1) is dominant.

Our algorithm is based on a simple observation: the sta-
tionarity guarantee in Lemma 3.1 depends on the initial
suboptimality gap Awu. Therefore, if we can privately find
a good “warm start” point wo such that Fy (wo) — l?’;’g is
small with high probability, then we can run DP-SPIDER
initialized at wy to improve over the O((v/d/en)?/?) guar-
antee of DP-SPIDER. More generally, we can apply any

Input: Data X € X", loss function f(w,x), privacy
parameters (e, §), warm-start DP-ERM algorithm .4, DP-
ERM stationary point finder 5.

Run (g/2, 5/2) DP A on FX( ) to obtain wp.

Run B on F X( ) with initialization wq and privacy pa-
rameters (¢/2,/2) to obtain wpyyiy.

Return: wpy.

DP stationary point finder B with initialization wq after
warm starting. Pseudocode for our general meta-algorithm
is given in Algorithm 2.

We have the following guarantee for Algorithm 2 instanti-
ated with B = Algorithm 1.

Theorem 3.2 (First-Order Stationary Points for ERM:
Meta-Algorithm). Let ( < \/E/ en.  Suppose A is
(¢/2,6/2)-DP and Fx (A(X)) — 1?‘)”} < % with probabil-
ity = 1 — (. Then, Algorithm 2 with B as DP-SPIDER is
(€,0)-DP and returns wy,;, with

~ L+/d1n(1/0)
E[VEx (wpriv) [ < —
2/3
+L1/3ﬁ1/3¢1/3 ( dln(l/§)>
en

Proof. Privacy follows from Lemma 2.6, since .4 and DP-
SPIDER are both (¢/2,§/2)-DP.

For the stationarity guarantee, let £ be the high-probability
good event that Fx(A(X)) — F* < . Then, by
Lemma 3.1, we have

2/3
E[IVAx (wpi)I B| < (WW )

| L/dm(/5)
En

On Lhe other hand, if E does not hold, then we still have
|V Fx (wpriy)|| < L by Lipschitz continuity. Thus, taking
total expectation yields

E|V Px (wpiv)] < E[HVFX<wpm>|\|E]

C)+LC

«/dln L+/dIn(1/5) L IC

+ —

Since ¢ < \/g/sn, the result follows. O
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Note that if we instantiate Algorithm 2 with any DP B, we
can obtain an algorithm that improves over the stationarity
guarantee of 3 as long as the stationarity guarantee of 53
scales with the initial suboptimality gap Awo. In partic-
ular, our framework allows for improved rates of finding
second-order stationarity points, by choosing B as the DP
SOSP finder of Liu et al. (2023) (which is built on DP-
SPIDER). We recall the privacy and utility guarantees of
this algorithm—which we refer to as DP-SPIDER-SOSP—
below in Lemma 3.3. For convenience, denote
- 2/3
\/ Auwo LB4/dIn(1/5) | L/din(1/3)
en en

LB A/ A, LBA/dIn(1/5)
n./p En

Lemma 3.3. (Liu et al., 2023) Assume that f(-,x) has
p-Lipschitz Hessian V2 f (-, z). Then, there is an (¢/2,/2)-
DP Algorithm (DP-SPIDER-SOSP), that returns W such
that with probability > 1 — ¢, w is a O(«)-SOSP of Fx.

Next, we provide the guarantee of Algorithm 2 instantiated
with B as DP-SPIDER-SOSP:

Theorem 3.4 (Second-order Stationary Points for ERM:
Meta-Algorithm). Suppose A is (£/2,0/2)-DP and
Fx(A(X)) — 13‘)"} < o with probability = 1 — (. Then,
Algorithm 2 with B as DP-SPIDER-SOSP is (¢, d)-DP, and
with probability > 1 — 2( has output wy,;, satisfying

5 <L«/dln 1/5))

|V Ex (wprin) | <

1/361/31/}1/3

«/dln(1/5)>2/3

En

Q

En

- ﬁ7/6L1/6’(/)1/6 ( /dln(1/6)>1/3

and

V FX wprtv = -V Pa Id

The proof is similar to the proof of Theorem 3.2, and is
deferred to Appendix C.

With Algorithm 2, we have reduced the problem of finding
an approximate stationary point wpy to finding an approxi-
mate excess risk minimizer wy. The next question is: What
should we choose as our warm-start algorithm A? In gen-
eral, one should choose A that achieves the smallest possible
risk for a given function class.' In the following sections,

In particular, if there exists a DP algorithm with optimal risk,
then this algorithm is the optimal choice of warm starter.

we consider different classes of non-convex functions and
instantiate Algorithm 2 with an appropriate warm-start A
for each class to obtain new state-of-the-art rates.

4. Improved Rates for Stationary Points of
Non-Convex Empirical Losses

In this section, we provide improved rates for finding (first-
order and second-order) stationary points of smooth non-
convex empirical loss functions. For the non-convex loss
functions satisfying Assumption 2.3, we propose using the
exponential mechanism (McSherry & Talwar, 2007) as our
warm-start algorithm A in Algorithm 2.

