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Automatic differentiation variational inference (ADVI) offers fast and easy-to-use poste-
rior approximation in multiple modern probabilistic programming languages. However,
its stochastic optimizer lacks clear convergence criteria and requires tuning parameters.
Moreover, ADVI inherits the poor posterior uncertainty estimates of mean-field variational
Bayes (MFVB). We introduce “deterministic ADVI” (DADVI) to address these issues.
DADVI replaces the intractable MFVB objective with a fixed Monte Carlo approximation,
a technique known in the stochastic optimization literature as the “sample average ap-
proximation” (SAA). By optimizing an approximate but deterministic objective, DADVI
can use off-the-shelf second-order optimization, and, unlike standard mean-field ADVI, is
amenable to more accurate posterior covariances via linear response (LR). In contrast to
existing worst-case theory, we show that, on certain classes of common statistical prob-
lems, DADVI and the SAA can perform well with relatively few samples even in very high
dimensions, though we also show that such favorable results cannot extend to variational
approximations that are too expressive relative to mean-field ADVI. We show on a variety
of real-world problems that DADVI reliably finds good solutions with default settings (un-
like ADVI) and, together with LR covariances, is typically faster and more accurate than
standard ADVI.
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1. Introduction

The promise of “black-box” Bayesian inference methods is that the user need provide only
a model and data. Then the black-box method should take care of approximating the
posterior distribution and reporting any summaries of interest to the user. In settings
where Markov chain Monte Carlo (MCMC) faces prohibitive computational costs, users of
Bayesian inference have increasingly turned to variational methods. In turn, to improve
ease of use in these cases, researchers have developed a variety of “black-box variational
inference” (BBVI) methods (Ranganath et al., 2014; Blei et al., 2017). “Automatic dif-
ferentiation variational inference” (ADVI) represents a particularly widely used variant of
BBVI (Kucukelbir et al., 2017), available in multiple modern probabilistic programming
languages.

However, researchers have observed that BBVI methods can face challenges with both
automation (Dhaka et al., 2020; Welandawe et al., 2022) and accuracy (MacKay, 2003, Ex-
ercise 33.5; Bishop, 2006, Chapter 10.1.2; Turner and Sahani, 2011; Huggins et al., 2020,
Propositions 3.1-3.3). In particular, BBVI takes an optimization-based approach to approx-
imate Bayesian inference. The optimization objective in a typical BBVI method involves
an intractable expectation over the approximating distribution. Most BBVI algorithms,
including ADVI, avoid computing the intractable expectation by using stochastic gradient
(SG) optimization, which requires only unbiased draws from the gradient of the intractable
objective. However, the use of SG is not without a price: SG requires careful tuning of the
step size schedule, can suffer from poor conditioning, and convergence can be difficult to
assess. On the accuracy side, observe that ADVI minimizes the reverse Kullback-Leibler
(KL) divergence over Gaussian approximating distributions. The especially common mean-
field variant of this scheme, where the Gaussians are further constrained to fully factorize,
notoriously produces poor posterior covariance estimates (MacKay, 2003, Exercise 33.5;
Bishop, 2006, Chapter 10.1.2; Turner and Sahani, 2011), and research suggests variants
beyond mean-field may suffer as well (Huggins et al., 2020, Proposition 3.2). In many cases,
these posterior covariance estimates can be efficiently corrected, without fitting a more
complex approximation, through a form of sensitivity analysis known as “linear response”
(LR) (Giordano et al., 2015, 2018). However, LR cannot be used directly with SG, both
because the optimum is only a rough approximation and because the objective function
itself is intractable.

The stochastic optimization literature offers a well-studied alternative to SG: the “sam-
ple average approximation” (SAA), which uses a single set of draws — shared across all
iterations — to approximate an intractable expected objective. See Kim et al. (2015) for a
review of the SAA. In fact, a number of papers have applied SAA to BBVI (Giordano et al.,
2018; Domke and Sheldon, 2018, 2019; Broderick et al., 2020; Wycoff et al., 2022; Giordano
et al., 2023). But before the present work and contemporaneous work by Burroni et al.
(2023), there had not yet been a systematic study of the efficacy of SAA for BBVI. Burroni
et al. (2023) chooses an increasing sequence of sample sizes in SAA, applied to variational
inference with the full-rank Gaussian approximation family, in order to achieve an increas-
ingly accurate approximation to the exact variational objective. In a complementary vein,
we here instead explore the promise and challenges of using SAA in BBVI with a small,
fixed number of samples — with a focus on both automation and accuracy. We call our
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method “DADVI” for “deterministic ADVI,” and we use the unmodified “ADVI” to refer
to the ADVI variational approximation optimized with SG.

When considering a general optimization problem, the case for SAA over SG may at
first look weak. In full generality, SAA and SG require roughly the same number of draws,
N, for a particular accuracy. And the total number of draws required for a given accu-
racy is expected to increase linearly in dimension (Nemirovski et al., 2009; Shapiro et al.,
2021, Chapter 5). Since SG uses each draw only once, and SAA uses each draw at each
step of a multi-step optimization routine, SAA is, all else equal, expected to require more
computation than SG in the worst-case scenario, particularly in high dimensions (Royset
and Szechtman, 2013; Kim et al., 2015). However, results in particular cases can be quite
different than these general conclusions.

We demonstrate that the SAA can be competitive with SG in BBVI applications both
theoretically and in experiments using real-world models and datasets. Theoretically, we
consider two cases common in Bayesian inference: (1) log posteriors that are approximately
quadratic, and (2) posteriors that have a “global-local” structure: roughly, there are some
(global) parameters of fixed dimension as the data set size grows, and some (local) param-
eters whose dimension grows with the data cardinality. We further assume, as is typically
the case, that the user is interested in a relatively small number of quantities of interest
that are specified in advance, as opposed to, say, the maximum value of a high-dimensional
vector of posterior means. In these cases, our theory shows that DADVI does not suffer
from the worst-case dimensional dependence that the classical SAA literature suggests. In
our experiments, we show that DADVI produces competitive posterior approximations in
very high-dimensional problems, even with only N = 30 draws, and even in models more
complex than the cases that we analyze theoretically. Notably, in high dimensions, LR
covariances are considerably more computationally efficient — and more accurate — than
fitting a more complex variational approximation, such as a full-rank normal. To our knowl-
edge, the advantages of SAA for performing sensitivity analysis, either within or beyond
Bayesian inference, have not been widely recognized.

Conversely, we show that SAA is not applicable to all BBVI methods. For example,
we show that, when using a full-rank ADVI approximation in high dimensions, the SAA
approximation leads to a degenerate variational objective unless the number of draws used is
very high — on the order of the number of parameters. The intuition behind how SAA fails
in such a case applies to other highly expressive BBVI approximations such as normalizing
flows (Rezende and Mohamed, 2015). In high dimensions, it is thus a combination of
the relative paucity of the mean-field ADVI approximation, together with special problem
structure, that makes DADVI a useful tool. Nevertheless, such cases are common enough
that the benefits of DADVI remain noteworthy.

In what follows, we start by reviewing ADVI (Section 2) and describing DADVT (Sec-
tion 3), our SAA approximation. We highlight how DADVI, unlike ADVI, allows the use of
LR covariances (Section 3.1). In Section 3.2, we demonstrate how to approximately quan-
tify DADVT’s Monte Carlo error, which arises from the single set of Monte Carlo draws,
and we note that such a quantification is not readily available for ADVI due to its use of
SG. We provide theory to support why DADVI can be expected to work in certain classes
of high-dimensional problems (Sections 4.1 and 4.2), and we provide a counterexample to
demonstrate how DADVI can fail with very expressive BBVI approximations (Section 4.3).
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In a range of real-world examples (Section 6.1), we show that DADVT inherits the generally
recognized advantages of SAA, including the availability of off-the-shelf higher-order opti-
mization and reliable convergence assessment. We find experimentally that DADVI, paired
with LR covariances, can provide comparable posterior mean estimates and more accurate
posterior uncertainties (Section 6.3) with less computation than corresponding ADVI meth-
ods (Section 6.2), including recent work that endeavors to improve and automate the tuning
of SG for BBVI (Welandawe et al., 2022), and we show that our estimates of Monte Carlo
sampling variability are accurate even for small values of N, around 30 (Section 6.5).

2. Setup

In what follows, we take data y and a finite-dimensional parameter 6 € y. We consider a
user who is able to provide software implementations of the log density of the joint distri-
bution P(y,#) and is interested in reporting means and variances from an approximation
of the exact Bayesian posterior P(0|y).

