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Abstract
We focus on constrained, L-smooth, potentially
stochastic and nonconvex-nonconcave min-max
problems either satisfying ρ-cohypomonotonicity
or admitting a solution to the ρ-weakly Minty
Variational Inequality (MVI), where larger values
of the parameter ρ > 0 correspond to a greater
degree of nonconvexity. These problem classes in-
clude examples in two player reinforcement learn-
ing, interaction dominant min-max problems, and
certain synthetic test problems on which classical
min-max algorithms fail. It has been conjectured
that first-order methods can tolerate a value of ρ
no larger than 1

L , but existing results in the lit-
erature have stagnated at the tighter requirement
ρ < 1

2L . With a simple argument, we obtain op-
timal or best-known complexity guarantees with
cohypomonotonicity or weak MVI conditions for
ρ < 1

L . First main insight for the improvements in
the convergence analyses is to harness the recently
proposed conic nonexpansiveness property of op-
erators. Second, we provide a refined analysis for
inexact Halpern iteration that relaxes the required
inexactness level to improve some state-of-the-art
complexity results even for constrained stochastic
convex-concave min-max problems. Third, we
analyze a stochastic inexact Krasnosel’skiı̆-Mann
iteration with a multilevel Monte Carlo estimator
when the assumptions only hold with respect to a
solution.

1. Introduction
We consider the problem

min
u∈U

max
v∈V

f(u, v), (1)
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where U ⊆ Rm, V ⊆ Rn are closed convex sets admitting
efficient projection operators and f : Rm × Rn → R is a
function such that ∇uf(u, v) and∇vf(u, v) are Lipschitz
continuous. The general setting where f(u, v) is allowed to
be nonconvex-nonconcave is extremely relevant in machine
learning (ML), with applications in generative adversarial
networks (GANs) (Goodfellow et al., 2014) and adversarial
ML (Madry et al., 2018). Yet, at the same time, such prob-
lems are extremely challenging to solve, with documented
hardness results, see e.g., (Daskalakis et al., 2021). As a
result, an extensive literature has arisen about special cases
of the nonconvex-nonconcave problem (1) for which algo-
rithms with good convergence and complexity properties
can be derived (Diakonikolas et al., 2021; Bauschke et al.,
2021; Lee & Kim, 2021; Pethick et al., 2022; 2023a;b; Gor-
bunov et al., 2023; Böhm, 2022; Cai et al., 2022b; Cai &
Zheng, 2022; Hajizadeh et al., 2023; Kohlenbach, 2022;
Lee & Kim, 2024; Fan et al., 2024; Grimmer et al., 2023;
Tran-Dinh & Luo, 2023).

To describe these special cases of (1), we state the following
nonmonotone inclusion problem, which generalizes (1):

Find x⋆ ∈ Rd such that 0 ∈ F (x⋆) +G(x⋆), (2)

where F : Rd → Rd is L-Lipschitz and G : Rd ⇒ Rd is
maximally monotone. Mapping this problem to finding
stationary points of (1) is standard by setting x =

(
u
v

)
,

F (x) =
( ∇uf(u,v)
−∇vf(u,v)

)
and G(x) =

(
∂ιU
∂ιV

)
, where ιU is the in-

dicator function for set U . The nonmonotonicity in problem
(2) is due to nonconvex-nonconcavity of problem (1).

The main additional assumption we make is that F + G
is ρ-cohypomonotone. Recalling the standard definition
gra(F + G) = {(x, u) ∈ Rd × Rd : u ∈ (F + G)(x)},
ρ-cohypomonotonicity is defined as

⟨u− v, x− y⟩ ≥ −ρ∥u− v∥2

∀(x, u) ∈ gra(F +G) and ∀(y, v) ∈ gra(F +G),
(3)

for ρ > 0, see (Bauschke et al., 2021, Def. 2.4). When (3)
holds only for y = x⋆, it is also called the weak MVI con-
dition or ρ-star-cohypomonotonicity, due to (Diakonikolas
et al., 2021). For ρ > 0, the weak MVI condition requires
the existence of a solution x⋆ to the ρ-weakly MVI:

⟨u, x− x⋆⟩ ≥ −ρ∥u∥2 ∀(x, u) ∈ gra(F +G). (4)
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For standard monotone operators (corresponding to convex-
concave instances of (1)), the inner product in (3) is lower
bounded by 0. The assumption (3) allows the right-hand
side to be negative, allowing nonmonotonicity of F + G
or nonconvex-nonconcavity of f(u, v), while the limit of
nonmonotonicity is determined by ρ > 0. These two as-
sumptions, cohypomonotonicity or weak MVI, are required
in the extensive literature cited above.

As the first contribution of this paper, we extend the range of
ρ, doubling the upper limit of 1

2L considered in the previous
works, thus allowing a wider range of nonconvex problems
of the form (1) to be solved by first-order algorithms, while
ensuring optimal or best-known complexity guarantees.

Motivation. Cohypomonotonicity and weak MVI condi-
tions, defined in (3) and (4), allowed progress to be made
in understanding the behavior of first-order algorithms for
structured nonconvex-nonconcave problems, in a wide va-
riety of works cited at the end of first paragraph. On the
one hand, these assumptions are not as general as one might
desire: They have not been shown to hold for problems
arising in generative or adversarial ML. On the other hand,
they have been proven to hold for other relevant problems
in ML.

Examples where cohypomonotonicity holds include the in-
teraction dominant min-max problems (Example 1) and
some stylized worst-case nonconvex-nonconcave instances
(Hsieh et al., 2021; Pethick et al., 2023b) (see also
(Bauschke et al., 2021, Sections 5, 6)). The relaxed as-
sumption of having a weak MVI solution is implied by star
(and quasi-strong) monotonicity (Loizou et al., 2021) or
existence of a solution to MVI (Dang & Lan, 2015), the
latter being relevant in the context of policy gradient algo-
rithms for reinforcement learning (RL) (Lan, 2023). Weak
MVI condition is satisfied in the context of an RL problem
described in Example 2.
Example 1. Interaction dominant min-max problems (Grim-
mer et al., 2023): We say that f in (1) is α(r)-interaction
dominant if it satisfies for all z =

(
u
v

)
∈ Rn+m that

∇2
uuf(z) +∇2

uvf(z)(r
−1Id−∇2

vvf(z))
−1∇2

vuf(z)

⪰ α(r)Id,

−∇2
vvf(z) +∇2

vuf(z)(r
−1Id +∇2

uuf(z))
−1∇2

uvf(z)

⪰ α(r)Id.

Interaction is captured by the second terms on the left-hand
side of each condition. The problem is called (nonnegative)
interaction dominant if these terms dominate the smallest
eigenvalue of ∇2

uuf and largest eigenvalue of ∇2
vvf , i.e.,

α(r) ≥ 0. This is equivalent to the r-cohypomonotonicity
of F (Hajizadeh et al., 2023, Proposition 1). ♦

Example 2. Instances of von Neumann’s ratio game: This
is a simple two player stochastic game (Neumann, 1945;

Daskalakis et al., 2020; Diakonikolas et al., 2021). Using
the standard definition of the simplex ∆d = {x ∈ Rd : , x ≥
0,
∑d

i=1 xi = 1}, the problem is

min
x∈∆m

max
y∈∆n

⟨x,Ry⟩
⟨x, Sy⟩

,

where R ∈ Rm×n, S ∈ Rm×n
+ and ⟨x, Sy⟩ > 0 ∀(x, y) ∈

∆m ×∆n. As described in (Diakonikolas et al., 2021), it is
easy to construct instances of this problem where it satisfies
ρ-weakly MVI condition, but not cohypomonotonicity. ♦

The limit for the parameter ρ in (3) and (4) for which con-
vergence first-order complexity results are proven seems to
have stagnated at ρ < 1

2L . Two exceptions exist for a special
case of our setting when G ≡ 0, which corresponds in view
of (1) to an unconstrained problem. First is the recent work
(Fan et al., 2024) that claimed to improve the limit of ρ for
weak MVI to ≈ 0.63

L with a rather complicated analysis.
The rate obtained is also suboptimal under cohypomono-
tonicity. This work conjectured (but did not prove) 1

L as the
maximum limit for ρ and also did not provide any algorithm
achieving this. For an unconstrained cohypomonotone prob-
lem, (Cai et al., 2023, Corollary 4.5) also showed possibility
of obtaining guarantees with ρ < 1√

2L
≈ 0.7

L . Relevant
citations and discussions appear in Table 1 and Appendix D.

First-order oracles. As standard in the operator split-
ting literature (see e.g., (Bauschke & Combettes, 2017)), a
first-order oracle call for (2) consists of one evaluation of
F and one resolvent of G (see (5)). In the context of the
min-max problem (1), this requires computation of gradi-
ents∇uf(u, v),∇vf(u, v) together with projections on sets
U, V . (All works in Table 1 have the same oracle access.)
See Assumption 4 for the oracles in the stochastic case.

Contributions. We show how to increase the range of the
cohypomonotonicity parameter to ρ < 1

L while maintaining
first-order oracle complexity Õ(ε−1) for finding a point x
such that dist(0, (F + G)(x)) ≤ ε, in Section 2. Such a
complexity is optimal (up to a log factor) even for monotone
problems (Yoon & Ryu, 2021, Section 3). In Section 3, with
weak MVI and the improved range of ρ < 1

L , we show
complexity Õ(ε−2) for dist(0, (F +G)(x)) ≤ ε which is
the best-known (up to a log factor) under this assumption.
Table 1 summarizes known results on complexity and the
upper bound of ρ.

Thanks to the modularity of our approach, we extend our re-
sults to the stochastic case where F is accessed via unbiased
oracles F̃ (·) (that is, E[F̃ (x)] = F (x)). These extensions
require the development of further tools for stochastic min-
max problems. First, in Section 2.2.1, we tighten the analy-
sis of Halpern iteration with inexact resolvent computations.
This leads to improvements for the existing complexities
even for some classes of convex-concave problems, see Sec-
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Assumption Reference
Upper bound

of ρ Constraints
Oracle

complexity
cohypomonotone (Cai & Zheng, 2022) 1

60L ✓ O(ε−1)

(Cai et al., 2022b), (Pethick et al., 2023b)
(Lee & Kim, 2021), (Tran-Dinh, 2023)
(Gorbunov et al., 2023)

1
2L ✓ O(ε−1)

(Cai et al., 2023) 0.7
L × Õ(ε−1)

Theorem 2.1 1
L ✓ Õ(ε−1)

weak MVI (Diakonikolas et al., 2021)‡ 1
8L × O(ε−2)

(Böhm, 2022)‡ 1
2L × O(ε−2)

(Cai & Zheng, 2022) 1
12

√
3L

✓ O(ε−2)

(Lee & Kim, 2024)‡ 1
3L ✓ Õ(ε−2)

(Pethick et al., 2022) 1
2L ✓ O(ε−2)

(Fan et al., 2024) 0.63
L × O(ε−2)

Theorem 3.1 1
L ✓ Õ(ε−2)

Table 1. Comparison of first-order algorithms for deterministic problems. Complexity refers to the number of oracle calls to get
dist(0, (F +G)(x)) ≤ ε. See also Remark 2.3. ‡These works defined weak MVI as ⟨F (x), x− x⋆⟩ ≥ − γ

2
∥F (x)∥2, i.e., γ = 2ρ.

tion 4.1. Second, to obtain the best-known complexity for
stochastic problems under weak MVI, we incorporate the
multilevel Monte Carlo estimator to KM iteration to control
the bias in subproblem solutions, see Section 4.2.

1.1. Preliminaries

Notation. We denote the ℓ2 norm as ∥·∥. Given G : Rd ⇒
Rd, we use standard definitions graG = {(x, u) ∈ Rd ×
Rd : u ∈ G(x)} and dist(0, G(x)) = minu∈G(x) ∥u∥.
Domain of an operator is defined as domG = {x ∈
Rd : G(x) ̸= ∅}. The operator G is maximally monotone
(resp. cohypomonotone or hypomonotone) if its graph is
not strictly contained in the graph of any other monotone
(resp. cohypomonotone or hypomonotone) operator.

An operator F : Rd ⇒ Rd, given (x, u) ∈ graF and
(y, v) ∈ graF , is (i) γ-strongly monotone if ⟨u−v, x−y⟩ ≥
γ∥x − y∥2 with γ > 0 and monotone if the inequality
holds with γ = 0; (ii) ρ-hypomonotone if ⟨u− v, x− y⟩ ≥
−ρ∥x − y∥2 with ρ > 0. An operator F : Rd → Rd is
(iii) L-Lipschitz if ∥F (x) − F (y)∥ ≤ L∥x − y∥; (iv) non-
expansive if F is 1-Lipschitz; (v) γ-cocoercive if ⟨F (x)−
F (y), x− y⟩ ≥ γ∥F (x)− F (y)∥2 with γ > 0. We refer to
star variants of these properties (e.g., star-cocoercive) when
they are required only at (y, v) = (x⋆, 0) where 0 ∈ F (x⋆).
Since it is a standard notion, we use quasi-nonexpansive
instead of star-nonexpansive.

The resolvent of an operator F : Rd ⇒ Rd is defined as

JF = (Id + F )−1. (5)

The resolvent generalizes the well-known proximal operator
that has been ubiquitous in optimization and ML, where
F is typically the subdifferential of a regularizer function,
e.g., ℓ1 norm. Favorable properties of the resolvent are
well-known when F is monotone (Bauschke & Combettes,
2017). Meanwhile, in our nonmonotone case, immense care
must be taken in utilizing this object, as it might even be
undefined. A comprehensive reference for the properties
of resolvent of a nonmonotone operator is (Bauschke et al.,
2021). We review and explain the results relevant to our
work in the sequel.

The algorithms we analyze are based on the classical
Halpern (Halpern, 1967) and Krasnosel’skiı̆-Mann (KM)
(Krasnosel’skii, 1955; Mann, 1953) iterations. Given an
operator T : Rd → Rd, Halpern iteration is defined as

xk+1 = βkx0 + (1− βk)T (xk), (6)

for a decreasing sequence {βk} ∈ (0, 1) and initial point
x0. The KM iteration, with a fixed β ∈ (0, 1), is defined as

xk+1 = βxk + (1− β)T (xk). (7)

Conic nonexpansiveness. The key to relaxing the range
of ρ parameter for both assumptions is to harness the algo-
rithmic consequences of conic nonexpansiveness, the no-
tion introduced by the influential work of Bauschke et al.
(2021) that also inspired our developments. We say that
T : Rd → Rd is λ-conically nonexpansive with λ > 0 when
there exists a nonexpansive operator N : Rd → Rd such that
T = (1− λ)Id + λN , see (Bauschke et al., 2021, Def. 3.1).
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This equivalently means that a particular combination of Id
and T is nonexpansive: ∥((1−λ−1)Id+λ−1T )(x−y)∥ ≤
∥x − y∥. An important characterization of this property
given in (Bauschke et al., 2021, Cor. 3.5(iii)) is that T
is λ-conically nonexpansive if and only if Id − T is 1

2λ -
cocoercive. We also consider the star variants (in the sense
defined in the Notation paragraph) of these properties and
characterizations, which are detailed in Appendix B.1.1.

Assumption 1. The operator F : Rd → Rd is L-Lipschitz
and G : Rd ⇒ Rd is maximally monotone. The solution set
for the problem (2) is nonempty.

Assumption 1 is standard, see (Facchinei & Pang, 2003), and
is required throughout the text. Monotonicity is not assumed
for F . Lipschitzness of F corresponds to smoothness of f
in context of (1) and maximal monotonicity of G is satisfied
when we have constraint sets given in (1) but also when we
have convex regularizers added on (1) (e.g., ∥ · ∥1).

Assumption 2. The operator F + G is maximally ρ-
cohypomonotone (see (3) for the definition).

Assumption 2 is abundant in the recent literature for
nonconvex-nonconcave optimization (Lee & Kim, 2021;
Bauschke et al., 2021; Cai et al., 2022b; Cai & Zheng, 2022;
Gorbunov et al., 2023; Pethick et al., 2023b). An instance
is provided in Example 1 with further pointers to related
problems given in Section 1. Assumption 2 is required only
for the results in Sections 2 and 4.1.

Assumption 3. There exists a nonempty subset of solutions
of (2) whose elements satisfy (4).

Assumption 3 is weaker than Assumption 2 as it is only
required with respect to a solution, see also Example 2. As-
sumption 3, used in Sections 3 and 4.2, is also widespread in
the recent literature for nonconvex-nonconcave optimization
(Diakonikolas et al., 2021; Pethick et al., 2022; 2023a; Cai
et al., 2022b; Lee & Kim, 2024; Fan et al., 2024; Böhm,
2022).

2. Algorithm and Analysis under
Cohypomonotonicity

2.1. Algorithm Construction and Analysis Ideas

Recall the definitions of resolvent (5) and cohypomonotonic-
ity (3). We sketch the algorithmic construction and analysis
ideas which will be expanded on in Section 2.2.

(I) We know that Halpern iteration in (6) with βk = 1
k+2

has optimal rate when T is nonexpansive, see (Sabach
& Shtern, 2017; Lieder, 2021; Kim, 2021). That is,
one gets ∥xk−T (xk)∥ ≤ ε with O(ε−1) evaluations
of T .

(II) When F +G is maximally ρ-cohypomonotone (per
Assumption 2), we know from (Bauschke et al., 2021)
(with precise pointers in Fact A.1) that Jη(F+G) is
1
2α -conically nonexpansive where α = 1 − ρ

η , its
domain is Rd and it is single-valued when ρ

η < 1.
Consequently, T = (1− α)Id + αJη(F+G) is firmly
nonexpansive (see Fact A.1). Then, one can use the
result in (I).

We next see a high level discussion on the approxi-
mate computation of Jη(F+G).

(III) Since F is L-Lipschitz, we have that F is L-
hypomonotone by Cauchy-Schwarz inequality, i.e.,

⟨F (x)− F (y), x− y⟩ ≥ −L∥x− y∥2.