We now recall the exponential mechanism. Assume that
there is a compact set W < R4 contalnlng an approx1mate
global minimizer w™ such that FX (w*)—F LD

that [|w—w'[|s < D forall w,w’ € W. Note that there ex1sts

a finite Di-net for W, denoted W = {wr, ...,
- W < (QDE") . In particular, min;e[n) Fx(w;) —
d
F)"} <2LD_..
Definition 4.1 (Exponential Mechanism for ERM). Given

inputs F X, W, the exponential mechanism Ag selects and

outputs some w € W. The probability that a particular w is
7677,}’7\‘)( (w) )

wy }, with

selected is proportional to exp ( 1D

The following lemma specializes (Dwork & Roth, 2014,
Theorem 3.11) to our ERM setting:

Lemma 4.2. The exponential mechanism Ag is e-DP. More-
over, Yt > 0, we have with probability at least 1 — exp(—t)

that
d
~ ~ 4LD 2en
Fx(Ag) — Fx(w*) < - In ((d) +t>
+ 2LDi.
EN

First-Order Stationary Points. For convenience, denote

Ly /51;2(1/5)+ 5 <L2/3 RRY. d121(1/5)

v = d'/e

@)

By substituting ¢/2 for ¢ and then choosing t =
In(en/2+/d) in Lemma 4.2, the £ /2-exponential mechanism
returns a point wq such that

A~

d
Fx(wo) — F% <20LD—In(en/Vd) = ¢ (3)
en
with probability at least 1 — 2%. By plugging the above ¥
into Theorem 3.2, we obtain:
Corollary 4.3 (First-Order Stationary Points for Non-Con-
vex ERM). There exist algorithmic parameters such that
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Algorithm 2 with A = Ag and B =DP-SPIDER is (¢,0)-
DP and returns w,;, such that

EHVﬁX (wpriV)H <7

If L,B8,D are constants, then Corollary 4.3 gives
E|V Ex (wpi)| = O (’Vd“(wdl/ﬁ). This bound is big-

1
ger than the lower bound by a factor of d'/¢ and improves

A/d1n(1/3) 2/3
En

ever d < ne (Arora et al., 2023). If d > ne, then one should
simply run DP-SPIDER. Combining these two algorithms
gives a new state-of-the-art bound for DP stationary points
of non-convex empirical loss functions:

EHVﬁX (wpriv)H < @dl/ﬁ A <m> o .

over the previous state-of-the-art O when-

EN En

Challenges of Further Rate Improvements. We believe
that it is not possible for Algorithm 2 to achieve a better
rate than Corollary 4.3 by choosing A differently. The
exponential mechanism is optimal for non-convex Lips-
chitz empirical risk minimization (Ganesh et al., 2023). Al-
though the lower bound function in Ganesh et al. (2023) is
not S-smooth, we believe that one can smoothly approxi-
mate it (e.g. by piecewise polynomials) to extend the same
lower bound to smooth functions. For large enough §3, their
lower bound extends to smooth losses by simple convolution
smoothing. Thus, a fundamentally different algorithm may
be needed to find O(1/dIn(1/0)/en)-stationary points for
general non-convex empirical losses.

Second-Order Stationary Points. If we assume that f
has Lipschitz continuous Hessian, then we can instantiate
Algorithm 2 with B as DP-SPIDER-SOSP to obtain:

Corollary 4.4 (Second-Order Stationary Points for Non—
Convex ERM). Let ¢ > 0. Suppose V2f(-,x) is p-
Lipschitz Vx. Then, Algorithm 2 with A = Ag and B = DP-
SPIDER-SOSP is (g,6)-DP and with probability = 1 — (,
returns a w-SOSP, where

1/2
5 L3 D1/6gT/e dIn(1/6) ! J112
N en 7

w:i=y+

If L, 8, D and p are constants, then Corollary 4.4 implies
that Algorithm 2 finds a O(d"/®y/dIn(1/§)/en)-second-
order stationary point of F 'x. This result improves over the
previous state-of-the-art (Liu et al., 2023) when d < ne.

5. Optimal Rate for Quasar-Convex Losses

In this section, we specialize to quasar-convex loss func-
tions (Hardt et al., 2018; Hinder et al., 2020) and show, for

the first time, that it is possible to attain the optimal (up to

logs) rate O(+/dIn(1/8)/en) for stationary points, without
assuming convexity.

Definition 5.1 (Quasar-convex functions). Let ¢ € (0, 1]
and let w* be a minimizer of differentiable function g :
R? — R. g is q-quasar convex if for all w € R?, we have

g(w*) > g(w) + §<Vg<w>,w* — w).

Quasar-convex functions generalize star-convex func-
tions (Nesterov & Polyak, 2006), which are quasar-convex
functions with ¢ = 1. Smaller values of ¢ < 1 allow for a
greater degree of non-convexity.

Proposition 5.2 shows that returning a uniformly random
iterate of DP-SGD (Algorithm 3) attains essentially the same
(optimal) rate for quasar-convex ERM as for convex ERM:

Algorithm 3 DP-SGD for Quasar-Convex

1: Input: Loss function f, data X, iteration number T’
noise variance o2, step size 7, batch size b.
Initialize w; € R
forte {1,2,--- T} do
Sample batch S; of size b from X
Sample u; ~ N (0, 0%1,)
Vi =3 Yes, VI (we, ) + uy
W1 = Wy — NV
end for
Output: w ~ Unif(wy, ...

