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Abstract

Given sparse observations of buoy velocities,

oceanographers are interested in reconstructing

ocean currents away from the buoys and identify-

ing divergences in a current vector field. As a first

and modular step, we focus on the time-stationary

case – for instance, by restricting to short time

periods. Since we expect current velocity to be a

continuous but highly non-linear function of spa-

tial location, Gaussian processes (GPs) offer an

attractive model. But we show that applying a

GP with a standard stationary kernel directly to

buoy data can struggle at both current reconstruc-

tion and divergence identification, due to some

physically unrealistic prior assumptions. To better

reflect known physical properties of currents, we

propose to instead put a standard stationary ker-

nel on the divergence and curl-free components

of a vector field obtained through a Helmholtz

decomposition. We show that, because this de-

composition relates to the original vector field just

via mixed partial derivatives, we can still perform

inference given the original data with only a small

constant multiple of additional computational ex-

pense. We illustrate the benefits of our method

with theory and experiments on synthetic and real

ocean data.

1. Introduction

Ocean currents are key to the global distribution of water,

heat, and nutrients. To better understand ocean currents,

scientists are interested in two tasks: (1) reconstructing

ocean currents at different locations and (2) identifying di-
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vergences in the current vector field. Reconstructing ocean

currents accurately can facilitate weather forecasting, mar-

itime navigation, and forecasting of oil spill dispersion. And

current divergences are important to identify since they are

responsible for the transport of biomass, carbon, and nutri-

ents – with implications for ecosystem management, climate,

and the fishing industry (D’Asaro et al., 2018). With these

tasks in mind, researchers release and track GPS-tagged

buoys in the ocean (Özgökmen, 2012; D’Asaro et al., 2017).

It remains to choose an appropriate method to reconstruct

currents and their divergences from buoy data. Gonçalves

et al. (2019) and Lodise et al. (2020) proposed modeling

buoy velocities in the latitude and longitude directions ac-

cording to independent Gaussian processes (GPs) with stan-

dard spatiotemporal kernels (e.g., squared exponential ker-

nels). In our work, we focus on the spatial aspects of this

task and assume the velocity field is stationary in time. Even

under this simplification, an independent spatial GP prior

on the velocities is a natural choice due to its ability to han-

dle the sparsity of buoy observations on the ocean surface

and its assumption that currents vary continuously but in a

nonlinear fashion. We call such a model the velocity GP.

However, in what follows, we show that there remains sub-

stantial room for improvement. In simulated cases where

we have access to ground truth, we observe that the velocity

GP approach can fail to complete vortices or fail to connect

currents when buoys are observed sparsely. And while we

show how to derive divergence estimates for the velocity

GP, we also find that these estimates often fail to capture the

true divergence when it is known in simulations or real data.

To address these issues, we propose to more directly model

known behaviors from fluid dynamics. Scientists know

that the motion of a volume element of a continuous fluid

medium in two dimensions consists of (i) expansion or con-

traction in two orthogonal directions, (ii) rotation about an

instantaneous axis, and (iii) translation. A Helmholtz decom-

position (Bhatia et al., 2013; Arfken & Weber, 1999) from

fluid dynamics lets us decompose the vector field of ocean

currents into a divergent component (or curl-free, measur-

ing expansion, contraction, and translation) and a rotational

component (or divergence-free, measuring rotation).1

1The divergent component is called curl-free and the rotational
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By contrast to the standard approach, we model the diver-

gent and rotational components (rather than the velocity

components) with independent GP priors. The resulting

Helmholtz GP prior offers several conceptual advantages.

For one, oceanographers expect the two components to

have substantially different magnitudes and length scales;

it is straightforward to encode these differences with a

Helmholtz GP. By contrast, we prove that the velocity GP

implies an a priori belief that the divergent and rotational

components have the same magnitude. Second, we expect

correlation between the longitudinal and latitudinal com-

ponents of a current, which the Helmholtz GP exhibits –

and the velocity GP lacks by construction. Finally, the

Helmholtz GP is agnostic to the (arbitrary) choice of refer-

ence frame, while the velocity GP is not necessarily.

We demonstrate that the Helmholtz GP is amenable to prac-

tical inference. Since (i) the Helmholtz decomposition is

based on partial (mixed) derivatives, and (ii) the derivative

of a GP is a GP, we show that our prior choice implies a

tractable GP prior on the current itself. Therefore, we can

still perform inference given the original data with no ex-

tra approximation. And our method suffers no increase in

computational complexity relative to the velocity GP.

Finally, we demonstrate the superior performance of

the Helmholtz GP at the current-reconstruction task and

divergence-estimation task (as well as vorticity estima-

tion) in a variety of experiments on simulated and real

data. Code is available at https://github.com/

renatoberlinghieri/Helmholtz-GP.

Related work. The Helmholtz decomposition has been used

for visualization and physical interpretation of an oceano-

graphic field (Rocha et al., 2016; Zhang et al., 2018; 2019;

Han & Huang, 2020; Bühler et al., 2014; Caballero et al.,

2020). But these methods assume the velocity vector field is

known on a grid whereas our goal is to reconstruct the vector

field from sparse observations. Prior work in atmospheric

statistics used a Helmholtz decomposition to perform re-

gression on the residuals of a physical model (Daley, 1985;

Hollingsworth & Lönnberg, 1986); this approach would

give the same mean prediction2 as the Helmholtz GP if the

same covariance function were used. However, to estimate

the covariance function, the authors rely on a series repre-

sentation and binning procedure; without hand-tuning that

depends on the data and physics of the system (e.g., for

determining the number of coefficients), this procedure can

result in covariance functions that are not positive definite.

component is called divergence-free because their curl and diver-
gence are zero everywhere, respectively. See Proposition B.5.

2Here and throughout, we use the word prediction in the ma-
chine learning sense; it describes the task of making informed
guesses about unseen data points using a trained model and need
not imply looking forward in time.

Researchers have developed GP kernels to capture curl- or

divergence-free fields (Narcowich & Ward, 1994; Lowitzsch,

2002; Fuselier, 2007; Macêdo & Castro, 2010; Alvarez et al.,

2012). Macêdo & Castro (2010) propose using convex com-

binations of such kernels. However, these works do not pro-

pose methods for recovering the weighting of the two com-

ponents and do not empirically test recovery of the compo-

nents when the weighting is unknown – the case of interest

in the oceans problem. Wahlström et al. (2013); Wahlström

(2015); Solin et al. (2018) use curl- and divergence-free

kernels for electromagnetic fields. Wahlström (2015) pro-

poses independent GP priors on the terms in a Helmholtz

decomposition. But the authors assume direct access to

noisy observations of each of the divergence-free and curl-

free components separately – whereas we aim to recover

the individual components from noisy observations of their

sum. Moreover, Wahlström (2015) constrains the two com-

ponents to have the same prior magnitudes and length scales,

but these quantities can be expected to vary substantially

between components in ocean currents. Finally, Greydanus

& Sosanya (2022) extended Hamiltonian Neural Networks

(Greydanus et al., 2019) to model both curl- and divergence-

free dynamics simultaneously. Although the prediction prob-

lem is similar, the authors test their method only on low-

resolution data available on a dense grid. In our experiments

on (sparse) buoy data in Section 5 and Appendix I, we find

that their method often produces predictions that are less

accurate and less physically plausible.

In sum, then, it is not clear from existing work that diver-

gence and vorticity can be usefully or practically recovered

when observations come from a general (noisy) vector field

that is neither curl- nor divergence-free. Moreover, there is

no existing guidance on how to use a Helmholtz GP in prac-

tice for identifying divergences or making predictions from

such noisy vector-field observations, and no information is

available on how a Helmholtz GP compares to a velocity

GP on these tasks – either empirically or theoretically. We

discuss related work further in Appendix A.

2. Background

In what follows, we first describe the problem setup. Then

we establish necessary notation and concepts from the

Helmholtz decomposition and Gaussian processes.

Problem Statement. We consider a dataset D of M obser-

vations, {(xm,ym)}Mm=1. Here xm = (x
(1)
m , x

(2)
m )⊤ ∈ R

2

represents the location of a buoy, typically a longitude

and latitude pair. We treat xm as a column vector. And

ym = (y
(1)
m , y

(2)
m )⊤ ∈ R

2 gives the corresponding longitu-

dinal and latitudinal velocities of the buoy (the drifter trace).

For m ∈ {1, . . . ,M}, we consider ym as a sparse noisy

observation of a 2-dimensional vector field, F : R2 → R
2,

mapping spatial locations into longitudinal and latitudinal

2
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velocities, F (xm) = (F (1)(xm), F (2)(xm))⊤. We assume

that the velocity field is stationary in time, and so F is not a

function of time. Our primary goals are (1) prediction of the

field F at new locations, not observed in the training data,

and (2) estimation of the divergence, itself a function of

location and which we define next as part of the Helmholtz

decomposition. Secondarily, we are interested in recovering

vorticity, another functional of F described below.

The Helmholtz Decomposition. The motion of a volume

element of a fluid, such as the ocean, can be decomposed

into a divergent velocity and a rotational velocity.

Definition 2.1 (Helmholtz decomposition, Bhatia et al.,

2013). A twice continuously differentiable and compactly

supported vector field F : R2 → R
2 can be expressed as the

sum of the gradient of a scalar potential Φ : R2 → R, called

the potential function, and the vorticity operator of another

scalar potential Ψ : R2 → R, called the stream function:

F
︸︷︷︸

ocean flow

= gradΦ
︸ ︷︷ ︸

divergent velocity

+ rotΨ
︸ ︷︷ ︸

rotational velocity

(1)

where

gradΦ:=

[
∂Φ/∂x(1)

∂Φ/∂x(2)

]

and rotΨ:=

[
∂Ψ/∂x(2)

−∂Ψ/∂x(1)

]

. (2)

The divergence of F (denoted δ) and the vorticity of F
(denoted ζ) are

δ :=div(F ) :=
∂F (1)

∂x(1)
+

∂F (2)

∂x(2)
=

∂2Φ

∂2x(1)
+

∂2Φ

∂2x(2)
(3)

ζ :=curl(F ) :=
∂F (1)

∂x(2)
−

∂F (2)

∂x(1)
=

∂2Ψ

∂2x(2)
+

∂2Ψ

∂2x(1)
. (4)

In Equation (3), div(F ) depends only on Φ because

div(rotΨ) = 0. In other words, the rotational velocity

is divergence-free. Similarly, in Equation (4), curl(F ) de-

pends only on Ψ because curl(gradΦ)) = 0. In other

words, the divergent velocity is curl-free. We review the

grad, rot, div, and curl operators – and explore the equa-

tions above in more detail – in Appendix B. We summarize

the various terms in Table 1. In Appendix C, we present

a graphical illustration of a Helmholtz decomposition of a

selected vector field, and we further discuss the importance

of divergence and vorticity within ocean currents.

Bayesian Approach and Gaussian Process Prior. In what

follows, we will take a Bayesian approach to inferring F . In

particular, we assume a likelihood, or noise model, relating

the observed buoy velocities to the field F :

ym=F (xm) + ϵm, ϵm
ind
∼N (0, σ2

obsI2), 1≤m≤M, (5)

for some σ2
obs > 0 and independent (

ind
∼) noise across obser-

vations. Here and throughout, we use Ip ∈ Rp×p to denote

Table 1. Terms and notation around the divergence and vorticity.

Φ potential function

gradΦ divergent velocity

δ = div(gradΦ) divergence

Ψ stream function

rotΨ rotational velocity

ζ = curl(rotΨ) vorticity

the identity matrix in p dimensions. We use 0 to denote the

zero element in any vector space.

Before defining our prior, we review Gaussian processes

(GPs). Let x,x′ ∈ R
2 represent two input vectors. As-

sume that we want to model a P -dimensional function

G : R2 → R
P , G(x) = (G(1)(x), . . . , G(P )(x))⊤. A P -

output GP on covariate space R
2 is determined by a mean

function µ : R2 → R
P , µ(x) = (µ(1)(x), . . . , µ(P )(x))⊤,

and a positive definite kernel function k : R2×R
2 → R

P×P .

We use k(x,x′)i,j to denote the (i, j)th output of k(x,x′).
We say that G is GP distributed and write G ∼ GP(µ, k)
if for any N ∈ N, for any (x1, . . . ,xN ) ∈ R

2×N , and

for any vector of indices (p1, . . . , pN ) ∈ {1, . . . , P}N ,

(G(pn)(xn))
N
n=1 is an N -dimensional Gaussian random

variable with mean vector (µ(pn)(xn))
N
n=1 and covariance

matrix with (i, j)th entry k(xi,xj)pi,pj
. See Alvarez et al.

(2012) for a review of multi-output GPs.

Velocity Gaussian Process. In spatial data analysis, com-

monly µ is chosen to be identically 0. And a conventional

choice for k would be an isotropic kernel3 separately in each

output dimension. That is, for any x,x′ ∈ R
2,

kvel(x,x
′) =

[
k(1)(x,x′) 0

0 k(2)(x,x′)

]

. (6)

where k(1) and k(2) are isotropic kernels. We call this choice

the velocity GP to emphasize that the independent priors are

directly on the observed velocities. A standard kernel choice

for k(i), i ∈ {1, 2}, is the squared exponential kernel,

k
(i)
SE (x,x

′) = σ2
i exp

(
− 1

2∥x− x′∥22/ℓ
2
i

)
. (7)

The velocity GP with squared exponential kernels for each

component (henceforth, the SE-velocity GP) has four hy-

perparameters: for i ∈ {1, 2}, the signal variance σ2
i > 0

determines the variation of function values from their mean

in the ith output dimension, and ℓi > 0 controls the length

scale on which the function varies.

3We say a kernel k is isotropic if there exists some κ : R+ → R

such that for any x and x
′ in R

2, k(x,x′) = κ(∥x− x
′∥).

3



Gaussian Processes at the Helm(holtz)

3. Gaussian Processes at the Helm(holtz)

Instead of putting separate GP priors with isotropic kernels

on the two components of F as in the velocity GP, we

propose to put separate GP priors with isotropic kernels on

the Helmholtz scalar potentials Φ and Ψ. In this section,

we describe our model and how to retrieve the quantities

of interest from it. In the next section, we describe its

conceptual strengths over the velocity GP, which we see

empirically in Section 5.