Black-box variational inference (BBVI) refers to a spectrum of approaches for approx-
imating this posterior. We focus in the present paper on ADVI, a particularly popular
instance of BBVI. Variational inference forms an approximation Q(é|n), with variational
parameters 7 € €, to P(6]y). Let N (:|u, ¥) denote a normal distribution with mean y and
covariance matrix Y. The full-rank variant of ADVI approximately minimizes the reverse
KL divergence KL (Q(:|n)||P(:|y)) between the exact posterior and an approximating family
of multivariate normal distributions:

Qg = {Q(0In) : QO0ln) = N (0]p(n), X(n))} , (1)

where n — (u(n),%(n)) is a (locally) invertible map between the space of variational pa-
rameters and the mean and covariance of the normal distribution. When we optimize 7
over this family, we will refer to the resulting optimization problem as the “full-rank ADVI
optimization problem.”

In particular, we will typically focus on the following objective function, which is equiv-
alent to the one above:

L (n) == Q(%n) [log Q(0|n)] — Q(IeE\n) [log P(0,y)] - (2)

The objective %1 (n) in Equation (2) is equivalent to the KL divergence KL (Q(-|n)||P(:|y))
up to log P(y), which does not depend on 7, so that minimizing %1 (1) also minimizes the
KL divergence. The negative of the objective, — %1 (1), is sometimes called the “evidence
lower bound” (ELBO) (Blei et al., 2017).

To avoid degeneracy in the objective, typically one transforms any model parameters
with restricted range before running the optimization — and performs the reverse trans-
formation after. E.g., we might take the logarithm of any strictly positive parameters so
that their transformed range is the full real line; see Kucukelbir et al. (2017) for further
details. Therefore, we will henceforth assume that Qg = R”¢ and P(6) is supported on
all RP¢. Then in the full-rank case, 1 contains both the mean and some unconstrained
representation of a Dg-dimensional covariance matrix, so that n € RDPo+Do(Do+1)/2
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The mean-field variant of ADVI restricts ¥(n) to be diagonal.! That is, take the ap-
proximating family Qg to consist of independent normals with means x € RP? and log
standard deviations ¢ € RPo.

Qo = {9(9\77) Q(bln) = H/\/ Oalpta, exp(a) )} (3)

d=1
n= (Ml?' . '7MD9)T7 g = (517 s 7§D9)T7 n= (MTagT)Tv QT] = RDnv and D’r] = 2D9

For mean-field ADVI, the variational parameter nT = (u7,£T) € R?P¢. When the variational
family satisfies the mean-field assumption, we will refer to the resulting optimization prob-
lem as the “mean-field ADVI optimization problem” and its objective as the “mean-field
ADVTI objective.”

Using the expression for univariate normal entropy and neglecting some constants, the
mean-field ADVI objective in Equation (2) becomes

Dy
A = — — E 1 0 d n:= in %A . 4
vi (1) ;fd N(e\n)[OgP( ;)] and 7 aigefélnln vi (1) (4)

We would ideally like to compute 7, but we cannot optimize %1 () directly, because the
term N(Iﬁg,l )[log P(6,y)] is generally intractable. ADVI, like most current BBVI methods,
"

employs stochastic gradient optimization (SG) to avoid computing %y (n). Specifically,
ADVI uses Monte Carlo and the “reparameterization trick” (Mohamed et al., 2020) as
follows. Let Nq (Z) denote the Dy-dimensional standard normal distribution. If Z ~
-/\[std (Z )7 then

N(%n) [log P(6,y)] = /\/SE(Z) log P(p + Z @ exp(€),y)] - (5)

For compactness, we write
0(n, Z) = p+ Z © exp(§), (6)

where ® is the component-wise (Hadamard) product. For N independent draws? 2 :=
{Z1,...,ZN} from Niq (Z), we can use Equation (5) to define an unbiased estimate for the
mean-field % (n):

L (nZ) Z@—Nzlogp (1, Zn),y)- (7)

ADVI uses derivatives of %y (n|Z), with a new draw of 2 at each iteration, to estimate
7. The ADVI algorithm, which we will sometimes refer to as “ADVI” in shorthand, can

1 Technically, in the mean-field variant of ADVI, ¥(n) may sometimes be block diagonal; see Appendix A.

We elide this special case in what follows for ease of exposition. Our experiments are fully diagonal.
A subscript Z, will denote a particular member of the set %, though for the rest of the paper, subscripts
will usually denote an entry of a vector.

2
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be found in Algorithm 1. When we use the ADVI algorithm for the full-rank optimization
problem, we will write “full-rank ADVI.”

Algorithm 1 ADVI (Existing method) Algorithm 2 DADVI (Our proposal)

procedure ADVI procedure DADVI
t+0 t<0
Fix N (typically N =1) Fix N (our default is N = 30)

while Not converged do Draw &
t—t+1 while Not converged do
Draw 2 t—1t+1

AV, L (1| 2)
ay < SetStepSize(All past states)
M 4= Ne—1 — A

A+ GetStep(Avi (12) 1)
ne 4 -1+ A .
AssessConvergence( A1 (+|Z) , )

AssessConvergence(All past states) end while
end while ) < Nt
4= 1 OF 1) <= 37 Yy prgn T return Q(6|7)
return Q(0|7) end procedure
end procedure Postprocessing
Postprocessing (If possible) Compute LR covariances (Section 3.1)
Assess MC error using 11, ...,n Assess MC error (Section 3.2)
if MC Error is too high then if MC Error is too high then
Re-run with smaller / more steps Re-run with more samples in %
end if end if

3. Our Method

Our method, DADVI, will start from the same optimization objective as ADVI, but it
will use a different approximation to handle the intractable objective. As we have seen, in
ADVI, each step of the optimization draws a new random variable. The key difference in
our method, DADVI, is that the random approximation is instead made with a single set
of draws and then fixed throughout optimization. The full DADVI algorithm appears in
Algorithm 2. In the notation of Equation (7), for a particular 2, the value 7 returned by
DADVI in Algorithm 2 is given by

A := argmin Ay (n|Z). (8)
nefly

The 7/ of Equation (8) is an estimate of 7 insofar as its objective K7z (n) is a random
approximation to the true objective 251 (n). In general, the idea of DADVI can be applied
to either the mean-field or full-rank ADVI optimization problem (though see Section 4.3
below for some potential challenges when using DADVI with full-rank ADVI). In what
follows, analogously to how we refer to the ADVI algorithm, we will assume that we are
targeting the mean-field problem with DADVI unless explicitly stated that we are instead
targeting the full-rank problem.
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For DADVI, the reparameterization of Equation (5) is essential: it allows us to use
the same set of draws 2 for any value of n. With 2 fixed, A (|Z) in turn remains
fixed throughout optimization. This consistency would not be possible in general without a
reparameterization like Equation (5) to separate the stochasticity from the shape of Q(6|n).

Note that, for a given 2, all derivatives of gn (n|Z) required by either DADVTI or
ADVI can be computed using automatic differentiation and a software implementation of
logP(0,y). In this sense, both DADVI and ADVI are black-box methods. In practice,
another key difference between ADVI and DADVI is that ADVI typically draws only a
single random variable per iteration, whereas DADVI uses a larger number of draws; in
particular, the default number of draws for DADVI in our experiments will be N = 30.

We will see in what follows that using DADVT instead of ADVI can reap large practical
benefits.

3.1 Linear response covariances

We next review linear response (LR) covariances as an approximation for posterior covari-
ances of interest. We then show how DADVI accommodates LR covariances in a way that
ADVI does not. The key observation is that, since ADVI does not actually minimize a
tractable objective, sensitivity measures such as LR covariances are not available, though
they are for DADVI. To the authors’ knowledge, the availability of such sensitivity measures
for SAA but not SG is not yet a widely recognized advantage of SAA.

One well-documented failure of mean-field variational Bayes approximations (including
mean-field ADVI) is the mis-estimation of posterior variance (Bishop, 2006; Turner and
Sahani, 2011; Giordano et al., 2018; Margossian and Saul, 2023). Even in cases for which
mean-field approximations provide good approximations to posterior means (e.g. when a
Bayesian central limit theorem can be approximately applied), the posterior variances are
typically incorrect. Formally, we often find that, for some quantity of interest ¢ (6) € R,

oo 0@~ E 16@)] but var (6(0) = Var (6(8)) > 0. )

A classical motivating example is the case of multivariate normal posteriors, which we review
in Section 4.1.