Hence, Id + ηF is (1− ηL)-strongly monotone.

By definition, we have x⋆
k = Jη(F+G)(xk) = (Id +

η(F +G))−1(xk). Existence and uniqueness of x⋆
k

is guaranteed by (II) when ρ < η (see Fact A.1). By
definition, x⋆

k is the solution of the problem

0 ∈ (Id + η(F +G))(x⋆
k)− xk.

Hence, computation of the resolvent is a strongly
monotone inclusion problem where Id + ηF is (1−
ηL)-strongly monotone and (ηL+ 1)-Lipschitz, and
G is maximally monotone. In view of (1) this also
corresponds to a strongly convex-strongly concave
problem.

(IV) Any optimal algorithm for monotone inclusions, such
as forward-backward-forward (FBF) (Tseng, 2000),
gives x̂k with ∥x̂k − Jη(F+G)(xk)∥2 ≤ ε2k with com-

plexity Õ
(

1+ηL
1−ηL

)
.

In summary, our requirements are ρ
η < 1 for ensuring well-

definedness of the resolvent, as per (II), and 1− ηL > 0 for
ensuring strong monotonicity for efficient approximation
of the resolvent, as per (III). Hence, we need ρ < η < 1

L ,
leading to the claimed improved range on ρ.

Item (II) refers to the resolvent of η(F + G), which can-
not be evaluated exactly in general with standard first-order
oracles. We approximate Jη(F+G), which leads to the inex-
act Halpern iteration, similar to (Diakonikolas et al., 2021;
Cai et al., 2023). Note that in the context of problem (1),
approximating the resolvent corresponds to computing ap-
proximation of proximal operator for function f which is a
strongly convex-strongly concave min-max problem.

In the next section, by extending the arguments in (Di-
akonikolas, 2020, Lemma 12) and (Cai et al., 2023,
Lemma C.3) to accommodate conic nonexpansiveness, we
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Algorithm 1 Inexact Halpern iteration for problems with cohypomonotonicity
Input: Parameters βk = 1

k+2 , η > 0, L, ρ, α = 1− ρ
η , K ≥ 1, initial iterate x0 ∈ Rd, subroutine FBF in Algorithm 2

for k = 0, 1, 2, . . . ,K − 1 do
J̃η(F+G)(xk) = FBF (xk, Nk, ηG, Id + ηF, 1 + ηL) where Nk =

⌈
4(1+ηL)
1−ηL log(98

√
k + 2 log(k + 2))

⌉
xk+1 = βkx0 + (1− βk)((1− α)xk + αJ̃η(F+G)(xk))

end for

Algorithm 2 FBF(z0, N,A,Bin, LB) from (Tseng, 2000)

Input: Parameter τ = 1
2LB

, initial iterate z0 ∈ Rd,
B(·) = Bin(·)− z0

for t = 0, 1, 2, . . . , N − 1 do
zt+1/2 = JτA(zt − τB(zt))
zt+1 = zt+1/2 + τB(zt)− τB(zt+1/2)

end for

show that η−1∥xk − Jη(F+G)(xk)∥ ≤ ε, where the num-

ber of (outer) Halpern iterations is O
(

∥x0−x⋆∥
(η−ρ)ε

)
, when

we approximate the resolvent to an accuracy of poly
(
1
k

)
.

To achieve this, we can run a subsolver as per (IV), with
Õ
(

1+ηL
1−ηL

)
calls to evaluations of F and resolvents of G.

By combining the complexities at outer and inner levels, we
obtain the optimal first-order complexity under ρ < 1

L .

Discussion. From the construction (I)-(IV), we see that
the ingredients of our approach are based on known results.
This raises the question: what insight makes it possible
to go beyond the ρ < 1

2L barrier? The key is conic non-
expansiveness, the critical notion introduced by Bauschke
et al. (2021). In particular, previous results on first-order
complexity for nonmonotone problems (including (Pethick
et al., 2023b) who utilized a similar algorithmic construction
based on KM as ours in Section 3) used nonexpansiveness
of the resolvent, which asks for the stringent requirement
ρ ≤ η

2 < 1
2L . This allows Halpern or KM iteration to be

analyzed in a standard way.

Our main starting insight is that, from the viewpoint of the
analysis of Halpern iteration, we do not necessarily need
nonexpansiveness of Jη(F+G). We can apply the Halpern
iteration to the operator T = (1− α)Id + αJη(F+G) where
α = 1 − ρ

η , which is firmly nonexpansive for ρ < η (see
Fact A.1). Hence, as long as ρ < η, Halpern iteration can
be analyzed with ρ < η < 1

L , at essentially no cost. We see
later how firm nonexpansiveness is essential for improving
the inexactness criterion in approximating the resolvent.

2.2. Analysis

We now analyze the construction described in the previous
section, given as Algorithm 1. We start with the main result,

see Section 2.2.3 and Appendix A.4 for its proof.

Theorem 2.1. Let Assumptions 1 and 2 hold. Let η < 1
L in

Algorithm 1 and suppose ρ < η. For any k = 1, . . . ,K , we
have that (xk) from Algorithm 1 satisfies

1

η2
∥xk − Jη(F+G)(xk)∥2 ≤

16∥x0 − x⋆∥2

(η − ρ)2(k + 1)2
.

The number of first-order oracles used at iteration k is upper
bounded by 2Nk where Nk is defined in Algorithm 1.

Corollary 2.2. Under the setting of Theorem 2.1, for any
ε > 0, we have η−1∥(Id − Jη(F+G))(xK)∥ ≤ ε, for K ≤⌈
4∥x0−x∗∥
(η−ρ)ε

⌉
and first-order oracle complexity

Õ

(
(1 + ηL)∥x0 − x⋆∥
ε (η − ρ) (1− ηL)

)
.

Remark 2.3. The definition of x⋆ gives that (Id −
Jη(F+G))(x

⋆) = 0 and (Id − Jη(F+G))(xk) is indeed the
fixed point residual, which is a standard way to measure
optimality for fixed point iterations, see e.g., (Ryu & Yin,
2022, Section 2.4.2). Based on Cor. 2.2, it is straightfor-
ward to produce xout with dist(0, (F + G)(xout)) ≤ ε as
claimed in Table 1, with no change in the worst-case com-
plexity. This is clear when G ≡ 0. In the general case, see
(Cai et al., 2023, Lemma C.4).

Remark 2.4. The constant in our complexity deteriorates
as ρ gets close to η which is the same as most of the works
included in Table 1. It is straightforward to make our bound
ρ-independent in view of (Pethick et al., 2023b) by simply
expressing ρ as a fraction of η, e.g. assume ρ < 9η

10 . Then,
at the expense of a constant multiple of 10, we have the
complexity Õ

(
(1+ηL)∥x0−x⋆∥

εη(1−ηL)

)
, valid for the range ρ <

9
10L . In comparison, the ρ-independent complexity result in
(Pethick et al., 2023b) had Õ(ε−2) for ρ < 1

2L . A similar
reasoning by slightly restricting the range of ρ can also make
the algorithms agnostic to the knowledge of ρ.

Outline of the analysis. We follow the steps sketched
in Section 2.1. First, we analyze Halpern iteration with
inexactness using the tools mentioned in (I), (II). Second,
we analyze the inner loop (Algorithm 2) as mentioned in
(IV). Finally we piece together these ingredients.
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2.2.1. OUTER-LOOP COMPLEXITY

We now analyze Halpern iteration with inexactness in the
resolvent computation. See Appendix A.2 for the proof.
Lemma 2.5. Let Assumptions 1 and 2 hold. Suppose that
the iterates (xk) of Algorithm 1 satisfy ∥Jη(F+G)(xi) −
J̃η(F+G)(xi)∥ ≤ εi for some εi > 0 and ρ < η. Let
R = Id− Jη(F+G). Then, we have for any K ≥ 1 that

K(K + 1)

4
∥R(xK)∥2 − K + 1

Kα2
∥x⋆ − x0∥2

≤
K−1∑
k=0

(
(k + 1)(k + 2)ε2k

2
+ (k + 1)∥R(xk)∥εk

)
,

where ∥xk − x⋆∥ ≤ ∥x0 − x⋆∥+ α
k+1

∑k−1
i=0 (i+ 1)εi.

In (8) below, we define appropriate values for εk, and show
that the number of inner iterations Nk selected for FBF in
Algorithm 1 suffices to achieve the inexactness level εk.

This analysis extends Diakonikolas (2020), who studied
monotone inclusions, in two aspects. First, we analyze the
convergence of the method under conic nonexpansiveness
which is the relevant property when the parameter ρ lies in
the range [ 1

2L ,
1
L ). Second, and more importantly, we con-

duct a tighter error analysis that allows the inexactness on
the error in resolvent computation (εk) to be Õ(k−3/2) in-
stead of the tolerance Õ(k−3) used in (Diakonikolas, 2020;
Yoon & Ryu, 2022; Cai et al., 2023). Even though it is not
immediately obvious, this is because the bottleneck term on
the bound in Lemma 2.5 is

∑K−1
k=0 (k + 1)(k + 2)ε2k which

sums to a log with εk = Õ(k−3/2).1 This tightening be-
comes important in the stochastic case in Section 4, where
the inner loop does not have a linear rate of convergence.

The improvement derives from applying Halpern to the
firmly nonexpansive operator (1−α)Id+αJη(F+G), which
helps avoid the main source of looseness in the previous
analysis which only uses nonexpansiveness. We discuss
this further following (18). See Remark 2.6 for a discussion
from the viewpoint of nonexpansive operators.
Remark 2.6. By 1

2α -conic nonexpansiveness of Jη(F+G)

(see Fact A.1(ii)), we have nonexpansiveness of T ′ = (1−
2α)Id + 2αJη(F+G). If we were to apply Halpern iteration
to this operator, we would still obtain results with ρ < 1

L
but we would need a stricter inexactness requirement as the
analyses in (Diakonikolas, 2020; Cai et al., 2023) dictate.

This can be viewed as a Cayley (or reflection) operator of a
firmly nonexpansive operator T = (1− α)Id + αJη(F+G),
since T ′ = 2T−Id. Our algorithm applies Halpern iteration
to T which helps us relax the inexactness requirement.

1A similar insight appeared in a different context in the inde-
pendent work (Liang et al., 2024), which came out on arXiv at the
same time as our paper.

On the other hand, as shown in (Ryu & Yin, 2022, Section
12.2), while solving monotone inclusions with exact eval-
uations of the resolvent, applying Halpern to the Cayley
operator of the resolvent gives a better constant, by a factor
of 4. Our analysis brings to light a tradeoff between the con-
stant in the convergence bound and the allowed inexactness
in the computation of the resolvent.

2.2.2. INNER-LOOP COMPLEXITY

The seminal FBF algorithm of (Tseng, 2000) is optimal for
solving the resolvent subproblem, which is a strongly mono-
tone inclusion. We provide the derivation of the precise
constants appearing in the statement in Appendix A.3.

Theorem 2.7. (See (Tseng, 2000, Theorem 3.4)) Let B be
µ-strongly monotone with µ > 0 and LB-Lipschitz; A be
maximally monotone, and z⋆ = (A + B)−1(0) ̸= ∅. For
any ζ > 0, running Algorithm 2 with τ = 1

2LB
and initial

point z0 for N =
⌈
4LB

µ log ∥z0−z⋆∥
ζ

⌉
iterations give

∥zN − z⋆∥ ≤ ζ,

where the number of calls to evaluations of B and resolvents
of A is upper bounded by 2N .

2.2.3. TOTAL COMPLEXITY

Section 2.1 already shows the key steps in our analysis,
but we combine the preliminary results above into a proof
sketch here, to highlight the simplicity of our approach. Full
proof is given in Appendix A.4.

Proof sketch of Theorem 2.1. Denote R = Id − Jη(F+G)

for brevity. Suppose that εk in Lemma 2.5 satisfies

εk =
γ∥R(xk)∥√

k + 2 log(k + 2)
, with γ =

1

98
. (8)

We justify this supposition further below. Then we have by
Lemma 2.5 (after multiplying both sides by α) that

αK(K + 1)

4
∥R(xK)∥2 − K + 1

Kα
∥x0 − x⋆∥2

≤
K−1∑
k=0

∥R(xk)∥2
(

αγ2(k + 1)

2 log2(k + 2)
+

αγ
√
k + 2

log(k + 2)

)
.

We can show by induction from this bound that

∥R(xk)∥ ≤
4∥x0 − x⋆∥
α(k + 1)

∀k ≥ 1.

We see that for K ≤ ⌈ 4∥x0−x⋆∥
ηαε ⌉, we are guaranteed to have

η−1∥R(xK)∥ ≤ ε.

We now calculate the number of inner iterations to reach
the accuracy εk (see (8)). At iteration k, as per the setup in
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Theorem 2.7, we set

A ≡ ηG, B(·) ≡ (Id + ηF )(·)− xk, z0 ≡ xk,

zN ≡ J̃η(F+G)(xk), z⋆ ≡ Jη(F+G)(xk), ζ ≡ εk,

hence z0−z⋆ = (Id−Jη(F+G))(xk) = R(xk). B is LB ≡
(1 + ηL)-Lipschitz and (1− ηL)-strongly monotone due to
Fact A.1(iv). Existence of z⋆ is guaranteed by Fact A.1(i).

By matching these definitions with Algorithm 1, we see by
invoking Theorem 2.7 that the number of inner iterations
used at step k to obtain ∥Jη(F+G)(xk)− J̃η(F+G)(xk)∥ ≤
εk is

Nk ≡
⌈
4(1 + ηL)

1− ηL
log
∥R(xk)∥

εk

⌉
,

by the settings of z0, z⋆, R(xk), and ζ above, along with
εk defined in (8). This value is precisely Nk used in Algo-
rithm 1 (by the definition of εk), which justifies our applica-
tion of Lemma 2.5 and the cost at iteration k.

3. Algorithm and Analysis under weak MVI
3.1. Algorithm Construction and Analysis Ideas

We turn to the weak MVI condition of Assumption 3, which
(as mentioned in Section 1.1) is weaker than cohypomono-
tonicity. The best-known complexity under this assumption
is O(ε−2): the lower part of Table 1 outlines existing results.
Our aim is to obtain Õ(ε−2) complexity for the extended
range ρ < 1

L . The steps of our construction are as follows.

(i) KM iteration (7), when Id− T is star-cocoercive, gets
η−1∥xk − T (xk)∥ ≤ ε with O(ε−2) evaluations of T
(Groetsch, 1972; Browder & Petryshyn, 1967).

(ii) We get from (Bauschke et al., 2021) that Jη(F+G)

has domain Rd and is single-valued when F is L-
Lipschitz and η < 1

L . Lemma B.3 gives that Jη(F+G)

is 1
2α -conically quasi-nonexpansive, with α = 1− ρ

η ,
leading to Id− Jη(F+G) being α-star-cocoercive.

Thus, we require ρ < η. As per (i), KM applied to
Id−Jη(F+G) requires O(ε−2) evaluations of Jη(F+G)

to find x such that η−1∥x− Jη(F+G)(x)∥ ≤ ε.

(iii) Since F is Lipschitz and G is maximally monotone,
we can estimate Jη(F+G) as before (via (III) and (IV)
of Section 2), with a linear rate of convergence when
η < 1

L . The existence of a solution to the subproblem
is guaranteed by item (ii). The inner iterations intro-
duce a logarithmic factor into the total complexity. As
a result, the range for ρ is again ρ < η < 1

L .

Even with inexactness, Alg. 3 is classical; see (Facchinei
& Pang, 2003, Theorem 12.3.7), (Combettes, 2001) and
(Combettes & Pennanen, 2002). We analyze this scheme

for problems with weak MVI solutions and characterize
the first-order oracle complexity. Pethick et al. (2023b) re-
cently analyzed a similar scheme under cohypomonotonic-
ity, by using quasi-nonexpansiveness of the resulting op-
erator.2 Our main difference regarding the results in this
section is that we harness the milder property of conic quasi-
nonexpansiveness to improve the range of ρ (see also (Bartz
et al., 2022) for a similar idea by using exact resolvent). We
also approximate the resolvent slightly differently. FBF can
be replaced with other optimal algorithms like (Malitsky &
Tam, 2020), showing the modularity of our approach.

The key insight for extending the upper bound of ρ to 1
L is

similar to that of Section 2. The difference is that the anal-
ysis of Halpern iteration requires conic nonexpansiveness
between any pair of points in the space, making it unsuit-
able with weak MVI. In contrast, the KM iteration can be
analyzed with conic nonexpansiveness holding only with
respect to a solution, a property that is a consequence of
weak MVI. Conic quasi-nonexpansiveness, while not de-
fined explicitly in (Bauschke et al., 2021), directly follows
by adapting the corresponding results therein by using ρ-
weak MVI condition instead of cohypomonotonicity; see
Appendix B.1.1 for the details.

3.2. Analysis

Similar to Section 2, we start with the main complexity
result, under weak MVI. Its proof appears in Appendix B.4.

Theorem 3.1. Let Assumptions 1 and 3 hold. Let η < 1
L in

Algorithm 3 and suppose ρ < η. For any K ≥ 1, we have

1

K

K−1∑
k=0

1

η2
∥xk − Jη(F+G)(xk)∥2 ≤

11∥x0 − x⋆∥2

(η − ρ)2K
.

The number of first-order oracles used at iteration k is upper
bounded by 2Nk where Nk is defined in Algorithm 3.

Corollary 3.2. Under the setting of Theorem 3.1, for any
ε > 0, we have for some xout ∈ {x0, . . . , xK−1} that

η−1∥(Id − Jη(F+G))(x
out)∥ ≤ ε for K ≤

⌈
11∥x0−x∗∥
(η−ρ)2ε2

⌉
with first-order oracle complexity

Õ

(
(1 + ηL)∥x0 − x⋆∥2

ε2 (η − ρ)
2
(1− ηL)

)
.