Our Helmholtz GP prior. To form our new Helmholtz

GP prior, we put independent GP priors on the Helmholtz

stream and potential functions:

Φ ∼ GP(0, kΦ) and Ψ ∼ GP(0, kΨ), (8)

where we take kΦ and kΨ to be isotropic kernels. When

these kernels are chosen to be squared exponentials (Equa-

tion (7)), we call our model the SE-Helmholtz GP. The

SE-Helmholtz GP has four parameters: ℓΦ and σ2
Φ for kΦ,

and ℓΨ and σ2
Ψ for kΨ. We could use any two kernels such

that sample paths of the resulting GPs are almost surely con-

tinuously differentiable (so that F in Equation (1) is well-

defined and continuous). Generally, we will want to be able

to consider divergences and vorticities of the implied pro-

cess, which will require sample paths of the implied process

to be at least twice-continuously differentiable. For the latter

condition to hold, it is sufficient for kΦ(0,x) and kΨ(0,x)
to have continuous mixed partial derivatives up to order five;

see Lindgren (2012, Theorem 2.09 & Section 7.2).

First, we check that our prior yields a GP prior over the

vector field F .

Proposition 3.1. Let F be an ocean current vector field de-

fined by potential and stream functions that are independent

and distributed as Φ ∼ GP(0, kΦ) and Ψ ∼ GP(0, kΨ),
where kΦ and kΨ are such that Φ and Ψ have almost surely

continuously differentiable sample paths. Then

F = gradΦ + rotΨ ∼ GP(0, kHelm), (9)

where, for x,x′ ∈ R
2, i, j ∈ 1, 2, kHelm(x,x

′)i,j is equal

to

∂2kΦ(x,x
′)

∂x(i)∂(x′)(j)
+ (−1)1{i ̸=j} ∂2kΨ(x,x

′)

∂x(3−i)∂(x′)(3−j)
. (10)

Our proof in Appendix E relies on two observations: (i)

the Helmholtz decomposition is based on partial (mixed)

derivatives and (ii) the derivative of a GP is a GP; see,

e.g., Rasmussen & Williams (2005, Chapter 9.4), and Adler

(1981, Theorem 2.2.2).

Making predictions. To make predictions using our

Helmholtz GP, we need to choose the hyperparameter val-

ues and then evaluate the posterior distribution of the ocean

current given those hyperparameters.

We choose the GP hyperparameters by maximizing the

log marginal likelihood of the training data. To write

that marginal likelihood, we let Xtr ∈ R
2×M be the ma-

trix with mth column equal to xm. We define Ytr =

(y
(1)
1 , . . . ,y

(1)
M ,y

(2)
1 , . . . ,y

(2)
M )⊤ ∈ R

2M . We extend the

definition of the mean and kernel function to allow for ar-

bitrary finite collections of inputs. In particular, for X =
(x1, . . . ,xN ) ∈ R

2×N and X′ = (x′
1, . . . ,x

′
N ′) ∈ R

2×N ′

,

µ(X) =

(
µ(1)(X)
µ(2)(X)

)

and (11)

k(X,X′) =

(
k(X,X′)1,1 k(X,X′)1,2
k(X,X′)2,1 k(X,X′)2,2

)

(12)

where (a) for i ∈ {1, 2}, n ∈ {1, . . . , N}, µ(i)(X) is an

N -dimensional column vector with nth entry µ(i)(xn), and

(b) for i, j ∈ {1, 2}, n ∈ {1, . . . , N}, n′ ∈ {1, . . . , N ′},

k(X,X′)i,j is an N × N ′ matrix with (n, n′)th entry

k(xn,x
′
n′)i,j . With this notation, we denote the covari-

ance of the training data with itself, under the full model

including noise, as Ktrtr = k(Xtr,Xtr) + σ2
obsI2M . Then

the log marginal likelihood is

log p(Ytr | Xtr) = logN (Ytr; 0,Ktrtr)

= −
1

2
YT

trK
−1
trtrYtr −

1

2
log |Ktrtr| −

2M

2
log 2π,

(13)

where | · | takes the determinant of its matrix argument. We

provide details of our optimization procedure in Section 5.

With hyperparameter values in hand, we form probabilistic

predictions using the posterior of the GP. In particular, the

posterior mean forms our prediction at a new set of points,

and the posterior covariance encapsulates our uncertainty.

Consider N new (test) locations at which we would

like to predict the current. We gather them in

Xte ∈ R
2×N , with nth column equal to x⋆

n. We

denote the covariance of various training and test-

ing combinations as: Ktetr = k(Xte,Xtr) and

Ktete = k(Xte,Xte). Then a posteriori after ob-

serving the training data D, the 2N -long vector

(F (1)(x⋆
1), . . . , F

(1)(x⋆
N ), . . . , F (2)(x⋆

1) . . . , F
(2)(x⋆

N ))⊤

describing the current at the test locations has a normal

distribution with mean and covariance

µF |D = KtetrK
−1
trtrYtr, (14)

KF |D = Ktete −KtetrK
−1
trtrK

⊤
tetr. (15)

For more details, see Rasmussen & Williams (2005, Section

2.2). Note that these formulas can be used to evaluate poste-

rior moments of the velocity field for either the Helmholtz

GP (setting k = kHelm) or the velocity GP (with k = kvel).

Recovering divergence and vorticity. We next show how

to recover the posterior distributions on the divergence and

4
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vorticity scalar fields given a posterior on the current field F .

We can estimate divergence and vorticity at any location by

using the posterior mean at that point, and we can report un-

certainty with the posterior variance. Note that our formulas

recover divergence and vorticity for either our Helmholtz

GP or the velocity GP.

Proposition 3.2. Let F ∼ GP(µ, k) be a two-output Gaus-

sian process with almost surely continuously differentiable

sample paths. Then, for x,x′ ∈ R
2,

δ = divF ∼ GP(div µ, kδ) (16)

ζ = curlF ∼ GP(curlµ, kζ) (17)

where

kδ(x,x′) =
∑

(i,j)∈{1,2}2

∂2k(x,x′)i,j
∂x(i)∂x(j)

(18)

kζ(x,x′)=
∑

(i,j)∈{1,2}2

(−1)i+j ∂2k(x,x′)i,j
∂x(3−i)∂x(3−j)

. (19)

We provide the proof for Proposition 3.2 in Appendix F.

Computational Cost. Since the latitude and longitude out-

puts are correlated under the Helmholtz GP, it generally

has a higher computational cost than the velocity GP. We

establish that the extra cost is no worse than a small factor.

Proposition 3.3. Take M training data points. Let Cvel(M)
and Chelm(M) be the computational costs for evaluating

the log marginal likelihood (Equation (13)) via Cholesky

or QR factorization algorithms for the velocity GP and

Helmholtz GP, respectively. If we assume worst-case scaling

for these algorithms, limM→∞ Chelm(M)/Cvel(M) ≤ 4.

The cost of computing the log marginal likelihood is domi-

nated by the cost of solving the linear system K−1
trtrYtr and

computing the log determinant |Ktrtr|. Both of these costs

in turn arise primarily from the cost of factorizing Ktrtr. Let

CF(s) be the cost of factorizing a square matrix with s rows

with Cholesky or QR factorization. Due to the two (corre-

lated) outputs, the cost of the Helmholtz GP is dominated by

CF(2M). In the velocity GP, the two outputs are uncorre-

lated and can be handled separately, so the cost is dominated

by 2CF(M). Therefore, limM→∞ Chelm(M)/Cvel(M) ≤
CF(2M)/(2CF(M)). When factorizing the matrix costs

CF(s) ∼ csp for p ∈ (0, 3], c > 0, the result follows by

Equation (26). Standard Cholesky and QR factorization

algorithms satisfy the condition with p = 3 in the worst

case (Golub & Van Loan, 2013, p. 164, 249).

In Appendix G we provide similar computational results for

the task of prediction and discuss nuances of how any of

these results may change in the presence of special structure.

4. Advantages of the Helmholtz prior

We next describe three key advantages of the Helmholtz

GP prior over the velocity GP prior: (1) more physically

realistic prior assumptions reflecting the relative magnitude

and length scales of the divergence and vorticity, (2) more

physically realistic correlation of the longitudinal and latitu-

dinal velocities of current at any point, and (3) equivariance

to reference frame.

Prior magnitude of the divergence and vorticity. In real

ocean flows, except at small-scale frontal features, the diver-

gence is known a priori to have both a substantively different

magnitude and different length scale relative to the vorticity

(Barkan et al., 2019). In what follows, we argue that the

Helmholtz GP is able to capture the relative contributions

of divergence and vorticity directly in the prior – whereas

the velocity GP does not have this direct control.

On the magnitude side, the divergence is known to con-

tribute much less to the current than the vorticity contributes.

If we consider a SE-Helmholtz GP, the signal variance hy-

perparameters σ2
Φ and σ2

Ψ control the magnitude of Φ and

Ψ; as a direct consequence of the linearity of the diver-

gence δ and vorticity ζ in Φ and Ψ (Equations (3) and (4)),

the marginal variances of δ and ζ scale linearly with σ2
Φ

and σ2
Ψ, respectively. The model can therefore directly and

separately control the magnitude of the rotational and diver-

gence components. A similar argument can be applied to

more general Helmholtz GPs with parameters controlling

the magnitude of Φ and Ψ.

By contrast, the velocity GP provides no such control. In

fact, for any isotropic choice of k(1) and k(2) we show that

the resulting velocity GP must assume the same variance on

the divergence and vorticity in the prior.

Proposition 4.1. Let k(1) and k(2) be isotropic kernels

with inputs x,x′ ∈ R
2. Take F (1) ∼ GP(0, k(1)) and

F (2) ∼ GP(0, k(2)) independent. Suppose k(1) and k(2)

are such that F (1), F (2) have almost surely continuously dif-

ferentiable sample paths. Let δ and ζ be defined as in Equa-

tions (3) and (4). Then for any x,Var[δ(x)] = Var[ζ(x)].

The proof of Proposition 4.1 appears in Appendix H.1.

Prior length scales of the divergence and vorticity. The

divergence and vorticity are also known to operate on very

different length scales in real ocean flows. Vorticity op-

erates over long length scales, whereas divergence tends

to be more localized. Similarly to the argument above,

the Helmholtz GP allows control over the length scale in

each of its components, which directly control the length

scale of the divergence and vorticity. In particular, if

kΦ(x,x
′) = κ(∥x − x′∥/ℓ), for some κ : R

+ → R,
then kδ(x,x′) = ℓ−4η(∥x − x′∥/ℓ) for another function

η : R+ → R that does not depend on ℓ; see Appendix H.2.

5
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Table 2. Green identifies the lowest RMSE. Dark green indicates the RMSE is at least two times smaller than the next best model.

VELOCITY F DIVERGENCE δ VORTICITY ζ

HELM VEL D-HNN HELM VEL D-HNN HELM VEL D-HNN

VORTEX 0.24 0.72 0.54 0.0 0.22 0.87 0.77 1.05 1.03

SMALL DIVERGENCE 1.11 1.25 0.67 2.62 1.45 4.14 0.0 1.07 0.31

MEDIUM DIVERGENCE 0.17 0.19 0.55 0.39 0.33 1.32 0.05 0.12 0.38

BIG DIVERGENCE 0.04 0.10 0.19 0.05 0.12 0.27 0.00 0.10 0.11

DUFFING W/ SMALL DIVERGENCE 0.96 2.05 2.14 0.94 0.95 1.89 1.40 2.28 2.64

DUFFING W/ MEDIUM DIVERGENCE 0.19 0.60 1.65 0.14 0.50 1.15 0.24 0.26 2.39

DUFFING W/ BIG DIVERGENCE 0.41 0.22 1.63 0.08 0.17 1.10 0.48 0.16 2.41

By contrast, the velocity GP requires setting the length

scales of its priors in tandem, and it is unclear how to con-

trol the length scales of the divergence and vorticity.

Correlations between longitudinal and latitudinal

current components. Ocean flows have correlation

between longitudinal and latitudinal velocities at single

locations and across different locations. For instance,

within a vortex, the longitudinal velocity at six o’clock

(relative to the center of the vortex) coincides with a zero

latitudinal velocity at that same location, and also with a

non-zero latitudinal velocity at three o’clock. Likewise,

the occurrence of divergence at a given point induces a

latitudinal velocity at six o’clock (with no longitudinal

velocity), as well as a non-zero longitudinal velocity at

three o’clock (with no latitudinal velocity). By modeling

the divergence and vorticity directly, the Helmholtz prior

induces correlation between the longitudinal and latitudinal

components, which is absent in the velocity GP prior.

Equivariance to reference frame. We now show the

Helmholtz GP is agnostic to the choice of reference frame

defined by longitude and latitude, but the velocity GP is not.

Proposition 4.2. Let µF|D(Xte,Xtr,Ytr) denote the

Helmholtz GP posterior mean for training data Xtr,Ytr

and test coordinates Xte, and let R be an operator rotating

coordinates and velocities about (0, 0). Then

µF|D(RXte, RXtr, RYtr)=RµF|D(Xte,Xtr,Ytr). (20)

Proposition 4.2 formalizes that it is equivalent to either (1)

rotate the data and then predict using the Helmholtz GP or

(2) predict using the Helmholtz GP and rotate the prediction.

The proof of Proposition 4.2 is given in Appendix H.3.

The equivariance property in Proposition 4.2 need not hold

in general for velocity GP priors.

Proposition 4.3. For isotropic component kernels and zero

prior mean, the velocity GP is reference-frame equivariant

if and only if the kernels for each component are equal.

See Appendix H.4 for the proof. Intuitively, if the kernels are

equal, both the prior and likelihood (and therefore the entire

model) are isotropic, and so there is no special reference

frame. For intuition in the other direction, consider the

following counterexample. Let F (1) ∼ GP(0, k(1)) for

some non-identically zero isotropic k(1). And F (2) = 0, a

trivial isotropic prior. Take any data Xtr, Ytr, Xte, and a

positive (counterclockwise) 90◦ rotation. Due to the trivial

prior in the second coordinate, the posterior in the second

coordinate has mean µ
(2)
F|D(Xte,Xtr,Ytr) = 0. If we rotate

the data first, the posterior in the second coordinate is still

zero, and generally the posterior in the first coordinate will

be nontrivial. But if we first compute the posterior and then

rotate the mean, the posterior in the first coordinate will now

be zero instead, and the posterior in the second coordinate

will be nonzero. Therefore, the equality in Equation (20)

will not hold for this velocity GP.