R A A R

7wT)-

Proposition 5.2. Let F'x be q-quasar convex and [wy —
w*| < D for w* € argmin, Fx(w). Then, there are
algorithmic parameters such that Algorithm 3 is (¢, )-DP,
and returns W such that
~ ~ dIn(1/5
Efy (i) — Pt < Lp Y41/
eng

Further, ¥ ¢ > 0, there is an (g,0)-DP variation of Algo-
rithm 3 that returns W s.t. with probability at least 1 — ,

Fx (@) —Ft =0 (LDlen(l/a)> .

eng

See Appendix D for a proof. The same proof works for non-
smooth quasar-convex losses if we replace gradients by sub-
gradients in Algorithm 3. As a byproduct, our proof yields
a novel non-private optimization result: SGD achieves the
optimal O(1/+/T) rate for Lipschitz non-smooth quasar-
convex stochastic optimization. To our knowledge, this re-
sult was only previously recorded for smooth losses (Gower
et al., 2021) or convex losses (Nesterov, 2013).

By combining Proposition 5.2 with Theorem 3.2, we obtain:
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Corollary 5.3 (Quasar-Convex ERM). Let Z:“X be q-quasar
convex and |w; — w*|| < D for some w; € R w* e
argmin,, ﬁ‘x (w). Then, there are algorithmic parameters
such that Algorithm 2 with A = Algorithm 3 and B = DP-
SPIDER is (e, 6)-DP and returns Wpriy SUch that

~ dIn(1/0)
E|VF D < LYA———>=
IV Ex ()] 5 LY
L0 L2/3ﬂ1/3D1/3 dIn(1/6)
eng '

If g is constant and 5D < L, then this rate is optimal up
to a logarithmic factor, since it matches the convex (hence
quasar-convex) lower bound of Arora et al. (2023).
Remark 5.4. One can obtain a second-order stationary point
with essentially the same (near-optimal) rate by appealing
to Theorem 3.4 instead of Theorem 3.2.

6. Optimal Rates for KL* Empirical Losses

In this section, we derive optimal rates (up to logarithms)
for functions satisfying the Kurdyka-tf.ojasiewicz* (KL*)
condition (Kurdyka, 1998):

Definition 6.1. Let~, k > 0. Function ¢ : R — R satisfies
the (v, k)-KL* condition on W < R? if
g(w) = inf g(w') <4*|Vg(w)[",

w’eR4

forallw e W. If k = 2 and v = 4/1/2p, say g satisfies the
u-PL* condition on W.

The KL* (PL*) condition relaxes the KL (PL) condition, by
requiring it to only hold on a subset of RY.

Near-optimal excess risk guarantees for the KL* class were
recently provided in (Menart et al., 2023):

Lemma 6.2. (Menart et al., 2023, Theorem 1) Assume Fx
satisfies the (v, k)-KL* condition for some k € [1,2] on a

A1/k .
centered ball B(0, D) of diameter D = Avoﬂ + Aék_l)/kv.

Then, there is an (¢/2,6/2)-DP algorithm with output wy
such that with probability at least 1 — (,

ﬁx(wo) - ﬁ)’? <

5 [7L¢d1n(1/5)\/1+(1/A0)<2k)/kvgﬁr

En

The KL* condition implies that any approximate station-
ary point is an approximate excess risk minimizer, but the
converse is false. The algorithm of Menart et al. (2023)
does not lead to (near-optimal) guarantees for stationary
points. However, using it as the warm-start algorithm A in
Algorithm 2 gives near-optimal rates for stationary points:

Corollary 6.3 (KL* ERM). Grant the assumptions in
Lemma 6.2. Then, Algorithm 2 with A = the algorithm
in Lemma 6.2 and B = DP-SPIDER is (¢,0)-DP and re-
TUInS Wyriy such that

BV i (wp)| < 2V AR

~

ENn
5 ( dln(1/5)>3 (LMWC)% <1 . (W@:}/B) |
EN AOT

A 2=k
In particular, if (y/B)*/3/A,° < 1 and

(£2)"" < e/ JATD), then

E|V Fx (wpn)| = O

IV Ex ()| ( -
Proof. Algorithm 2 is (g, 6)-DP by Theorem 3.2. Further,
combining Theorem 3.2 with Lemma 6.2 implies Corol-
lary 6.3: plug the right-hand-side of the risk bound in Corol-
lary 6.3 for ¢/ in Theorem 3.2. O

As an example: If ﬁx is p-PL* for B/u <
(en/+/dIn(1/6)), then our algorithm achieves
E|VFx (wpiv)| = O(L~/dIn(1/6)/en).

Remark 6.4. If L, 3,, Ay are constants, then we get the
same rate as Corollary 6.3 for second-order stationary points
by using Algorithm 2 with B as DP-SPIDER-SOSP instead
of DP-SPIDER.

‘We show next that Corollary 6.3 is optimal up to logarithms:

Lemma 6.5 (Lower bound for KL*). Let D,L,3,v > 0
and k € (1,2] such that k = 1 + Q(1). For any (e, 6)-DP
algorithm M, there exists a data set X and L-Lipschitz,
B-smooth f (-, x) that is (v, k)-KL over B(0, D) such that

E|VEx (M(X))] = O (Lmin {1, f}) .