LR covariances comprise a technique for ameliorating the mis-estimation of posterior
variances without fitting a more expressive approximating class and enduring the corre-
sponding increase in computational complexity (Giordano et al., 2018). Since posterior
hyperparameter sensitivity takes the form of posterior covariances, posterior covariances
can be estimated using the corresponding sensitivity of the VB approximation. Specifically,
for some ¢2(0), consider the exponentially tilted posterior, P(0|y,t) o< P(0|y) exp(tp2(0)).
When we can exchange integration and differentiation, we find that

d,E  16:10)
P(Oly1) o< P(Oly) explton(9)) = ————| = Cov (61(6),62(0)). (10)
t=0

A detailed proof of Equation (10) is given in Theorem 1 of Giordano et al. (2018); see also
the classical score estimator of the derivative of an expectation (Mohamed et al., 2020).
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Together, Equations (9) and (10) motivate the LR approximation

d K [¢1(0)] 0 E [¢:1(0)] .
Q1) _ 90l dn(t)
Lf%g;)v (¢1(0), $2(0)) = p = | (11)

*
t=0 n=n

where 7)(t) minimizes the KL divergence to the tilted posterior P(f]y,t). By applying the
implicit function theorem to the first-order condition V, %y () = 0, together with the
chain rule, Giordano et al. (2018) show that

[61(6)] 0 B [¢2(0)]

2 \—1  Q0In)
(Vs L1 () an

* *
n=n n=n

Q(9| )
L =
f%g%" (1(0), $2(0)) ot

(12)
As discussed in Giordano et al. (2018) — and demonstrated in our experiments to follow

— it can often be the case that LRCov (¢1(0), 2(0)) ~ 7§%§)|v) (1(0), ¥2(0)), even when
Q(0]n) Y
COV (61(0), $2(0)) is quite a poor approximation to 7§€§)IV) (¢1(0), $2(0)). For example, in
y

the case of multivariate normal posteriors, the LR covariances are exact, as we discuss in
Section 4.1 below. See Giordano et al. (2018) for more extended discussion of the intuition
behind Equation (11).

Unfortunately, the derivative dr(t)/dt required by Equation (11) cannot be directly
computed for ADVI. First, observe that the Hessian matrix V% L1 () in Equation (12)
cannot be computed for ADVT since neither 7 nor %y (+) is computable. One might instead
approximate V% L1 (n) with V% é\\/l (n|Z) by using additional Monte Carlo samples, and
then evaluate at the ADVI optimum. However, due to noise in the SG algorithm, the ADVI
optimum typically does not actually minimize %1 (1) nor £y (n]Z), so one is not justified
in applying the implicit function theorem at the ADVI optimum.

In contrast, DADVI does not suffer from these difficulties because its objective function
is available, and DADVI typically finds a parameter that minimizes that objective to a
high degree of numerical accuracy; one can ensure directly that 7 is, to high precision, a
local minimum of D?VI (n|Z). Therefore, we are justified in applying the implicit function
theorem to the first-order condition V, Lot (n|Z) = 0. If we follow the derivation of
Equation (12) but with Kz (n|Z) in place of L1 (n), we find the following tractable LR
covariance estimate:

0 E [¢1(0)] 0 B [4:2(0)]

G - Q(0|n)
LRgov (@(0).62(0) = ——p—| o A
n=7 n=1

where H := V?I P (n|Z) .

(13)

We note that the same reasoning that leads to a tractable version of LR covariances
applies to other sensitivity measures, such as prior sensitivity measures (Giordano et al.,
2023) or the infinitesimal jackknife (Giordano et al., 2019). Though we do not explore
these uses of sensitivity analysis in the present work, one expects DADVI but not ADVI to
support such analyses.
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3.2 Monte Carlo error estimation

In this section we show how to estimate the Monte Carlo error of the output of DADVI.
Since this estimate is based on use of the implicit function theorem, as we saw for LR
covariances, it is again not as readily available to ADVI.

Let f(n) denote some quantity of interest, such as a posterior expectation of the form
f(n) = Q(I@% : [¢1(0)] as in the previous Section 3.1. We are now interested in the sampling

variance of f(7) — f(n) due to the Monte Carlo randomness in 2. We can apply standard
asymptotic theory for the variance of M-estimators to find that this sampling variance is,
in the notation of Section 3.1, consistently estimated by

NN
N}fﬁ%)(f(")_f("))“ Wi

Vo F)THTIEHTIY, F() (14)
. 1 & _ _ .
where 3, := NZW L1 (0| Zn) Vo Lt (1] Z0)

n=1

Equation (14) is analogous to the “sandwich covariance” estimate for misspecified maximum
likelihood models (Stefanski and Boos, 2002). Indeed, the question of how variable the
DADVI estimate 7 is under sampling of 2 is exactly the same as asking how variable a
misspecified maximum likelihood estimator (or any M-estimator) is under sampling of the
data, and the same conceptual tools can be applied. To complete the analogy, our 3, plays
the role of the empirical score covariance, and H plays the role of the empirical Fisher
information.

Analogously to our discussion of LR covariances in Section 3.1, we briefly note that the
classical derivation of Equation (14) is based on a Taylor series expansion of the first-order
condition V, Aot (n]Z) =0, and so is not applicable to estimators like ADVI that do not
satisfy any computable first-order conditions.

3.3 Computational considerations

We next describe best practices in computing LR covariances and the Monte Carlo sampling
variability of the DADVI estimate. First, we delineate how to use these quantities to check
that the number of samples N is adequate. Second, we discuss how to handle the primary
computational difficulty of computing both quantities, namely the inverse of the Hessian
matrix of the DADVTI objective at the optimum.

In the postprocessing step of Algorithm 2, we recommend computing both Equation (13)
and Equation (14) for each quantity of interest. One might consider a Bayesian analysis
non-robust to sampling uncertainty if decisions based on the Bayesian analysis might change
due to the sampling uncertainty. For instance, in a typical Bayesian analysis, one might
make decisions based on how far a posterior mean is from a decision boundary in units of
posterior standard deviation. Therefore, we might expect that sampling variability could be
decision-changing if the estimated sampling variability dominated the estimated posterior
uncertainty. In turn, then, we recommend using a comparison of the estimated quantities
from Sections 3.1 and 3.2 to check the adequacy of the sample size N. If the estimated
sampling variability dominates or might generally be sufficiently large as to be decision-
changing, we recommend increasing N. In the present work we will not attempt to formalize
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nor to analyze such a procedure, although Burroni et al. (2023) and the general SAA
literature (Royset and Szechtman, 2013; Kim et al., 2015) attempt to estimate properties
of the optimization and optimally allocate computing resources in a schedule of increasing
sample sizes.

In Equations (13) and (14), the quantities 3, and V., f(7) are typically straightfor-
ward to efficiently compute with automatic differentiation, but direct computation of Ht
would incur a computational cost on the order of roughly D%, which can be prohibitive
in high-dimensional problems. However, for a given quantity of interest f(n), it suffices
for both Equations (13) and (14) to compute the D,-vector 7:[_1Vn f(n). For models with
very large D,,, we recommend evaluating "H—lvn f(n) using the conjugate gradient method,
which requires only Hessian-vector products of the form Ho (Nocedal and Wright, 1999,
Chapter 5). These products can be evaluated quickly using standard automatic differenti-
ation software. As long as the number of quantities of interest is not large, both LR and
sampling uncertainties can thus be computed at considerably less computational cost than
a full matrix inversion.

4. Considerations in high dimensions

As discussed in Section 1, classical analysis in the optimization literature argues that, in the
worst case, SAA is expected to require more computation than SG for a given approximation
accuracy. The reason is that the total number of samples required for a given accuracy scales
linearly with dimension, for both SG and SAA (Nemirovski et al., 2009; Shapiro et al.,
2021, Chapter 5). Since SAA requires more computation per sample than SG, one would
correspondingly expect SAA to require more computation than SG for the same accuracy
in high dimensional problems.

In this section we discuss why the aforementioned classical analysis of dimension de-
pendence does not necessarily apply to the particular structure of the mean-field ADVI
problem and some of its typical applications. We argue that, for problems that are ap-
proximately normal, or problems that are high dimensional due only to a having a large
number of low-dimensional “local” parameters, DADVI can be effective with a relatively
small number of samples which, in particular, need not grow linearly as the dimension of the
problem grows. In contrast, we show that SAA may be inappropriate for more expressive
BBVI approximations, such as full-rank ADVI. A key assumption of our analysis is that
the user is interested in a relatively small number of scalar-valued quantities of interest,
even though these quantities of interest may depend in some sense on the whole variational
distribution.

4.1 High dimensional normals

We will show that in the normal model, the number of samples required to estimate any
particular posterior mean do not depend on the dimension. Further, the LR covariances
from DADVI are exact, irrespective of the problem dimension, and are in fact independent
of the particular Z used. Conversely, the worst-case error in the DADVI posterior mean
estimates across all dimensions will grow as dimension grows.