See Remark 2.3 for details to convert this result to produce
a point with dist(0, (F +G)(xout)) ≤ ε as in Table 1.

Remark 3.3. This result is for the best iterate, that is,
xout = argminx∈{x0,...,xk−1} ∥(Id − Jη(F+G))(x)∥, con-
sistent with existing results for weak MVI, see (Diakoniko-
las et al., 2021; Pethick et al., 2022; Cai & Zheng, 2022).

2This work claimed that some of their results extend to accom-
modate weak MVI condition as well.
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Algorithm 3 Inexact KM iteration for problems with weak MVI
Input: Parameters η > 0, L, ρ, αk = α = 1− ρ

η , K > 0, initial iterate x0 ∈ Rd, subroutine FBF in Algorithm 2

for k = 0, 1, 2, . . . ,K − 1 do
J̃η(F+G)(xk) = FBF (xk, Nk, ηG, Id + ηF, 1 + ηL), where Nk =

⌈
4(1+ηL)
1−ηL log(8(k + 1) log2(k + 2))

⌉
xk+1 = (1− αk)xk + αkJ̃η(F+G)(xk)

end for

Remark 3.4. Note that xout as defined in Remark 3.3 is not
computable since we do not have access to Jη(F+G)(xk).
For the unconstrained case, i.e., G ≡ 0, we can show the
result with xout = argminx∈{x0,...,xK−1} ∥Fx∥2, which is
computable. For the constrained problem (1), we can handle
this issue by slightly changing how J̃η(F+G) is calculated
and requiring the knowledge of the target accuracy ε, with
no change in the order of complexity bounds. We present
Algorithm 3 in its current form so that it is anytime, not
requiring the target accuracy as an input. The details for
making xout computable are in Appendix B.5. We can also
present this result as an expected bound for a randomly
selected xout, like (Diakonikolas et al., 2021, Thm. 3.2(ii)).

Outer-loop complexity. We analyze the iteration complex-
ity of the outer loop; see Appendix B.2 for a proof which is
a modification of (Combettes, 2001) and (Bartz et al., 2022)
to accommodate conic quasi-nonexpansiveness and inexact
resolvent computations.

Lemma 3.5. Let Assumptions 1 and 3 hold. Suppose that
the iterates (xk) of Algorithm 3 satisfy ∥Jη(F+G)(xk) −
J̃η(F+G)(xk)∥ ≤ εk for some εk > 0 and ρ < η. Then, we
have for K ≥ 1 that

K−1∑
k=0

∥(Id− Jη(F+G))(xk)∥2 −
2η2

(η − ρ)2
∥x0 − x⋆∥2

≤ 6

K−1∑
k=0

ε2k +
4η

η − ρ

K−1∑
k=0

∥xk − x⋆∥εk,

where ∥xk − x⋆∥ ≤ ∥xk−1 − x⋆∥+ αεk−1.

Total Complexity. The sketch of the proof of Theorem 3.1
follows Section 2.2.3 closely. We use Lemma 3.5 instead of
Lemma 2.5. The choice of εk is slightly different, as can be
noticed by the number of inner iterations Nk in Algorithm
3. However, with the same argument in Section 2.2.3, we
can show that this Nk is sufficient to attain the inexactness
required by εk.

4. Algorithms and Analyses with Stochasticity
In this case, F in (2) is accessed via unbiased oracles.

Assumption 4. The stochastic first-order oracle (SFO)

F̃ : Rd → Rd satisfies

F (x) = E[F̃ (x)] and E∥F̃ (x)− F (x)∥2 ≤ σ2.

In view of (1), this corresponds to using stochastic gradients

F̃ (x) =
( ∇̃uf(u,v)

−∇̃vf(u,v)

)
where E[∇̃uf(u, v)] = ∇uf(u, v)

(and similarly for the v component). Table 2, with com-
parisons for stochastic problems, is in Appendix C. The
variance assumption could be relaxed by using, e.g., an
argument similar to (Wright & Recht, 2022, Section 5.4.3).

4.1. Cohypomonotone Case

For this setup, Algorithm 1 will call FBF with stochastic or-
acles F̃ (xt) as per Assumption 4 to approximate J̃η(F+G):

J̃η(F+G)(xk) = FBF(xk, Nk, ηG, Id + ηF̃ , 1 + ηL), (9)

where Nk = ⌈1734(k + 2)3 log2(k + 2)(1− ηL)−2⌉.
Corollary 4.1. Let Assumptions 1, 2 and 4 hold. Let η < 1

L

in Alg. 1, ρ < η and use (9) for computing J̃η(F+G) (see
Alg. 4). Then we have for k ≥ 1 that

η−2E∥xk − Jη(F+G)(xk)∥2 = O
(
k−2

)
.

For any ε > 0, we have η−1E∥(Id− Jη(F+G))(xK)∥ ≤ ε

for the last iterate, with SFO complexity Õ(ε−4).

The proof, provided in Appendix C.2.1 is the stochastic
adaptation of Section 2. Our tighter analysis for the level
of inexactness (which is highlighted after Lemma 2.5) is
the main reason we could get the Õ(ε−4) complexity. The
inexactness level required by following the existing analyses
in (Diakonikolas, 2020; Cai et al., 2023) would instead result
in a Õ(ε−7) complexity.
Remark 4.2. The previous last iterate result for constrained,
cohypomonotone, stochastic problems by (Pethick et al.,
2023b, Corollary E.3(ii)) was Õ(ε−16) (in fact we are not
aware of another last iterate result even for stochastic and
constrained convex-concave problems). This result also
required increasing batch sizes in the inner loop and ρ < 1

2L .
For unconstrained problems, Chen & Luo (2022) showed
an improved Õ(ε−2) expected complexity for ρ < 1

2L with
some drawbacks described in Appendix D. It is an open
question to get a similar complexity improvement in our
constrained setup with a wider range for ρ.
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Remark 4.3. Pethick et al. (2023a) has complexity Õ(ε−4)
for a constrained problem with weak MVI. However,
this work additionally assumed a stronger oracle model
and Lipschitzness assumptions. In particular, denoting
F (·) = Eξ∼Ξ[Fξ(·)] for an unknown Ξ that we can sample
from, this work assumes mean-square (MS)-Lipschitzness:
Eξ∼Ξ∥Fξ(x) − Fξ(y)∥2 ≤ L2∥x − y∥2. This work also
needs to query the operator for the same seed for two dif-
ferent points: Fξ(xk), Fξ(xk−1). These two assumptions
define a different template. For nonconvex minimization,
for example, lower bounds improve with these assumptions
compared to our standard stochastic approximation setting
in Assumption 4, see (Arjevani et al., 2023). Moreover,
the additional assumption might not hold even for trivial
problems: F1(x) = x2, F2(x) = −x2 where F = F1 + F2

is clearly Lipschitz but not MS-Lipschitz.

4.2. Weak MVI Case

We next modify Algorithm 3 for the stochastic case. The
main observation from the analysis (see Lemma C.8) is that
bounding the bias ∥E[J̃η(F+G)(xk)]− Jη(F+G)(xk)∥ with
square root of variance E∥J̃η(F+G)(xk)− Jη(F+G)(xk)∥2
by Jensen’s inequality is loose and would give complexity
Õ(ε−6), like (Pethick et al., 2023b, Cor. E.3(i)).

A natural candidate for a careful bias analysis is the multi-
level Monte Carlo (MLMC) technique which helps control
the bias-variance tradeoff (Giles, 2008; Blanchet & Glynn,
2015; Asi et al., 2021; Hu et al., 2021). The high level idea
is that stochastic KM iteration, in our setting would give
O(ε−4) complexity if we had unbiased samples of Jη(F+G)

(see, e.g., (Bravo & Cominetti, 2024)). Obtaining such un-
biased samples is highly non-trivial since Jη(F+G) is an
inclusion problem in itself. Fortunately, MLMC is a way
to get an estimator with bias O(ε′) and variance Õ(1) by
making, in expectation, Õ(1) calls to the oracle defined in
Assumption 4. MLMC is used in (Asi et al., 2021) for the
related proximal point algorithm.
Estimator 1 (MLMC). We set J̃η(F+G) as follows.

1. Given Nk ≥ 1, Mk ≥ 1, set for m = 1, . . . ,Mk,

J̃
(m)
η(F+G)(xk) =

{
y0 + 2I(yI − yI−1) if I ≤ Nk,

y0, otherwise,

where I ∼ Geom(1/2)

and yi = FBF(xk, 2
i, G, Id + ηF̃ , 1 + ηL) ∀i ≥ 0.

2. Given Mk independent draws of this estimator, we
define J̃η(F+G)(xk) =

1
Mk

∑Mk

m=1 J̃
(m)
η(F+G)(xk).

To show that the scheme is implementable we give the (non-
optimized) values of Mk, Nk. This is to ensure that they are

agnostic to unknown quantities {∥x0 − x⋆∥2, σ2}, unlike
some MLMC methods (Chen & Luo, 2022).

Corollary 4.4. Let Assumptions 1, 3 and 4 hold. In Al-
gorithm 3, set η < 1

L , αk ≡ α√
k+2 log(k+3)

, suppose

that ρ < η and use Estimator 1 for computing J̃η(F+G)

(see Algorithm 6) with Nk ≡ ⌈ 96(1−ηL)−2

min{ αk
120α(k+1)

, 1
120}
⌉ and

Mk ≡ ⌈ 672×120(log2 Nk)
(1−ηL)2 ⌉. For any ε > 0, we have that

η−1E∥(Id − Jη(F+G))(x
out)∥ ≤ ε, with expected SFO

complexity Õ(ε−4) where xout is selected uniformly at ran-
dom from {x0, . . . , xK−1}.

Proof of this corollary appears in Appendix C.3.1. This
result is an alternative to (Pethick et al., 2023a) that required
additional assumptions as explained in Remark 4.3. In our
setting under Assumption 4, the only O(ε−4) complexity
was known in the special case of unconstrained problems
(G ≡ 0), due to (Diakonikolas et al., 2021) (see also (Choud-
hury et al., 2023)). Because of the use of MLMC, our com-
plexity result is expected number of stochastic oracle calls
and hence the results mentioned in this paragraph comple-
ment each other. See also Table 2.

MLMC is used in conditional/compositional stochastic min-
imization (Hu et al., 2021), distributionally robust optimiza-
tion (Levy et al., 2020), and stochastic minimization with
non-i.i.d. data (Dorfman & Levy, 2022). Our development
of the KM iteration with MLMC can provide the potential to
extend some of these results to stochastic min-max setting.

5. Conclusions
We conclude with some open questions. Even though our
results for nonmonotone problems, either with cohypomono-
tonicity or weak MVI conditions, can go beyond the existing
barrier for the ρ parameter, our algorithms rely on a double
loop strategy, alternating between a Halpern or KM step
and resolvent approximation. This strategy also results in
an additional log factor in the final complexity bound. Two
worthwhile directions in this context are: (i) developing a
single loop algorithm with the extended ρ range (ii) obtain-
ing first-order complexities without spurious log terms and
extended range for ρ. It is also critical to find more problems
in ML that satisfy these nonmonotonicity assumptions.

We next highlight a direction for stochastic problems. As
mentioned before, the O(ε−4) first-order complexity seems
to be the best-known for even constrained, convex-concave
stochastic problems. However, for unconstrained problems,
better complexities are known, see, e.g., (Chen & Luo, 2022;
Cai et al., 2022a). The tools in these works may be com-
bined with the ideas in our paper to develop better com-
plexity results for constrained stochastic min-max problems
with convex-concave or nonconvex-nonconcave functions.
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A. Proofs for Section 2
A.1. Preliminary Results

We start with the properties of the resolvent of a cohypomonotone operator and the properties of the subproblem for
approximating this resolvent. These important points are also sketched in Section 2.1. We present this preliminary result
here for the ease of reference throughout the proofs. Most of the conclusions follow from the results of (Bauschke et al.,
2021). Note that ρ-cohypomonotone in our notation is −ρ-comonotone in the notation of (Bauschke et al., 2021). See also
(Bauschke et al., 2021, Remark 2.5) for these two conventions.

Fact A.1. Let Assumptions 1 and 2 hold and let η > 0. Then, we have

(i) The operator Jη(F+G) is single-valued and dom Jη(F+G) = Rd when ρ < η.

(ii) The operator Jη(F+G) is 1

2(1− ρ
η )

-conically nonexpansive, Id − Jη(FG) is
(
1− ρ

η

)
-cocoercive, and (1 − α)Id +

αJη(F+G) is firmly nonexpansive when ρ < η.

(iii) For any x̄ ∈ Rd, computing Jη(F+G)(x̄) is equivalent to solving the problem:

Find x ∈ Rd such that 0 ∈ (Id + η(F +G))(x)− x̄. (10)

The problem (10) has a unique solution when ρ < η.

(iv) The operator Id + ηF is (1 + ηL)-Lipschitz and (1− ηL)-strongly monotone when η < 1
L .

Proof. (i) By Assumption 2 and the definition of cohypomonotonicity in (3), we have that η(F + G) is maximally
ρ
η -cohypomonotone. Then for ρ

η < 1, (Bauschke et al., 2021, Corollary 2.14) gives the result.

(ii) Since η(F + G) is maximally ρ
η -cohypomonotone, (Bauschke et al., 2021, Prop. 3.11(ii)) gives 1

2(1− ρ
η )

-conic

nonexpansiveness. Cocoercivity of Id− Jη(F+G) then follows from (Bauschke et al., 2021, Corollary 3.5(iii)).

By the definition of conic nonexpansiveness, we have that T ′ = (1 − 2α)Id + 2αJη(F+G) is nonexpansive. By
definition, a firmly nonexpansive operator is one that can be written as 1

2 Id + 1
2N for a nonexpansive operator N

(Bauschke & Combettes, 2017, Remark 4.34(iii)). Since (1− α)Id + αJη(F+G) =
1
2 Id + 1

2T
′ for the nonexpansive

T ′ specified in this paragraph, we conclude.

(iii) Let us denote x̄⋆ = Jη(F+G)(x̄) and use the definition of a resolvent to obtain

x̄⋆ = Jη(F+G)(x̄) = (Id + η(F +G))−1(x̄) ⇐⇒ x̄⋆ + η(F +G)(x̄⋆) ∋ x̄,

where the existence of x̄⋆ is guaranteed by (i). Rearranging the inclusion gives (10). Uniqueness of the solution is due
to (i).

(iv) By Lipschitzness of F and Cauchy-Schwarz inequality, we have

⟨ηF (x)− ηF (y), x− y⟩ ≥ −η∥F (x)− F (y)∥∥x− y∥ ≥ −ηL∥x− y∥2.

As a result, we have that Id + ηF is (1− ηL)-strongly monotone. We also have by triangle inequality that

∥(Id + ηF )(x)− (Id + ηF )y∥ ≤ ∥x− y∥+ η∥F (x)− F (y)∥ ≤ (1 + ηL)∥x− y∥,

completing the proof.

A.2. Complexity of the Outer loop

Bounding the norm of the iterates.

13
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Lemma A.2. Let Assumptions 1 and 2 hold. Suppose that the iterates (xk) of Algorithm 1 satisfy ∥Jη(F+G)(xk) −
J̃η(F+G)(xk)∥ ≤ εk for some εk > 0 and ρ < η. Then, we have for k ≥ 0 that

∥xk+1 − x⋆∥ ≤ ∥x0 − x⋆∥+
(
1− ρ

η

)
1

k + 2

k∑
i=0

(i+ 1)εi.

Proof. Recall the following notation from Algorithm 1:

α = 1− ρ

η
=

η − ρ

η
.

Then, by Fact A.1(ii), we know that Jη(F+G) is 1
2α -conically nonexpansive. This means that we can write Jη(F+G) =

(1− 1
2α )Id + 1

2αN for a nonexpansive operator N .

Adding and subtracting α(1− βk)Jη(F+G)(xk) in the definition of xk+1 in Algorithm 1, using conic nonexpansiveness of
Jη(F+G), and rearranging gives

xk+1 = βkx0 + (1− βk)
(
(1− α)xk + αJ̃η(F+G)(xk)

)
= βkx0 + (1− βk)

(
(1− α)xk + αJη(F+G)(xk)

)
+ α(1− βk)

(
J̃η(F+G)(xk)− Jη(F+G)(xk)

)
= βkx0 +

1− βk

2
xk +

1− βk

2
N(xk) + α(1− βk)

(
J̃η(F+G)(xk)− Jη(F+G)(xk)

)
,

where the last step is because Jη(F+G) =
2α−1
2α Id + 1

2αN for a nonexpansive operator N .

We now use triangle inequality, nonexpansiveness of N , the definition of εk, and the last equality to obtain

∥xk+1 − x⋆∥ ≤ βk∥x0 − x⋆∥+ 1− βk

2
∥xk − x⋆∥+ 1− βk

2
∥N(xk)− x⋆∥

+ α(1− βk)∥J̃η(F+G)(xk)− Jη(F+G)(xk)∥
≤ βk∥x0 − x⋆∥+ (1− βk)∥xk − x⋆∥+ α(1− βk)εk, (11)

where the inequality used that Nx⋆ = x⋆ since N = 2αJη(F+G)+(1−2α)Id and that Jη(F+G)(x
⋆) = x⋆ by the definition

of x⋆ in (2), and Fact A.1(i).

The result of the lemma now follows by induction after using the definition βk = 1
k+2 . In particular, the assertion is true for

k = 0 by inspection. Assume the assertion holds for k = K − 1, then (11) gives

∥xK+1 − x⋆∥ ≤ 1

K + 2
∥x0 − x⋆∥+ K + 1

K + 2
∥xK − x⋆∥+ α(K + 1)

K + 2
εK

≤ 1

K + 2
∥x0 − x⋆∥+ K + 1

K + 2

(
∥x0 − x⋆∥+ α

K + 1

K−1∑
i=0

(i+ 1)εi

)
+

α(K + 1)

K + 2
εK

= ∥x0 − x⋆∥+ α

K + 2

K∑
i=0

(i+ 1)εi,

which completes the induction. The statement follows after using α = 1− ρ
η .