In contrast to the excess risk setting of Lemma 6.2, larger
k does not allow for faster rates of stationary points.
Lemma 6.5 is a consequence of the KLL* excess risk lower
bound (Menart et al., 2023, Corollary 1) and Definition 6.1.

7. Improved Rates for Stationary Points of
Non-Convex Population Loss

Suppose that we are given n i.i.d. samples from an un-
known distribution P and our goal is to find an a-second-
order stationary point of the population loss F(w) =
Eyvp[f(w,x)]. Our framework for finding DP approxi-
mate stationary points of I’ is described in Algorithm 4. It is



How to Make the Gradients Small Privately

Algorithm 4 Warm-Start Meta-Algorithm for Pop. Loss

1: Input: Data X € X", loss function f(w,x), privacy
parameters (g, 0), warm-start DP risk minimization al-
gorithm A, DP stationary point finder 5.

2: Run (¢/2,6/2)-DP A to obtain wg ~ argmin,, F'(w).

3: Run B with initialization wy and privacy parameters
(€/2,6/2) to obtain wpyyiy.

4: Return: wpyy.

a population-loss analog of the warm-start meta-Algorithm 2
for stationary points of F'x.

We present the guarantees for Algorithm 4 with generic
A and B (analogous to Theorem 3.4) in Theorem E.2 in
Appendix E. By taking A to be the /2-DP exponential
mechanism and B to be the (¢/2, 6/2)-DP-SPIDER-SOSP
of Liu et al. (2023), we obtain a new state-of-the-art rate
for privately finding second-order stationary points of the
population loss:

Corollary 7.1 (Second-Order Stationary Points of Popu-
lation Loss - Simple Version). Let nd > 1/e2. Assume
V2 f(-,x) is 1-Lipschitz and that L, 3, and D are constants,
where D = ||w*| for some w* € argmin,, F(w). Then,
Algorithm 4 is (¢, 0)-DP and, with probability at least 1 — (,
returns a k-second-order-stationary point, where

1/3
Y P
s nl/3 | en n

3/7 3/7
+O0 || — — A=
En En n

See Appendix E for a precise statement of this corollary, and
the proof. The proof combines a (novel, to our knowledge)
high-probability excess population risk guarantee for the
exponential mechanism (Lemma E.3) with Theorem E.2.

The previous state-of-the-art rate for this problem is
O(1/n'/3 + (v/d/en)®7) (Liu et al., 2023). Thus, Corol-
lary 7.1 strictly improves over this rate whenever d/(en) +
4/d/n < 1. For example, if d and ¢ are constants, then
x = O(1/y/n), which is optimal and matches the non-
private lower bound of Arora et al. (2023). (This lower
bound holds even with the weaker first-order stationarity
measure.) If d > ne, then one should run the algorithm of
Liu et al. (2023). Combining the two bounds results in a new
state-of-the-art bound for stationary points of non-convex
population loss functions.

8. Improved Rate for Stationary Points of
Non-Convex GLMs

In this section, we restrict attention to generalized linear
models (GLMs): loss functions of the form f(w, (z,y)) =
¢y ({w, z)) for some ¢, : RY — R that is L-Lipschitz and
B-smooth for all y € R. Assume that the data domain X
has bounded ¢5-diameter | X' = O(1) and that the design
matrix X € R"*? has r := rank(X).

Arora et al. (2022) provided a black-box method for ob-
taining dimension-independent DP stationary guarantees for
non-convex GLMs. Their method applies a DP Johnson-
Lindenstrauss (JL) transform to the output of a DP algorithm
for finding approximate stationary points of non-convex em-
pirical loss functions.

Lemma 8.1. (Arora et al., 2023) Let M be an (g,9)-
DP algorithm which guarantees E||VFx(M(X))| <
g(d,n,B,L,D,e,d) and |M(X)| < poly(n,d, [, L,D)
with probability at least 1 — 1/+/n, when run on an L-
Lipschitz, B-smooth Fx with | argmin,,, Fx (w)| < D. Let
k = argmin [g(j,n,ﬁ,L,D,e,(S/Z) + %] A 1. Then,
the JL method, run on L-Lipschitz, 3-smooth GLM loss G
with | argmin,, G(w)| < D is (e, §)-DP. Further, given n
i.i.d. samples, the method outputs Wy, S.t.

~( L
E|VF (wpriv)| = O (\/ﬁ + g(k‘,n,ﬁ,L,D,g,é/Q)) .

Arora et al. (2022) used Lemma 8.1 with DP-SPIDER
as M to obtain a stationarity guarantee for non-convex
GLMs: O (1/y/n + min{(y/r/en)?/3,1/(ne)?/°}) when
L, 5 = O(1). If we apply their JL method to the output of
our Algorithm 2, then we obtain an improved rate:

Corollary 8.2 (Non-Convex GLMs). Let f(w, (x,y)) be
a GLM loss function with 3, L, D = O(1). Then, the JL
method applied to the output of M = Algorithm 2 (with
A = Exponential Mechanism and B = DP-SPIDER) is
(€,9)-DP and, given n i.i.d. samples, outputs wpyy;y, s.1.