10
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Take the quadratic model
1 1
logP(0,y) = —§9TA9 + BTo = —iTr (A00T) + BTo (15)

for a known matrix A € RP9*P0 and vector B € RP?, possibly depending on the data y.
Such a model arises, for example, when approximating the posterior of a conjugate normal
location model, in which case the posterior mean A~'B and covariance matrix A~ would
depend on the sufficient statistics of the data y. Additionally, as we show below, the exact
variational objective is available in closed form for the quadratic model. Of course, there
is no need for a variational approximation to a posterior which is available in closed form,
nor any need for a stochastic approximation to a variational objective which is available in
closed form. However, studying quadratic models can provide intuition for the dimension
dependence of DADVI approximations when the problem is approximately quadratic.

We first derive the exact variational objective function and its optimum. Recall our nota-
tion of Section 2, in which the variational posterior mean is denoted p and the log standard
deviation is denoted £. For compactness, we additionally write the vector of variational
standard deviation parameters as o = exp(§), where exp(-) is applied component-wise. Let
o2 be the corresponding vector of variance parameters. Note that

E [f]=p and E [007] = pu’ + Diag (0?),

Q(6ln) (6ln)
Dy
1 1
so L1 (n) = SuTAp = 50T (A® Ip)o — BTu—) logoy.
d=1

The exact optimal parameters are thus
[L —A"'B and 04 = (Add)_l/Z.

If the objective had arisen from a multivariate normal posterior, observe the variational
approximation to the mean is exactly correct, but the covariances are, in general, mis-
estimated, since 1/A4q # (A™1)4q unless the true posterior covariance is diagonal.

We next make an asymptotic argument that we can expect any particular DADVT output
to be a good estimate of the optimum of the exact objective, even for a small N.

Proposition 1 Consider any parameter dimension index d € {1,..., Dy}, selected inde-
pendently of Z. In the quadratic model, we have 67 — 5, = Op(N~V2) and jig — fia =
O,(N~12). The constants do not depend on D.

Proof We can compare the optimal parameters with the DADVI estimates. Let Z :=
% 27]:[:1 Zn. Let 2 Jenote equality in distribution and let @ ~ x%\_l denote a chi-squared
random variable with N —1 degrees of freedom. We show in Appendix B.1 that, irrespective
of the dimension of the problem,

—1/2
f=j—-60z and &ﬁ(ﬁAdd) .
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So sEz (6,°] = X2 A = Y657 and 6,7 — 6,72 = O,(N~Y2). 1t follows that
std
fia — fia = Op(N71/2) as well. [ |

The next remark suggests that, in cases with N < Dy, the worst-estimated linear
combination of means is poorly estimated; note that in choosing the worst case we can
overfit the draws 2. It follows that the behaviors for any particular element of f and &
above do not imply that DADVI performs uniformly well across all parameters.

Remark 2 In the quadratic model, we have

/\_* D
sup VT“]: E [sup VTZ]: E [\/ﬂ}z =0

E
vil],=1 o Newa(2) | r|lv]|,=1 Newa(Z) N

Nstd(Z)

In the first term of the preceding display, the division in the term (fi — 1) /6 is elementwise.
The final relation follows since vV NZ is a Dg-dimensional standard normal, so NZ7Z is a
X2D9 random variable.

Finally, we show that the LR covariances reported from DADVI are exact, regardless
of how small N is or, indeed, the particular values of Z. Recall that, by contrast, the
exact mean-field variance estimates are notoriously unreliable as estimates of the posterior
variance.

Proposition 3 In the quadratic model, we have

[ROov (0) = 4| — a1,
Q(0]9) it |,

with no % dependence.

See Appendix B.2 for a proof. Since A~! is in fact the exact posterior variance, the linear
response covariance is exact in this case irrespective of how small NV is, in contrast to o,
which can be a poor estimate of the marginal variances unless A is diagonal.

4.2 High dimensional local variables

We next show that the number of samples required for DADVI estimation grows only loga-

rithmically in dimension when the target joint distribution can be written as a large number

of nearly independent problems that share a single, low-dimensional global parameter.
Formally, we say a problem has a “global-local” structure if we have the following

decomposition:?
Y
)\1 P
O=|". | and logP(6,y) =D (v, \")+0(7), (16)
AP -

Each local parameter is, itself, a vector, so we use superscripts to distinguish local parameters, retaining
subscripts for particular elements of vectors.

12
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where \? € RP» and v € RP, and any data dependence is implicit in the functions ¢” and
£7. Here, the “global” parameters v are shared among all “observations,” and the “local”
AP parameters do not occur with one another. We assume that the dimensions D, and D)
are small, but that the total dimension Dy = D, + PD) is large because P is large, i.e.,
because there are many local parameters.

Each vector involved in the variational approximation — the variational parameter n,
the variational mean p and standard deviation o, the normal random variables Z, and the
sets Z of normal random variables — can be partitioned into sub-vectors related to the
global and local parameters. We will denote these subvectors with v and p superscripts,
respectively, so that, e.g., nT = (77, n,...,77,...,nF), and so on. We will write ;) for the
domain of 77 and Q2 for the domain of 7?.

If there were no global parameters v, then the high dimensionality would be no problem
for DADVI. Without shared global parameters, the variational objective would consist of P
completely independent Dy-dimensional sub-problems. According to the classical optimiza-
tion results referred to at the beginning of this section (e.g. Shapiro et al. (2021, Chapter 5)),
under typical regularity conditions, each of these sub-problems’ solutions could be accurately
approximated with DADVT using no more than N = O(D)) standard normal draws, each of
length D). The corresponding & for the combined problem would stack the N vectors for
each sub-problem, resulting in a % consisting again of only NV standard normal draws, each
of length PD). For this combined problem, any particular posterior mean of the combined
problem (chosen independently of 2) would then be well-estimated using only N draws,
although we would expect more adversarial quantities such as max;, sup,,,,=1 v" (7P —nP)
to be poorly estimated, as we saw in the quadratic problem (see Remark 2 in Section 4.1
above).

The goal of the present section is to state conditions under which the extra dependence
induced by the shared finite-dimensional global parameter does not depart too strongly from
the fully independent case described in the preceding paragraph. Our two key assumptions,
stated respectively in Assumptions 1 and 2 below, are that each local problem obeys a
sufficiently strong uniform law of large numbers, and that the local problems do not, in a
certain sense, provide contradictory information about the global parameters.

To state our assumptions, let us first introduce some notation. Similar to around Equa-
tion (5), we write v(n7,Z7) = u¥ + exp(§?) ® Z7, with analogous notation for A (nP, ZP).

Our first step is to write the variational objectives as the sum of “local objectives.”

Definition 1 Define the “local objective”
Dy Dy

PP, 2008, 2) = 0 (O, ) NP 27) + 3 | 06, 27 + D6
d=1 d=1

We then define its expected value fP and corresponding sample approximation fp:

N
_ R 1
P(yY pP) = E P(yY. 7Y P 7P Py FV P FPY .— P(Y. 7Y P 7P
P nP) Nstd(z)[f (", 27", ZP)], fP, 27 0P, ZP) NE:lf(% P, Zh)

13
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With these definitions in hand, we observe that the mean-field objective for this model and
its sample approximation can be written as functions of the local quantities.

P P
L) = =D PO, P), L Z)= =D P, 27, 27).
p=1 p=1
Our key assumption is that a sub-Gaussian uniform law of numbers (ULLN) applies to
each local objective.

Assumption 1 (A uniform law of large numbers applies to the local problems)
Assume that, for any § > 0, there exist positive constants Cy, Co, and Ng depending on D)
and D., but not on P such that for N > Np,

P sup
(7 mP) €S x Q)

Example 1 Recall the definition of the “local objective” given in Definition 1. Assume that
Q) x QO is compact and fP is Lipschitz. Assume that, for all parameters in Q) x QF, the
moment generating function of fP(nY,Z7,nP, ZP) is finite in a neighborhood of 0, and that

VZELI' (fp(nﬂZV,np,Zp» is finite. Then Shapiro (2003, Theorem 12 and Equation 3.17)

P, 27 P, 27) — fp(nv,np)‘ > 5) < e:=Crexp(—CaNy) .

implies that Assumption 1 holds.*

Though restrictive, the conditions of Example 1 are those that give rise to the commonly
cited linear dimensional dependence for the SAA (e.g. Nemirovski et al., 2009; Kim et al.,
2015; Homem-de Mello and Bayraksan, 2014). Similar conditions to Example 1 can be also
found in the statistics literature. For example, Wainwright (2019, Theorem 4.10) provides
a bound of the form in Assumption 1 for bounded fP with Rademacher complexity that
decreases in N. Note that ADVI objectives, like many maximum likelihood problems, are
typically over unbounded domains, with non-Lipschitz objective functions. In such cases,
one can still use Assumption 1 by showing first that an estimator converges suitably quickly
to a compact set with high probability, and then use Assumption 1 on that compact set;
see, e.g., the discussion in Section 3.2.1 of Van der Vaart and Wellner (2013). Our present
purpose is not to survey the extensive literature on circumstances under which Assumption 1
holds, only to demonstrate simple, practically relevant conditions under which the SAA does
not suffer from the worst-case dimensional dependence suggested by the SAA literature.
Next, we assume that the optima are well-defined for the local problems.