Iteration complexity
Lemma 2.5. Let Assumptions 1 and 2 hold. Suppose that the iterates (xk) of Algorithm 1 satisfy ∥Jη(F+G)(xi) −
J̃η(F+G)(xi)∥ ≤ εi for some εi > 0 and ρ < η. Let R = Id− Jη(F+G). Then, we have for any K ≥ 1 that

αK(K + 1)

4
∥R(xK)∥2 − K + 1

Kα
∥x⋆ − x0∥2 ≤

K−1∑
k=0

(α
2
(k + 1)(k + 2)ε2k + α(k + 1)∥R(xk)∥εk

)
,

where α = 1− ρ
η , as defined in Algorithm 1 and ∥xk − x⋆∥ ≤ ∥x0 − x⋆∥+ α

k+1

∑k−1
i=0 (i+ 1)εi.
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Proof of Lemma 2.5. By Fact A.1(ii), we have that Id− Jη(F+G) is
(
1− ρ

η

)
cocoercive. Recall the definition of α from

Algorithm 1 and the notation for Id− Jη(F+G) as:

α = 1− ρ

η
and R = Id− Jη(F+G).

With these, we use α-cocoercivity of R:

⟨R(xk+1)−R(xk), xk+1 − xk⟩ ≥ α∥R(xk+1)−R(xk)∥2. (12)

By rearranging the update rule of xk+1 in Algorithm 1, we have for k ≥ 0 that

xk+1 = βkx0 + (1− βk)xk − α(1− βk)(Id− J̃η(F+G))(xk)

= βkx0 + (1− βk)xk − α(1− βk)R(xk) + α(1− βk)(J̃η(F+G) − Jη(F+G))(xk), (13)

where we added and subtracted α(1− βk)Jη(F+G)(xk) and used the definition R = Id− Jη(F+G).

We now use a step that is common in the rate analysis of Halpern-type methods, which can be seen for example in
(Diakonikolas, 2020) or (Yoon & Ryu, 2021). In particular, from (13), we obtain two identical representations for xk+1−xk:

xk+1 − xk = βk(x0 − xk)− α(1− βk)R(xk) + α(1− βk)(J̃η(F+G) − Jη(F+G))(xk), (14a)

xk+1 − xk =
βk

1− βk
(x0 − xk+1)− αR(xk) + α(J̃η(F+G) − Jη(F+G))(xk), (14b)

where the second representation follows from subtracting βkxk+1 from both sides of (13) and rearranging. With these at
hand, we develop the left-hand side of (12). First, by using (14b), we have that

⟨R(xk+1), xk+1 − xk⟩ =
βk

1− βk
⟨R(xk+1), x0 − xk+1⟩ − α⟨R(xk+1), R(xk)⟩

+ α⟨R(xk+1), (J̃η(F+G) − Jη(F+G))(xk)⟩

=
βk

1− βk
⟨R(xk+1), x0 − xk+1⟩ −

α

2

(
∥R(xk+1)∥2 + ∥R(xk)∥2 − ∥R(xk+1)−R(xk)∥2

)
+ α⟨R(xk+1), (J̃η(F+G) − Jη(F+G))(xk)⟩, (15)

where the last step used the expansion ∥a− b∥2 = ∥a∥2 − 2⟨a, b⟩+ ∥b∥2.

Second, by using (14a), we have that

−⟨R(xk), xk+1 − xk⟩ = −βk⟨R(xk), x0 − xk⟩+ α(1− βk)∥R(xk)∥2

− α(1− βk)⟨R(xk), (J̃η(F+G) − Jη(F+G))(xk)⟩. (16)

After using (15) and (16) in (12) and rearranging, we obtain

α

2
∥R(xk+1)∥2 +

βk

1− βk
⟨R(xk+1), xk+1 − x0⟩

≤ α

2
(1− 2βk) ∥R(xk)∥2 + βk⟨R(xk), xk − x0⟩

+ α⟨R(xk+1)− (1− βk)R(xk), (J̃η(F+G) − Jη(F+G))(xk)⟩ −
α

2
∥R(xk+1)−R(xk)∥2. (17)

For the third term on the right-hand side of (17), we apply Cauchy-Schwarz, triangle and Young’s inequalities along with
the definition of εk to obtain

α⟨R(xk+1)− (1− βk)R(xk), (J̃η(F+G) − Jη(F+G))(xk)⟩ ≤ α∥R(xk+1)− (1− βk)R(xk)∥εk
≤ α (∥R(xk+1)−R(xk)∥+ βk∥R(xk)∥) εk
= α∥R(xk+1)−R(xk)∥εk + αβk∥R(xk)∥εk

≤ α

2
∥R(xk+1)−R(xk)∥2 +

α

2
ε2k + αβk∥R(xk)∥εk. (18)
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This is the main point of departure from the existing analysis where this inequality is bounded by O (∥xk − x⋆∥εk), cf.
(Diakonikolas, 2020, display equation after (14)). We instead use the last term in (17) (which we obtained by using the firm
nonexpansiveness of (1− α)Id + αJη(F+G)) to cancel the corresponding error term in (18). We use this last estimate in
(17) and get

α

2
∥R(xk+1)∥2 +

βk

1− βk
⟨R(xk+1), xk+1 − x0⟩ ≤

α

2
(1− 2βk) ∥R(xk)∥2 + βk⟨R(xk), xk − x0⟩

+
α

2
ε2k + αβk∥R(xk)∥εk. (19)

Noting the identities

βk =
1

k + 2
=⇒ 1− βk =

k + 1

k + 2
,

βk

1− βk
=

1

k + 1
, 1− 2βk =

k

k + 2
,

on (19) we obtain

α

2
∥R(xk+1)∥2 +

1

k + 1
⟨R(xk+1), xk+1 − x0⟩ ≤

α

2

k

k + 2
∥R(xk)∥2 +

1

k + 2
⟨R(xk), xk − x0⟩

+
α

2
ε2k +

α

k + 2
∥R(xk)∥εk,

which holds for k ≥ 0. Multiplying both sides by (k + 1)(k + 2) gives

α(k + 1)(k + 2)

2
∥R(xk+1)∥2 + (k + 2)⟨R(xk+1), xk+1 − x0⟩

≤ αk(k + 1)

2
∥R(xk)∥2 + (k + 1)⟨R(xk), xk − x0⟩

+
α

2
(k + 1)(k + 2)ε2k + α(k + 1)∥R(xk)∥εk.

We sum the inequality for k = 0, 1, . . . ,K − 1 to get

αK(K + 1)

2
∥R(xK)∥2 + (K + 1)⟨R(xK), xK − x0⟩

≤
K−1∑
k=0

(α
2
(k + 1)(k + 2)ε2k + α(k + 1)∥R(xk)∥εk

)
. (20)

By the standard estimation for the inner product on this left-hand side (using (i) monotonicity of R, which is implied by
α-cocoercivity of R with α > 0; (ii) definition of x⋆ as R(x⋆) = (Id − Jη(F+G))(x

⋆) = 0 which uses Fact A.1(i); (iii)
Young’s inequality), we derive

(K + 1)⟨R(xK), xK − x0⟩ = (K + 1)⟨R(xK), x⋆ − x0⟩+ (K + 1)⟨R(xK), xK − x⋆⟩
≥ (K + 1)⟨R(xK), x⋆ − x0⟩

≥ −αK(K + 1)

4
∥R(xK)∥2 − K + 1

Kα
∥x⋆ − x0∥2.

We use this lower bound on (20) to conclude the first assertion. The second claim is essentially Lemma A.2.

A.3. Complexity of the Inner Loop

Theorem 2.7. (See e.g., (Tseng, 2000, Theorem 3.4)) Let B be µ-strongly monotone with µ > 0 and LB-Lipschitz; A be
maximally monotone, and z⋆ = (A+B)−1(0) ̸= ∅. For any ζ > 0, running Algorithm 2 with τ = 1

2LB
and initial point z0

for N =
⌈
4LB

µ log ∥z0−z⋆∥
ζ

⌉
iterations give

∥zN − z⋆∥ ≤ ζ,

where the number of calls to evaluations of B and resolvents of A is upper bounded by 2
⌈
4LB

µ log ∥z0−z⋆∥
ζ

⌉
.
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Proof. We only derive the number of iterations for ease of reference which follows trivially from (Tseng, 2000, Theorem
3.4). In particular, in the notation of (Tseng, 2000, Theorem 3.4(c)), we select θ = 1

2 , α = 1
2LB

and assume without loss of
generality that µ

LB
≤ 3

4 to obtain

∥zt+1 − z⋆∥2 ≤
(
1− µ

2LB

)
∥zt − z⋆∥2,

which after unrolling gives that

∥zN − z⋆∥2 ≤
(
1− µ

2LB

)N

∥z0 − z⋆∥2.

Standard manipulations give that after N =
⌈
4LB

µ log ∥z0−z⋆∥
ζ

⌉
iterations, we have ∥zN − z⋆∥2 ≤ ζ2.

A.4. Total complexity

Theorem 2.1. Let Assumptions 1 and 2 hold. Let η < 1
L in Algorithm 1 and suppose ρ < η. For any k = 1, . . . ,K, we

have that (xk) from Algorithm 1 satisfies

1

η2
∥xk − Jη(F+G)(xk)∥2 ≤

16∥x0 − x⋆∥2

(η − ρ)2(k + 1)2
.

The number of first-order oracles used at iteration k of Algorithm 1 is upper-bounded by⌈
4(1 + ηL)

1− ηL
log(98

√
k + 2 log(k + 2))

⌉
.

Proof of Theorem 2.1. We recall the notations

α = 1− ρ

η
and R = Id− Jη(F+G)

and start from the result of Lemma 2.5 which states for K ≥ 1 that

αK(K + 1)

4
∥R(xK)∥2 ≤ K + 1

Kα
∥x⋆ − x0∥2 +

K−1∑
k=0

(α
2
(k + 1)(k + 2)ε2k + α(k + 1)∥R(xk)∥εk

)
.

Let us set

εk =
γ∥R(xk)∥√

k + 2 log(k + 2)
(21)

and note that we will not evaluate εk but we will prove that for a computable number of inner iterations Nk, this error
criterion will be satisfied.

We substitute the definition of εk to the previous inequality and get

αK(K + 1)

4
∥R(xK)∥2 ≤ K + 1

Kα
∥x0 − x⋆∥2 +

K−1∑
k=0

(
αγ2(k + 1)∥R(xk)∥2

2 log2(k + 2)
+

αγ
√
k + 2∥R(xk)∥2

log(k + 2)

)
. (22)

We now show by induction that

∥R(xk)∥ ≤
4∥x0 − x⋆∥
α(k + 1)

∀k ≥ 1. (23)

Note that α-cocoercivity of R and R(x⋆) = 0 gives ∥R(x0)∥ ≤ 1
α∥x0 − x⋆∥. For k = 1, we have by α-cocoercivity of R,

R(x⋆) = 0 and Lemma A.2 that

∥R(x1)∥ ≤
1

α
∥x1 − x⋆∥ ≤ 1

α

(
∥x0 − x⋆∥+ γ∥x0 − x⋆∥

2
√
2 log 2

)
<

2∥x0 − x⋆∥
α

, (24)
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for γ = 1
98 , which establishes the base case of induction. Now we assume (23) holds for all k ≤ K − 1. Then, we use (22)

for K ≥ 2 (where we also use K+1
K ≤ 2):

αK(K + 1)

4
∥R(xK)∥2 ≤ 2

α
∥x0 − x⋆∥2 +

K−1∑
k=0

(
αγ2(k + 1)∥R(xk)∥2

2 log2(k + 2)
+

αγ
√
k + 2∥R(xk)∥2

log(k + 2)

)

≤ 2

α
∥x0 − x⋆∥2 +

K−1∑
k=0

(
8γ2∥x0 − x⋆∥2

α(k + 1) log2(k + 2)
+

16γ
√
k + 2∥x0 − x⋆∥2

α(k + 1)2 log(k + 2)

)
.

Since we have that
K−1∑
k=0

8

(k + 1) log2(k + 2)
< 28 and

K−1∑
k=0

16
√
k + 2

(k + 1)2 log(k + 2)
< 49,

the value γ = 1
98 results in

αK(K + 1)

4
∥R(xK)∥2 ≤ 2.6

α
∥x0 − x⋆∥2.

A direct implication of this inequality is that

∥R(xK)∥2 ≤ 10.4

α2K(K + 1)
∥x0 − x⋆∥2

≤ 15.6

α2(K + 1)2
∥x0 − x⋆∥2,

where we used 1
K(K+1) ≤

1.5
(K+1)2 which holds when K ≥ 2. This completes the induction.

We next see that with Nk set as in Algorithm 1, we get the inexactness level specified by εk and the oracle complexity of
each iteration is as claimed in the statement.

At iteration k, to apply the result in Theorem 2.7, we identify the following settings from Algorithm 1

A ≡ ηG, B(·) ≡ (Id + ηF )(·)− xk, z0 ≡ xk, z⋆ ≡ Jη(F+G)(xk), ζ ≡ εk

=⇒ z0 − z⋆ = (Id− Jη(F+G))(xk) = R(xk)

hence B is (1 + ηL)-Lipschitz and (1 − ηL)-strongly monotone due to Fact A.1(iv). Existence of z⋆ is guaranteed by
Fact A.1(iii).

We now see that by the setting of

T =

⌈
4(1 + ηL)

1− ηL
log(98

√
k + 2 log(k + 2))

⌉
=

⌈
4(1 + ηL)

1− ηL
log
∥R(xk)∥

εk

⌉
,

Theorem 2.7 tells us that
∥J̃η(F+G)(xk)− Jη(F+G)(xk)∥ ≤ εk,

for εk given in (21), as claimed.

Since each iteration of Algorithm 2 uses 2 evaluations of F and 1 resolvent for G, the first-order oracle complexity is 2Nk

and the result follows.

We now continue with the proof of Corollary 2.2 which follows trivially from Theorem 2.1.

Proof of Corollary 2.2. By Theorem 2.1, we have that after at most
⌈
4∥x0−x⋆∥
(η−ρ)ε

⌉
iterations, i.e., for a K such that

K ≤
⌈
4∥x0 − x⋆∥
(η − ρ)ε

⌉
, (25)

we are guaranteed to have
η−1∥(Id− Jη(F+G))(xK)∥ ≤ ε.
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Total number of first-oracle calls during the run of the algorithm then be calculated as

K∑
k=1

⌈
4(1 + ηL)

1− ηL
log(98

√
k + 2 log(k + 2))

⌉
≤ K ·

(
4(1 + ηL)

1− ηL
log(98

√
K + 2 log(K + 2)) + 1

)
.

We conclude after using (25).

B. Proofs for Section 3
B.1. Preliminary results

We now derive similar properties to Fact A.1 but with Assumption 3. These proofs are slightly more involved than Fact A.1
to accommodate the weaker assumption.

We start with the definition of conic quasi-nonexpansiveness that will be used in Fact B.2. Recall that an operator N is
quasi-nonexpansive when ∥Nx− x⋆∥ ≤ ∥x− x⋆∥ where x⋆ is a fixed point of N .

Definition B.1. T : Rd → Rd is α-conically quasi-nonexpansive if there exists a quasi-nonexpansive operator N : Rd → Rd

such that T = (1− α)Id + αN .

This is a modification of conic nonexpansiveness in (Bauschke et al., 2021, Definition 3.1). In Appendix B.1.1, we show
the conic quasi-nonexpansiveness (and related properties) of the resolvent of a star-cohypomonotone operator in view of
Assumption 3, by invoking the corresponding arguments of (Bauschke et al., 2021) restricted to a point in the domain and a
fixed point of the resolvent. Then we show star-cocoercivity of Id− Jη(F+G) which facilitates the analysis of KM iteration.

Fact B.2. Let Assumptions 1 and 3 hold. Then, we have

(i) The operator Jη(F+G) is single-valued and dom Jη(F+G) = Rd when η < 1
L .

(ii) The operator Jη(F+G) is 1

2(1− ρ
η )

-conically quasi-nonexpansive and Id − Jη(FG) is
(
1− ρ

η

)
-star-cocoercive when

ρ < η.

(iii) For any x̄ ∈ Rd, computing Jη(F+G)(x̄) is equivalent to solving the problem

Find x ∈ Rd such that 0 ∈ (Id + η(F +G))(x)− x̄. (26)

The problem (26) has a unique solution when η < 1
L .

(iv) The operator Id + ηF is (1 + ηL)-Lipschitz and (1− ηL)-strongly monotone when η < 1
L .

Proof.

(i) When F is L-Lipschitz, it is maximally L-hypomonotone (see e.g., (Giselsson & Moursi, 2021, Lemma 2.12)) and ηF
is maximally ηL-hypomonotone since it is ηL-Lipschitz.

By (Dao & Phan, 2019, Lemma 3.2(ii)), we know that ηF+Id is maximally (1−ηL)-(strongly) monotone. Then, using
this and maximal monotonicity of G, we have by (Bauschke & Combettes, 2017, Corollary 25.5) that Id+η(F +G) is
maximally (1− ηL)-(strongly) monotone. Invoking (Dao & Phan, 2019, Lemma 3.2(ii)) again gives us that η(F +G)
is maximally ηL-hypomonotone.

We can then use (Bauschke et al., 2021, Lemma 2.8) to obtain that (η(F +G))−1 is maximally ηL-cohypomonotone.
This can be combined with (Bauschke et al., 2021, Corollary 2.14) to get the result when ηL < 1.