<o (L) so(Lpe, L
E|VF(wprlv>||<O(\/ﬁ> O(enr /\(5”)3/7 -

See Appendix F for the proof. Corollary 8.2 improves over
the state-of-the-art (Arora et al., 2023) if r < ne.

Remark 8.3. We can obtain essentially the same rate for
second-order stationary points by substituting DP-SPIDER-
SOSP for DP-SPIDER.

9. Preliminary Experiments

In this section, we conduct an empirical evaluation of our
algorithm as a proof of concept. We run a small simulation
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Training Loss: Gradient Norm vs. Epsilon
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Figure 2. Training Loss: Gradient Norm vs. ¢

with a non-convex loss function and synthetic data.?

Loss function and data: f(w,z) =
L [w]? + sin(|w[?)] + 27w, where z is drawn uni-
formly from B, the unit ball in R4 and W = 2B. Note that
f (-, x) is non-convex, 6-smooth, and 5-Lipschitz on W.

Our algorithm: (e2,5/2)-DP-SPIDER after warm-
starting with (g1, 6/2)-DP-SGD. (Recall that this algorithm
is optimal for quasar-convex functions and £ = €5 = £/2.)
We run 17 iterations of DP-SGD and 75 iterations of DP-
SPIDER. €1, €2, 77 and T are all hyperparameters that we
tune. We require 77 + 715 = 50 and g1 + €2 = €.

Baselines: We compare against DP-SGD and DP-
SPIDER, each run for 100 iterations. We carefully tune
all hyperparameters (e.g. step size and phase length). We
list the hyperparameters that we used to obtain each point
in the plots in Appendix G.

Results:  Our results are reported in Figures 2 and 3. Our
algorithm outperforms both baselines in the high privacy
regime ¢ < 1. For ¢ € {2,4}, the performance of all 3
algorithms is relatively similar and there is no apparent
benefit from warm-starting.

Problem parameters: n = d = 100, § = 1/n'5. We
vary € € {0.1,0.25,1,2,4}.

For each e, we ran 10 trials with fresh, independently drawn
data and reported average results. We projected the iterates
onto W to ensure that the smoothness and Lipschitz bounds

2Code for the experiments is avail-
able at https://github.com/lowya/
How-to-Make-the-Gradients—-Small-Privately/
tree/main.

Test Loss: Gradient Norm vs. Epsilon
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Figure 3. Test Loss: Gradient Norm vs. €

hold in each iteration.

10. Conclusion

We provided a novel framework for designing private algo-
rithms to find (first- and second-order) stationary points of
non-convex (empirical and population) loss functions. Our
framework led to improved rates for general non-convex loss
functions and GLMs, and optimal rates for important sub-
classes of non-convex functions (quasar-convex and KL).

Our work opens up several interesting avenues for future
exploration. First, for general non-convex empirical and
population losses, there remains a gap between our im-
proved upper bounds and the lower bounds of Arora et al.
(2023)—which hold even for convex functions. In light
of our improved upper bounds (which are optimal when
d = O(1)), we believe that the convex lower bounds are
attainable for non-convex losses. Second, from a practical
perspective, it would be useful to understand whether im-
provements over the previous state-of-the-art bounds are
achievable with more computationally efficient algorithms.
Finally, it would be fruitful for future empirical work to have
more extensive, large-scale experiments to determine the
most effective way to leverage our algorithmic framework
in practice.
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Impact Statement

We develop algorithms for protecting the privacy of individ-
uals who contribute training data. While this paper is primar-
ily motivated by theoretical questions about the minimax
optimal sample complexity of DP non-convex optimization,
we acknowledge the potential broader impacts of our work.

We hope that our private optimization algorithms enable
the development of machine learning models that can oper-
ate on sensitive datasets without compromising individual
privacy. This impact extends to applications such as medi-
cal research, financial analysis, LLMs, and other domains
where data privacy is paramount. We believe that the de-
ployment of differentially private optimization techniques
fosters a climate where organizations and decision-makers
can harness the power of machine learning without sacri-
ficing data privacy. This encourages a broader adoption of
data-driven decision-making across industries, leading to
more informed and accurate outcomes while respecting the
confidentiality of sensitive information.

That being said, there are also potential negative conse-
quences of privacy-preserving machine learning. For exam-
ple, there is a potential risk that entities, such as corpora-
tions or government bodies, might misuse our algorithms
for malicious activities, including the unauthorized gather-
ing of personal information. Moreover, employing models
trained with private data may lead to reduced accuracy when
compared to their non-private counterparts, potentially re-
sulting in unfavorable outcomes. Nevertheless, we maintain
a strong conviction that sharing privacy-preserving machine
learning algorithms, alongside an improved comprehension
of these algorithms, ultimately provides a positive overall
impact on society.
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A. Further Discussion of Related Work

Private ERM and stochastic optimization with convex loss functions has been studied extensively (Chaudhuri et al., 2011;
Bassily et al., 2014; 2019; Feldman et al., 2020). Beyond these classical settings, differentially private optimization has
also recently been studied e.g., in the context of online learning (Jain & Thakurta, 2014; Asi et al., 2023), federated
learning (Lowy & Razaviyayn, 2023a), different geometries (Bassily et al., 2021b; Asi et al., 2021), min-max games (Boob
& Guzman, 2023; Zhang et al., 2022), fair and private learning (Lowy et al., 2023b), and public-data assisted private
optimization (Amid et al., 2022; Lowy et al., 2023c). Below we summarize the literature on DP non-convex optimization.