Assumption 2 (A strict minimum exists) Assume that there exists a strict optimum
at 1) in the sense that there exists a positive constant Cs, not depending on P, that satisfies

P
L) — L () > PCs |l —ills and L (n) — L (i) > Cs > In” =il
p=1

The connection between our notation and Shapiro’s is as follows. Shapiro’s a is our 1 —¢. Shapiro’s € is
our §. Shapiro’s § = 0 in our case because we assume that 7 is an exact optimum. Shapiro’s diameter
D is bounded because Q) x QF is compact. Shapiro’s L is our Lipschitz constant. Shapiro’s n is our
D, + Dy. And Shapiro’s 024« is bounded by our assumption on the variance of fp . A similar but more
detailed result can also be found in Shapiro et al. (2021, Section 5.3.2).
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As illustrated by Example 2 below, a key aspect of Assumption 2 is that each local
objective function is informative about the global parameter, so that as the dimension P
grows, the global objective function grows “steeper” as a function of n?.

Example 2 Recall Definition 1. Suppose that, for each p, the expected local objective
fP(n7,nP) is twice-differentiable and uniformly convez, in the sense that there exists a lower
bound C3 > 0 on the eigenvalues of the second derivative matrices of fP(n?,nP), uniformly
in both p and n. Then, by a Taylor series expansion,

P
* 112 xp (2
L (n) — L (1) = Cs | Pl =i l3+ Y " = illz | »
p=1

from which Assumption 2 follows. (See Appendixz C for more details.)

Theorem 4 Under Assumptions 1 and 2, for any ¢ > 0 and 6 > 0, there exists an Ny,
depending only logarithmically on P, such that N > Ny implies that

P (IW - ﬁ7||§ <4 and, for all p, |7’ — 1P

@gd)zl—a

Proof [sketch] By Assumption 2, closeness of fP(n?,n") and fp(m’g’y’np’ ZP) implies
closeness of P and 1P, and closeness of %3@1 (0 Z) and £ L1 (n) implies closeness of
77 and 17. Thus, for 7 to be close to 1), it suffices for ’fp(m,n”) — fP(, 2 0P, 2P)| <
0" simultaneously for all p, and for some &' that is a function of & and the constants in
Assumption 2. To apply a union bound to Assumption 1 requires decreasing € by a factor

of P, which requires increasing N by a factor of no more than log P.
See Appendix C for a detailed proof. [ |

The key difference between classical results such as Shapiro et al. (2021, Chapter 5) and
our Theorem 4 is that, in the classical results, N = O(P), whereas for Theorem 4, N =
O(log P). Intuitively, N need grow only logarithmically in P because the global parameters
are sharply identified, which approximately decouples the remaining local problems.

4.3 DADVTI fails for full-rank ADVI

The preceding sections demonstrated that, in certain cases, DADVI can work well to esti-
mate the optimum of the mean-field ADVI problem even in high dimensions. By contrast,
we now show that DADVTI will behave pathologically for the full-rank ADVI problem in high
dimensions unless a prohibitively large number of draws are used. The intuition we develop
for full-rank ADVT also extends to other highly expressive variational approximations such
as normalizing flows.

In forming the full-rank optimization problem, ADVI parameterizes Q(6|n) using a mean
p and a Dy x Dy matrix R in place of ¢. Formally, the full-rank approximation taking
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0(n,Z) = n + RZ in place of the mean-field reparameterization is given in Equation (6).

Letting | - | denote the matrix determinant, the KL divergence becomes
N
L1 (0| %) = SR yRRT|—i21o P(u+ RZ,,y) (17)
vi\n : 92 g N ‘ g K nY)-
n=

The preceding display can be compared with the corresponding mean-field objective in
Equation (7). For the present section, we will write A1 (n|2) = L1 (1, R)|%Z). Under
this parameterization, Cov (§) = Cov (0(n,Z)) = RRT, so the matrix R can be taken
Q(6n) Neta(Z)

to be any square root of the covariance matrix of Q(é|n). In practice, R is typically taken
to be lower-triangular (i.e., a Cholesky decomposition), though the particular form of the
square root used will not matter for the present discussion.

Suppose we are attempting to optimize the full-rank ADVI problem with DADVI when
Dy > N, so that 6 has more dimensions than there are draws Z,. Our next result shows
that, in such a case, DADVI will behave pathologically.

Theorem 5 Consider a full-rank ADVI optimization problem with Dg > N. Then, for any
w, we have infp L1 (1, R)|Z) = —o0, so the DADVI estimate is undefined.

Proof In the full-rank case, the objective function Ly (n|Z) in Equation (17) depends
on R only through the products RZ, and the entropy term, which is %log |[RRT| = log |R|.
Since N < Dy, we can write R = RZ + R*, where R? is a rank-N matriz operating on
the subspace spanned by & and R* is a rank-(Dg — N') matriz satisfying Rtz, =0 for all
n=1,...,N. Then we can rewrite the DADVI objective as

N
—~ 1
L (1| Z) = —log |k + RY| = = > log P(u+ R? Zy.y). (18)
n=1
Since supp . log |Rff + RL\ = 00, the result follows.? |

What will happen, in practice, if one tries to use DADVI in the full-rank case? Denote
the maximum a posteriori (MAP) estimate as 6 := argmax, log P(6,y), and note that the
first term on the right hand side of Equation (18) is most negative when u = 6 and R? is
the zero matrix. A zero RZ is impermissible because, when RZ is actually the zero matrix,
then RZ 4+ R* is singular, and log |Rg +RL| = —00.% However, for any € > 0 and M > 0,
we can take RQPZn = ¢Z, and R+v = Mv for any v L %, so that R is full-rank. When
W= é, one can always decrease both terms on the right hand side of Equation (18) via the
following two-step procedure. First, decrease ¢ by any amount and thereby decrease the
first term. Second, given that e, increase M by a sufficient amount to decrease the second
term as well.

5 Recall that the log determinant is the sum of the logs of the eigenvalues of R, which can be made

arbitrarily large as R varies freely.
Indeed, if R% = 0, then Q(f|n) would have zero variance in any direction spanned by 2, P(6,y) would
not be absolutely continuous with respect to Q(6|n), and the reverse KL divergence would be undefined.

6
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The degeneracy described in Theorem 5 can be avoided if one uses at least as many draws
as there are model parameters, i.e., if N > Dy. However, based on the classical optimization
results discussed above (e.g. Shapiro et al. (2021, Chapter 5)), one might expect full-rank
ADVI to require N to be on the order of Dg, since the full-rank variational parameters have
dimension of order Dg due to the inclusion of a full-rank covariance matrix. We proved
above that the classical dimension dependence of N on the dimension of the variational
parameters is unnecessarily pessimistic for certain mean-field ADVI objectives. It is an
interesting question for future work to ask whether the classical dimension dependence is
also pessimistic for the full-rank approximation: that is, whether DADVT for full-rank ADVI
actually requires N to be on the order Dy rather than D2, or somewhere in between.

Finally, we note that the failure of DADVI in the full-rank case appears to be indicative
of a general phenomenon. Any smooth function mapping the columns of % into 2y must
span an N-dimensional sub-manifold of €. If a variational approximation is rich enough
to increase the entropy to an arbitrary degree on the complement of this submanifold, then
DADVI will lead to a degenerate solution. In this sense, it is in fact the inexpressivity of
the mean-field variational assumption that allows DADVI to work in high dimensions.

5. Related work

As discussed above in Section 1, the idea of approximating an intractable optimization

objective F(n) = /\/E(Z) [f(n, Z)] by F(n|Z) = + 27]1\[:1 f(n, Zy,) is well-studied in the
std

optimization literature as the “sample average approximation” (SAA) (Nemirovski et al.,
2009; Royset and Szechtman, 2013; Kim et al., 2015; Shapiro et al., 2021, Chapter 5). A key
theoretical conclusion of the optimization literature is that, in general, SAA should perform
worse than SG in high dimensions in terms of computational cost of providing an accurate
optimum. Our theoretical results of Section 4 and experimental results of Section 6 suggest
that these general-case analyses may be unduly pessimistic for many BBVI problems, though
we believe more work remains to be done establishing guarantees for SAA applied to BBVI
in high dimensions.