(ii) Since F +G has a ρ-weak MVI solution under Assumption 3, we have that η(F +G) has ρ/η-weak MVI solution,
i.e., by simple change of variables, we have for some η > 0

⟨ηu, x− x∗⟩ ≥ ηρ∥u∥2 where u ∈ (F +G)(x)

⇐⇒ ⟨v, x− x∗⟩ ≥ ρ

η
∥v∥2 where v ∈ η(F +G)(x).
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Proposition B.5 then gives us that Jη(F+G) is 1

2(1− ρ
η )

-conically quasi-nonexpansive and then we have that Id−Jη(F+G)

is
(
1− ρ

η

)
star-cocoercive by Corollary B.4.

(iii) The proof is the same as Fact A.1(iii) where the only difference is that now we ensure the existence of Jη(F+G)(x̄)
with (i). Uniqueness also follows from this.

(iv) The proof is the same as Fact A.1(iv).

B.1.1. PROPERTIES RELATED TO CONIC QUASI-NONEXPANSIVENESS

This section particularizes the notion and properties of the α-conic nonexpansiveness in (Bauschke et al., 2021) to their star
variants. The aim is to show that the properties extend to their star or quasi-variants when we use weak MVI condition
instead of cohypomonotonicity. This sections implicitly assumes that JA for operator A : Rd ⇒ Rd is well-defined, sufficient
conditions for which is shown in Fact B.2. We say that an operator N is quasi-nonexpansive when ∥Nx− x⋆∥ ≤ ∥x− x⋆∥
where x⋆ is a fixed point of N .

Lemma B.3. (See (Bauschke et al., 2021, Lemma 3.4)) Consider T : Rd → Rd and let T = (1− α)Id + αN . Then, N is
quasi-nonexpansive if and only if we have, for all x ∈ Rd,

2α ⟨Tx− x⋆, (Id− T )x⟩ ≥ (1− 2α)∥(Id− T )x∥2,

or equivalently ∥∥∥∥(1− 1

α

)
x+

1

α
Tx− x⋆

∥∥∥∥ ≤ ∥x− x⋆∥. (27)

Proof. Using α2∥a∥2 − ∥(α− 1)a+ b∥2 = 2α ⟨b, a− b⟩ − (1− 2α)∥a− b∥2 (see (Bauschke et al., 2021, Lemma 3.3))
with a = x− x⋆ and b = Tx− x⋆, we have

0 ≤ 2α ⟨Tx− x⋆, (Id− T )x⟩ − (1− 2α)∥(Id− T )x∥2

= α2∥x− x⋆∥2 − ∥(α− 1)(x− x⋆) + Tx− x∗∥2

= α2∥x− x⋆∥2 − ∥(α− 1)(x− x⋆) + (1− α)(x− x⋆) + α(Nx− x⋆)∥2

= α2(∥x− x⋆∥2 − ∥Nx− x⋆∥2),

which gives the assertion. Last claim follows by substituting N = 1
αT +

(
1− 1

α

)
Id in the definition of quasi-

nonexpansiveness for N .

Corollary B.4. (See (Bauschke et al., 2021, Corollary 3.5(iii))) T : Rd → Rd is α-conically quasi-nonexpansive if and only
if Id− T is 1

2α -star-cocoercive.

Proof. We use Lemma B.3:

⟨Tx− x⋆, (Id− T )x⟩ ≥
(

1

2α
− 1

)
∥(Id− T )x∥2 ⇔ ⟨x− x⋆, (Id− T )x⟩ ≥ 1

2α
∥(Id− T )x∥2,

which is simply adding to both sides ∥(Id− T )(x)∥2.

Proposition B.5. (See (Bauschke et al., 2021, Proposition 3.6(i))) Let A = T−1 − Id and set N = 1
αT −

1−α
α Id, i.e.,

T = JA = (Id + A)−1 = (1− α)Id + αN . Then, T is α-conically quasi-nonexpansive if and only if A is
(
1− 1

2α

)
-star-

cohypomonotone, i.e.,

⟨x− x⋆, u⟩ ≥ −
(
1− 1

2α

)
∥u∥2 ∀(x, u) ∈ graA.

Proof. We see the two directions:
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“⇒” Let (x, u) ∈ graA. Then by definition of A = T−1 − Id and manipulations, it follows that (x, u) = (T (x+ u), (Id−
T )(x+ u)). By Lemma B.3 invoked with x← x+ u, we have

2α ⟨T (x+ u)− x⋆, (Id− T )(x+ u)⟩ ≥ (1− 2α)∥(Id− T )(x+ u)∥2

⇔ 2α ⟨x− x⋆, u⟩ ≥ (1− 2α)∥u∥2,

where the last step substituted (x, u) = (T (x+ u), (Id− T )(x+ u)).

“⇐” Since (Tx, (Id− T )x) ∈ graA, we have by star-cohypomonotonicity that ⟨Tx− x⋆, (Id− T )x⟩ ≥
(

1
2α − 1

)
∥(Id−

T )x∥2. In view of Lemma B.3, we deduce conic quasi-nonexpansiveness.

B.2. Complexity of the Outer Loop

Bounding the norm of iterates. Just like Appendix A, we start with the bound of the norms of the iterates.

Lemma B.6. Let Assumptions 1 and 3 hold. Suppose that the iterates (xk) of Algorithm 3 satisfy ∥Jη(F+G)(xk) −
J̃η(F+G)(xk)∥ ≤ εk for some εk > 0 and ρ < η. Then, we have for k ≥ 0 that

∥xk+1 − x⋆∥ ≤ ∥xk − x⋆∥+
(
1− ρ

η

)
εk.

Proof. From Fact B.2(ii), we know that Jη(F+G) is 1

2(1− ρ
η )

-conically quasi-nonexpansive. Then, by property (27) derived

in Lemma B.3, since Jη(F+G) is also 1
1− ρ

η
-conically quasi-nonexpansive due to 2

(
1− ρ

η

)
≥ 1− ρ

η (see also Corollary B.4),
we have ∥∥∥∥ρηxk +

(
1− ρ

η

)
Jη(F+G)(xk)− x⋆

∥∥∥∥ ≤ ∥xk − x⋆∥. (28)

By the definition of xk+1 in Algorithm 3, the definition of εk and triangle inequality, we have for k ≥ 0 that

∥xk+1 − x⋆∥ ≤
∥∥∥∥ρηxk +

(
1− ρ

η

)
Jη(F+G)(xk)− x⋆

∥∥∥∥+ (1− ρ

η

)
∥Jη(F+G)(xk)− J̃η(F+G)(xk)∥

≤
∥∥∥∥ρηxk +

(
1− ρ

η

)
Jη(F+G)(xk)− x⋆

∥∥∥∥+ (1− ρ

η

)
εk.

Combining with (28) gives the result.

Iteration complexity. Equipped with this result, we proceed to deriving the iteration complexity of the outer loop.

Lemma 3.5. Let Assumptions 1 and 3 hold. Suppose that the iterates (xk) of Algorithm 3 satisfy ∥Jη(F+G)(xk) −
J̃η(F+G)(xk)∥ ≤ εk for some εk > 0 and ρ < η. Then, we have for K ≥ 1 that

K−1∑
k=0

∥(Id− Jη(F+G))(xk)∥2 ≤
2η2

(η − ρ)2
∥x0 − x⋆∥2 + 6

K−1∑
k=0

ε2k +
4η

η − ρ

K−1∑
k=0

∥xk − x⋆∥εk, (29)

where

∥xk − x⋆∥ ≤ ∥xk−1 − x⋆∥+
(
1− ρ

η

)
εk−1.

Proof. From Fact B.2(ii), we have that Id− Jη(F+G) is
(
1− ρ

η

)
-star cocoercive. Let us recall our running notations:

α = 1− ρ

η
, R = Id− Jη(F+G), R̃ = Id− J̃η(F+G).
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As a result, we have the following equivalent representation of xk+1 (see the definition in Algorithm 3):

xk+1 = xk −
(
1− ρ

η

)(
Id− J̃η(F+G)

)
(xk)

= xk − αR̃(xk). (30)

Then, by α-star-cocoercivity of R, we have

⟨R(xk), xk − x⋆⟩ ≥ α∥R(xk)∥2. (31)

A simple decomposition gives

⟨R(xk), xk − x⋆⟩ = ⟨R̃(xk), xk − x⋆⟩+ ⟨R(xk)− R̃(xk), xk − x⋆⟩. (32)

We estimate the first term on the right-hand side of (32) as

⟨R̃(xk), xk − x⋆⟩ = 1

α
⟨xk − xk+1, xk − x⋆⟩

=
1

2α

(
∥xk − xk+1∥2 + ∥xk − x⋆∥2 − ∥xk+1 − x⋆∥2

)
≤ 1

2α

(
∥xk − x⋆∥2 − ∥xk+1 − x⋆∥2

)
+

3α

4
∥R(xk)∥2 +

3α

2
∥R̃(xk)−R(xk)∥2

≤ 1

2α

(
∥xk − x⋆∥2 − ∥xk+1 − x⋆∥2

)
+

3α

4
∥R(xk)∥2 +

3αε2k
2

, (33)

where we used the definition of xk+1 from (30) in the first step, standard expansion ∥a− b∥2 = ∥a∥2 − 2⟨a, b⟩+ ∥b∥2 for
the second step, the definition of xk+1 from (30) and Young’s inequality in the third step, and the definitions of Rk, R̃k, εk
in the last step.

For the second term on the right-hand side of (32), we have by Cauchy-Schwarz inequality and the definition of R̃ and εk
that

⟨R(xk)− R̃(xk), xk − x⋆⟩ ≤ ∥R(xk)− R̃(xk)∥∥xk − x⋆∥
≤ ∥xk − x⋆∥εk. (34)

We combine (33) and (34) in (32), plug in the result to (31) and rearrange to obtain

α

4
∥R(xk)∥2 ≤

1

2α

(
∥xk − x⋆∥2 − ∥xk+1 − x⋆∥2

)
+

3αε2k
2

+ ∥xk − x⋆∥εk.

The result follows by multiplying both sides by 4/α, summing for k = 0, 1, . . . ,K − 1, and using the definition of α. The
bound on ∥xk − x⋆∥2 follows by Lemma B.6.

B.3. Complexity of the Inner Loop

In a modular fashion, we will use precisely the same algorithm for the inner loop, i.e., the Forward-Backward-Forward
(FBF) algorithm of (Tseng, 2000) like the Section A.3. Hence the complexity of the inner loop is the same as Theorem 2.7.
As we see in the next section, the accuracy required by J̃η(F+G) is slightly different leading to the number of inner loop
iterations Nk in Algorithm 3 to be slightly different than Algorithm 1.

B.4. Total Complexity

Theorem 3.1. Let Assumptions 1 and 3 hold. Let η < 1
L in Algorithm 3 and suppose that ρ < η. For any K > 1, we have

that
1

K

K−1∑
k=0

1

η2
∥xk − Jη(F+G)(xk)∥2 ≤

11∥x0 − x⋆∥2

(η − ρ)2K
.

The number of first-order oracles used at iteration k of Algorithm 3 is upper bounded by⌈
4(1 + ηL)

1− ηL
log(8(k + 2) log2(k + 2))

⌉
.
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Remark B.7. It is straightforward to convert this to a last-iterate result if we additionally assume cohypomonotonicity as in
(Pethick et al., 2023b), but we refrain from doing so since the main point of this section is to relax cohypomonotonicity.

Proof of Theorem 3.1. Recall the notations α = 1− ρ
η and R = Id− Jη(F+G). Let us set

εk =
1

8(k + 1) log2(k + 2)
∥xk − Jη(F+G)(xk)∥ (35)

and note, just as in the proof of Theorem 2.1, that we will not evaluate the value of εk but we will prove that for the number
of iterations that FBF runs at each KM iteration in Algorithm 3, the error criterion required by εk is satisfied.

By using the definition of εk in Lemma B.6 gives

∥xk+1 − x⋆∥ ≤ ∥xk − x⋆∥+ α

8(k + 1) log2(k + 2)
∥xk − Jη(F+G)(xk)∥. (36)

We note that α = 1 − ρ
η ≤ 1 and since R = Id − Jη(F+G) is α-star cocoercive as shown in Fact B.2(ii), we have that

Id− Jη(F+G) is α−1-star Lipschitz and hence by (Id− Jη(F+G))(x
⋆) = 0 we have

∥(Id− Jη(F+G))(xk)∥ = ∥(Id− Jη(F+G))(xk)− (Id− Jη(F+G))(x
⋆)∥ ≤ α−1∥xk − x⋆∥. (37)

Consequently, (36) becomes, after summing for k = 0, 1, . . . ,K − 1 that

∥xK − x⋆∥ ≤ ∥x0 − x⋆∥+
K−1∑
i=0

1

8(i+ 1) log2(i+ 2)
∥xi − x⋆∥.

With this, we can show by induction that

∥xk − x⋆∥ ≤ 2∥x0 − x⋆∥ ∀k ≥ 0, (38)

because
∑∞

i=0
1

(i+1) log2(i+2)
< 4.

We use (38) in the result of Lemma 3.5 to obtain (also noting the definitions of α and R)

K−1∑
k=0

∥R(xk)∥2 ≤
2

α2
∥x0 − x⋆∥2 +

K−1∑
k=0

6ε2k +
4

α

K−1∑
k=0

2∥x0 − x⋆∥εk. (39)

By using (38) and (37) in (35) we also know the following upper bound on εk:

εk ≤
∥x0 − x⋆∥

4α(k + 1) log2(k + 2)
.

With this, (39) becomes

K−1∑
k=0

∥R(xk)∥2 ≤
2

α2
∥x0 − x⋆∥2 +

K−1∑
k=0

3∥x0 − x⋆∥2

8α2(k + 1)2 log4(k + 2)
+

K−1∑
k=0

2∥x0 − x⋆∥2

α2(k + 1) log2(k + 2)

<
11

α2
∥x0 − x⋆∥2, (40)

since
∑K−1

k=0
3

8(k+1)2 log4(k+2)
< 2 and

∑K−1
k=0

2
(k+1) log2(k+1)

< 7. This establishes the first part of the assertion.

We next see that, with Nk set as in Algorithm 3, we get the inexactness level specified by εk in (35) and we verify that the
oracle complexity of each iteration is as claimed in the statement.

For the second part of the result, we proceed similar to the proof of Theorem 2.1. Namely, at iteration k, we apply the result
in Theorem 2.7. For this, let us identify the following from the definitions in Algorithm 3

A ≡ ηG, B(·) ≡ (Id + ηF )(·)− xk, z0 ≡ xk, z⋆ ≡ Jη(F+G)(xk), ζ ≡ εk

=⇒ z0 − z⋆ = (Id− Jη(F+G))(xk) = R(xk).
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As before, we have that B is (1 + ηL)-Lipschitz and (1− ηL)-strongly monotone due to Fact B.2(iv). Existence of z⋆ is
guaranteed by Fact B.2(iii) since η < 1

L .

We now see that by the setting of Nk from Algorithm 3 and definition of εk in (35), we have

Nk =

⌈
4(1 + ηL)

1− ηL
log(8(k + 1) log2(k + 2))

⌉
=

⌈
4(1 + ηL)

1− ηL
log
∥R(xk)∥

εk

⌉
.

With this value, Theorem 2.7 gives us

∥J̃η(F+G)(xk)− Jη(F+G)(xk)∥ ≤ εk

as claimed.

Since each iteration of Algorithm 2 uses 2 evaluations of F and 1 resolvent for G, the number of first-order oracle calls at
iteration k is 2Nk and the result follows.

We continue with the proof of Corollary 3.2 which follows trivially from Theorem 3.1.

Proof of Corollary 3.2. Based on Theorem 3.1, we have that after K iterations where

K ≤
⌈
11∥x0 − x⋆∥2

η2α2ε2

⌉
(41)

we are guaranteed to obtain

min
0≤k≤K−1

η−1∥R(xk)∥ ≤
1

K

K−1∑
k=0

η−1∥R(xk)∥ ≤ ε.

Total number of first-oracle calls during the run of the algorithm then be calculated as

K∑
k=1

⌈
4(1 + ηL)

1− ηL
log(8(k + 2) log2(k + 2))

⌉
≤ K ·

(
4(1 + ηL)

1− ηL
log(8(K + 2) log2(K + 2)) + 1

)
.

We conclude after using (41).

B.5. Additional Results

Let us re-emphasize the strategy in the previous proof: we set a target value for εk and then we prove that when we run the
inner algorithm FBF for a certain computable number of iterations Nk, the criterion enforced on J̃η(F+G) by εk is satisfied.
However, this number of inner iterations is worst-case. Another alternative, which could be more useful in practice is to set
εk to a computable value and monitor the progress of the inner algorithm and break when εk is attained. One sidenote is that
this is attainable in the deterministic case considered in this section, however it cannot be done in the stochastic case since
the convergence guarantees are generally given in expectation.

This described strategy can be made rigorous with slight changes in the constants in our deterministic case. We now see this
in the next proposition.

Corollary B.8. Let Assumptions 1 and 3 hold and let G = ∂ιC for a convex closed set C. Let η < 1
L and ρ < η in

Algorithm 1 with ∥J̃η(F+G)(xk)− Jη(F+G)(xk)∥ ≤ c
k log2(k+2)

for any c > 0 and use (Diakonikolas, 2020, Algorithm 4)

to obtain such J̃η(F+G)(xk) at iteration k. Then, we have that

1

K

K−1∑
k=0

η−1∥(Id− Jη(F+G))(xk)∥ ≤ ε,

with the number of calls to evaluation of F and resolvent of G is bounded by Õ
(

(1+ηL)((1+c)∥x0−x⋆∥2+c2)
ε2(η−ρ)2(1−ηL)

)
.
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Remark B.9. Note that (Diakonikolas, 2020, Algorithm 4) has a built-in stopping criterion to terminate the algorithm when
the required accuracy is achieved. The value for εk defined in this corollary is computable since it only depends on k and
a user-defined constant c. This is an alternative to FBF we used in the main text where we use a computable number of
iterations to run the inner algorithm rather than using a stopping criterion as (Diakonikolas, 2020, Algorithm 4). On the one
hand, in practice, a stopping criterion can be more desirable since the worst-case number of iterations can be pessimistic.
On the other hand, the strategy of using a stopping criterion is inherently more complicated in the stochastic case whereas
using a worst-case computable number of inner iteration is still easily implementable. This is why we considered the latter
setting throughout the paper. However, this corollary is still included for the former strategy.