5. Experimental Results

We next empirically compare the SE-Helmholtz GP and

SE-velocity GP. We find that the SE-Helmholtz GP yields

better current predictions as well as better divergence (and

vorticity) identification, across a variety of simulated and

real data sets. We also compare to dissipative Hamiltonian

neural networks (D-HNNs) (Greydanus & Sosanya, 2022)

in Table 2 and Appendix I but find that the GP methods

generally perform better.

Data. The real datasets we use consist of drifter traces of

GPS-tagged buoys in the ocean. While oceanographers have

some knowledge that allows a rough assessment of the real

data, only in simulations do we have access to ground truth

currents, divergences, and vorticities. Therefore, we run a

variety of simulations with current vector fields reflecting

known common ocean behaviors. We simulate buoy trajec-

tories by initializing buoys at a starting point and allowing

the current field to drive their motion. See Appendix I for

more details of our setup in each specific simulation.

Performance. In what follows, we emphasize visual com-

parisons both because the distinctions between methods are

generally clear and because it is illuminating to visually

pick out behaviors of interest. We also provide root mean
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A. Related Work

In what follows, we present related work in more detail. We first describe in more detail the differences between our work

and that of Gonçalves et al. (2019); Lodise et al. (2020). Then we discuss why we chose to put our priors on the Helmholtz

decomposition, rather than an alternative decomposition.

Velocity GP vs. the GP of Gonçalves et al. (2019); Lodise et al. (2020). Gonçalves et al. (2020); Lodise et al. (2020)

used many of the components of the velocity GP that we describe in the main text, but their prior was substantially more

complex than the velocity GP. Like the velocity GP, they focused on a GP prior with a squared exponential covariance

function. Unlike the velocity GP as described in the main text here, their squared exponential prior included not only terms

in each of the longitude and latitude directions, but also a term in the time direction. Each term has its own length scale. As a

second principle difference, their covariance was in fact a sum of two such squared exponential kernels – introducing a total

of 6 length scales (one for longitude, latitude, and time in each of the two kernels), 2 signal variances, and a single noise

variance. They mention also trying 3 kernels (instead of 2), but it appears all their results were reported for 2 kernels. We

have here tried to take a modular approach to examine the squared exponential prior on its own, so our velocity GP should

not be seen as a direct reflection of the performance of the Gonçalves et al. (2019); Lodise et al. (2020) covariance function.
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Why we focused on the Helmholtz decomposition. The Helmholtz decomposition is a widely recognized dynamically

significant method for dissecting the oceanic velocity field. An alternative – albeit related – decomposition that sees frequent

use is the Geostrophic-Ageostrophic (G-Ag hereinafter) decomposition (Vallis, 2017), which relies on the dominance of

geostrophic balance at large spatial and time scales in the ocean. Though not directly related to our current work here, we

discuss it briefly to provide a holistic oceanographic context to our choice of the Helmholtz decomposition. The Helmholtz

decomposition is defined through exact linear operators into velocity components that are orthogonal complements and can

be separated easily, allowing priors to be placed on the underlying potentials; the G-Ag decomposition, however, can be

derived only by first eliminating the Ageostrophic flow (which represents faster, smaller scales) through an ad hoc time

smoothing of drifter velocities using a multi-day filter. The G-Ag components are notably not orthogonal complements and

consequently have to be separately estimated through a velocity GP, leading to a more complex modeling pipeline with

additional physical hyperparameters (like the smoothing time) that are not easily determined. While there is a measure of

correspondence between the geostrophic and rotational components, and the ageostrophic and divergent components, the

lack of precision in defining the G-Ag components makes the Helmholtz a natural modeling pathway. Recent oceanographic

studies (Barkan et al., 2019; Srinivasan et al., 2023) showing that the Helmholtz decomposition is directly relevant to the

dynamics of oceanic components at smaller spatial scales of around O(1 km) offer further justification for our present choice.

B. Divergence, Gradient, and Curl Operators in 2D

In this section we provide some background for the Helmholtz decomposition in 2D. In the first part, we provide definitions

for grad, div, curl, and rot operators. In Proposition B.5 we then characterize a property of vector fields obtained combining

these operators.

Consider a scalar-valued differentiable function f : R2 → R. The gradient of f is the vector-valued function ∇f whose

value at point x is the vector whose components are the partial derivatives of f at x. Formally,

grad f(x) :=

[
∂f(x)
∂x(1)

∂f(x)
∂x(2)

]

= i
∂f(x)

∂x(1)
+ j

∂f(x)

∂x(2)

where i and j are the standard unit vectors in the direction of the x(1) and x(2) coordinates. From this rewriting, one can

note that taking the gradient of a function is equivalent to taking a vector operator ∇, called del:

∇ = i
∂

∂x(1)
+ j

∂

∂x(2)
≡

(
∂

∂x(1)
,

∂

∂x(2)

)

Using this operator, two operations on vector fields can be defined.

Definition B.1. Let A ⊂ R
2 be an open subset and let F : A → R

2 be a vector field. The divergence of F is the scalar

function divF : A → R, defined by

divF (x) := (∇ · F )(x) =
∂F (1)

∂x(1)
+

∂F (2)

∂x(2)

Definition B.2. Let A ⊂ R
2 be an open subset and let F : A → R

2 be a vector field. The curl of F is the scalar function

curlF : A → R, defined by

curlF (x) :=
∂F (1)

∂x(2)
−

∂F (2)

∂x(1)

Note that this curl definition follows directly from the definition of curl in three dimensions, where this quantity describes

infinitesimal circulation.

In the 3D world, curl and divergence are enough to characterize the Helmholtz decomposition. For the 2D version, however,

we need to characterize an additional operator - which we call rot operator - that plays the role of the standard curl operator

in the 3D version. In 2D, the rot formally requires the introduction of a third unit vector, k that is orthogonal to the plane

containing, i and j.

Definition B.3. Let f : R2 → R be a scalar field. The rot of f is the vector field k ×∇f, defined by

rot f(x) ≡ k ×∇f =

[
∂f

∂x(2)

−∂f

∂x(1)

]

= i
∂f

∂x(2)
− j

∂f

∂x(1)
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where i and j represents, respectively, the standard unit vectors in the direction of the x(1) and x(2) coordinates; k is the

unit vector orthogonal to the plane containing i and j satisfying the identities, k × j = −i and k × i = j.

Thus the rot operator can be thought of as a π/2 rotation of the grad operator. The precise reason why we need the

introduction of a separate rot operator in 2D is because of a hidden peculiarity that the stream function, Ψ is actually

the only non-zero component of a 3D vector potential field, A(x), but that non-zero component is along the k direction,

A ≡ (0, 0,Ψ(x)); equivalently A = Ψk. Given this observation, it can be shown that ∇3D ×A = k×∇Ψ, where ∇3D is

the direct 3D extension of the 2D ∇ operator defined above. The ideas of gradient, divergence, rot, and curl lead to the

following characterization of vector fields.

Definition B.4. A vector field F : A → R
2 is called rotation-free (or curl-free) if the curl is zero, curlF = 0, and it is called

incompressible (or divergence-free) if the divergence is zero, divF = 0.

Proposition B.5. Let f be a scalar field and C2 the class of functions whose second derivatives exist and are continuous.

1. If f is C2, then curl(grad f) = 0. Every gradient of a scalar field is rotation free.

2. If f is C2, then div(rot f) = 0. Every rot transformation of a scalar field is incompressible.

Proof. For (1), we have the following:

curl(grad f) = curl

[
∂f(x)
∂x(1)

∂f(x)
∂x(2)

]

=
∂f(x)/∂x(1)

∂x(2)
−

∂f(x)/∂x(2)

∂x(1)
= 0.

For (2):

div(rot f) = div

[
∂f(x)
∂x(2)

−∂f(x)
∂x(1)

]

=
∂f(x)/∂x(2)

∂x(1)
+

−∂f(x)/∂x(1)

∂x(2)
= 0.

For more material on vector calculus, we refer the reader to Arfken & Weber (1999).

C. Helmholtz Decomposition in the Ocean

In what follows we relate the Helmholtz decomposition to ocean currents. In the first part, we provide intuition of how

divergence and vorticity are significant in the context of oceanography. Next, in Figure 4, we present a visual representation

of the Helmholtz decomposition and highlight the relevant aspects.

The divergence and vorticity of the ocean flow are relevant for oceanographic studies. Divergence characterizes fronts

– small structures with spatial scales on the order of 0.1-10 km and temporal scales on the order of 1-100h. These are

associated with strong vertical motions comprised of a narrow and intense downwelling (flow into the ocean from the

surface) and broad, diffuse upwelling (flow from depths to the surface). The strong downwelling regions play a crucial role

in air-sea fluxes (including uptake of gases into the ocean) and for biological productivity, since floating particles in the

ocean (that include plankton and algae) are concentrated at these fronts. On the other hand, vorticity characterizes eddies,

larger structures that usually evolve over a long timescale. These account for kinetic energy in the ocean, which makes them

a crucial part of global balances of energy, momentum, heat, salt, and chemical constituents (such as carbon dioxide).

In Figure 4 we provide visual intuition on how the Helmholtz theorem decomposes a vector field (ocean flow) into a

divergent velocity field and a rotation velocity field. In this plot, one can see that from the divergence we can read areas of

downwelling/sink (arrows pointing inwards to a single point) and upwelling/source (arrows pointing outwards from a single

point). The vorticity, instead, characterizes rotational elements of the vector field, e.g., vortices/eddies in our ocean setting.

D. Optimal Interpolation vs. Gaussian Processes

Optimal interpolation is a powerful and widely used technique for the analysis of atmospheric data. The technique is

only optimal under strong assumptions, and is therefore instead often referred to as statistical interpolation (Daley, 1993).
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the model is well-specified and the observation noise is σ2
obs, we have

B̄i,k = E(fT (xi), fT (xk)) = K̃(xi,xk)

Bk,l = E(fT (xk), fT (xl)) = K̃(x,x)k,l

Ok,l = E(fO(xk)− fT (xk), fO(xl)− fT (xl)) = σ2
obs

where by K̃(x,x) we mean the I × I matrix formed by evaluating the K̃ on all pairs of observed locations. So the optimal

weights are

W̄ℓ,k =
I∑

i=1

[K̃(x,x) + σ2
obsI]

−1
ℓ,i K̃(xi,xk),

These weights lead to exactly the same predictions as when doing standard Gaussian process regression. Therefore, we

can see Gaussian process regression as a specific case of statistical interpolation, where we do not include any background

knowledge (corresponding to a zero mean prior), and we do not have access to the ground truth function. We then choose a

covariance function that encodes physical intuition of how the underlying system behaves, and estimate parameters from

data (for example, by maximum likelihood). Daley (1993, Section 4.3) provides a detailed discussion of the choice of

covariance functions in the oceanographic and atmospheric literature.

E. Helmholtz Gaussian Process Prior

In this section, we state and prove Proposition 3.1 from the main text.

Proposition 3.1. Let F be an ocean current vector field defined by potential and stream functions that are independent

and distributed as Φ ∼ GP(0, kΦ) and Ψ ∼ GP(0, kΨ), where kΦ and kΨ are such that Φ and Ψ have almost surely

continuously differentiable sample paths. Then

F = gradΦ + rotΨ ∼ GP(0, kHelm), (9)

where, for x,x′ ∈ R
2, i, j ∈ 1, 2, kHelm(x,x

′)i,j is equal to

∂2kΦ(x,x
′)

∂x(i)∂(x′)(j)
+ (−1)1{i ̸=j} ∂2kΨ(x,x

′)

∂x(3−i)∂(x′)(3−j)
. (10)

Proof. We obtain the result in two steps. First, we argue that under the assumptions of the proposition, F is distributed as a

Gaussian process and so may be characterized through its mean and covariance function. Second, we show F has mean

zero, and the proposed covariance kernel.

To see that F is a Gaussian process, observe that it is the sum of linear transformations of two independent Gaussian

processes. This follows from the fact that grad and rot are linear operators on any vector space of differentiable functions,

and because kΦ and kΨ are chosen to have almost surely continuously differentiable sample paths. Therefore, gradΦ and

rotΨ are two independent GPs, and so F is a Gaussian process as well.

We next turn to the mean and covariance functions. By linearity of expectation,

E[F ] = E [gradΦ] + E [curlΨ]

= gradEΦ+ curlEΨ

= 0,

where the last line follows from the assumption that Φ and Ψ both have mean 0 everywhere. It remains to calculate the

covariance function. Since Φ and Ψ are assumed independent we compute the covariance as the sum of covariances for
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gradΦ and curlΨ. Consider two points x and x′.

Cov [(gradΦ)(x), (gradΦ)(x′)] = Cov

[(
∂Φ(x)
∂x(1)

∂Φ(x)
∂x(2)

)

,

(
∂Φ(x′)
∂(x′)(1)

∂Φ(x′)
∂(x′)(2)

)]

=




Cov

(
∂Φ(x)
∂x(1) ,

∂Φ(x′)
∂(x′)(1)

)

Cov
(

∂Φ(x)
∂x(1) ,

∂Φ(x′)
∂(x′)(2)

)

Cov
(

∂Φ(x)
∂x(2) ,

∂Φ(x′)
∂(x′)(1)

)

Cov
(

∂Φ(x)
∂x(2) ,

∂Φ(x′)
∂(x′)(2)

)





=







∂2kΦ(x,x
′)

∂x(1)∂(x′)(1)
∂2kΦ(x,x

′)

∂x(1)∂(x′)(2)

∂2kΦ(x,x
′)

∂x(2)∂(x′)(1)
∂2kΦ(x,x

′)

∂x(2)∂(x′)(2)
,







where exchange of integration and differentiation to obtain the final matrix is permissible by the almost surely continuously

differentiable sample paths assumption.

Similarly,

Cov [(rotΨ)(x), (rotΨ))(x′)] = Cov

[(
∂Ψ(x)
∂x(2)

−∂Ψ(x)
∂x(1)

)

,

(
∂Ψ(x′)
∂(x′)(2)

− ∂Ψ(x′)
∂(x′)(1)

)]

=




Cov

(
∂Ψ(x)
∂x(2) ,

∂Ψ(x′)
∂(x′)(2)

)

Cov
(

∂Ψ(x)
∂x(2) ,−

∂Ψ(x′)
∂(x′)(1)

)

Cov
(

−∂Ψ(x)
∂x(1) ,

∂Ψ(x′)
∂(x′)(2)

)

Cov
(

∂Ψ(x)
∂x(1) ,

∂Ψ(x′)
∂(x′)(1)

)





=







∂2kΨ(x,x
′)

∂x(2)∂(x′)(2)
−

∂2kΨ(x,x
′)

∂x(2)∂(x′)(1)

−
∂2kΨ(x,x

′)

∂x(1)∂(x′)(2)
∂2kΨ(x,x

′)

∂x(1)∂(x′)(1)






.