Stationary Points of Empirical Loss Functions. For non-convex ﬁx, the best known stationarity rate prior to 2022 was
E|VFx(A(X))| = O((+/dIn(1/5)/en)'/?) (Zhang et al., 2017; Wang et al., 2017; 2019). In the last two years, a pair of
papers made progress and obtained improved rates of O((+/dIn(1/8)/en)?/3) (Arora et al., 2023; Tran & Cutkosky, 2022).
The work of Lowy et al. (2023a) extended this result to non-convex federated learning/distributed ERM and non-smooth
loss functions. The work of Liu et al. (2023) extended this result to second-order stationary points. Despite this problem
receiving much attention from researchers, it remained unclear whether the O((+/d In(1/8) /en)?/3) barrier could be broken.
Our algorithm finally breaks this barrier.

Stationary Points of Population Loss Functions. The literature on stationary points of population loss functions is
much sparser than for empirical loss functions. The work of (Zhou et al., 2020) gave a DP algorithm for finding a-FOSP,
where a < sx/E + (\/E/gn)l/ 2, Thus, their bound is meaningful only when ¢ « 1/ \/g Arora et al. (2022) improved
over this rate, obtaining @ = O(1/n'/® + (v/d/en)Y2). The prior state-of-the-art rate for finding SOSPs of F was
O(1/n3 4 (V/d/en)3/7) (Liu et al., 2023). We improve over this rate in the present work.

Excess Risk of PL and KL Loss Functions. Private optimization of PL loss functions has been considered in (Wang
et al., 2017; Kang et al., 2021; Zhang et al., 2021; Lowy et al., 2023a). Prior to the work of (Lowy et al., 2023a), all works
on DP PL optimization made the extremely strong assumptions that f(-, ) is Lipschitz and PL on all of R?. We are not
aware of any loss functions that satisfy both these assumptions. This gap was addressed by (Lowy et al., 2023a), who proved
near-optimal excess risk bounds for proximal-PL (Karimi et al., 2016) loss functions. The proximal-PL condition extends
the PL condition to the constrained setting, and allows for functions that are Lipschitz on some compact subset of R%. The
work of Menart et al. (2023) gave near-optimal excess risk bounds under the KL* condition, which generalizes the PL
condition. Our work is the first to give optimal bounds for finding approximate stationary points of KL* functions. Note that
stationarity is a stronger measure of suboptimality than excess risk for KL* functions, since by definition, the excess risk of
these functions is upper bounded by a function of the gradient norm.

Non-Convex GLMs. While DP excess risk guarantees for convex GLMs are well understood (Jain & Thakurta, 2014;
Song et al., 2021; Arora et al., 2022), far less is known for stationary points of non-convex GLMs. In fact, we are aware of
only one prior work that provides DP stationarity guarantees for non-convex GLMs: Arora et al. (2023) obtains dimension-
independent/rank-dependent a-FOSP, where o < 1/y/n + (1/7/en)?® A (1/en)?/® and 7 is the rank of the design matrix
X. We improve over this rate in the present work.

Non-privately, non-convex GLMs have been studied by Mei et al. (2018); Foster et al. (2018).

B. More privacy preliminaries

The following result can be found, e.g. in (Dwork & Roth, 2014, Theorem 3.20).

Lemma B.1 (Advanced Composition Theorem). Let e > 0,0,d" € [0,1). Assume Ay, -+ , A, with Ay : X" x W —> W,
are each (€,0)-DP Yt = 1,--- ,T. Then, the adaptive composition A(X) := Ap(X, Ar_1(X, Ar_o(X,---))) is
(¢,T6 + &')-DP for € = /2T In(1/8")e + Te(e® — 1).

C. Second-Order Stationary Points for ERM: Meta-Algorithm

Theorem C.1 (Re-statement of Theorem 3.4). Suppose A is (£/2,6/2)-DP and Fx (A(X)) — 13;’} < 4 with probability
> 1 — ( (for polynomial 1/C). Then, Algorithm 2 with B as DP-SPIDER-SOSP (with appropriate parameters) is (,0)-DP,
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and with probability > 1 — 2¢ has output Wy, satisfying

HVﬁX(wpriv)H <a:= 6 <th’l(1/6)>

ENn

2/3
L0 [ s (‘““(1/5)>

EN

1/3
N 6 ﬁ7/6L1/6’¢J1/6 dln(1/5) /
ny/p en ’

and

v FX wprtv = -V POl Id

Proof. Let E be the good event that Fy (A(X)) — F % < 4 and B satisfies the stationarity guarantees in Lemma 3.3 given
input wg = A(X). Then P(E) > 1 — 2¢ by a union bound. Moreover, conditional on E, the stationarity guarantees in
Theorem 3.4 hold by applying Lemma 3.3 with parameter A,,, replaced by . O
D. Optimal Rate for Quasar-Convex Losses

Proposition D.1 (Precise Statement of Proposition 5.2). Let Fx be q-quasar convex and |wi — w*| < D for some
wy € RY, w* € argmin,, Fx (w). Then, Algorithm 3 with

D e2n? 1000L>T In(1/6)
= T=—, bz Vd, oP=—"TT—
1 T(L? + do?) dIn(1/4) ’

e2n2
is (¢,0)-DP, and returns W such that

dIn(1/0)

EFx(#) — F¥ < LD e

Moreover; for any ¢ > 0, there is an (£, 8)-DP variation of Algorithm 3 that returns w such that

with probability at least 1 — (.