The present work and the concurrent work by Burroni et al. (2023) together form the
first systematic studies of the accuracy of SAA for BBVI, though the idea of applying SAA
to BBVI has occurred several times in the literature in the context of other methodological
results (Giordano et al., 2018; Domke and Sheldon, 2018, 2019; Broderick et al., 2020;
Wycoff et al., 2022; Giordano et al., 2023). The methods and experiments of Burroni et al.
(2023) provide a complement to our present work. Burroni et al. (2023) propose and study
a method for iteratively increasing the number of draws used for the SAA approximation
until a desired accuracy is reached (see also Royset and Szechtman (2013) for a similar
approach in the optimization literature); in contrast, we keep the number of draws fixed
in our theoretical analysis and our experiments. Additionally, the models considered by
Burroni et al. (2023) are relatively low-dimensional, which allow the authors to use a very
large number of draws (up to N = 2'®¥) without incurring a prohibitive computational cost.
In contrast, almost all of our experiments in Section 6 use N = 30; only in our investigation
of Monte Carlo error in Section 6.5 do we examine changing N, and there we consider
only N up to 64. Studying relatively lower-dimensional models with a large number of
draws allows Burroni et al. (2023) to apply SAA with the full-rank approximation (see
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our discussion of the SAA with the full-rank approximation in Section 4.3). In contrast, we
emphasize the computation of LR covariances with the SAA approximation (as in Giordano
et al. (2018)) and on the use of DADVI in higher dimensions more generally. One could
imagine combining our approaches: for example, by computing the size of the sampling
error relative to the LR covariance, and increasing the number of draws as necessary as
recommended in Burroni et al. (2023), though we leave such a synthesis for future work.

6. Experiments

We consider a range of models and datasets. We find that, despite using out-of-the box
optimization and convergence criteria, DADVI optimization (using the SAA approxima-
tion) typically converges much faster than classical (stochastic) ADVI. DADVI performs
comparably to ADVI in posterior mean estimation while allowing much better posterior
covariance estimation via linear response. Upon examination of optimization trajectories,
we find that ADVI tends to eventually find better ADVI objective values than DADVI but
typically takes longer to do so. And we confirm that the sampling variability estimates
available from DADVI are of high quality, even for just tens of draws.

Below, DADVI exhibits good performance on a number of high-dimensional models.
These models do not obviously satisfy any of the theoretical conditions for good performance
of the SAA established above (Section 4). So our experimental results point to a gap between
theory and experiment that is an interesting subject for future work.

In our experiments, as in the rest of the paper, we follow the convention that “ADVI”
refers to methods that use stochastic optimization, and “DADVI” refers to our proposal of
using SAA with the ADVI objective function.

6.1 Models and data
We evaluate DADVI and ADVI on the following models and datasets.

e ARM: 53 models and datasets taken from a hierarchical-modeling textbook (Gelman
and Hill, 2006). The datasets are relatively small and the models consist of textbook
linear and generalized linear models, with and without random effects.

e Microcredit: A hierarchical model from development economics (Meager, 2019) that
performs shrinkage on seven randomized controlled trials. The model accounts for
heavy tails, asymmetric effects, and zero-inflated observations.

e Occupancy: A multi-species occupancy model from ecology (Ingram et al., 2022; Kery
and Royle, 2009). In occupancy models, the question of interest is whether a particular
species is present at (i.e. occupying) a particular site. The data consist of whether the
species was observed at repeated visits to the site. At any given visit, the species may
be present but not observed. Occupancy models estimate both (1) the suitability of
a site as a function of environmental covariates such as temperature or rainfall and
(2) the probability of observing the species given that it is present (the observation
process). The resulting likelihood makes it a non-standard regression model and thus
a good candidate for a black-box inference method. Here we use a multi-species
occupancy model that places a hierarchical prior on the coefficients of the observation
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process. Our dataset comprises 1387 sites, 43 environmental covariates at each site, 32
different species, and 2000 visits; this dataset represents a subset of the eBird dataset
used by Ingram et al. (2022).7

e Tennis: A Bradley-Terry model with random effects for ranking tennis players. In
this model, each tennis player has a rating, assumed fixed throughout their career.
The probability of a given player beating another is determined by the inverse logit
of their rating difference. The ratings are modeled as random effects, and the data
comprises all men’s professional tennis matches on the ATP tour since 1969. Overall,
this is a large dataset of 164,936 matches played between 5,013 different players, each
of whom has their own random effect, making this a high-dimensional mixed model.

e POTUS: A time series polling model for the US presidential election (Heidemanns
et al., 2020). This model is both complex and high-dimensional. It models logit
polling probabilities with a reverse autoregressive time series and random effects for
various polling conditions.

Throughout this section, by a “model” we will mean a model with its corresponding dataset.

’ Model Name \ Dg ‘ NUTS runtime
ARM (53 models) | 2 to 176 (median 5) | 15 seconds to 16 minutes (median 39 seconds)
Microcredit 124 997 minutes
Occupancy 1,884 251 minutes
Tennis 5,014 57 minutes
POTUS 15,098 643 minutes

Table 1: Model summaries.

These models differ greatly in their complexity, as can be seen in Table 1. The 53
ARM models from Gelman and Hill (2006) are generally simple,® ranging from fixed effects
models with a handful of parameters to generalized linear mixed models with a few hundred
parameters. The other four models are more complex, with total parameter dimension
Dy ranging from 124 for the Microcredit model to 15,098 for the POTUS model. We
restricted attention to posteriors that could be tractably sampled from with the NUTS
MCMC algorithm (Hoffman and Gelman, 2014) as implemented in PyMC (Salvatier et al.,
2016) in order to have access to “ground truth” posterior means and variances. However,
outside the relatively simple ARM models, NUTS samplers were time-consuming, which
motivates the use of faster variational approximations.

We fit each model using the following methods, including three different versions of
ADVI.

e NUTS: The “no-U-turn” MCMC sampler in PyMC (Salvatier et al., 2016).

We used a subset so that our ground-truth MCMC method would complete in a reasonable amount of
time.

8 Indeed, many of the ARM models can be fit quickly enough with MCMC that BBVTI is arguably not
necessary. We include all the ARM models in our results to show that DADVI works well in both
simple and complex cases.
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e DADVI: Except where otherwise indicated, we report results with N = 30 draws
for DADVI for each model. We optimized using an off-the-shelf second-order Newton
trust region method (trust-ncgin scipy.optimize.minimize). Our implementation
of DADVI is available as a Python package at https://github.com/martiningram/
dadvi.

e LRVB: Using the optimum found by DADVI, we computed linear response covariance
estimates. In the high-dimensional models Occupancy, Tennis, and POTUS, we se-
lected a small number of quantities of interest and used the conjugate gradient (CG)
algorithm to compute the LR covariances and frequentist standard errors. For Occu-
pancy, the quantities of interest were predictions of organism presence at 20 sites; for
Tennis the quantities of interest were win predictions of 20 randomly chosen matchups;
and, for POTUS, the quantity of interest was the national vote share received by the
democratic candidate on election day. When using the CG algorithm, we precondi-
tioned using the estimated variational covariance as described in Appendix E. When
reporting metrics for the computational cost of computing LRVB, we always report
the total cost of the posterior approximation — i.e., the cost of DADVI optimization
plus the additional cost of computing the LR covariances.

e Mean field ADVI (ADVI): We used the PyMC implementation of ADVI, together
with its default termination criterion. Every 100 iterations, this termination criterion
compares the current parameter vector with the one 100 iterations ago. It then com-
putes the relative difference for each parameter and flags convergence if it falls below
1073. We ran ADVI for up to 100,000 iterations if convergence was not flagged before
then.

e RAABBVI (ADVI): RAABVI represents a state-of-the art stochastic mean field ADVI
method employing principled step size selection and convergence assessment (We-
landawe et al., 2022). To run RAABBVI, we used the public package viabel,? pro-
vided by Welandawe et al. (2022). By default, viabel supports the packages autograd
and Stan. To be able to run RAABBVI with PyMC, we provide it with gradients
of the objective function computed with PyMC’s JAX backend, which we use also for
DADVI.

e Full-rank ADVI (ADVI): When possible, we used the PyMC implementation of full-
rank ADVI, together with the default termination criterion for ADVI described above.
Full-rank was computationally prohibitive for all but the ARM and Microcredit mod-
els.

6.2 Computational cost

We first show that, despite using out-of-the box optimization and convergence criteria,
DADVI optimization typically converges faster than the ADVI methods. DADVI also
converges much more reliably; in many cases, the ADVI methods either converged early
according to their own criteria or failed to converge and had to be terminated after a large,
pre-determined number of draws.

% https://github.com/jhuggins/viabel
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Figure 1: Runtimes and model evaluation counts for the ARM models. Results are reported
divided by the corresponding value for DADVI or LRVB. Numbers greater than
one (shown by the black line) indicate favorable performance by DADVT or LRVB.
Recall that the reported LRVB numbers include the cost of the DADVI opti-
mization as well as the LR covariances. Most of the ARM models are relatively
low-dimensional, so the LR covariances added little to the computation.