The desired expression for kHelm is obtained by taking the sum of these two matrices.

F. Divergence and Vorticity of A Gaussian Process

In this section, we state and prove Proposition 3.2 from the main text.

Proposition 3.2. Let F ∼ GP(µ, k) be a two-output Gaussian process with almost surely continuously differentiable

sample paths. Then, for x,x′ ∈ R
2,

δ = divF ∼ GP(div µ, kδ) (16)

ζ = curlF ∼ GP(curlµ, kζ) (17)

where

kδ(x,x′) =
∑

(i,j)∈{1,2}2

∂2k(x,x′)i,j
∂x(i)∂x(j)

(18)

kζ(x,x′)=
∑

(i,j)∈{1,2}2

(−1)i+j ∂2k(x,x′)i,j
∂x(3−i)∂x(3−j)

. (19)

Proof. By the assumption that the sample paths are almost surely continuously differentiable, divF and curlF are well-

defined. Since the image of a Gaussian process under a linear transformation is a Gaussian processes both divF and curlF
are Gaussian processes. It remains to compute the moments. The expectation can be calculated via linearity,

E(divF ) = div(EF ) = div µ, (22)

E(curlF ) = curl(EF ) = curlµ. (23)
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We next turn to the covariance. Define the centered process G = F − µ. By Equation (22) and Equation (23), divG and

curlG are centered Gaussian processes with the covariance functions kδ and kζ respectively.

Consider two points x,x′ ∈ R
2. Unpacking the definition of div,

kδ(x,x′) = E

[(
∂G(1)(x)

∂x(1)
+

∂G(2)(x)

∂x(2)

)(
∂G(1)(x′)

∂(x′)(1)
+

∂G(2)(x′)

∂(x′)(2)

)]

=
∑

(i,j)∈{1,2}2

E

[
∂G(i)(x)

∂x(i)

∂G(j)(x′)

∂(x′)(j)

]

=
∑

(i,j)∈{1,2}2

∂2k(x,x′)i,j
∂x(i)∂(x′)(j)

,

where exchange of integration and differentiation in the final line is permissible given that the sample paths are almost surely

continuously differentiable. Similarly,

kζ(x,x′) = E

[(
∂G(1)(x)

∂x(2)
−

∂G(2)(x)

∂x(1)

)(
∂G(1)(x′)

∂(x′)(2)
−

∂G(2)(x′)

∂(x′)(1)

)]

=
∑

(i,j)∈{1,2}2

(−1)i+j
E

[
∂G(i)(x)

∂x(3−i)

∂G(j)(x′)

∂(x′)(3−j)

]

==
∑

(i,j)∈{1,2}2

(−1)i+j ∂2k(x,x′)i,j
∂x(3−i)∂(x′)(3−j)

.

G. Computational Costs for evaluating Helmholtz GP Posterior

In this section, we provide a bound for the cost of computing velocity predictions using the Helmholtz GP. We also discuss

in more detail the assumption of using a Cholesky factorization or QR decomposition.

Proposition G.1. Suppose we have observed M training data points and would like to predict the current at N new

(test) locations. Assume we use a Cholesky or QR factorization, together with solving the system of equations with

back-substitution. Let Cvel(M,N) be the total worst-case4 computational cost for evaluating both the posterior mean

(Equation (14)) and covariance (Equation (15)) for the velocity GP. Let and Chelm(M,N) be the analogous total cost for

the Helmholtz GP. Then

lim
M,N→∞

Chelm(M,N)/Cvel(M,N) ≤ 4 (24)

where M and N can tend to infinity at arbitrary, independent rates.

Proof. Recall that the posterior mean and covariance can be obtained by solving KtetrK
−1
trtrYtr and computing Ktete −

KtetrK
−1
trtrK

⊤
tetr, respectively Equations (14) and (15). To compute the mean we (A) compute a Cholesky (or QR)

factorization of a 2M × 2M matrix, (B) perform a back-solve of a 2M dimensional system of equations, and (C) compute

N 2M -dimensional inner products. To compute the covariance we (D) compute a Cholesky (or QR) factorization of

a 2M × 2M matrix, (E) perform a back-solve of N distinct 2M dimensional systems of equations, (F) compute an

(2N × 2M)× (2M × 2N) matrix-multiplication, and (G) subtract 2N × 2N matrices.

We first argue that it suffices to consider steps A and D separately from the remaining steps. In particular, for non-negative

numbers {ai}
I
i=1 and {bi}

I
i=1, we observe that

∑I
i=1 ai

∑I
i=1 bi

≤ max
ai
bi
. (25)

4As in the main text, we assume that the computation incurs the worst-case cost of a Cholesky factorization or QR decomposition. If
the matrices involved have special structure, the cost might be much less than the worst-case.
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For our purposes, let a1 be the cost of steps A and D in the Helmholtz GP computation, and let a2 be the cost of steps B, C,

E, F, and G in the Helmholtz GP computation. Analogously, define b1 and b2 for the velocity GP computation. The proof

of Proposition 3.3 already showed that a1/b1 is asymptotically bounded above by 4. By Equation (25), then, it suffices to

separately check a2/b2.

Next, we will use the following observation to focus on the asymptotically dominant terms of a2 and b2, respectively.

Consider some index n → ∞. For rn ∼ sn and tn ∼ un with all terms bounded away from zero,

rn
sn

∼
tn
un

. (26)

Among steps B, C, E, F, and G, the dominant costs are due to performing the triangular back-substitution (step E) and the

matrix-matrix multiplication (step F) used to compute the covariance. We can again consider these two steps separately due

to Equation (25).

First consider back-substitution. Given a t (square) lower triangular system of equations of dimension s, the cost of solving

this system with back-substitution is ∼ ts2 floating-point operations (Golub & Van Loan, 2013, Section 3.1.2). When

evaluating posteriors with the Helmholtz GP, we have Ktetr of shape 2N × 2M and Ktrtr = LL⊤ (or QR) of shape

2M × 2M . So back-substitution in the case of the Helmholtz GP incurs cost (in floating point operations) ∼ 8NM2. For

the velocity GP, we can exploit the fact that the two outputs are uncorrelated and can be handled separately, so the cost

of back-substitution is ∼ 4NM2. Therefore, and again using Equation (26), the ratio of the costs of the back-substitution

algorithm is asymptotically 2.

Once back-substitution has been performed, matrix-multiplication must be performed. Using textbook matrix-multiplication

leads to the same considerations as back-substitution.

In all the steps used to compute the posterior moments, we see that the cost of the Helmholtz GP is not (asymptotically)

more than 4 times the cost of the velocity GP, and the result follows.

Simplifying structure. In Propositions 3.3 and G.1, we have made the assumption that users are solving a linear system or

computing a log determinant with a general and standard choice, such as a Cholesky factorization or QR decomposition. We

expect essentially the same result to hold for any other general method for computing these quantities. However, if there is

special structure that can be used to solve the linear system or compute the log determinant more efficiently, that might

change the bounds we have found here. Conversely, we are immediately aware of special structure that we can expect to

always apply in the application to modeling current. And any such structure would likely also require special algorithmic

development and coding.

H. Benefits of the Helmholtz GP: additional information and supplemental proofs

In what follows, we provide additional information on the benefits of using the Helmholtz GP. In Appendix H.1 we state and

prove Proposition 4.1, showing how with independent velocity priors we obtain equal marginal variances for vorticity and

divergence. In Appendix H.2 we provide more intuition on the result that length scales are conserved across kΦ vs. kδ and

across kΨ vs. kζ . Finally, in Appendix H.3 we state and prove Proposition 4.2 about the equivariance of Helmholtz GP

predictions.

H.1. Equality of marginal variances of vorticity and divergence with independent velocity priors

Proposition 4.1. Let k(1) and k(2) be isotropic kernels with inputs x,x′ ∈ R
2. Take F (1) ∼ GP(0, k(1)) and F (2) ∼

GP(0, k(2)) independent. Suppose k(1) and k(2) are such that F (1), F (2) have almost surely continuously differentiable

sample paths. Let δ and ζ be defined as in Equations (3) and (4). Then for any x,Var[δ(x)] = Var[ζ(x)].

Proof. Because k(1) and k(2) are assumed to be isotropic we may write for any x,x′ ∈ R
2

k(1)(x,x′) = κ1(∥x− x′∥2) and k(2)(x,x′) = κ2(∥x− x′∥2)

for some κ1, κ2 : R+ → R. Because isotropy implies stationarity, it suffices to consider the variance at any a single point,
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and so we consider x = x′ = (0, 0). By assumption, we have

F ∼ GP

((
0
0

)

,

(
k(1) 0
0 k(2)

))

By Proposition 3.2, the induced divergence and vorticity are Gaussian processes with mean 0 and covariances

kδ(x,x′) =
∂2k(1)(x,x′)

∂x(1)∂(x′)(1)
+

∂2k(2)(x,x′)

∂x(2)∂(x′)(2)

kζ(x,x′) =
∂2k(1)(x,x′)

∂x(2)∂(x′)(2)
+

∂2k(2)(x,x′)

∂x(1)∂(x′)(1)

respectively.

Then, we can compute the variance at x = x′ = (0, 0) by

Var[δ(0, 0)] =
∂2k(1)(x,x′)

∂x(1)∂(x′)(1)

∣
∣
x=0,x′=0

+
∂2k(2)(x,x′)

∂x(2)∂(x′)(2)

∣
∣
x=0,x′=0

=
∂2κ1(∥x− x′∥2)

∂x(1)∂(x′)(1)

∣
∣
x=0,x′=0

+
∂2κ2(∥x− x′∥2)

∂x(2)∂(x′)(2)

∣
∣
x=0,x′=0

=
∂

∂x(1)
(−2κ′

1(∥x∥
2)x(1))

∣
∣
x=0

+
∂

∂x(2)
(−2κ′

2(∥x∥
2)x(2))

∣
∣
x=0

= −2(κ′′
1(0) + κ′′

2(0))

Consequently, we have that for any x ∈ R
2, Var[δ(x)] = −2(κ′

1(0) + κ′
2(0)).

The computation is similar for the vorticity. We have that

Var[ζ(0, 0)] =
∂2k((1)(x,x′)

∂x(2)∂(x′)(2)

∣
∣
x=0,x′=0

+
∂2k((2)(x,x′)

∂x(1)∂(x′)(1)

∣
∣
x=0,x′=0

=
∂2κ1(∥x− x′∥2)

∂x(2)∂(x′)(2)

∣
∣
x=0,x′=0

+
∂2κ2(∥x− x′∥2)

∂x(1)∂(x′)(1)

∣
∣
x=0,x′=0

=
∂

∂x(2)
(−2κ′

1(∥x∥
2)x(1))

∣
∣
x=0

+
∂

∂x(1)
(−2κ′

2(∥x∥
2)x(2))

∣
∣
x=0

= −2(κ′′
1(0) + κ′′

2(0))

Therefore for any x ∈ R
2, Var[ζ(x)] = −2(κ′

1(0) + κ′
2(0)), and we see Var[ζ(x)] = Var[δ(x)]. This completes the

proof.

H.2. Conservation of length scales across kΦ vs. kδ (and kΨ vs. kζ)

This subsection provides a derivation of the claim that if kΦ(x,x
′; ℓ) = κ(∥x − x′∥/ℓ), for some κ : R+ → R, then

kδHelm(x,x
′; ℓ) = ℓ−4η(∥x− x′∥/ℓ) for some η : R+ → R that does not depend on ℓ. The relationship (argument to see it)

is identical KΨ and kζHelm.

We may see the claim to be true by expanding out the dependencies of kδHelm and kζHelm on kΦ and kΨ, seeing that they

involve fourth order partial derivatives, and applying a change of variables four times; each change of variables contributes

one factor of ℓ−1.
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In particular,

kδHelm =

(
∂4

∂(x(2))2∂((x′)(2))2
+

∂4

∂(x(2))2∂((x′)(1))2
+

∂4

∂(x(1))2∂((x′)(2))2
+

∂4

∂(x(1))2∂((x′)(1))2

)

kΦ and

kζHelm =

(
∂4

∂(x(2))2∂((x′)(2))2
+

∂4

∂(x(2))2∂((x′)(1))2
+

∂4

∂(x(1))2∂((x′)(2))2
+

∂4

∂(x(1))2∂((x′)(1))2

)

kΨ.

(27)

Consider first the potential function and divergence. If kΦ(x,x
′) = κ(∥x − x′∥), then any second order mixed partial

derivative may be written through a change of variables (x to x/ℓ) as ∂2

∂x∂x′
kΦ(x,x

′) = ℓ−2 ∂2

∂ℓx∂ℓx′
κ(∥ℓx − ℓx′∥/ℓ) =

ℓ−2 ∂2

∂x∂x′
κ(∥x− x′∥/ℓ). Analogously, when we differentiate four times rather than twice to obtain kδHelm we have that if

kΦ(x,x
′) = κ(∥x− x′∥/ℓ), for some κ, then kδHelm = ℓ−4η(∥x− x′∥/ℓ) for some η that does not depend on ℓ.

H.3. Equivariance of Helmoltz GP predictions

Proposition 4.2. Let µF|D(Xte,Xtr,Ytr) denote the Helmholtz GP posterior mean for training data Xtr,Ytr and test

coordinates Xte, and let R be an operator rotating coordinates and velocities about (0, 0). Then

µF|D(RXte, RXtr, RYtr)=RµF|D(Xte,Xtr,Ytr). (20)

To prove the proposition, it is helpful to distinguish between random variables and the values they take on. We use boldface

to denote the random variables, for example Ytr. When a random variable Ytr takes a value Y we write Ytr = Y.

The rotation operator R is characterized by a 2 × 2 rotation matrix; if Xtr = [(x
(1)
1 , x

(2)
1 )⊤, . . . , (x

(1)
N , x

(2)
N )⊤], then

RXtr = [R(x
(1)
1 , x

(2)
1 )⊤, . . . , R(x

(1)
N , x

(2)
N )⊤] = [((Rx1)

(1), (Rx1)
(2))⊤, . . . , ((RxN )(1), (RxN )(2))⊤], where we denote

by (Rx)(1) the rotated first coordinate, and (Rx)(2) the rotated second coordinate. When the input is flattened, as in the

case of Ytr or µF |D, the R operator is applied as follows: (1) unflatten the vector to get it in the same form as Xtr, then (2)

apply the operator R as specified above, and finally (3) flatten the output vector to go back to the original Ytr shape. Our

proof relies on kΦ and kΨ being isotropic kernels.