Proof of Corollary B.8. We obtain the result by modifying the proof of Theorem 3.1. We set

εk =
c

(k + 1) log2(k + 2)
,

for any c > 0.

By using this on Lemma B.6 and summing the result for k = 0, 1, . . . ,K − 1 we obtain

∥xk − x⋆∥ ≤ ∥x0 − x⋆∥+ α
K−1∑
k=0

c

(k + 1) log2(k + 2)

≤ ∥x0 − x⋆∥+ 4αc,

since
∑K−1

k=0
1

(k+1) log2(k+2)
< 4. We use this bound on the result of Lemma 3.5 to obtain

K−1∑
k=0

∥R(xk)∥2 ≤
2

α2
∥x0 − x⋆∥2 +

K−1∑
k=0

6c2

(k + 1)2 log4(k + 2)
+

4

α

K−1∑
k=0

c(∥x0 − x⋆∥+ 4αc)

(k + 1) log2(k + 2)

≤
(

2

α2
+

16c

α

)
∥x0 − x⋆∥2 + 30c2 + 64c2,

which gives the result after dividing by η2 and noting that (Diakonikolas, 2020, Lemma 17) gives complexity Õ
(

1+ηL
1−ηL

)
for

obtaining such a J̃η(F+G)(xk) with (Diakonikolas, 2020, Algorithm 4).

We continue with the result mentioned in Remark 3.4.

Corollary B.10. Let Assumptions 1 and 3 hold. Let η < 1
L and ρ < η.

(i) Let G ≡ 0 and consider Algorithm 3. Then we have that min0≤k≤K−1 ∥F (xk)∥ ≤ 2ε with the first-order oracle calls
bounded by

Õ

(
(1 + ηL)∥x0 − x⋆∥2

ε2 (η − ρ)
2
(1− ηL)

)
.

(ii) Let G ≡ ∂ιC for a convex closed set C ⊆ Rd. Given ε > 0, consider Algorithm 3 with the update J̃η(F+G)(xk)

replaced with (Diakonikolas, 2020, Algorithm 4) with error criterion ∥J̃η(F+G)(xk)−Jη(F+G)(xk)∥ ≤ ηε2

(k+1) log2(k+3)
.

Then, for xout = argminx∈{x0,...,xk−1} ∥x − J̃η(F+G)(x)∥, we have that η−1∥(Id − Jη(F+G))(x
out)∥ ≤ 2ε + 3ε2

with the first-order oracle calls bounded by

Õ

(
(1 + ηL)∥x0 − x⋆∥2

ε2 (η − ρ)
2
(1− ηL)

)
. (42)

See also Remark 2.3 for details on how we can use this result to further obtain a guarantee like dist(0, (F +G)(xout)) ≤ ε.
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Proof of Corollary B.10. (i) In this case, we start from the final steps of the proof of Theorem 3.1 (see (40)) which, after
using R = Id− Jη(F+G), gives us that

1

K

K−1∑
k=0

η−2∥xk − JηF (xk)∥2 ≤ ε2, (43)

with the prescribed complexity bound given in Corollary 3.2. Let us define x̄k = JηF (xk).

On the one hand, we use the definition of resolvent to obtain

x̄k = JηF (xk) ⇐⇒ x̄k + ηF (x̄k) = xk ⇐⇒ xk − x̄k = ηF (x̄k),

which, in view of (43), means that we have

1

K

K−1∑
k=0

∥F (x̄k)∥2 ≤ ε2. (44)

On the other hand, we know by Young’s inequality and Lipschitzness of F that

1

K

K−1∑
k=0

∥F (xk)∥2 ≤
1

K

K−1∑
k=0

2∥F (x̄k)∥2 +
1

K

K−1∑
k=0

2∥F (xk)− F (x̄k)∥2

≤ 1

K

K−1∑
k=0

2∥F (x̄k)∥2 +
1

K

K−1∑
k=0

2L2∥xk − x̄k∥2

≤ (2 + 2η2L2)ε2

< 4ε2,

where we used (43) and (44).

(ii) A slight modification of the proof of Corollary B.8 by using εk = ηε2

(k+1) log2(k+3)
gives us that

1

K

K−1∑
k=0

η−2∥(Id− Jη(F+G))(xk)∥2 ≤ ε2 (45)

with the complexity bound (42). This is because (Diakonikolas, 2020, Lemma 17) showed that (Diakonikolas, 2020,
Algorithm 4) outputs a J̃η(F+G)(xk) satisfying the requirement set by εk = ηε2

(k+1) log2(k+3)
, with the same worst-case

complexity as Theorem 2.7. The difference is that (Diakonikolas, 2020, Algorithm 4) has a computable stopping
criterion (instead of the maximum number of iterations Algorithm 2 takes) where we can check if εk = ηε2

(k+1) log2(k+3)

accuracy is achieved and break the loop.

Since we have the pointwise bound ∥Jη(F+G)(xk)− J̃η(F+G)(xk)∥2 ≤ η2ε4, we derive from (45) that

1

K

K−1∑
k=0

η−2∥(Id− J̃η(F+G))(xk)∥2 ≤ 2(ε2 + ε4).

Hence, for xout defined in the statement, we get

η−2∥(Id− J̃η(F+G))(x
out)∥2 ≤ 2(ε2 + ε4). (46)

Then, by using the pointwise bound ∥Jη(F+G)(xk)− J̃η(F+G)(xk)∥2 ≤ η2ε4 for all k, we know that

η−1∥(Id− Jη(F+G))(x
out)∥ ≤ η−1∥(Id− J̃η(F+G))(x

out)∥+ η−1∥(Jη(F+G) − J̃η(F+G))(x
out)∥

≤ ε2 +
√

2(ε4 + ε2) < 2ε+ 3ε2,

which uses (46) and the implication of the error criterion ∥Jη(F+G)(xk) − J̃η(F+G)(xk)∥ ≤ ηε2, completing the
proof.
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Assumption Reference Limit of ρ Constraints Oracle† Complexity
weak MVI (Diakonikolas et al., 2021) 1

4
√
2L

× Single O(ε−4)

(Choudhury et al., 2023) 1
2L

× Single O(ε−4)

(Böhm, 2022) 1
2L

× Single O(ε−6)

(Pethick et al., 2023a) 1
2L

✓ Multiple Õ(ε−4)

Theorem C.11 1
L

✓ Single Õ(ε−4)

cohypomonotone (Pethick et al., 2023b) 1
2L

✓ Single Õ(ε−6) (best)‡

(Pethick et al., 2023b) 1
2L

✓ Single Õ(ε−16) (last)

(Chen & Luo, 2022)∗ 1
2L

× Single Õ(ε−2)

Corollary C.5∗ 1
L

✓ Single Õ(ε−4)

Table 2. Comparison of first order algorithms for stochastic problems. Complexity refers to the number of oracle calls to get the fixed point
residual E∥(Id− Jη(F+G))(x

out)∥ ≤ ε. See also Remark 2.3. †Oracle access refers to the number of operator evaluations algorithm
makes with one random seed given F (x) = Eξ∼Ξ[Fξ(x)]. For example, “Single” refers to algorithms that only access one sample per
seed, i.e., only Fξt(xt), “Multiple” is for algorithms that access multiple samples per seed, i.e., Fξt(xt) and Fξt(xt−1). Algorithms
with “Multiple” access also make the additional assumption that Eξ∼Ξ∥Fξ(x)− Fξ(y)∥2 ≤ L2∥x− y∥2 which is stronger than mere
Lipschitzness of F . ‡(best) refers to best iterate in view of Remark 3.3; (last) refers to a last iterate convergence rate. ∗These works
have complexity as expected number of oracle calls due to the use of MLMC estimator. See also Appendix D.1 for derivations of the
complexities when they are not written explicitly in the existing works.

C. Proofs for Section 4
Notation. We use the following definitions for conditional expectations: For expectation conditioned on the filtration
generated by the randomness of xk, . . . , x1, we use Ek[·] while analyzing Algorithm 4 and Algorithm 6. In the notation of
Algorithm 5, we similarly use Et+1/2[·] for the expectation conditioned on the filtration generated by the randomness of
zt+1/2, zt, . . . , z1, z1/2. Unif denotes the uniform distribution and Geom denotes the geometric distribution.

Table 2 summarizes the existing works for stochastic min-max problems satisfying cohypomonotonicity or weak MVI
conditions.

C.1. Analysis of the inner loop for stochastic problems

The main change for algorithms in the stochastic case is computing the resolvent approximation J̃η(F+G)(xk). We now
need to invoke FBF with unbiased oracles for F , see for example (9). For ease of reference, we specify the algorithm below.
Note that Algorithm 4 is precisely Algorithm 1 when (9) is used for estimating the resolvent and Algorithm 5 is precisely
Algorithm 2 when unbiased oracle B̃ is inputted rather than full operator B. Algorithm 5 is a stochastic version of FBF,
which is analyzed in the monotone case by (Böhm et al., 2022).

Algorithm 4 Stochastic Inexact Halpern iteration for problems with cohypomonotonicity
Input: Parameters βk = 1

k+2 , η, L, ρ, α = 1− ρ
η , K > 0, initial iterate x0 ∈ Rd, subroutine FBF given in Algorithm 5

for k = 0, 1, 2, . . . ,K − 1 do
J̃η(F+G)(xk) = FBF

(
xk, Nk, ηG, Id + ηF̃ , 1 + ηL

)
, where Nk =

⌈
1734(k+2)3 log2(k+2)

(1−ηL)2

⌉
xk+1 = βkx0 + (1− βk)((1− α)xk + αJ̃η(F+G)(xk))

end for

More particularly, we solve the following stochastic strongly monotone inclusion problem:

Find x⋆ ∈ Rd such that 0 ∈ (A+B)(x⋆), where B = Eξ∼Ξ[Bξ].

Similar results to next theorem appeared in (Hsieh et al., 2019; Kotsalis et al., 2022). We provide a proof for being complete
and precise since we could not find a particular reference for stochastic FBF with strong monotonicity and explicit constants.
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Algorithm 5 FBF(z0, T, A, B̃in, LB) from (Tseng, 2000) – Stochastic

Input: Parameter τt = 2
(t+1)µ+6LB

, initial iterate z0 ∈ Rd, B̃(·) = B̃in(·)− z0

for t = 0, 1, 2, . . . , N − 1 do
zt+1/2 = JτtA(zt − τtB̃(zt))

zt+1 = zt+1/2 + τtB̃(zt)− τtB̃(zt+1/2)
end for

It is also worth noting that we do not focus on optimizing the non-dominant terms. A tight bound for all the terms can be
found in (Kotsalis et al., 2022) who analyzed a different algorithm.
Theorem C.1. Let z⋆ = (A+B)−1(0) ̸= ∅, the operator B be LB-Lipschitz and µ-strongly monotone with µ > 0, A be
maximally monotone. Let B̃ : Rd → Rd satisfy E[B̃(x)] = B(x) and E∥B̃(x)−B(x)∥2 ≤ σ2. Then, we have that the last
iterate of Algorithm 5 after running for T iterations, when initialized with z0, and step size τt =

2
(t+1)µ+6LB

satisfies the
bound

E∥zT − z⋆∥2 ≤ 6LB/µ∥z0 − z⋆∥2 + 48σ2/µ2

T + 6LB/µ
.

Each iteration of the algorithm uses two evaluations of B̃ and one resolvent of A

Proof. Note that the definition of zt+1/2 implies τtA(zt+1/2) ∋ zt − zt+1/2 − τtBξt(zt). The definition of z⋆ implies
τtA(z

⋆) ∋ −τtB(z⋆) By using this with monotonicity of A, we get

⟨zt+1/2 − zt + τtB̃(zt)− τtB(z⋆), z⋆ − zt+1/2⟩ ≥ 0.

By the definition of zt+1, we then have

⟨zt+1 − zt + τtB̃(zt+1/2)− τtB(z⋆), z⋆ − zt+1/2⟩ ≥ 0. (47)

By taking expectation conditioned on zt+1/2 and also using strong monotonicity of B, we also have

Et+1/2⟨τtB̃(zt+1/2)− τtB(z⋆), zt+1/2 − z⋆⟩ = ⟨τtB(zt+1/2)− τtB(z⋆), zt+1/2 − z⋆⟩
≥ µτt∥z⋆ − zt+1/2∥2

≥ µτt
2
∥z⋆ − zt+1∥2 − µτt∥zt+1 − zt+1/2∥2

≥ µτt
2
∥z⋆ − zt+1∥2 −

1

3
∥zt+1 − zt+1/2∥2, (48)

where the third step is by Young’s inequality and last step is by the definition of τt, i.e., τtµ = 2µ
(t+1)µ+6LB

≤ 2µ
6LB
≤ 1

3

since µ ≤ LB .

We have, by the elementary identities ⟨a, b⟩ = 1
2

(
∥a∥2 + ∥b∥2 − ∥a− b∥2

)
= 1

2

(
−∥a∥2 − ∥b∥2 + ∥a+ b∥2

)
, that

⟨zt+1 − zt, z
⋆ − zt+1/2⟩ = ⟨zt+1 − zt, z

⋆ − zt+1⟩+ ⟨zt+1 − zt, zt+1 − zt+1/2⟩

=
1

2

(
∥zt − z⋆∥2 − ∥zt+1 − z⋆∥2 − ∥zt − zt+1/2∥2 + ∥zt+1 − zt+1/2∥2

)
. (49)

Using (48) and (49) on (47) after taking total expectation, using tower rule and dividing both sides by τt gives(
1

2τt
+

µ

2

)
E∥z⋆ − zt+1∥2 ≤

1

2τt
E∥z⋆ − zt∥2 +

5

6τt
E∥zt+1 − zt+1/2∥2 −

1

2τt
E∥zt − zt+1/2∥2. (50)

Definition of zt+1 in Algorithm 5 gives

5

6
∥zt+1 − zt+1/2∥ =

5τ2t
6
∥B̃(zt)− B̃(zt+1/2)∥2

≤ 5τ2t
2

(
∥B̃(zt)−B(zt)∥2 + ∥B(zt)−B(zt+1/2)∥2 + ∥B(zt+1/2)− B̃(zt+1/2)∥2

)
≤ 5τ2t σ

2 +
5τ2t L

2
B

2
∥zt − zt+1/2∥2,
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where the last line is by the variance bound assumed on B̃ and Lipschitzness of B.

With this, we get in place of (50) that(
1

2τt
+

µ

2

)
E∥z⋆ − zt+1∥2 ≤

1

2τt
E∥z⋆ − zt∥2 +

1

τt

(
5τ2t L

2
B

2
− 1

2

)
E∥zt − zt+1/2∥2 + 5τtσ

2. (51)

The definition of τt = 2
(t+1)µ+6LB

has two consequences:

1

2τt
+

µ

2
=

6LB + (t+ 3)µ

4

and
τt =

2

(t+ 1)µ+ 6LB
≤ 1

3LB
=⇒ τ2t ≤

1

5L2
B

⇐⇒ 5τ2t L
2
B ≤ 1.

This last estimate shows that the second term on the right-hand side of (51) is nonpositive.

Then, we obtain, after multiplying both sides of (51) by
(

1
2τt

+ µ
2

)−1

= 4
6LB+(t+3)µ that

E∥z⋆ − zt+1∥2 ≤
(
(t+ 1)µ+ 6LB

(t+ 3)µ+ 6LB

)
∥z⋆ − zt∥2 +

40σ2

(6LB + (t+ 1)µ)(6LB + (t+ 3)µ)
. (52)

We next show by induction that

E∥z⋆ − zt∥2 ≤
6LB/µ∥z0 − z⋆∥2 + 48σ2/µ2

t+ 6LB/µ
∀t ≥ 0.

For brevity, let us denote κ = 6LB/µ.

The base case t = 0 holds by inspection. Next we assume the assertion holds for t = T and consider (52) to deduce

E∥z⋆ − zT+1∥2

≤ T + 1 + κ

T + 3 + κ

κ∥z0 − z⋆∥2 + 48σ2/µ2

T + κ
+

40σ2/µ2

(T + 1 + κ)(T + 3 + κ)

=

(
(T + 1 + κ)

(T + 3 + κ)(T + κ)
+

1

1.2(T + 1 + κ)(T + 3 + κ)

)(
κ∥z0 − z⋆∥2 + 48σ2/µ2

)
.

As a result, the inductive step will be implied by(
(T + 1 + κ)2

(T + 1 + κ)(T + 3 + κ)(T + κ)
+

(T + κ)

1.2(T + 1 + κ)(T + 3 + κ)(T + κ)

)
≤ 1

T + 1 + κ
,

which, after letting ν = T + κ, is equivalent to(
1.2(ν + 1)2

(ν + 3)ν
+

ν

(ν + 3)ν

)
≤ 1.2 ⇐⇒ 1.2(ν + 1)2 ≤ 1.2ν2 + 2.6ν ⇐⇒ 1.2 ≤ 0.2ν ⇐⇒ 6 ≤ ν.

This holds because ν = T + κ = T + 6LB/µ ≥ 6 since LB/µ > 1. This completes the induction.

C.2. Stochastic Problem with Cohypomonotonicity

We have a stochastic version of Lemma A.2 proof of which is almost equivalent.