Proof. Privacy: Privacy of DP-SGD does not require convexity and is an immediate consequence of, e.g. (Abadi et al.,
2016, Theorem 1) and our choices of T, b, 0.

Expected excess risk: Recall that the updates are given by w1 = w;—nVy, where Vy 1= gy +uy i= ¢ Zze s, V f(we, )+
uy for uy ~ N(0, 0'2Id) and S; is drawn uniformly with replacement from X with b = |S;|. Thus,

Jwepr — w*|?* = Jwe — w*|* — 20(Vi, we — w*) + n? [ Ve,
Taking conditional expectation given w; and using the fact that u; is mean-zero and independent of w, gives:
E w1 —w*[Plwr] = Jw, — w* | — 20KV B (), w0, — w*) + 1 (o] + do?)
< e — w*? = 2B (), w, —w*y + 0 (L + do?)
< Jlwg — w*||* — 2ng (ﬁX(wt) — 1:“)"}) + 0 (L* + do®) ,
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where the last inequality above used g-quasar-convexity. Now, re-arranging and taking total expectation yields:

2qE[Fx (w,) — FE] <E [we — w*|* — |wesr — w*|?] +9* (L + do?) .

Telescoping the above inequality from ¢ = 1 to T" and recalling w7 ~ Unif({w, ..., wr}) yields
~ ~ D? n(L?* + do?)
E[Fx(uwr) — F%] < .
[Px(ior) = P < 5+ By

Plugging inn = \/ﬁ then gives

E[Fx (r) — FE] < 2D (L+F)<LD< dln(1/6)>.

T T | eng

Finally, choosing T' > % yields the desired expected excess risk bound.

High-probability excess risk: This is an instantiation of the meta-algorithm described in (Bassily et al., 2014, Appendix D).
We run the DP-SGD algorithm above k& = log(2/() times with privacy parameters (¢/2k, §/2k) for each run. This gives
us an (¢/2,/2)-DP list of k vectors, which we denote {w!,... @w*}. By Markov’s inequality, with probability at least

1 — 1/2%, there exists i € [k] such that Fx (i) — I*A“;’} < LDEVA (/) ”Ed:l(k/é). Now we apply the €/2-DP exponential mechanism
(McSherry & Talwar, 2007) to the list {w', ... %"} in order to select the (approximately) best 1’ with probability at least

1 — (/2. By a union bound, the output of this mechanism has excess risk bounded by O (LDW) with probability
at least 1 — (. O

E. Improved Rates for Stationary Points of Non-Convex Population Loss
Denote the initial suboptimality gap of the population loss by
Awo = F(’LUO) — F*

We will need the population stationary guarantees of a variation of DP-SPIDER-SOSP:
Lemma E.1. (Liu et al., 2023, Theorem 4.6) Let ¢ € (0, 1) and let V? f(-, ) be p-Lipschitz for all x. Denote

1/3 3/7
o[ (M) s i (C”“(l/‘”> ,

en

and

B /1 1 11
=0 — | =+ —= L{—+—]).
<S+\/ﬁ ne+\/ﬁ Vet ns+\/ﬁ

Then, there is a (¢/2,6/2)-DP variation of DP-SPIDER-SOSP which, given n i.i.d. samples from P, returns a point @ such
that W is an S-second-order-stationary point of F with probability at least 1 — (.

Theorem E.2 (Second-Order Stationary Points for Population Loss: Meta-Algorithm). Let ¢ € (0,1) and let V*f(-,z) be
p-Lipschitz for all x. Suppose A is (¢/2,0/2)-DP and F(A(X)) — F* < with probability > 1 — (. Then, Algorithm 4
with B as DP-SPIDER-SOSP (with appropriate parameters) is (¢, 8)-DP and, given n i.i.d. samples from P, has output
Wyriy Which is a v-second-order-stationary point of F with probability at least 1 — 2(, where

1/3 3/7
O (Liz/’> n (L¢353)1/7 <»len(1/6)>

En

1 3/14
ol <1+ 1 ) (LBy) M0 +(ngﬁ3)1/l4< dln(l/é))

n1/6 EN
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Proof. Privacy is immediate from basic composition.