Lemma H.1 (Invariance of the likelihood). Suppose F is distributed as a Helmholtz GP, and there are M observations

Ytr | F,Xtr = X ∼ N
(
[F (1)(X), F (2)(X)]⊤,Ktrtr(X,X)

)
, where I2M denotes the identity matrix of size 2M . Then

the marginal likelihood of the observations is invariant to rotation. That is, for any 2× 2 rotation matrix R,

p(Ytr = Y | Xtr = X) = p(Ytr = RY | Xtr = RX).

Proof. By assumption, kΦ is stationary and so, for any two locations x and x′ in R
2 we may write kΦ(x,x

′) = κ(∥x−x′∥)
for some function κ : R+ → R. Following Appendix C, we may write the induced covariance for gradΦ as

Cov [(gradΦ)(x), (gradΦ)(x′)] =







∂2kΦ(x,x
′)

∂x(1)∂(x′)(1)
∂2kΦ(x,x

′)

∂x(1)∂(x′)(2)

∂2kΦ(x,x
′)

∂x(2)∂(x′)(1)
∂2kΦ(x,x

′)

∂x(2)∂(x′)(2)







=







∂2κ(∥x− x′∥)

∂x(1)∂(x′)(1)
∂2κ(∥x− x′∥)

∂x(1)∂(x′)(2)

∂2κ(∥x− x′∥)

∂x(2)∂(x′)(1)
∂2κ(∥x− x′∥)

∂x(2)∂(x′)(2)
,







Similarly, we may compute Cov [(gradΦ)(Rx), (gradΦ)(Rx′)] through a change of variables (x to Rx) as
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Cov [(gradΦ)(Rx), (gradΦ)(Rx′)] =







∂2kΦ(Rx, Rx′)

∂x(1)∂(x′)(1)
∂2kΦ(Rx, Rx′)

∂x(1)∂(x′)(2)

∂2kΦ(Rx, Rx′)

∂x(2)∂(x′)(1)
∂2kΦ(Rx, Rx′)

∂x(2)∂(x′)(2)







=







∂2κ(∥Rx−Rx′∥)

∂x(1)∂(x′)(1)
∂2κ(∥Rx−Rx′∥)

∂x(1)∂(x′)(2)

∂2κ(∥Rx−Rx′∥)

∂x(2)∂(x′)(1)
∂2κ(∥Rx−Rx′∥)

∂x(2)∂(x′)(2)
,







= R⊤Cov [(gradΦ)(x), (gradΦ)(x′)]R

and see that Cov [(gradΦ)(x), (gradΦ)(x′)] = RCov [(gradΦ)(Rx), (gradΦ)(Rx′)])R⊤.

Similarly, for a collections of M locations X we have that Cov [(gradΦ)(X), (gradΦ)(X)] = (R ⊗
IM )Cov [(gradΦ)(RX), (gradΦ)(RX)] (R⊤ ⊗ IM ), where ⊗ denotes the Kronecker product.

An identical argument (up to a change in the sign of off-diagonal terms) can be used to derive the induced covariance for

rotΨ, Cov [(rotΨ)(x), (rotΨ)(x′)]. We obtain

Cov [(rotΨ)(x), (rotΨ)(x′)] = RCov [(rotΨ)(Rx), (rotΨ)(Rx′)]R⊤ and

Cov [(rotΨ)(X), (rotΨ)(X)] = (R⊗ IM )Cov [(rotΨ)(RX), (rotΨ)(RX)] (R⊤ ⊗ IM ).

Together, this implies that if we write the covariance of M vector velocity training observations Ytr at X as

Ktrtr(X,X) : = Var[Ytr|Xtr = X]

= kHelm(X,X) + σ2
obsI2M

= Cov [(gradΦ)(X), (gradΦ)(X)] + Cov [(rotΨ)(X), (rotΨ)(X)] + σ2
obsI2M

then

Ktrtr(X,X) = (R⊗ IM )Ktrtr(RX,RX)(R⊤ ⊗ IM )

As a result, for any R, Y and X we may compute the log likelihood according to the likelihood model as

log p(Ytr = RY | Xtr = RX)

= logN (RY ; 0,Ktrtr(RX,RX))

= −M log(2π)−
1

2
log |Ktrtr(RX,RX)|

−
1

2
log((R⊗ IM )Y )⊤ [Ktrtr(RX,RX)]

−1
((R⊗ IM )Y )

= −M log(2π)−
1

2
log |Ktrtr(X,X)| −

1

2
log Y ⊤Ktrtr(X,X)−1Y

= log p(Ytr = Y | Xtr = X),

as desired.

Lemma H.2 (Invariance of the conditionals). The conditionals distributions of the Helmoltz GP are invariant to rotation.

That is, for any 2× 2 rotation matrix R,

p(Yte = Yte | Xte = Xte,Xtr = Xtr,Ytr = Ytr)

=p(Yte = RYte | Xte = RXte,Xtr = RXtr,Ytr = RYtr)
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Proof. The lemma is obtained by applying Bayes’ rule and Lemma H.1 as

p(Yte = RYte | Xte = RXte,Xtr = RXtr,Ytr = RYtr)

=
p(Yte = RYte,Xte = RXte,Xtr = RXtr,Ytr = RYtr)

∫
p(Yte = RY ′

te,Xte = RXte,Xtr = RXtr,Ytr = RYtr)dRY ′
te

=
p(Yte = Yte,Xte = Xte,Xtr = Xtr,Ytr = Ytr)

∫
p(Yte = Y ′

te,Xte = Xte,Xtr = Xtr,Ytr = Ytr)dY ′
te

= p(Yte = Yte | Xte = Xte,Xtr = Xtr,Ytr = Ytr).

Proof of the equivariance proposition:

We now prove the proposition. Recall that

µF |D(Xte,Xtr,Ytr) = E[Yte | Xte = Xte,Ytr = Ytr,Xtr = Xtr].

Therefore, for any R, we may compute µF |D(RXte, RXtr, RYtr) as

µF |D(RXte, RXtr, RYtr) = E[Yte | Xte = RXte,Ytr = RYtr,Xtr = RXtr]

=

∫

Yte p(Yte = Yte | Xte = RXte,Ytr = RYtr,Xtr = RXtr)dYte

=

∫

RYte p(Yte = RYte | Xte = RXte,Ytr = RYtr,Xtr = RXtr)dYte

=

∫

RYte p(Yte = Yte | Xte = Xte,Ytr = Ytr,Xtr = Xtr)dYte

= E[RYte | Xte = Xte,Ytr = Ytr,Xtr = Xtr]

= RµF |D(Xte,Xtr,Ytr)

Where in the third line we perform a change of variables, noting that |R| = 1. The fourth line follows from Lemma H.2.

The final line is a result of linearity of expectation and the definition of µF |D, and provides the desired equality.

H.4. Non-Equivariance of Velocity GP predictions

In this appendix, we show that the velocity GP requires special constraints to exhibit reference-frame equivariance, and

these constraints force an undesirable coupling of divergence and vorticity length scales.

Proposition 4.3. For isotropic component kernels and zero prior mean, the velocity GP is reference-frame equivariant if

and only if the kernels for each component are equal.

Proof. We first show that if the velocity GP is reference-frame equivariant and has isotropic kernels for each component,

then the kernels for the two velocity components are equal. In order to show this, it suffices to show that the prior

is not equivariant, as this is the posterior given the empty dataset. Let F ∼ GP (0, k) be a function from R
2 → R

2

by stacking F (·) =
[
F (1)(·), F (2(·)

]T
. Rotational invariance of the prior is equivalent to the condition that for an

arbitrary 2-dimensional rotation matrix R,R−1F (R·) = F (·), where equality is in distribution for an entire sample path.

Consider a 90 degree rotation of the coordinate axis. In the case of a 90 degree rotation, by isotropy of the kernels,

R−1F (R·) = R−1F (·) = [F2(·), F1(·)]
T

. Considering each coordinate of R−1F (R·), equality in distribution to F implies

that F (2)(·) = F (1)(·) in distribution, and so the two components must have the same kernel.

We next show that if the two kernels are equal, then the velocity GP is rotationally equivariant. By Lemma H.2, it suffices

to show there exist kernels kΦ, kΨ such that the prior is equal in distribution to a Helmholtz GP with these kernels. Let

F denote a zero mean velocity GP with kernels k(1) = k(2). Let F ′ denote a Helmholtz GP with kernels kΦ = kΨ, and

kΦ(x,x
′) =

∫ x(1)

s′=0

∫ (x′)(1)

s=0
k(1)(s, s′)dsds′ +

∫ x(2)

s′=0

∫ (x′)(2)

s=0
k(2)(s, s′)dsds′. Applying Proposition 3.1 and the fundamental

theorem of calculus, we see the covariance functions of F and F ′ are equal, and since F and F ′ are zero mean Gaussian

processes, they are therefore equal in distribution.
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I. Experimental Results

In this section, we provide more details on our experimental results. The section is organized in three parts. Appendix I.1

focuses on experiments with simulated data. Appendix I.2 focuses on experiments with real data from the LASER experiment

(D’Asaro et al., 2017). Appendix I.3 focuses on real data from the GLAD experiment (Özgökmen, 2012). In each section, we

have one subsection for each experiment. These subsections provide simulation details (e.g., what is the underlying vector

field, and how we generated the buoys trajectories), model fitting details (e.g., hyperparameter optimization), and results. At

the end of each subsection, we include a figure with these results. All the figures have the same structure. The first column

represents ground truths. Second, third and fourth columns contain, respectively, SE-Helmholtz GP, SE-velocity GP, and

D-HNN results. The first two rows represent results for the velocity prediction task: row 1 shows reconstructed velocity

fields, row 2 differences from ground truth. Rows 3, 4, and 5 are about divergence: first divergence predictions, then standard

deviation and z-values for the two GP models. Finally, rows 6, 7, and 8 concern vorticity: vorticity predictions, standard

deviation and z-values for the two GP models. See Figure 5 for an example. For real data experiments, where we do not

have ground truths, we omit the first column and the second row, i.e., all plots involving comparisons with ground truth

quantities. See Figure 13 for an example.

For the simulated experiments, all root mean square errors are evaluated on the grids used to simulate the experiment.

Specific grids are discussed in the “simulation details“ paragraph of each individual experiments subsection. More explicitly,

the root mean square error is calculated as,

RMSE =

√

1

|L|

∑

x∈L

∥F (x)− F̂ (x)∥22 (28)

where F (x) denotes the simulated vector field, F̂ (x) denotes the predictions of a given model and L is the grid used to

simulate the vector field.

Initialization In all experiments except the GLAD data, we initialize our parameters such that log ℓΦ = 0, log σΦ =
0, log ℓΨ = 1, log σΨ = −1, log σ2

obs = −2 and likewise log ℓ1 = 0, log σ1 = 0, log ℓ2 = 1, log σ2 = −1, log σ2
obs = −2.

We describe the special difficulties of the GLAD data in Appendix I.3. In all other cases, we found that results were not

sensitive to initialization.

I.1. Simulated Experiments

We focus on simulations of key ocean behaviors of interest to oceanographers: vortices, straight currents, concentrated

divergences, and combinations thereof.

I.1.1. SIMULATED EXPERIMENT 1: SINGLE VORTEX

A single vortex in the ocean is a fluid flow pattern in which water particles rotate around a central point, with the flow

pattern resembling a spiral. These vortices can occur due to a variety of factors such as the wind, currents, and tides. Single

ocean vortices, also known as ocean eddies, can have a significant impact on ocean circulation and can transport heat, salt,

and nutrients across vast distances. They can also affect the distribution of marine life. The vortex constructed has zero

divergence and constant vorticity.

Simulation details. To simulate a vortex vector field in a two dimensional space, we first define a grid of points L of size

17 x 17, equally spaced over the interval [−1, 1] × [−1, 1]. For each point x = (x(1), x(2)) ∈ L, we compute the vortex

longitudinal and latitudinal velocities by:

F (1)(x) = −x(2)

F (2)(x) = x(1)

From these equations we obtain that the divergence of the vortex is 0 for any x = (x(1), x(2)) ∈ L:

δ(x) = div · F =
∂F (1)

∂x(1)
+

∂F (2)

∂x(2)
= 0 + 0 = 0
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and the vorticity is -2 for any x = (x(1), x(2)) ∈ L:

ζ(x) = curl · F =
∂F (1)

∂x(2)
−

∂F (2)

∂x(1)
= −1− 1 = −2

In our simulated experiment, we then use this vector field to simulate buoys trajectories, i.e. the evolution of buoys positions

and velocities across time. In doing so, we make an implicit stationarity assumption about the vector field. That is, we

assume that across the total time where we want to simulate buoys trajectories, the vector field remains the same. Then we

fix starting positions for the desired amount of buoys, in this case 4. We set these to be just on one side of the vortex, to

evaluate the ability of the models to reconstruct the full vortex by having access to observations covering only a portion of it.

We pick the total time (here 1) for which we observe the trajectories, and the amount of time steps at which we want to

observe the buoys trajectories (here 2), to split the total time. To find the trajectories, we solve the velocity-time ordinary

differential equation, dx/dt = F , where d/dt represents the time-derivative operator. Once we obtain the evolution of

buoys’ locations, we obtain the corresponding velocities by doing a linear interpolation of the underlying vortex field. By

doing this interpolation, we end up with our simulated dataset, consisting in this case of 8 observations.