Lemma C.2. Let Assumptions 1 and 2 hold. For the sequence (xk) generated by Algorithm 4 with Ek∥Jη(F+G)(xk) −
J̃η(F+G)(xk)∥2 ≤ ε2k, we have for k ≥ 0 that

E∥xk+1 − x⋆∥ ≤ ∥x0 − x⋆∥+ α

k + 2

k∑
i=0

(i+ 1)E[εi].
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Proof. The proof follows the same steps as Lemma A.2 after taking expectation on (11) and using Jensen’s inequality since

Ek

[
∥J̃η(F+G)(xk)− Jη(F+G)(xk)∥

]
≤
√
Ek

[
∥J̃η(F+G)(xk)− Jη(F+G)(xk)∥2

]
≤ εk.

Hence the result follows by tower rule and the same induction as the proof of Lemma A.2.

Lemma C.3. Let Assumptions 1 and 2 hold. Consider Algorithm 4 with Ek∥J̃η(F+G)(xk)− Jη(F+G)(xk)∥2 ≤ ε2k. Then,
we have for any γ > 0 and K ≥ 1 that

αK(K + 1)

4
E∥R(xK)∥2 ≤ K + 1

Kα
∥x⋆ − x0∥2 +

K−1∑
k=0

(
α(γ + 1)

2γ
(k + 1)(k + 2)E[ε2k] +

γαE∥R(xk)∥2

2

)
.

Proof. We follow the proof of Lemma 2.5 until (17) and then we take expectation to obtain

α

2
E∥R(xk+1)∥2 +

βk

1− βk
E⟨R(xk+1), xk+1 − x0⟩

≤ α

2
(1− 2βk)E∥R(xk)∥2 + βkE⟨R(xk), xk − x0⟩

+ αE⟨R(xk+1)− (1− βk)R(xk), (J̃η(F+G) − Jη(F+G))(xk)⟩ −
α

2
E∥R(xk+1)−R(xk)∥2. (53)

We then consider (18) after taking expectation and using Cauchy-Schwarz, triangle and Young’s inequalities to obtain

αE⟨R(xk+1)− (1− βk)R(xk), (J̃η(F+G) − Jη(F+G))(xk)⟩

≤ αE
[
(∥R(xk+1)−R(xk)∥+ βk∥R(xk)∥) ∥J̃η(F+G)(xk) + Jη(F+G)(xk)∥

]
≤ α

2
E∥R(xk+1)−R(xk)∥2 +

γαβ2
k

2
E∥R(xk)∥2 +

α

2

(
1 +

1

γ

)
E∥J̃η(F+G)(xk)− Jη(F+G)(xk)∥2

≤ α

2
E∥R(xk+1)−R(xk)∥2 +

γαβ2
k

2
E∥R(xk)∥2 +

α

2

(
1 +

1

γ

)
E[ε2k], (54)

where the last step also used the tower rule along with the definition of εk.

We then use the same arguments as those after (19) to get the result.

C.2.1. PROOF FOR COROLLARY 4.1

Corollary 4.1 is essentially the summary of the results proven below.

Theorem C.4. Let Assumptions 1, 2, and 4 hold. Let η < 1
L in Algorithm 4 and ρ < η. For any k ≥ 1, we have that

1

η2
E∥xk − Jη(F+G)(xk)∥2 ≤

36(∥x0 − x⋆∥2 + σ2)

(η − ρ)2k2
.

The number of first-order oracles used at iteration k of Algorithm 4 is upper bounded by

2

⌈
1734(k + 2)3 log2(k + 2)

(1− ηL)2

⌉
. (55)

Corollary C.5. Let Assumptions 1 and 2 hold. Let η < 1
L in Algorithm 4 and ρ < η. For any ε > 0, we have that

E
[
η−1∥xk − Jη(F+G)(xk)∥

]
≤ ε with stochastic first-order oracle complexity

Õ

(
∥x0 − x⋆∥4 + σ4

(η − ρ)4(1− ηL)2ε4

)
Proof. This corollary immediately follows from Theorem C.4 by combining the number of outer iterations and the number
of stochastic first-order oracle calls for each outer iteration.
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Remark C.6. The complexity in the previous corollary has the same dependence on ∥x0 − x⋆∥, σ as (Pethick et al., 2023a;
Bravo & Cominetti, 2024). As we see in the next remark, the dependence on (η−ρ) can be improved by using the knowledge
of the target accuracy ε and the variance upper bound σ2 as done in (Diakonikolas et al., 2021; Lee & Kim, 2021; Chen &
Luo, 2022).
Remark C.7. By using parameters depending on target accuracy ε and noise variance σ2, we can improve the complexity to

Õ

(
∥x0 − x⋆∥2σ2

(η − ρ)2(1− ηL)2ε4

)
Proof of Theorem C.4. Let us set

ε2k =
γ2(α2∥R(xk)∥2 + 8σ2)

α2(k + 2)3 log2(k + 2)
(56)

and plug this in to the result of Lemma C.3 to obtain

αK(K + 1)

4
E∥R(xK)∥2

≤ K + 1

Kα
∥x0 − x⋆∥2 +

K−1∑
k=0

E
(
(γ2 + γ)(α2∥R(xk)∥2 + 8σ2)

2α(k + 2) log2(k + 2)
+

γα∥R(xk)∥2

2

)

=
K + 1

Kα
∥x0 − x⋆∥2 +

K−1∑
k=0

(
4(γ2 + γ)σ2

α(k + 2) log2(k + 2)
+

α(γ2 + γ)E∥R(xk)∥2

2(k + 2) log2(k + 2)
+

γαE∥R(xk)∥2

2

)

<
K + 1

Kα
∥x0 − x⋆∥2 + 12(γ2 + γ)σ2

α
+

K−1∑
k=0

(
α(γ2 + γ)E∥R(xk)∥2

2(k + 2) log2(k + 2)
+

γαE∥R(xk)∥2

2

)
, (57)

since
∑K−1

k=0
1

(k+2) log2(k+2)
< 3.

We now show by induction that

E∥R(xk)∥2 ≤
36(∥x0 − x⋆∥2 + σ2)

α2(k + 1)2
.

The base case for the induction with K = 0, 1 hold the same way as the proof of Theorem 2.1 where the only change is we
use Lemma C.2 and the definition of εk in (56), see also (24).

Let us consider (57) for K ≥ 2 and assume that the assertion holds for k ≤ K − 1. We then have that

αK(K + 1)

4
E∥R(xK)∥2

≤ 2

α
∥x0 − x⋆∥2 + 12(γ2 + γ)σ2

α
+

K−1∑
k=0

(
18(γ2 + γ)(∥x0 − x⋆∥2 + σ2)

α(k + 2)(k + 1)2 log2(k + 2)
+

18γ(∥x0 − x⋆∥2 + σ2)

α(k + 1)2

)
,

where we also used K+1
K ≤ 2.

By using
∑∞

k=0
18

(k+1)2 < 30 and
∑∞

k=0
18

(k+2)(k+1)2 log2(k+2)
< 21 and γ = 1

17 , we have that

αK(K + 1)

4
E∥R(xK)∥2 ≤ 6(∥x0 − x⋆∥2 + σ2)

α
.

We use 1
K(K+1) ≤

1.5
(K+1)2 which holds for K ≥ 2 to complete the induction.

To see the number of first-order oracles, we use the result for stochastic FBF in Theorem C.1. For our subproblem at iteration
k, this result implies

Ek

[
∥J̃η(F+G)(xk)− Jη(F+G)(xk)∥2

]
≤

6
(

1+ηL
1−ηL∥xk − Jη(F+G)(xk)∥2 + 8σ2

(1−ηL)2

)
Nk

≤
6

(1−ηL)2

(
∥xk − Jη(F+G)(xk)∥2 + 8σ2

)
Nk

.
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Recall that (56), with γ = 1
17 and R = Id− Jη(F+G), requires

Ek

[
∥J̃η(F+G)(xk)− Jη(F+G)(xk)∥2

]
≤

(α2∥(Id− Jη(F+G))(xk)∥2 + 8σ2)

289α2(k + 2)3 log2(k + 2)

Noting that 1
α2 > 1, a sufficient condition to attain this requirement is

6
(1−ηL)2

(
∥xk − Jη(F+G)(xk)∥2 + 8σ2

)
Nk

≤
∥xk − Jη(F+G)(xk)∥2 + 8σ2

289(k + 2)3 log2(k + 2)
,

verifying the required number of iterations Nk as given in Algorithm 4 to be sufficient for the inexactness criterion. Since
each iteration of FBF takes 2 stochastic operator evaluations F̃ and one resolvent of G, we have the result.

C.3. Stochastic Problem with weak MVI condition

As motivated in Section 4.2, we use the multilevel Monte Carlo (MLMC) estimator (Giles, 2008; Blanchet & Glynn, 2015;
Asi et al., 2021; Hu et al., 2021). In Section 4.2, we only sketched the main changes in Algorithm 3 because of space
limitations. We start by explicitly writing down the algorithm with MLMC estimator.

Algorithm 6 Inexact KM iteration for problems with weak MVI
Input: Parameters η, L, ρ, α = 1− ρ

η , αk = α√
k+2 log(k+3)

K > 0, initial iterate x0 ∈ Rd, subroutine MLMC-FBF given
in Algorithm 7

for k = 0, 1, 2, . . . ,K − 1 do
Nk = ⌈ 96(1−ηL)−2

min{ αk
120α(k+1)

, 1
120}
⌉ and Mk = ⌈ 672×120(log2 Nk)

(1−ηL)2 ⌉

J̃
(m)
η(F+G)(xk) = MLMC-FBF

(
xk, Nk, ηG, Id + ηF̃ , 1 + ηL

)
independently for each m = 1, . . . ,Mk

J̃η(F+G)(xk) =
1

Mk

∑Mk

i=1 J̃
(i)
η(F+G)(xk)

xk+1 = (1− αk)xk + αkJ̃η(F+G)(xk)
end for

Algorithm 7 MLMC-FBF(z0, N,A,B,LB)

Input: Initial iterate z0 ∈ Rd, subsolver FBF from Algorithm 5

Define yi = FBF(z0, 2i, B̃, A, LB) for any i ≥ 0. Draw I ∼ Geom(1/2)

Output: yout = y0 + 2I(yI − yI−1) if 2I ≤ N , otherwise yout = y0.

We start by modifying the proof of Lemma 3.5 for the stochastic problem, which is the most important for getting the final
complexity.

Lemma C.8. Let Assumptions 1 and 3 hold. Suppose that the iterates generated by Algorithm 6 satisfy Ek∥J̃η(F+G)(xk)−
Jη(F+G)(xk)∥2 ≤ ε2k,v and ∥Ek[J̃η(F+G)(xk)]− Jη(F+G)(xk)∥ ≤ εk,b. Then, we have that

α

4

K−1∑
k=0

αkE∥(Id− Jη(F+G))(xk)∥2 ≤
1

2
∥x0 − x⋆∥2 + 3

2

K−1∑
k=0

α2
kE[ε2k,v] +

K−1∑
k=0

αkE[∥xk − x⋆∥εk,b].

Proof. We proceed mostly as the proof of Lemma 3.5 apart from minor changes due to the stochastic setting such as
iteration-dependent step sizes.

From Fact B.2(ii), we have that Id− Jη(F+G) is
(
1− ρ

η

)
-star cocoercive. Recall our running notations:

α = 1− ρ

η
, R = Id− Jη(F+G), R̃ = Id− J̃η(F+G).
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As a result, we have the following equivalent representation of xk+1 (see the definition in Algorithm 6):

xk+1 = xk − αkR̃(xk). (58)

By α-star-cocoercivity of R = Id− Jη(F+G), we have

⟨R(xk), xk − x⋆⟩ ≥ α∥R(xk)∥2. (59)

By a simple decomposition, we write

⟨R(xk), xk − x⋆⟩ = ⟨R̃(xk), xk − x⋆⟩+ ⟨R(xk)− R̃(xk), xk − x⋆⟩. (60)

For the expectation of the first term on the right-hand side of (60), we derive that (cf. (33))

E⟨R̃(xk), xk − x⋆⟩ = 1

αk
E⟨xk − xk+1, xk − x⋆⟩

=
1

2αk
E
(
∥xk − xk+1∥2 + ∥xk − x⋆∥2 − ∥xk+1 − x⋆∥2

)
≤ 1

2αk
E
(
∥xk − x⋆∥2 − ∥xk+1 − x⋆∥2

)
+

3αk

4
E∥R(xk)∥2 +

3αk

2
E∥R̃(xk)−R(xk)∥2

≤ 1

2αk
E
(
∥xk − x⋆∥2 − ∥xk+1 − x⋆∥2

)
+

3α

4
E∥R(xk)∥2 +

3αkE[ε2k,v]
2

, (61)

where we used the definition of xk+1 from (58) in the first step, standard expansion ∥a− b∥2 = ∥a∥2 − 2⟨a, b⟩+ ∥b∥2 for
the second step, the definition of xk+1 from (58) and Young’s inequality in the third step, the definition of εk,v with tower
rule and αk ≤ α in the last step.

For the second term on the right-hand side of (60), we have, by Cauchy-Schwarz inequality and the definition of R̃ and εk,b,
that

E⟨R(xk)− R̃(xk), xk − x⋆⟩ = E[Ek⟨R(xk)− R̃(xk), xk − x⋆⟩]

= E⟨Ek[R(xk)− R̃(xk)], xk − x⋆⟩

≤ E
[
∥R(xk)− Ek[R̃(xk)]∥∥xk − x⋆∥

]
≤ E [∥xk − x⋆∥εk,b] , (62)

where the first step is by tower rule and the second step is by xk − x⋆ being measurable under the conditioning of Ek.

We combine (61) and (62) in (60), plug in the result to (59) and rearrange to obtain

α

4
E∥R(xk)∥2 ≤

1

2αk
E
(
∥xk − x⋆∥2 − ∥xk+1 − x⋆∥2

)
+

3αkE[ε2k,v]
2

+ E[∥xk − x⋆∥εk,b].

We conclude after multiplying both sides by αk and summing for k = 0, 1, . . . ,K − 1.

The next lemma considers the bias and variance of the MLMC estimator and follows the same arguments as (Asi et al.,
2021, Proposition 1). The only change is that we use the algorithm FBF (see Algorithm 5 for a stochastic version) as
the subsolver and we consider a strongly monotone inclusion problem rather than minimization. These do not alter the
estimations significantly as can be seen in the proof.

Lemma C.9. Under the same setting as Theorem C.1 and N ≥ 2, for the output of Algorithm 7, we have that

∥E[yout]− z⋆∥2 ≤ 12LB/µ∥z0 − z⋆∥2 + 96σ2/µ2

N

E∥yout − z⋆∥2 ≤ 14(6LB/µ∥z0 − z⋆∥2 + 48σ2/µ2) log2 N

where the expected number of calls to F̃ is O(log2 N).
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Proof. We argue as (Asi et al., 2021, Property 1). The only difference is that we call Theorem C.1 which is our main solver
for the strongly monotone problem.

Let us denote iN = max{i ≥ 0: 2i ≤ N}. For a given event E, consider also the following notation for the characteristic
function: 1E = 1 if E is true and 1E = 0 if E is false.

Then, we have by the definition of yout in Algorithm 7 that

E[yout] = E[y0] + E[1{2I≤N} · 2I(yI − yI−1)]

= E[y0] +
iN∑
i=1

Pr(I = i)2iE[yi − yi−1]

= E[y0] + E[yiN − y0]

= E[yiN ]. (63)

By the definition of iN , we have that 2iN ≥ N
2 and hence, by Jensen’s inequality and Theorem C.1, we have

∥E[yiN ]− z⋆∥2 ≤ E∥yiN − z⋆∥2

≤ 12LB∥z0 − z⋆∥2 + 96σ2/µ

Nµ
,

which is the claimed bound on the bias due to (63).

We continue with estimating the variance of yout. First, Young’s inequality gives that

E∥yout − z⋆∥2 ≤ 2E∥yout − y0∥2 + 2E∥y0 − z⋆∥2. (64)

We estimate the first term on the right-hand side:

E∥yout − y0∥2 =

iN∑
i=1

Pr(I = i)E∥2i(yi − yi−1)∥2

=

iN∑
i=1

2iE∥yi − yi−1∥2

≤
iN∑
i=1

2i+1
(
E∥yi − z⋆∥2 + E∥yi−1 − z⋆∥2

)
, (65)

where the last step is by Young’s inequality.

By the definitions of yi, yi−1 and Theorem C.1, we have that

E∥yi − z⋆∥2 ≤ 6LB∥z0 − z⋆∥2 + 48σ2/µ

2iµ
,

E∥yi−1 − z⋆∥2 ≤ 6LB∥z0 − z⋆∥2 + 48σ2/µ

2i−1µ
.

This gives, in view of (65), that

E∥yout − y0∥2 ≤ 6(6LB∥z0 − z⋆∥2 + 48σ2/µ)

µ
iN .

The second term on the right-hand side of (64) is estimated the same way by using Theorem C.1:

E∥y0 − z⋆∥2 ≤ 6LB∥z0 − z⋆∥2 + 48σ2/µ

µ
.

Combining the last two estimates in (64) gives the claimed bound on the variance after using iN ≤ log2 N .
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The expected number of calls to B̃ is calculated as

2 + 2

iN∑
i=1

P (I = i)(2i + 2i−1) = O(1 + iN ) = O(1 + log2 N),

since each iteration of stochastic FBF uses 2 unbiased samples of F . This completes the proof.

In fact, Algorithm 6 computes independent draws of MLMC-FBF and averages them to get a better control on the variance
as (Asi et al., 2021, Theorem 1).

Corollary C.10. Let J̃η(F+G)(xk) be defined as in Algorithm 6 and consider the setting of Theorem C.1. Then, for any
bk, v, we have the bias and variance bounds given as

∥Ek[J̃η(F+G)(xk)]− Jη(F+G)(xk)∥2 ≤ b2k(∥(Id + Jη(F+G))(xk)∥2 + σ2),

Ek∥J̃η(F+G)(xk)− Jη(F+G)(xk)∥2 ≤ v2(∥(Id + Jη(F+G))(xk)∥2 + σ2),

where

Nk =

⌈
max{12LB/µ, 96/µ

2}
min{b2k,

v2

2 }

⌉
, and Mk =

⌈
2 log2 Nk max{84LB/µ, 672/µ

2}
v2

⌉
.