We measured the computational cost of a method in two different ways: the wall
time (“runtime”), and the number of model gradient or Hessian-vector product evalua-
tions (“model evaluations”). Neither is a complete measure of a method’s computational
cost, and we hope to provide a more thorough picture by reporting both. For example,
we were able to naively parallelize DADVI by evaluating the model on each draw of 2 in
parallel, whereas ADVI uses a single draw per gradient step and cannot be parallelized in
this way. As a consequence, DADVI will have a favorable runtime relative to ADVTI for the
same number of model evaluations.

We included NUTS runtime results as a baseline. We do not include model evaluations
for NUTS, since standard NUTS packages do not typically report the number of model
evaluations used for leapfrog steps that are not saved as part of the MCMC output.

The results for ARM and non-ARM models are shown respectively in Figures 1 and 2.
Both DADVI and LRVB are faster than all competing methods in terms of both runtime
and model evaluations on most models, with the exception of a small number of ARM
models and the Occupancy model. These computational benefits are favorable for DADVI
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Figure 2: Runtimes and model evaluation counts for the non-ARM models. Results are re-
ported divided by the corresponding value for DADVI or LRVB. Numbers greater
than one (shown by the black line) indicate favorable performance by DADVI or
LRVB. Recall that the reported LRVB numbers include the cost of the DADVI
optimization as well as the LR covariances. Missing model and method combina-
tions are marked with an X.

and LRVB given the results of Section 6.3 below showing that the posterior approximations
provided by DADVI and LRVB are similar to or better than the posterior approximations
from the other methods.

6.3 Posterior Accuracy

We next see that the quality of posterior mean estimates for DADVI and the ADVI methods
are comparable. The LRVB posterior standard deviations are much more accurate than the
ADVI methods, including full-rank ADVTI.

Each method produced a posterior mean estimate for each model parameter, pygruon,
and a posterior standard deviation estimate, oygraop. Above, we used p to denote the
posterior expectation of the full § vector, but here we are using it more generically to denote
a posterior expectation of some sub-vector of 6, or even the posterior mean of a transformed
parameter as estimated using Monte Carlo draws from the variational approximation in the
unconstrained space. We use the NUTS estimates, unyrs and oyurs, as the ground truth
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Figure 3: Posterior accuracy measures for the ARM models. Each point is a single named
parameter in a single model. Points above the diagonal line indicate better
DADVI or LRVB performance. Level curves of a 2D density estimator are shown
to help visualize overplotting.

to which we compare the various variational methods. In order to form a common scale
for the accuracy of the posterior means and variances, we define the relative error in the
posterior mean and standard deviation as follows:

. HnvETHOD — HUNUTS

I OMETHOD — ONUTS
EMETHOD * .

o o—
and gMETHOD T

ONUTS ONUTS

For example, if, on a particular parameter of a particular model, we find that ||eh\pvi| <
l|leNir-apvill, we would say that DADVT has provided better mean estimates of that model
parameter than mean-field ADVI. For posterior covariances we will always report 7.,
rather than €9, ., since we expect opapyr to suffer from the same deficiencies as the ADVI
methods due to their shared use of the mean-field approximation.

As discussed in Section 2, any parameters with restricted ranges will typically be trans-
formed before running ADVI. In our plots, then, we include one point each for the original
and transformed versions, respectively, of each distinctly named parameter in the PyMC
model. For Occupancy, Tennis, and POTUS, we reported posterior mean accuracy mea-
sures for all parameters, but posterior uncertainty measures only for a small number of
quantities of interest. When a named parameter is multi-dimensional, we report the norm
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Figure 4: Posterior accuracy measures for the non-ARM models. Each point is a single
named parameter in a single model. Points above the diagonal line indicate
better DADVI or LRVB performance.

of the error vector over all dimensions in order to avoid giving too much visual weight to a
small number of high-dimensional parameters.

The posterior accuracy results for ARM and the larger models are shown respectively
in Figures 3 and 4. Recall that, of the non-ARM models, only the Microcredit model was
small enough for full-rank ADVI.

The estimates for the posterior means are comparable across methods, with RAABBVI
performing the best on average. However, there are parameters for which RAABBVI’s mean
estimates are off by up to a hundred standard deviations while the DADVI estimates are
fairly accurate. In contrast, when the DADVI mean estimates are severely incorrect, the
RAABBVI ones are also severely incorrect. This pattern suggests that severe errors in the
DADVI posterior means are primarily due to the mean-field approximation, whereas severe
errors in ADVI methods can additionally occur due to problems in optimization.

The LRVB posterior standard deviation estimates are almost uniformly better than the
ADVI and RAABBVI estimates based on the mean-field approximation. This performance
is not surprising since the mean field approximation is known to produce poor posterior
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standard deviation estimates.'® Interestingly, for the ARM models, even the full-rank

ADVI posterior covariance estimates are worse than the LRVB covariance estimates, which
is probably due to the difficulty of optimizing the full-rank ADVI objective.

6.4 Assessing convergence

Standardized optimization traces for ARM
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Figure 5: Optimization traces for the ARM models. Black dots show the termination point
of each method. Dots above the horizontal black line mean that DADVI found
a better ELBO. Dots to the right of the vertical black line mean that DADVI
terminated sooner in terms of model evaluations.

By examining the optimization traces, we next see that the ADVI methods eventually
find better optima (in terms of the variational objective) than DADVI, but they typically
take longer than DADVI to terminate, in agreement with Section 6.2.

In order to understand the progress of ADVI and RAABBVI towards their optimum, we
evaluated the variational objective on a set of 1000 independent draws'! for each method
along its optimization. This evaluation is computationally expensive, but gives a good
estimate of the true objective %y () along the optimization paths. Specifically, letting

10 Note that the relative standard deviation errors for ADVI tend to cluster around 1 because MFVB
posterior standard deviations tend to be under-estimated, and so a small posterior standard deviation
estimate leads to a relative error of one.

1 We used the same set of independent draws for each method to ensure a like-to-like comparison.
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Standardized optimization traces for non-ARM
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Figure 6: Traces for non-ARM models. Black dots show the termination point of each
method. Dots above the horizontal black line mean that DADVI found a better
ELBO. Dots to the right of the vertical black line mean that DADVI terminated
sooner in terms of model evaluations.

Nsrop denote the variational parameters for method mernop after i model evaluations,
and letting 2 denote the set of 1000 independent draws, we evaluated .y (n&ETHOD\.@; )

for each method and for steps ¢ up to convergence.

In order to place the optimization traces on a common scale, for each method we center
and scale the objective values by the DADVI optimum and sampling standard deviation.
In particular, we report &l uop, Which is equal to

_ g\\ll (WKAETHOD|£;) - g]l <ﬁDADVI’£;>

K’f\/IETHOD = — ——
\/Vgr (gVI (ﬁDADVI|Z)>

(19)

where \//@\r (%1 (Mbabvi|Z )) denotes an approximation to NVa(rZ : (32/1 (Moapvi|Z )) using the
z std

sample variance over 2. Let ¢}zrpop denote the number of model evaluations taken by a

method at convergence. Then, under Equation (19), KkDADYT — 1 by definition, #METHOD 1

indicates a better optimum at convergence for mernop relative to DADVI, and @} prmop <

inapyr indicates faster convergence for mernop in terms of model evaluations relative to
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DADVI. The paths traced by l,mop May be non-monotonic because the algorithms do
not have access to 2.

The optimization traces for ARM and non-ARM models are shown respectively in Fig-
ures 5 and 6, with suitably transformed axes for easier visualization. In many cases, the
ADVI methods eventually find better optima (in terms of the variational objective) than
DADVI, but ADVI typically takes longer to do so (the slower convergence is also shown in
Figures 1 and 2). As can be seen on the non-ARM models in Figure 6, the ADVI methods
sometimes reach lower objective function values sooner than DADVI, but continue to opti-

mize because they do not have access to the computationally expensive ,,2/”;/1 (nf;/IETHOD@; >

and have not detected convergence according to their own criteria. Similarly, DADVI some-
times finds lower values of %y (+) along its path to optimization, but does not terminate
because these points correspond to sub-optimal values of 92/”;/1 (|Z).

The results in Figures 5 and 6 suggest the possibility of initializing ADVI with DADVI
and then optimizing further with stochastic methods in cases when low values of the ob-
jective function are of interest. However, as seen in Section 6.3 above, lower values of the
variational objective do not necessarily translate into better posterior moment estimates.