Model fitting. We are interested in evaluating the models’ capabilities of reconstructing the full vortex, and capturing

the underlying divergence and vorticity structure. To do so, we consider test locations corresponding to the grid L, so that

we can compare our results with the ground truth, for velocities, divergence, and vorticity. To fit the SE-Helmholtz GP,

we initialize the hyperparameters as explained in the Initialization paragraph at the start of this appendix: ℓΦ = 1, σΦ =
1, ℓΨ = 2.7, σΨ = 0.368, σ2

obs = 0.135. The objective function of our optimization routine is the log marginal likelihood

from Equation (5). We optimize the parameter using the gradient-based algorithm Adam (Kingma & Ba, 2015). Note

that we optimize the hyperparameters in the log-scale. That is, we consider as parameters in the optimization step

log ℓΦ, log σΦ, log ℓΨ, log σΨ, and log σ2
obs, and we exponentiate these when evaluating the log marginal likelihood. In

doing so, we ensure that the optimal parameters are positive, as needed in this model. We run the optimization routine until

the algorithm reaches convergence. In this case, the convergence criterion is the difference of log marginal likelihood in two

consecutive optimization steps being less than 10−4. This convergence is achieved in less than 1000 iterations. The optimal

hyperparameters are: ℓΦ = 1.1131, σΦ = 0.0342, ℓΨ = 1.5142, σΨ = 0.8884, σ2
obs = 0.1597. The same optimization

routine is performed for the SE-velocity GP. In this case, the initial hyperparameters are ℓ1 = 1, σ1 = 1, ℓ2 = 2.7, σ2 =
0.368, σ2

obs = 0.135. The optimal hyperparameters are: ℓ1 = 1.6191, σ1 = 0.9710, ℓ2 = 2.7183, σ2 = 0.5811, σ2
obs =

0.1759. For both optimization routines, we tried different initial parametrizations, and the results agree substantially both

in terms of RMSEs and visual reconstruction. Finally, to train the D-HNN model, we run the training routine provided in

Greydanus & Sosanya (2022) code.

Results. We show the results in Figure 5. For each of the plots, the horizontal and vertical axes represent, respectively,

latitude and longitude. The first row represents the ground truth simulated vector field (left), and the reconstruction using the

SE-Helmholtz GP (center-left), the SE-velocity GP (center-right) and the D-HNN (right). Red arrows are the observed buoy

data, black arrows show the predicted current at test locations. We can see how our method predicts a full vortex covering the

spatial domain, whereas the SE-velocity GP predicts a smooth curve with much longer length scale, that does not resemble

the ground truth. The D-HNN prediction looks more similar to a vortex, but still not as good as the SE-Helmholtz GP. To

support this claim we also show differences from the ground truth in the second row. Finally, note that the RMSE for the

SE-Helmholtz GP is 0.24, whereas for the SE-velocity GP it is 0.72 and for the D-HNN is 0.54.

In the third row, we analyze the divergence. The left box shows the constantly zero ground truth. Our model prediction

(center-left) correctly captures this behavior, whereas the SE-velocity GP (center-right) predicts an irregular pattern not

resembling the truth. The same happens for D-HNN (right box). In the fourth row we show the standard deviation of

divergence predictions for the two GP models, and we can see how the SE-Helmholtz GP is very certain that there is no

divergence, whereas the uncertainty for the SE-velocity GP predictions is higher. Finally, in the fifth row, we show the

z-values for the divergence prediction, defined as the ratio between the mean and the standard deviation. This is a measure

of how far from zero the prediction is, measured in terms of standard deviation. Some standard cut-off values for this

quantity are −1 and +1, and one usually concludes that the prediction is significantly different (in the sense of one standard

deviation) from 0 if the corresponding z-value is beyond these thresholds. By using this indicator, we conclude that none

of the two predictions are significantly far from zero, so both models are accurate in predicting zero divergence, but our

prediction is more precise, in the sense that the mean is closer to the real value and the uncertainty is lower. This is confirmed

by looking at RMSEs: 0.0 for the SE-Helmholtz GP, 0.22 for SE-velocity GP, and 0.87 for the D-HNN.
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Finally, in the last three rows we analyze results for the vorticity. The left box shows the constant (-2) ground truth. The

SE-Helmholtz GP (center-left) predicts that the vorticity is around that value, especially in the center of the vortex, whereas

in the corners the behavior is not as good. The SE-velocity GP (center-right) performs much worse also here, by predicting

vorticity very close to zero, or positive, on almost all the spatial domain. The D-HNN (right box) predicts negative vorticity

in most of the domain, but the pattern is very irregular. In the second-to-last row we show the standard deviation of

divergence predictions for the two GP models, and we can see how the range of uncertainties on this task is more similar

than before, meaning that there are areas where both models are not very confident. Still, if we look at the z-values in the

last row, combined with the prediction plots, we see our model is better at predicting the magnitude and size of the vorticity

area. In terms of RMSEs, we have 0.77 for the SE-Helmholtz GP, 1.05 for the SE-velocity GP, and 1.03 for the D-HNN.

In general, in this experiment we have shown that when working with this very simple underlying vector field, our model

behaves better than the alternatives. In particular, we have seen how the prediction of the vortex is very accurate for the

SE-Helmholtz GP, whereas the two other models are more off (and this is reflected in the respective RMSEs). In terms

of divergence, our model predicts with certainty that there is no divergence, whereas the SE-velocity GP approach is less

precise (by predicting non-zero divergence with high uncertainty). Finally, we saw how in terms of vorticity our model is

the only one able to understand that there is a non-zero vorticity: even if the prediction is not perfect, it is still significantly

better than all the other models.
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I.1.2. SIMULATED EXPERIMENT 2: VORTEX ADJACENT TO STRAIGHT CURRENT

This task elaborates on the previous one by splitting the spatial domain in two regions: the upper region has a single vortex,

and the lower region has a constant and straight flow from left to right.

The velocity field is discontinuous at the boundary, and therefore the divergence and vorticity are not defined as fields along

this line. In general, though, if we were to consider a smaller sub-region containing the boundary on the lefthand side (where

the vortex has downward velocity), we expect such a sub-region to have a negative flux. Analogously, if we were to consider

a sub-region containing the boundary on the righthand side (where the vortex has upward velocity), we would expect that

sub-region to have a positive flux.

Since the divergence and vorticity fields are not defined everywhere, it is not obvious what the desired behavior is in terms of

recovering these fields. Due to this ambiguity, we do not report the results of this experiment in the main text. However, these

discontinuities are reminiscent of fronts, which are of substantial interest to oceanographers, so we include this experiment

in this appendix for completeness and in case it spurs future advancements.

Simulation details. To simulate such a vortex vector field, we first define a grid of points L of size 25 x 50, equally spaced

over the interval [−1, 1]× [−1, 2]. We can see this grid as composed of two subgrids L1 and L2, each of dimension 25 x 25,

with L1 representing the top grid and L2 the lower one. Next, for each point x = (x(1), x(2)) ∈ L1, we compute the vortex

as done in Appendix I.1.1:

F (1)(x) = −x(2)

F (2)(x) = x(1)

and we still have δ(x) = 0 and ζ(x) = −2 for any x = (x(1), x(2)) ∈ L1.

For each point x ∈ L2, we simulate a constant field with the following equations:

F (1)(x) = 0.7

F (2)(x) = 0.

The divergence and vorticity for each x ∈ L2 are δ(x) = 0 and ζ(x) = 0.

As done for the previous experiment, we then use this vector field to simulate buoys trajectories making the stationarity

assumption. Here we consider 7 buoys, covering the full region, observed for a total time of 0.5 and 2 time steps. We

reconstruct the buoys trajectories by solving the ODE and interpolating as specified before. By doing this interpolation, the

simulated dataset consists of 14 observations.

Model fitting. We fit the three models with the routine specified in Appendix I.1.1. To fit the SE-Helmholtz GP,

we initialize the hyperparameters as follows: ℓΦ = 1, σΦ = 1, ℓΨ = 2.7, σΨ = 0.368, σ2
obs = 0.135. The optimal

hyperparameters are: ℓΦ = 3.8698, σΦ = 0.0885, ℓΨ = 1.2997, σΨ = 0.9773, σ2
obs = 0.0609. The same optimization

routine is performed for the SE-velocity GP. In this case, the initial hyperparameters are ℓ1 = 1, σ1 = 1, ℓ2 = 2.7, σ2 =
0.368, σ2

obs = 0.135. The optimal hyperparameters are: ℓ1 = 0.9397, σ1 = 1.0755, ℓ2 = 2.7183, σ2 = 0.5528, σ2
obs =

0.0087. For both optimization routines, we tried different initial parametrizations, and the results agree substantially both in

terms of RMSEs and visual reconstruction.

Results. We show the results in Figure 6. As before, for each of the plots, the horizontal and vertical axes represent,

respectively, latitude and longitude. The first row represents the ground truth simulated vector field (left), and the

reconstruction using the SE-Helmholtz GP (center-left), the SE-velocity GP (center-right) and the D-HNN (right). Red

arrows are the observed buoy data, black arrows show the predicted current at test locations. We can see how our method

predicts accurately the vortex structure, whereas it has some problems in the lower right corner, and smooths out the

discontinuity at the boundary. The SE-velocity GP is accurate as well for the vortex part, but has a significant issue in the

lower subgrid: the current flows from left to right, then gets interrupted, and then restarts in a different direction. This

behavior goes against the idea that currents are continuous (by conservation of momentum). The D-HNN predictions look

very similar to the SE-Helmholtz GP. In the second row we include the differences from the ground truth, and these show

as well that SE-Helmholtz GP and D-HNN are accurate, whereas the SE-velocity GP has issues in the lower part of the grid.

The RMSE for the SE-Helmholtz GP is 0.30, whereas for the SE-velocity GP it is 0.49 and for the D-HNN is 0.28.
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In the third row, we analyze the divergence. The left box shows the constantly zero ground truth except for at the boundary

line, where the divergence is undefined. Our model captures the zero divergence outside the boundary line, but does not

estimate any divergence at or around the boundary line. The SE-velocity GP (center-right) estimates an irregular pattern.

The D-HNN divergence estimate has the perhaps desirable property that it is negative on the left side and positive on the

right side, which might lead to reasonable predictions of flux into and out of regions containing the boundary between the

straight current and vortex. As it is unclear what a reasonable approximation to the divergence is when the divergence is

concentrated on a line, we do not report RMSE on this example.

Finally, in the last three rows we analyze results for the vorticity. The left box shows the ground truth, again ignoring the

boundary line where the vorticity is undefined. Here both the GP models’ predictions look very similar. Both predict that

there is a negative vorticity area in the top grid, and a close-to-zero vorticity area in the lower grid. The D-HNN vorticity

estimates in the upper and lower regions are similar to those of the GPs. Also the D-HNN estimate suggests a crisper

boundary than the GP approaches do. In the standard deviation and z-value plots, we see that both GP models seem quite

certain about the existence of a negative vorticity at least in part of the upper region. We again do not report RMSE for

vorticity in this example as the vorticity is not well-defined over the entire region we consider.

In summary, in this experiment we showed a situation in which the SE-Helmholtz GP is at least as good as the other two

models in predicting the velocity field. It is not entirely clear what desirable reconstruction of the divergence and vorticity

field is, as they are not defined on the boundary of the two regions, and the models show substantially different properties.

Finally, we note that this field violates the modeling assumptions made by the the two GP models (particularly continuity)

and further modeling innovation is likely needed to improve fidelity in examples like this one.
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I.1.3. SIMULATED EXPERIMENT 3: AREAS OF CONCENTRATED DIVERGENCE

For this experiment, we consider three different scenarios, differing only in the size of the divergence area. In each of these,

we observe 5 buoys, each for 2 time steps. For all the scenarios, the two models perform very well. We show the results

in Figures 7 to 9. Both models reconstruct the velocity field well, see Table 2 for more details. Moreover, this field has

no vorticity and divergence that peaks at the center of the region and slowly decreases in a circular way. This behavior is

captured by both models in an accurate way. We conclude that in this important simulated experiment our model is at least

as good as the SE-velocity GP approach.

A vector field with a single diffuse area of divergence simulates the behavior of an ocean fluid flow in which the water

particles are spreading out from a particular region. This behavior can be caused by a variety of factors, such as the

movement of warm and cold water masses, or the mixing of fresh and salt water, and can lead to increase in nutrient

concentration and high primary production and biodiversity. The fluid particles in this area are not rotating in a circular

motion as in a vortex, but instead moving away from each other, resulting in a decrease in density and velocity.

Simulation details. To simulate a vector field with a divergence area in a two dimensional space, we first define a grid of

points L of size 20 x 20, equally spaced over the interval [−2, 2] × [−2, 2]. The point (0, 0) represents the center of the

divergence area. To obtain a vector field with divergence area around this point, for each point x = (x(1), x(2)) ∈ L, we can

compute the longitudinal and latitudinal velocities by:

F (1)(x) =
x(1)

bd +R2
d(x)

F (2)(x) =
x(2)

bd +R2
d(x)

with Rd(x) = ((x(1))2 + (x(2))2 being the distance from the center of divergence, and bd a parameter governing the size of

the area of divergence. Larger bd implies larger area, but also smaller value at the center. Intuitively, this parameter measures

how diffuse the divergence around a center point is. This intuition can be confirmed by computing the actual divergence

value:

δ(x) = div · F =
∂F (1)

∂x(1)
+

∂F (2)

∂x(2)
=

bd + (x(1))2 − (x(2))2

(bd +R2
d(x))

2
+

bd − (x(1))2 + (x(2))2

(bd +R2
d(x))

2
=

2bd
(bd +R2

d(x))
2
.

For the vorticity instead we have

ζ(x) = curl · F =
∂F (1)

∂x(2)
−

∂F (2)

∂x(1)
=

−2(x(1))(x(2))

(bd +R2
d(x))

2
+

2(x(1))(x(2))

(bd +R2
d(x))

2
= 0.

The goals for each model then are to (1) reconstruct the velocity field in an accurate way, (2) predict that there is a divergent

area and its size, and (3) predict zero vorticity. Finally note that in this experiment, we propose three different scenarios,

where the only difference is how diffuse the divergence areas are. Specifically, we run three different experiments with

bsmall = 0.4, bmedium = 2, and bbig = 15.

As before, our observations are simulated buoy trajectories. For each scenario the simulation part is the same. We simulate 5

buoys, starting in the non-divergent areas, observed for a total time of 3, and we consider 2 time steps. Overall we have 10

observations. As usual, to get these trajectories we solve the velocity-time ODE and interpolate.

Model fitting. For each of the three scenarios, we fit the three models with the routine specified in Appendix I.1.1. The

hyperparameter initialization for both GPs is always the same across the three different scenarios: ℓΦ = 1, σΦ = 1, ℓΨ =
2.7, σΨ = 0.368, σ2

obs = 0.135 for the SE-Helmholtz GP, ℓ1 = 1, σ1 = 1, ℓ2 = 2.7, σ2 = 0.368, σ2
obs = 0.135 for the

SE-velocity GP. We provide the optimal hyperparameters for each scenario in the corresponding subsections.