Each iteration makes in expectation O(logNk ·Mk) calls to stochastic first-order oracle.

Proof. This proof follows the arguments in (Asi et al., 2021, Theorem 1). The difference is that we set the values of Nk,Mk

independent of ∥R(xk)∥2 and σ2, to make Nk,Mk computable, which results in these terms appearing in the bias and
variance upper bounds.

We first note that Ek[J̃η(F+G)(xk)] = Ek[J̃
(1)
η(F+G)(xk)]. We next have by direct expansion that

Ek∥J̃η(F+G)(xk)− Jη(F+G)(xk)∥2 =
1

Mk
Ek∥J̃ (1)

η(F+G)(xk)− Jη(F+G)(xk)∥2

+

(
1− 1

Mk

)
∥Ek[J̃

(1)
η(F+G)(xk)]− Jη(F+G)(xk)∥2,

since J̃
(i)
η(F+G) are independent draws of the same estimator.

By applying the identity E∥X∥2 = E∥X − EX∥2 + ∥EX∥2 with X = J̃
(1)
η(F+G)(xk)− Jη(F+G)(xk), we obtain

Ek∥J̃η(F+G)(xk)− Jη(F+G)(xk)∥2 =
1

Mk
Ek∥J̃ (1)

η(F+G)(xk)− Ek[J̃
(1)
η(F+G)(xk)]∥2

+ ∥Ek[J̃
(1)
η(F+G)(xk)]− Jη(F+G)(xk)∥2. (66)

On the one hand, the fact E∥X − EX∥2 ≤ E∥X∥2 gives

Ek∥J̃ (1)
η(F+G)(xk)− Ek[J̃

(1)
η(F+G)(xk)]∥2 ≤ Ek∥J̃ (1)

η(F+G)(xk)− Jη(F+G)(xk)∥2. (67)

On the other hand, the bounds in Lemma C.9 gives, after substituting z0 = xk and z⋆ = Jη(F+G)(xk) that

∥Ek[J̃
(1)
η(F+G)(xk)]− Jη(F+G)(xk)∥2 ≤

12LB/µ∥(Id + Jη(F+G))(xk)∥2 + 96σ2/µ2

Nk
, (68a)

Ek∥J̃ (1)
η(F+G)(xk)− Jη(F+G)(xk)∥2 ≤

(
84LB/µ∥(Id + Jη(F+G))(xk)∥2 + 672σ2/µ2

)
log2 Nk. (68b)

Using Ek[J̃η(F+G)(xk)] = Ek[J̃
(1)
η(F+G)(xk)] gives the bias bound after using the definition of Nk and (68a)

Plugging in (68b) and (67) in (66) gives the variance bound after substituting the values of Nk and Mk.
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C.3.1. PROOF FOR COROLLARY 4.4

Corollary 4.4 is essentially the summary of the results proven below.

Let us remark the recent work (Bravo & Cominetti, 2024, Corollary 5.4) that studied stochastic KM iteration for nonexpansive
operators on normed spaces. This work assumes access to an unbiased oracle of the nonexpansive operator at hand and
get the complexity Õ(ε−4). As mentioned in Section 4.2, this corresponds to requiring unbiased samples of Jη(F+G) in
our setting, which is difficult due to the definition of the resolvent. We get the same complexity up to logarithmic factors
without access to unbiased samples of Jη(F+G), which we go around by using the MLMC technique. We also do not require
nonexpansiveness from Jη(F+G) and work with conic quasi-nonexpansiveness.

Theorem C.11. Let Assumptions 1, 3, and 4 hold. Consider Algorithm 6 with η < 1
L and ρ < η. Then, we have for K ≥ 1

that

Exout∼Unif{x0,...,xK−1}[E∥(Id− Jη(F+G))(x
out)∥2] ≤ 64(∥x0 − x⋆∥2 + α2σ2) log(K + 3)

α2
√
K

,

where α = 1− ρ
η . Each iteration makes, in expectation, O(log2(k + 2)) calls to stochastic oracle B̃ and resolvent of A.

Hence to obtain E∥(Id− Jη(F+G))(x
out)∥ ≤ ε, we have the expected stochastic first-order complexity Õ(ε−4).

The main reason for the length of the following proof is the lack of boundedness of (xk). In particular, proving this theorem
is rather straightforward when we assume a bounded domain. We have to handle the complications without this assumption.
There are also additional difficulties that arise because we are making sure that the inputs to MLMC-FBF will not involve
unknown quantities such as ∥x0 − x⋆∥ or σ to run the algorithm. These are, for example, used in (Chen & Luo, 2022) for
setting the parameters. Because of this reason, the bounds for εk,v and εk,b involve ∥(Id + Jη(F+G))(xk)∥ and σ2.

The main reason for the difficulty here is ∥(Id + Jη(F+G))(xk)∥2, since we do not have a uniform bound on this quantity,
unlike σ2 and this term appears in many summands. We will carry these terms coming from the MLMC bounds to get a
recursion involving the sum of ∥(Id + Jη(F+G))(xk)∥2 for different ranges on both sides. We then go around the issue of
lacking of a bound on (xk) by using an inductive argument on

∑K
k=0 ∥(Id + Jη(F+G))(xk)∥2.

Proof of Theorem C.11. Recall our running notations:

α = 1− ρ

η
, R = Id− Jη(F+G), R̃ = Id− J̃η(F+G).

We start by following the proof of Lemma B.6. By α-star-cocoercivity of Id − Jη(F+G) and α ≥ αk (which gives that
Jη(F+G) is 1

αk
-star-conic nonexpansive), we can use property (27) derived in Lemma B.3 to obtain∥∥(1− αk)xk + αkJη(F+G)(xk)− x⋆

∥∥ ≤ ∥xk − x⋆∥

and by the definition of xk+1, we get

∥xk+1 − x⋆∥ ≤ ∥(1− αk)xk + αkJη(F+G)(xk)− x⋆∥+ αk∥J̃η(F+G)(xk)− Jη(F+G)(xk)∥

≤ ∥xk − x⋆∥+ αk∥J̃η(F+G)(xk)− Jη(F+G)(xk)∥. (69)

Summing the inequality for 0, . . . , k − 1 gives

∥xk − x⋆∥ ≤ ∥x0 − x⋆∥+
k−1∑
i=0

αi∥J̃η(F+G)(xi)− Jη(F+G)(xi)∥

=⇒ E∥xk − x⋆∥2 ≤ 2E∥x0 − x⋆∥2 + 2k

k−1∑
i=0

α2
iE∥J̃η(F+G)(xi)− Jη(F+G)(xi)∥2, (70)

where we first squared both sides, used Young’s inequality and then took expectation.
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We continue by restating the result of Lemma C.8 after applying Young’s inequality on the last term to obtain

α

4

K−1∑
k=0

αkE∥(Id− Jη(F+G))(xk)∥2 ≤
1

2
∥x0 − x⋆∥2 + 3

2

K−1∑
k=0

α2
kE[ε2k,v]

+
K−1∑
k=0

(
α2
k

2α2(k + 1)
E∥xk − x⋆∥2 + (k + 1)α2

2
E[ε2k,b]

)
. (71)

We now estimate the second and third terms on the right-hand side. By using Corollary C.10 and the definition of R(xk),
αk = α√

k+2 log(k+3)
≤ α√

2 log 3
and using v2 = 1

60 ≤
√
2 log 3
24 , we obtain

3

2

K−1∑
k=0

α2
kE[ε2k,v] ≤

3

2

K−1∑
k=0

α2
kv

2
(
E∥R(xk)∥2 + σ2

)
≤ ααK−1

16
(E∥R(xK−1)∥2 + σ2) +

3

2

K−2∑
k=0

α2
kv

2
(
E∥R(xk)∥2 + σ2

)
. (72)

We continue with the first part of the third term on the right-hand side of (71) and bound it using (70):

K−1∑
k=0

α2
k

2α2(k + 1)
E∥xk − x⋆∥2 ≤ 1

2
∥x0 − x⋆∥2 +

K−1∑
k=1

α2
k

2α2(k + 1)
E∥xk − x⋆∥2

≤ 1

2
∥x0 − x⋆∥2 +

K−1∑
k=1

α2
k

2α2(k + 1)

(
2∥x0 − x⋆∥2 + 2k

k−1∑
i=0

α2
iE[ε2i,v]

)
, (73)

where the last line identified ε2i,v in view of Lemma C.8.

We focus on the last term here to get

K−1∑
k=1

α2
k

2α2(k + 1)
· 2k

k−1∑
i=0

α2
iE[ε2i,v] =

1

α2

K−2∑
i=0

K−1∑
k=i+1

k

k + 1
α2
kα

2
iE[ε2i,v]

≤ 1

α2

(
K−1∑
k=0

α2
k

)
K−2∑
i=0

α2
iE[ε2i,v]

≤ 1

α2

(
K−1∑
k=0

α2
k

)
K−2∑
i=0

α2
i v

2
(
E∥R(xi)∥2 + σ2

)
,

where the last step used Corollary C.10.

Plugging in back to (73) gives

K−1∑
k=0

α2
k

2α2(k + 1)
E∥xk − x⋆∥2 ≤

(
1

2
+

K−1∑
k=1

α2
k

α2(k + 1)

)
∥x0 − x⋆∥2

+

(
K−1∑
k=0

α2
k

α2

)
K−2∑
i=0

α2
i v

2
(
E∥R(xi)∥2 + σ2

)
. (74)

By using αk = α√
k+2 log(k+3)

, we have

K−1∑
k=0

α2
k

α2
< 3,

K−1∑
k=0

α2
k

α2(k + 1)
< 0.25, αk ≤ α ∀k ≥ 0,
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which helps estimate (74) as

K−1∑
k=0

α2
k

2α2(k + 1)
E∥xk − x⋆∥2 ≤ 3

4
∥x0 − x⋆∥2 + 3

K−2∑
i=0

α2
i v

2
(
E∥R(xi)∥2 + σ2

)
. (75)

We finally estimate the second part of the third term on the right-hand side of (71) by using Corollary C.10:

α2
K−1∑
k=0

k + 1

2
E[ε2k,b] ≤ α2

K−1∑
k=0

(k + 1)b2kE[∥R(xk)∥2 + σ2].

We use the setting b2k = αk

120α(k+1) and b2K−1 < αK−1

16αK to obtain

α2
K−1∑
k=0

k + 1

2
E[ε2k,b] ≤

ααK−1

16
(E∥R(xK−1)∥2 + σ2) + α2

K−2∑
k=0

(k + 1)b2kE[∥R(xk)∥2 + σ2]. (76)

We collect (72), (75), and (76) in (71) to get

α

8

K−1∑
k=0

αkE∥R(xk)∥2 ≤
5

4
∥x0 − x⋆∥2 + ααK−1

8
σ2 +

9

2

K−2∑
k=0

α2
kv

2
(
E∥R(xk)∥2 + σ2

)
+ α2

K−2∑
k=0

(k + 1)b2kE[∥R(xk)∥2 + σ2]. (77)

We now show by induction that

α

K−1∑
k=0

αkE∥R(xk)∥2 ≤ C
(
∥x0 − x⋆∥2 + α2σ2

)
∀K ≥ 1, (78)

for some C to be determined. With α < 1, (77) becomes

α

8

K−1∑
k=0

αkE∥R(xk)∥2 ≤ 1.25∥x0 − x⋆∥2 + α2σ2 + 4.5
K−2∑
k=0

v2(ααkE∥R(xk)∥2 + α2σ2)

+ α
K−2∑
k=0

(k + 1)b2k
αk

E[ααk∥R(xk)∥2 + α2σ2]. (79)

Let us set
C = 32, b2k =

αk

120α(k + 1)
, v2 =

1

60

and use the inductive assumption α
∑K−2

k=0 αkE∥R(xk)∥2 ≤ 32(∥x0 − x⋆∥2 + α2σ2) in (79) to obtain

α

8

K−1∑
k=0

αkE∥R(xk)∥2 ≤ 4(∥x0 − x⋆∥2 + α2σ2),

which verifies α
∑K−1

k=0 αkE∥R(xk)∥2 ≤ 32(∥x0 − x⋆∥2 + α2σ2).

For the base case, we use α0 = α√
2 log 3

< 1 and α−1-star-Lipschitzness of R = Id − Jη(F+G) to get αα0∥R(x0)∥2 ≤
∥x0 − x⋆∥2. This establishes the base case and completes the induction.

By using αk ≥ αK = α√
K+2 log(K+3)

in (78) with C = 32 and multiplying both sides by 1
KαK

and using
√
K+2
K ≤ 2√

K

which is true for K ≥ 1, we get the claimed rate result. Finally, in view of Corollary C.10, and definitions of bk, v, each
iteration makes expected number of calls O(log2(k+ 1)). By using this expected cost of each iteration, we also get the final
expected stochastic first-order complexity result.
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D. Additional Remarks on Related Work
There exist a line of works that attempted to construct local estimation of Lipschitz constants to offer an improved range
for ρ depending on the curvature (Pethick et al., 2022; Alacaoglu et al., 2023). However, these results cannot bring global
improvements in the worst-case range of ρ where the limit for ρ is still 1

2L . This is because it is easy to construct examples
where the local Lipschitz constants are the same as the global Lipschitz constant.

The work (Hajizadeh et al., 2023) gets linear rate of convergence for interaction dominant problems which is shown to be
closely related to cohypomonotonity, see Example 1. One important difference is that cohypomonotonicity is equivalent
to α interaction dominance with α ≥ 0 whereas (Hajizadeh et al., 2023) requires α > 0 for linear convergence. This is
an important difference because (i) we know that cohypomonotonicity relaxes monotonicity and (ii) we know that even
monotonicity is not sufficient for linear convergence. For monotone problems O(ε−1) is the optimal first-order oracle
complexity (see, e.g., (Yoon & Ryu, 2021)) and hence it is also optimal with cohypomonotonicity.

In the literature for fixed point iterations, several works considered inexact Halpern or KM iterations without characterizing
explicit first-order complexity results, see for example (Leuştean & Pinto, 2021; Bartz et al., 2022; Kohlenbach, 2022;
Combettes & Pennanen, 2004). In particular, Bartz et al. (2022) used conic nonexpansiveness to analyze KM iteration. The
dependence of the range of ρ on L arises when we start characterizing the first-order complexity. This is the reason these
works have not been included in comparisons in Table 1.

For the stochastic cohypomonotone problems, the best complexity result to our knowledge is due to (Chen & Luo, 2022). This
paper can obtain the optimal complexity Õ(ε−2) with cohypomonotone stochastic problems with a 6-loop algorithm using
many carefully designed regularization techniques, extending the work of Allen-Zhu (2018) that focused on minimization.
Some disadvantages of this approach compared to ours: (i) the bound for cohypomonotonicity is ρ ≤ 1

2L ; (ii) the algorithm
needs estimates of variance upper bound σ2 and, more importantly, ∥x0−x⋆∥2; (iii) the result is only given for unconstrained
problems, which also makes it difficult to assume a bounded domain since there is no guarantee a priori for the iterates to
stay bounded for an unconstrained problem. Given that the 6-loop algorithm and analysis of (Chen & Luo, 2022) is rather
complicated, it is not clear to us if their arguments generalize to constraints or if the other drawbacks can be alleviated.

The work (Tran-Dinh & Luo, 2023) focused on problems with ρ-weakly MVI solutions for ρ < 1
8L and derived O(ε−2) for

a randomized coordinate algorithm. Due to randomization, the complexity result in this work holds for the expectation of
the optimality measure. Because of the coordinatewise updates, the problem focused in this work is deterministic, similar to
the setup in Section 3. Bravo & Contreras (2024) studied stochastic inexact Halpern iteration in normed spaces and obtained
complexity O(ε−5) for finding fixed-points, by using an oracle providing unbiased samples of a nonexpansive map.

D.1. Clarifications about Table 2

Since the complexity results have not been written explicitly in some of the references, we provide details on how we
computed the complexities that we report for the existing works.

(Choudhury et al., 2023): We use Theorem 4.5 in this corresponding paper to see that squared operator norm is upper
bounded by O(K−1). To make the operator norm smaller than ε, the order of K is ε−2. The batch-size has order K and
hence the total number of oracle calls is O(K2) = O(ε−4).

(Böhm et al., 2022): We use Theorem 3.3 in this corresponding paper. The paper stated that to make the squared operator
norm smaller than ε, number of iterations is O(ε−2) and the batch size is O(ε−3). This gives complexity O(ε−3) for making
the squared operator norm smaller than ε. Hence, to make the operator norm smaller than ε, the complexity is O(ε−6).

(Pethick et al., 2023b): (i) For “best rate” result, we use Corollary E.3(i) in this corresponding paper. The dominant term
in the bound for the squared residual is O(K−1). Hence to make the norm of the residual smaller than ε (equivalently,
the squared norm smaller than ε−2), one needs K to be of the order ε−2. Then, the squared variance is assumed to
decrease at the order of k2 which requires the batch size at iteration k to be k2. Then the complexity is upper bounded by∑K

k=1 τk
2 = Õ(K3) = Õ(ε−6), (ii) for the “last iterate”, we use the Corollary E.3(ii) given in the paper to see that the

dominant term in the bound of the squared residual is O
(

1√
K

)
. To make the squared residual smaller than ε2, this means K

is of the order ε−4. The squared variance is assumed to decrease at the rate k3 which requires a batch size of k3 at iteration
k. Then, with the same calculation as before, the complexity of stochastic first-order oracles to make the residual less than ε
is
∑K

k=1 τk
3 = Õ(K4) = Õ(ε−16).
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