By assumption, A returns wy such that A,,; < 1 with probability at least 1 — ¢. Conditional on this good event happening,
then Lemma E.1 implies the desired stationarity guarantee with probability at least 1 — (, by plugging in ¢ for A,,, in
Lemma E.1. By a union bound, we obtain Theorem 3.4. O

In order to obtain Corollary 7.1, we will also need a high-probability excess population risk guarantee for the exponential
mechanism:

Lemma E.3 (Excess Population Risk of Exponential Mechanism). Let ¢ € (0, 1) and let W be a compact set containing
W such that |w — w| < D for all w e W and F(w) — F* < LDd/en. Then, given n i.i.d. samples from P, the e-DP
exponential mechanism of Definition 4.1 outputs wg such that, with probability at least 1 — ,

F(wy) — F* =0 (LD <€i + Z))

Proof. Let W = {wy,...,wn}bea Ds%-net for W with cardinality N = |W| < (w%)d. Denote the output of the
exponential mechanism wy = Ag(X). By Lemma 4.2, we have

Fy(wo) — Pt <0 (LDj) 4
n

with probability at least 1 — (/2. Now, for any j € [N], we have
—np?

for any p € (0, 1) by Hoeffding’s inequality, since f(w;,x) € [-LD, LD] for all x. By a union bound, we have

2
~ —np
P(J}pg[a]\:;c] |Fx (w;) — F(w;)| <p) >1-—2Nexp (2L21)2> . ®)

2

Thus, the following inequalities hold with probability at least 1 — 4N exp (%) ¢

>

F(wo)—F*< X(wo)—F*-i-p

< Fy(wo) — Fx (argminF(w)) + 2p
< Fx(wo) — F& +2p

14

< <LDd> + 2p.
en

Choosing p = %4 /log(8/¢) + d ensures that

F(we) — F* =0 (LD <:fl + Z))

with probability at least 1 — (, as desired. O

Note that (Liu et al., 2023, Theorem 5.8) proved a weaker “in-expectation” version of Lemma E.3.

Corollary E.4 (Precise Statement of Corollary 7.1). Assume V2 f(-,x) is p-Lipschitz and W is a compact set containing
W such that |w — @) < D forallw € W and F(w) — F* < LDd/en. Then, given n i.i.d. samples from P, Algorithm 4
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with A = Exponential Mechanism and B = DP-SPIDER-SOSP is (g, 0)-DP. Moreover, with probability at least 1 — 2(, the
output Wy, of Algorithm 4 is a x-second-order-stationary point of I, where

1 1 3717 37
R<O <(Lﬁ133/3 l(LD)”3 (d) ’ ) +0| |L'8*D? (d + \/E> (\/W)
n en En n en

ol ()" (o (249)

3/14 3/14
N (VW) (LB%)Y*(LD)*H <d +\/Z> ]

en en
~ (1 1
+ LO < + ) .
en  4/n
Proof. Privacy follows from basic composition.

The stationarity result is a consequence of Theorem E.2 and Lemma E.3. Namely, we use Lemma E.3 to plug ¢ =
0 (LD (E% + \/g )) into the expression for v in Theorem E.2. O

Note that Corollary E.4 immediately implies Corollary 7.1.

F. Improved Rates for Stationary Points of Non-Convex GLMs

Corollary F.1 (Re-statement of Corollary 8.2). Ler f(w, (x,y)) be a GLM loss function with 8, L, D = O(1). Then, the JL
method applied to the output of M = Algorithm 2 (with A = Exponential Mechanism and B = DP-SPIDER) is (¢, )-DP
and, given n i.i.d. samples from P, outputs Wy, such that

~ 1 ~ (T 1
EHVF('[UP,«W>” < O (ﬁ) + O (,,,1/6 A ) .

Proof. The result is a direct consequence of Lemma 8.1 combined with Corollary 4.3. The fact that |M(X)|| <
poly(n,d, 8, L, D) with high probability for M = Algorithm 2 (with A = Exponential Mechanism and 3 = DP-SPIDER)
follows from the proof of (Arora et al., 2023, Corollary 6.2), which showed that |B(X)| < poly(n,d, 3, L, D) for any
initialization wq. O

G. Hyperparameters for Experiments

We tuned hyperparameters using the code at https://github.com/lowya/
How-to-Make-the-Gradients—-Small-Privately/tree/main.

The “optimal” hyperparameters that we obtained for each algorithm and each value of ¢ are listed below (using 10
independent epednent runs of the hyperparameter tuning code with fresh validation data in each run):

e=0.1
e 77 =50
e SPIDER ¢ = 10
e Warm-start ¢ = 100
* SGD n = 0.0005

« SPIDER 7 = 0.005
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* Warm-start 7754 = 0.0005
* Warm-start 15p;4e = 0.005

* Warm-start £; = £/2
e =0.25

e 71 =50

* SPIDER ¢ =5

e Warm-start ¢ = 5

¢ SGD 1 = 0.0005

e SPIDER 7 = 0.001

* Warm-start 1j54¢ = 0.05

* Warm-start 175p;4c = 0.0005

o Warm-start £; = ¢/4
e=1

eT1 =1

e SPIDER ¢ = 10

* Warm-start ¢ = 10

* SGD n = 0.0025

¢ SPIDER 7 = 0.0025

* Warm-start 154¢ = 0.001

* Warm-start 175p,;4c = 0.0005

o Warm-start £; = €/4
e=2

e 77 =50

* SPIDER ¢ =5

e Warm-start ¢ = 5

¢ SGD 7 = 0.0025

¢ SPIDER 7 = 0.0025

* Warm-start 7754 = 0.0025

» Warm-start 15p,;qe = 0.0025

o Warm-start £; = €/4
e=4
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T, =25

SPIDER ¢ = 5

Warm-start ¢ = 5

SGD 1 = 0.005

SPIDER 7 = 0.005
Warm-start 7,49 = 0.005
Warm-start 7,p;ger = 0.005

Warm-start £; = /100
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