Result: small divergence area, bsmall = 0.5. The optimal hyperparameters in this scenario are the following:

• ℓΦ = 1.1314, σΦ = 1.9422, ℓΨ = 5.3132, σΨ = 0.1864, σ2
obs = 0.1821 for the SE-Helmholtz GP

31



Gaussian Processes at the Helm(holtz)

• ℓ1 = 0.5078, σ1 = 1.6570, ℓ2 = 2.7183, σ2 = 1.8658, σ2
obs = 0.1396 for the SE-velocity GP.

In Figure 7 we show the results of this scenario. As before, for each of the plots, the horizontal and vertical axes

represent, respectively, latitude and longitude. The first row represents the ground truth simulated vector field (left), and

the reconstruction using the SE-Helmholtz GP (center-left), the SE-velocity GP (center-right) and the D-HNN (right). Red

arrows are the observed buoy data, black arrows show the predicted current at test locations. All three models have

some problems in reconstructing the underlying field. The two GPs are particularly problematic, because they predict

constant strong current that abruptly stops in regions where there are no buoys. The predictions are particularly bad for the

SE-velocity GP, which fails to understand the direction and size of the current in most of the region. The D-HNN prediction

is the one that looks better here, but it is still problematic in the sense that far away from the buoys the current starts to

rotate. The plots in the second row showing the difference from the ground truth show that all these models provide poor

performances on this task. In terms of RMSE, we have 1.11 for the SE-Helmholtz GP, 1.25 for the SE-velocity GP, and

0.67 for the D-HNN, confirming that our model performs much better.

In the third row, we analyze the divergence. The left box shows the divergence structure of this field. As described in the

preamble, since bd is small, we have a small area of divergence with big magnitude. The two GP models identify this area.

The SE-velocity GP is more accurate in predicting the size of the divergence area. The SE-Helmholtz GP predicts that

there is a divergence area in the middle and gets the correct magnitude, but predicts it to be larger than it actually is. If we

consider the z-value plots, we can see that this intuition is confirmed: the SE-velocity GP predicts only a small area to have

significant non-zero divergence, whereas our model overestimates the size of this area. The prediction of the D-HNN is

less accurate. In terms of RMSEs, we have 2.62 for the SE-Helmholtz GP, 1.45 for the SE-velocity GP, and 4.14 for the

D-HNN.

In the last three rows of the plot we have, as usual, the vorticity analysis. The left box shows the ground truth. Here

the SE-Helmholtz GP perfectly predicts zero vorticity, and the D-HNN is almost correct too. The SE-velocity GP, on the

contrary, predicts very irregular vorticity, with very high uncertainty. If we consider the z-value plots, we see there is

one region (in the center) where the vorticity is predicted to be non-zero in a significant manner. This is a problematic

behavior that the SE-velocity GP has and our model has not. We have 0.0 RMSE for the SE-Helmholtz GP, 1.07 for the

SE-velocity GP, and 0.31 for the D-HNN.

Result: medium divergence area, bsmall = 5. The optimal hyperparameters in this scenario are the following:

• ℓΦ = 1.9387, σΦ = 1.2387, ℓΨ = 2.3894, σΨ = 0.2192, σ2
obs = 0.0675 for the SE-Helmholtz GP

• ℓ1 = 1.6067, σ1 = 0.8181, ℓ2 = 2.7183, σ2 = 0.9859, σ2
obs = 0.0742 for the SE-velocity GP.

Figure 8 shows the results of this scenario. In the top part we have as always the velocity predictions. Since the divergence

area is more diffuse, both the velocity of the current and the lengthscale of variation are smaller, in the sense that there are

less sharp deviations. Compared to the previous scenario, this property of the field makes the prediction task easier for all

three models. In particular, the SE-Helmholtz GP and SE-velocity GP predict a field that almost resembles identically the

ground truth. The D-HNN still has some issues, specifically it predict some rotations far away from the observations. This

behavior can be seen by looking at the difference from ground truth in the second row. We have the following RMSEs: 0.17
for the SE-Helmholtz GP, 0.19 for the SE-velocity GP, and 0.55 for the D-HNN.

For the divergence, by looking at the ground truth plot on the left, we see the area of divergence is now more diffuse, and the

magnitude is lower. Both the SE-Helmholtz GP and the SE-velocity GP predict this area accurately, both in terms of size

and magnitude (they both predict this area to be a bit larger than it actually is). The D-HNN picks up divergence in a very

irregular way. In terms of uncertainty, both GP models are more certain about their predictions around the buoys, and the

z-values reflect this behavior: the area where the divergence is significantly different from zero (z-value above 1) is almost

identical to the actual ground truth. The RMSEs are: 0.39 for the SE-Helmholtz GP, 0.33 for the SE-velocity GP, 1.32 for

the D-HNN.

For the vorticity, we observe that the performances of all models are now worse. The SE-Helmholtz GP still predicts

vorticity very close to zero almost everywhere, but not exactly zero as before. The predictions for the SE-velocity GP still

look less accurate and irregular. The D-HNN performance is very poor. In terms of uncertainty, the SE-Helmholtz GP has

low uncertainty about its prediction, and this leads to an area where there is significantly non-zero vorticity (in terms of
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z-value). This behavior is somehow problematic, but note that the predicted mean is in absolute value very close to zero in

that area too. The z-value for the SE-velocity GP is as in the previous scenario, predicting significantly non-zero divergence

in an area where the mean is quite distant from zero. Again, this is a very undesirable behavior. The RMSEs are: 0.05 for

the SE-Helmholtz GP, 0.12 for the SE-velocity GP, 0.38 for the D-HNN.

Result: big divergence area, bsmall = 15. We finally study the last scenario, with the big area of divergence. The optimal

hyperparameters in this scenario are the following:

• ℓΦ = 3.3732, σΦ = 0.8362, ℓΨ = 14.7644, σΨ = 0.0659, σ2
obs = 0.0074 for the SE-Helmholtz GP

• ℓ1 = 2.3456, σ1 = 0.3376, ℓ2 = 2.7183, σ2 = 0.3355, σ2
obs = 0.0055 for the SE-velocity GP.

In Figure 9 we show the results of this scenario. Here the divergence areas are even more diffuse, and this seems to help a

lot the SE-Helmholtz GP predictions but not so much the other methods.

For the velocity prediction task, the three models produce predictions that are close to the truth. It is clear, however, that

the predictions of the SE-Helmholtz GP are more precise, whereas both the SE-velocity GP and D-HNN predict some

rotational shapes that should not be there. This result is confirmed by the RMSE: 0.04 for the SE-Helmholtz GP, 0.10 for

the SE-velocity GP, and 0.19 for the D-HNN.

In terms of divergence, predictions for the two GP models are similar, but our model is slightly better at predicting the full

size of the region, with low uncertainty. The D-HNN prediction is again poor. The z-values show how in the central area,

both models significantly predict non-zero divergence, but further away in the corners z-values get closer and closer to zero.

This behavior is due to the distribution of the buoys’ observations. The RMSEs are: 0.05 for the SE-Helmholtz GP, 0.12 for

the SE-velocity GP, and 0.27 for the D-HNN.

Finally, if we consider the vorticity, we can see how here the SE-Helmholtz GP is superior to the other two methods, as in

the two previous scenarios. It is able to detect that there is no vorticity, with very low uncertainty. The SE-velocity GP, on

the contrary, predicts non-zero positive vorticity in the left side of the plot, and non-zero negative vorticity in the right side.

These predictions are with low uncertainty and hence significant, as can be seen by looking at the z-values plot (most of the

domain has z-values beyond the thresholds +1 and -1). The prediction with D-HNN is in similar to the SE-velocity GP one.

The RMSEs are: 0.0 for the SE-Helmholtz GP, 0.10 for the SE-velocity GP, and 0.11 for the D-HNN.

In general, we saw how in these experiment the SE-Helmholtz GP is at least as good as the other two methods in almost all

the velocity prediction tasks, as good as the SE-velocity GP for the divergence tasks, and remarkably better in predicting

that there is no vorticity.
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I.1.4. SIMULATED EXPERIMENT 4: DUFFING OSCILLATOR WITH AREAS OF CONCENTRATED DIVERGENCE

The Duffing oscillator is a nonlinear dynamic system that can be used to study the dynamics of oceanic phenomena such as

tides and currents. In this experiment, we add to this system a divergence area on the left region and a convergence area on

the right one. See top-left plot in Figure 10. In this way we obtain a field that has both divergence (positive on the right,

negative on the left), and vorticity (for the underlying Duffing system).

Simulation details. To simulate a Duffing oscillator in a two dimensional space, we first define a grid of points L of size

30 x 30, equally spaced over the interval [−4, 4] × [−4, 4]. Next, for each point x = (x(1), x(2)) ∈ L, we compute the

Duffing longitudinal and latitudinal velocities by:

F̃ (1)(x) = x(2)

F̃ (2)(x) = (x(1) − 0.1 ∗ (x(1))3) ∗ (1 + 0.1 ∗ cos(50 ∗ π/4)).

On top of this field we add a divergent field at location (−3, 0), using equations:

D(1)(x) =
(x(1) − (−3))

bd +R2
d(x)

D(2)(x) =
x(2)

bd +R2
c(x)

with Rd(x) = (x(1) − (−3))2 + (x(2) − 0)2 being the distance from the center of divergence, and bd a parameter governing

the size of the area of divergence. Larger bd implies larger area, but also smaller value at the center. It can be seen as a

parameter measuring how diffuse the divergence around a center point is. We also have a convergent field around (3, 0),
determined by the equations:

C(1)(x) = −
(x(1) − 3)

bc +R2
d(x)

C(2)(x) = −
(x(2))

bc +R2
c(x)

with Rc(x) = (x(1) − 3)2 + (x(2) − 0)2, the distance from the center of convergence. To get the full velocity field, we sum

up these three quantities:

F (1)(x) = F̃ (1)(x) +D(1)(x) + C(1)(x)

F (2)(x) = F̃ (2)(x) +D(2)(x) + C(2)(x).

In this system, the divergence and vorticity do not have a simple form, but can be calculated. For the sake of our divergence

analysis, it is sufficient to say that there are two areas of interest, around the center of divergence and convergence. In this

experiment, we propose three different scenarios, where the only difference is how diffuse the divergence areas are. For

simplicity, we assume b = bc = bd, and we run three different experiments with bsmall = 0.5, bmedium = 5, and bbig = 15.

As done before, to predict currents, divergence, and vorticity we simulate buoys. For each scenario the simulation part is the

same. We first simulate 3 buoys, starting in the non-divergent areas, observed for a total time of 5, and 2 time steps. We then

simulate 4 additional buoys, starting around the divergent areas, for a total time of 5, and 4 time steps. That is, we make

observations coarser for buoys in these regions. Overall we have 22 observations. As usual, to get these observations we

solve the velocity-time ODE and interpolate.

Model fitting. For each of the three scenarios, we fit the three models with the routine specified in Appendix I.1.1.

The hyperparameter initialization for both GPs is the same across the three different scenarios: ℓΦ = 1, σΦ = 1, ℓΨ =
2.7, σΨ = 0.368, σ2

obs = 0.135 for the SE-Helmholtz GP, ℓ1 = 1, σ1 = 1, ℓ2 = 2.7, σ2 = 0.368, σ2
obs = 0.135 for the

SE-velocity GP. We provide the optimal hyperparameters for each scenario in the corresponding subsections.

Result: small divergence area, bsmall = 0.5. The optimal hyperparameters in this scenario are the following:
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• ℓΦ = 0.6335, σΦ = 0.3734, ℓΨ = 3.9115, σΨ = 6.9294, σ2
obs = 0.0083 for the SE-Helmholtz GP

• ℓ1 = 0.7212, σ1 = 1.8767, ℓ2 = 2.7183, σ2 = 1.1361, σ2
obs = 0.0084 for the SE-velocity GP.

In Figure 10 we show the results of this scenario. As before, for each of the plots, the horizontal and vertical axes

represent, respectively, latitude and longitude. The first row represents the ground truth simulated vector field (left), and

the reconstruction using the SE-Helmholtz GP (center-left), the SE-velocity GP (center-right) and the D-HNN (right). Red

arrows are the observed buoy data, black arrows show the predicted current at test locations. First of all, we can see how

our method predicts accurately the duffing structure in the left part of the plot, whereas has some issues in the right one,

where we have the convergence area. The SE-velocity GP prediction is more problematic: the correct current is predicted

around the buoys, but farther away the prediction goes to zero, reverting to the prior mean. This is a problematic behavior,

e.g., because it predicts very non-continuous currents. The D-HNN prediction is problematic as well: the current looks

more continuous, but the general shape is very different from the ground truth. This behavior can be seen well from the

second row, the comparison to the ground truth. In terms of RMSE, we have 0.96 for the SE-Helmholtz GP, 2.05 for the

SE-velocity GP, and 2.14 for the D-HNN, confirming that our model performs much better.

In the third row, we analyze the divergence. The left box shows the divergence structure of this field. There is a small area

with very positive divergence on the left, and a small area with very negative divergence on the right. The two GP models

are good at identifying these areas. At the same time, they both predict some other areas of divergence around the observed

buoys. Nonetheless, if we consider the z-value plots (on the fifth row) we can see how the z-values for both models are very

high in the two areas of divergence, meaning that there is a strongly significant non-zero mean in those areas, as desired.

The D-HNN predicts a quite different divergence structure. The RMSEs are: 0.94 for the SE-Helmholtz GP, 0.95 for the

SE-velocity GP, and 1.89 for the D-HNN.

Finally, in the last three rows we analyze results for the vorticity. The left box shows the ground truth. Here the

SE-Helmholtz GP prediction looks more accurate than the other two. Nonetheless, even our model is not fully able to

capture the full vorticity structure. The predictions for the SE-velocity GP look particularly problematic because it is highly

affected by the location of the buoys, and that is reflected in the uncertainty and z-values plots. The D-HNN predicts a very

different field on this task as well. The RMSEs are: 1.40 for the SE-Helmholtz GP, 2.28 for the SE-velocity GP, and 2.64
for the D-HNN.

Result: medium divergence area, bsmall = 5. The optimal hyperparameters in this scenario are the following:

• ℓΦ = 1.2029, σΦ = 0.1666, ℓΨ = 3.3679, σΨ = 9.5514, σ2
obs = 0.0112 for the SE-Helmholtz GP

• ℓ1 = 6.7677, σ1 = 4.5316, ℓ2 = 2.7183, σ2 = 23.3219, σ2
obs = 0.0305 for the SE-velocity GP.

Figure 11 shows the results of this scenario. In the top part we have as always the velocity predictions. In this case, the

ground truth field is very similar to before, but the divergence areas are more diffuse, and hence the current has generally

longer lengthscale of variation (that is, the deviations are less sharp). This feature helps the predictions for all three methods.

We can see indeed how now the three models produce predictions that are closer to the truth than before. Still, by looking at

the difference from ground truth plots, we can see that the prediction of our model is slightly better than the SE-velocity GP,

and significantly better than the D-HNN. We have the following RMSEs: 0.19 for the SE-Helmholtz GP, 0.60 for the

SE-velocity GP, and 1.65 for the D-HNN. These confirm what can see visually in the plots.

In terms of divergence, by looking at the the ground truth plot on the left, one can immediately notice how the areas of

divergence are now more diffuse, and the magnitudes are lower. The SE-Helmholtz GP predicts accurately the two areas,

with some noise in the central region. The SE-velocity GP is less accurate, but overall understand that there are these two

areas. The D-HNN fails in identifying the two regions. It is interesting to observe the z-value plots in this experiment: for

the SE-Helmholtz GP, the z-values are very high in the two desired areas, meaning that our model is very certain about

divergence being different from zero in those areas. For the SE-velocity GP, the z-values still look good, just less accurate

than for our model. The RMSEs are: 0.14 for the SE-Helmholtz GP, 0.50 for the SE-velocity GP, and 1.15 for the D-HNN.

Finally, we consider the vorticity. Here the two GP models agree significantly on the shape of their predictions, and they

are both very similar to the ground truth. This result is reflected in the RMSEs: 0.24 for the SE-Helmholtz GP, 0.26 for

the SE-velocity GP. The prediction for the D-HNN is far from the truth (RMSE 2.39). The uncertainty is lower close to
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the data for both GP models. In general, both GP models seem to work well in recovering divergence and vorticity in this

scenario. The SE-Helmholtz GP is superior for the divergence, the SE-velocity GP for the vorticity.

Result: big divergence area, bsmall = 15. The optimal hyperparameters in this scenario are the following:

• ℓΦ = 2.9194, σΦ = 0.4599, ℓΨ = 3.2411, σΨ = 10.1815, σ2
obs = 0.0137 for the SE-Helmholtz GP

• ℓ1 = 7.3457, σ1 = 4.0581, ℓ2 = 2.7183, σ2 = 24.7519, σ2
obs = 0.0202 for the SE-velocity GP.

In Figure 12 we show the results of this scenario. Here the divergence areas are even more diffuse, and the overall field ends

up having longer lengthscale of variation. The results on velocity predictions, divergence, and vorticity are aligned with the

medium size scenario.

For the velocity prediction task, the three models produce predictions that are close to the truth. Now the two GP models are

similar, as can be seen in the difference from the truth plots, and they are both significantly better than the D-HNN. This

result is confirmed by the RMSEs: 0.41 for the SE-Helmholtz GP, 0.22 for the SE-velocity GP, and 1.63 for the D-HNN.

In terms of divergence, the SE-Helmholtz GP accurately predicts the two areas of divergence, still with some noise in the

central region. The SE-velocity GP is less accurate, especially in the top right region, but overall understand that there are

these two areas. The D-HNN prediction is poor. As in the past experiment, it is interesting to observe the z-value plots: both

GP models have very high z-values in the areas of divergence, proving their ability to capture the locations of these. The

RMSEs are: 0.08 for the SE-Helmholtz GP, 0.17 for the SE-velocity GP, 1.10 for the D-HNN.

Finally, also if we consider the vorticity, the results are similar to the previous scenario. Predictions are good for the two

GPs, with meaningful z-values. Now the SE-velocity GP predictions align almost perfectly with the ground truth, and this is

reflected in the lower RMSE (0.16 vs. 0.48 for the SE-Helmholtz GP). The D-HNN still fails to predict structure precisely

(2.41 RMSE)

In summary, with this experiment we showed that the SE-Helmholtz GP is generally better than the other models in

predicting the underlying velocity field (significantly better in the first scenario). In terms of divergence and vorticity, we do

not see a large difference compared to the SE-velocity GP: both models are very good; SE-Helmholtz GP is slightly better

for the divergence and SE-velocity GP is slightly better for the vorticity. This behavior is very interesting, showing how

both models are able to predict a complex divergence pattern (more complex than the previous experiment).
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I.2. Real-world data 1: LASER

The LAgrangian Submesoscale ExpeRiment, or LASER (Novelli et al., 2017), was performed in the Gulf of Mexico in

January-February 2016. Around 10 million data points were retrieved from more than 1000 near-surface biodegradable

CODE-type ocean drifters (drogued at a depth of one meter) tracked in real-time using SPOT GPS units. These data were then

preprocessed as described in Yaremchuk & Coelho (2014). Finally, since satellite data can have errors and positions of buoys

sometimes jump an unrealistic amount, oceanographers removed some bad points that were visible by eye. The preprocessed

data are available at https://data.gulfresearchinitiative.org/data/R4.x265.237:0001 (D’Asaro

et al., 2017). In our analysis, we use locations and velocities of buoys as they appear in this dataset.

The main goal of the experiment was to obtain data to understand the submesoscale ocean currents in the open ocean

environment near the DeSoto Canyon, as well as how oil or other pollutants might be transported via these currents. In our

analysis, we consider a subsample of the LASER data, in an area where the oceanographers expect a convergent front to be

(from visual inspection of drifter data). This particular structure in the ocean happens when there are two different masses of

water that collide and cause the formation of an area where water sinks. This behavior could happen when two water masses

with different temperatures and/or salinities meet, or when water masses from different directions go towards the same

area, such as the meeting of warm equatorial water and cold polar water. These fronts are very important for understanding

ocean circulation and weather patterns, and can also be a source of nutrients for marine life. To study this structure, we

consider two experiments: in the first one, we run our model on a small subset of buoys from this region, collapsing the time

dimension and downsampling the observations. To confirm our finds, we then run our models on a dataset that contains

more buoys and observations, still from that region.

I.2.1. LASER, CONVERGENT FRONT, SPARSE

In this analysis, we consider 19 buoys, observed every fifteen minutes over a two hour time horizon. By downsampling by a

factor of 3 and collapsing the time dimension, we obtain 55 observations. In these data, oceanographers expect to see a clear

convergent front in the left region of the spatial domain.

Model fitting. The optimization routine is exactly the same that we do for the simulated experiments: gradient-based

Adam algorithm until convergence or a sufficient amount of iterations has elapsed. For the initial hyperparameters, we

have tried various alternatives, and found out that the predictions do not change significantly. Hence, for coherence,

we stick to the usual initialization done for synthetic data, i.e., ℓΦ = 1, σΦ = 1, ℓΨ = 2.7, σΨ = 0.368, σ2
obs = 0.135

for the SE-Helmholtz GP, and ℓ1 = 1, σ1 = 1, ℓ2 = 2.7, σ2 = 0.368, σ2
obs = 0.135 for the SE-velocity GP. The

optimal hyperparameters obtained are: ℓΦ = 1.6032, σΦ = 0.0496, ℓΨ = 13.3272, σΨ = 1.6392, σ2
obs = 0.0232 for the

SE-Helmholtz GP, and ℓ1 = 8.3149, σ1 = 0.1384, ℓ2 = 2.7183, σ2 = 0.1318, σ2
obs = 0.0276

Results. We show the results in Figure 13. The top row shows the predictions for the three models. As before, red arrows

are the observed buoy data. The black arrows show the current posterior means at test locations. The test locations are 400

points evenly sparse on a 20 x 20 grid that covers the full range of latitude and longitude of our buoys’ observations. The

three models produce very similar results: a quasi-constant flow towards the south-west area of the region. There is a slight

difference in prediction for the region where buoys seem to converge (SE-velocity GP and D-HNN do not predict different

current around there, SE-Helmholtz GP predicts a more converging behavior).

This difference is clear when we look at the posterior divergence plots, in the second row. Our model predicts a negative

divergence area (in light-blue) in the area where the oceanographers expect a convergent front. On the contrary, the

SE-velocity GP predicts no divergence on the whole spatial domain. This is a very important difference, showing how our

model can perform better in recovering this very important property of the ocean. Note that this same intuition is confirmed

if we look at the fourth row, where we have z-value plots for both models: the z-values for the SE-Helmholtz GP around the

expected convergent front are strongly negative, meaning that the divergence there is significantly non-zero, as desired.

For the vorticity, we just have very small values, almost zero, for both models. Unfortunately, there is no oceanographic

knowledge to predict the vorticity far away from the observed drifter traces, and therefore we can not conclude anything

related to this point.
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I.2.2. LASER, CONVERGENT FRONT, FULL

To further validate the result on the divergence, we consider the same buoys floating over a nine hour time horizon,

downsampled by a factor of 3, obtaining 240 observations. We fit our models by performing the usual optimization routine,

and we plot the results in Figure 14.

In the top row we show the prediction results. For all the models, the predictions around the buoy agree almost perfectly with

predictions from the sparse experiment for the SE-Helmholtz GP; further away models, are more conservative and closer

to the prior. The divergence plots in the second row are of the most interest. The prediction according to SE-velocity GP

changes remarkably relative to the past experiment. Now it matches closely the Helmholtz result, and both methods detect

the convergent front. This result shows the strength of our model in being more data efficient, a very desirable property for a

GP model.
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I.3. Real-world data 2: GLAD

The Grand Lagrangian Deployment (GLAD) experiment (Özgökmen, 2012) is another experiment conducted in the northern

Gulf of Mexico in July 2012. More than 300 custom-made buoys (of the same type as in the LASER experiment) were

deployed near the Deepwater Horizon site and Louisiana coast. This experiment was originally intended to help advance

research in understanding the spread and dispersion of oil after the Deepwater Horizon tragedy. Researchers have been

using this dataset to study interactions among ocean flows, the levels of influence on transport that large and small flows

have, and the size of oil spread at which large flows dominate. Since the GLAD experiment was conducted in the summer

time with a shallow 20-meter surface mixed layer for the buoys, the wind has a very strong impact on the trajectories,

creating a lot of oscillations. These oscillations are due to a balance of forces due to wind forcing and Earth’s rotation, and

get amplified during summer time. Filtering these oscillations is a very complicated task, so this wind-induced motions

represent a true problem for buoys that are used for measuring oceanographic parameters. Note that we do not see these

issues with the LASER data, because that was a winter experiment, where the surface layer is 100-meter deep and devoid of

these oscillations.

Model fitting. To deal with this issue, we consider a limited subset of our dataset. We take drifter traces of 12 buoys,

observed hourly over a four days time horizon. We collapse the time dimension and downsample these traces by a factor 50,

obtaining 85 observations. In terms of optimization routine, we follow very similarly what done in all the other experiments.

The only difference is that here different hyperparameter optimization led to different prediction plots for some combinations.

In our final results, we decided to stick to the hyperparameter initialization for which both the SE-Helmholtz GP and the

SE-velocity GP results were visually more appealing. These are ℓΦ = 12.18, σΦ = 0.135, ℓΨ = 7.4, σΨ = 3, σ2
obs = 0.135

for the SE-Helmholtz GP, ℓ1 = 2.7, σ1 = 1, ℓ2 = 2.7, σ2 = 1, σ2
obs = 0.135 for the SE-velocity GP.

The optimal hyperparameters obtained after the optimization routine are ℓΦ = 45.6840, σΦ = 0.0362, ℓΨ = 80.1871, σΨ =
13.5514, σ2

obs = 0.1715 for the SE-Helmholtz GP, and ℓ1 = 72.5835, σ1 = 0.2622, ℓ2 = 2.7183, σ2 = 0.1354, σ2
obs =

0.1739 for the SE-velocity GP.

Results. In these data, we expect to see a continuous current with no sharp deviations (i.e., lengthscale of variation is

long), with few smaller vortices distributed across the region. Unfortunately, here there is no explicit divergence structure

that oceanographers expect, so any conclusion from the divergence and vorticity plots is difficult to verify. We show the

results of the experiments in Figure 15. We have the predictions in the first row. As before, red arrows are the observed buoy

data. The black arrows show the current posterior means at test locations. First of all, the D-HNN model makes physically

implausible predictions, likely due to the sparse nature of the data on a large domain. For the GP models, both prediction

plots look reasonable, but there are two regions of interest showing important issues with the SE-velocity GP. Consider the

bottom right corner. Despite evidence of a strong current making a u-turn, the standard approach shows an abrupt drop

in current away from observed data. Our method, on the contrary, predicts a strong current connecting across drifters, in

accordance with the continuity of currents (the idea that when a fluid is in motion, it must move in such a way that mass is

conserved). This behavior is very problematic. Consider then the top-left corner. Flow behavior around the observations

suggests that there might be a vortex in that region. The standard approach shows none. With the SE-Helmholtz GP, instead,

we can see the expected vortex between the two lines of current.

To further prove our point, we increase the number of observations to 1200, by decreasing the downsampling factor, and we

re-fit the two models with the same optimization routine. The velocity prediction results are included in the first row of

Figure 16. Here we can see that our model starts being affected by the oscillations in the data, predicting currents with shorter

lengthscale of variation. But also it is still able to reconstruct a continuous current, also far away from the observations,

with some vortices with shorter length scale. For the SE-velocity GP, the discontinuity issues increase significantly, and the

model is still unable to detect vortices. These are two strong motivations to believe the SE-Helmholtz GP provides a better

alternative for this task. The prediction of the D-HNN remains poor.

In terms of divergence and vorticity reconstruction on the sparse dataset, the SE-Helmholtz GP predicts very small divergence

almost everywhere, and vorticity coherent with the buoys trajectories. The SE-velocity GP, instead, predicts a reasonable

vorticity field, but the divergence shows irregular patterns that look more suspicious. See the second and third blocks

in Figure 15 for a visual comparison. By looking at the data, we can see how there are regions on the left where buoys

observations seem to be more affected by the oscillations. The SE-velocity GP is more influenced by this noise than our

model, and hence predicts divergence areas around the buoys. This claim can be validated by looking at the plots when

the dataset size increases. See the second and third blocks in Figure 16. Here, both models seem to be affected more
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by the oscillations, but the SE-Helmholtz GP still predicts divergence closer to zero, whereas the SE-velocity GP predicts

divergence areas around each conglomerate of buoys in the region. Therefore, we can conclude that our model is at least as

good as the SE-velocity GP. Note that we cannot say anything stronger, because there is no expert knowledge suggesting

that the SE-Helmholtz GP behavior is the expected one.
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