6.5 Sampling variability

We next show that frequentist standard error estimates from DADVI provided good esti-
mates of the sampling variability of the DADVI mean estimates, particularly for N > 32.
As discussed in Section 3.2, the sampling variability of DADVT estimates are straightfor-
ward to compute using standard formulas for the sampling variability of M-estimators. For
the DADVI mean estimates, we computed the sampling standard deviation as described in

Sections 3.2 and 3.3.12 We denote by & our estimate of NVa(rZ : (tpapvi) as computed using
std

Equation (14), that is, of the sampling standard deviation of the DADVI mean estimate
under sampling of 2. We can evaluate the accuracy of £ by computing ppapyi with a large
number of draws, which we denote as p, and checking whether

65 — HpAaDVI — Moo

£

has an approximately standard normal distribution under many draws of ppapyi- We eval-
uated fis by taking the average of 100 runs with N = 64 each.'?

To evaluate whether ¢ has a normal distribution, we can take ® to be the cumulative
distribution function of the standard normal distribution, and check whether ®(£¢) has
a uniform distribution. Since the parameters returned from a particular model are not
independent under sampling from 2, the ®(¢) are not independent, and standard tests
of uniformity like the Kolmogorov-Smirnov test are not valid. However, we can visually
inspect the quality of the standard errors by checking whether ®(¢) has an approximately
uniform distribution, without attempting to quantify how close it should be to uniform

12 For the large POTUS, Occupancy, and Tennis models, we used CG to compute frequentist coverage for

the same select quantities of interest for which we computed LR covariances.

The values shown in the N = 64 panel of Figure 7 are the same as those whose average was taken to
estimate pioo. In theory, this induces some correlation between the e* values for N = 64. However, the
sampling variability of pe was so small that the induced correlation is practically negligible.

13
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Figure 7: Density estimates of ®(¢%) for difference models. All the ARM models are grouped
together for ease of visualization. Each panel shows a binned estimate of the
density of ®(gf) for a particular model and number of draws N. Values close
to one (a uniform density) indicate good frequentist performance. CG failed for
the Occupancy and POTUS models with only 8 draws, possibly indicating poor
optimization performance with so few samples.

by chance alone. As can be seen in Figure 7, for N = 8 and N = 16 the ®(&f) values
are over-dispersed to varying degrees for different models; this behavior indicates that the
sampling variance £ is under-estimated. In contrast, the intervals provide good marginal
coverage when N > 32, though some over-dispersion remains in the Occupancy model.

7. Conclusion

In this paper, we proposed performing deterministic optimization on an approximate ob-
jective instead of using traditional stochastic optimization on the intractable objective from
the mean-field ADVI problem. We found that using our DADVI approach can be faster,
more accurate, and more automatic. The benefits of a deterministic objective can be at-
tributed to the ability to use off-the-shelf second-order optimization algorithms with simple
convergence criteria and linear response covariances. Additionally, the use of a deterministic
objective allows computation of Monte Carlo sampling errors for the resulting approxima-
tion. And these errors can facilitate an explicit tradeoff between computation and accuracy.
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In contrast to the worst-case analyses in the optimization literature, we show theoretically
that the number of samples needed for the deterministic objective need not scale linearly in
the dimension in types of statistical models commonly encountered in practice. Although a
deterministic objective cannot be used with highly expressive approximating families (such
as full-rank ADVI), there is reason to believe that deterministic objectives can provide
practical benefits for many black-box variational inference problems.
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Appendix A. Elaboration on the mean-field assumption

In practice, the mean-field assumption in variational inference need not always correspond
to factorization over every single one-dimensional component of each parameter. Rather,
it often represents a factorization into individual parameters as described in a model. For
instance, consider a parameter within a model that represents a distribution over K out-
comes, so that its elements are positive and sum to one. A natural prior for such a parameter
might be a Dirichlet distribution. If this parameter exists as one parameter among multiple
parameters in our model, a mean-field assumption will typically provide a separate factor
for this parameter, but it will not further factorize across components within the parameter.
So ¥(n) may, in fact, be block-diagonal rather than purely diagonal, where each block size
will correspond to the size of a parameter.

Researchers have explored other options between the extremes of the mean-field and
full-rank assumptions for Gaussian approximations within variational inference; see, for
instance, (Zhang et al., 2022).

Appendix B. Behavior of high-dimensional normals

B.1 Proof of Proposition 1

We begin by deriving the DADVI optimal estimates. Let z := & ZN Z, and 22T =

N ZN ZnZy. Also, let S := Diag (o), noting that Sv = o ® v for any vector v. We can
write Gn =u+S2,, so

S&D

E0(Z,n)]=pn+ Sz and 51;; [0(Z,m)0(Z,n)T] = pu" + pz'S + Szu’ + Sz2T8,

SO
ot (n) = %MTA (u+25%) + %Tr (ASZZTS) — BT(jn + S2) ng oo (20)

For a fixed ¢ (and so a fixed S), the DADVI optimal mean parameter then satisfies
A(i+S2)-B=0 = p=A"'B-Sz=u"-Sz (21)

Thus, for any particular entry d, jig — i} = Op(N_l/Q) as long as 04 = Op(1), both as the
number of samples, N, goes to infinity.

We can now turn to the behavior of 6. By plugging [ as a function of S, which is given
by Equation (21), into each term of Equation (20) that depends on u, we get

1 1

5[LTA (L +252) = 5(ﬂ +S5z—-S2)TA(u+ Sz+ Sz)
= (ATB- 524 (A7 B+ 52)
= %BTA*IB - %ETSAS?, and

BT(ji+ Sz) = BTA™'B.
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Plugging the preceding two equations into the corresponding terms of Equation (20) gives,
up to a constant C' that does not depend on o,

Dy
A (o) = %T&" (AS (27— 727) §) = 3 logag + C. (22)
d=1

Let R denote the symmetric square root of the symmetric, positive definite A matrix (so
A = RR and R = RT). Then we have

Tr (AS(z2T — 227)S) = Tr (RS (227 — zzT) (RS)T) .

Let < denote equality in distribution, i.e., X 2 Y means that X and Y have the same
law. Then

RSZ, L (RSSR)'2,,

since both the left and the right hand sides of the preceding display have a N (:|0p,, RSSR)
distribution. (We have used the fact that S and R are both symmetric.) Thus, for any o,

Dy
_ 1
Tr (RSSR (227 — 227)) — 5 > logog +C. (23)
d=1

Lot (o) L

N |

Though the dependence on % of the left and right hand sides of the preceding equation is
different, for a given o, the two have the same distribution, and their optima have the same
distribution as well. The product S is simply Diag (02), so expanding the trace gives

Dy
Tr (RSSR (22T — 227)) = Y Rijo; Ry (227 — 227),,; =
i,5,k=1
) 2
87?ITr (RSSR (22T — z27)) = i%::l Ray, (22T — 227),,; Ria

= (R (22T — ZZ") R") 4q.
So the optimal value of o2 for the right hand side of Equation (23) is

1
R (22T —2ZT)RT)4q

~2
Oq = (

Note that RZ,, ~ N (:|0p,, A). Therefore, if w,, ~ N (-|0p,, A), then

So xEz (6,7 = XA Agg = Y (05) 72 and 652 — (0)72 = O,(N~Y/2). From this it
std

follows that jig — pu; = Op(N1/2) as well.

~—
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B.2 Proof of Proposition 3

Recall that the linear response covariance estimate for 8 in this model considers the per-
turbed model

logP(0,y|t) :=log P(0,y) +t70

and computes

LRCov (0) = i -1
Q(6ln) datt

where the final equality follows from Equations (21) and (22) by identifying B with B + ¢
and observing that & does not depend on ¢. Since A~! is in fact the true posterior variance,
the linear response covariance is exact in this case irrespective of how small V is, in contrast
even to o*, which can be a poor estimate of the marginal variances unless A is diagonal.

Appendix C. High-dimensional global-local problems

Proof of Theorem 4.
We can write

L () — LA (n) =
L (7) — L (7) + Lot (1 Z) — Lot (N Z) + Lot (3] Z) — Lt (3|1 Z) =

(@) = 2 (12)) + (L (112) - L () + (B (01 2) = Lo (3] 2)) <
(A (@) = B (312)) + (L (1] 2) ~ L () <
A () = Bt (0]2)| + | B (312) - L ()| <

2 sup ’iﬂw (n) — A (U’ff)‘ (24)
nefdy

where the penultimate inequality uses the fact that .,2/”;/1 NZ) — ,,2/”;11 (n|Z) < 0. By
Assumption 2, we then have

oy s 2 o
17 =15 < o sup [ L () = B (0] 2)] (25)
PCs nefdy,

Similarly, for any given p, apply Assumption 2 with the components of 1 matching 7P
in the components corresponding to the variational distribution for AP, and matching 7
otherwise, giving

FPELAP) = FP(7,0P) > Cs [|iP — P53 - (26)

Since 7 minimizes n? — fP(i}7,7P), the same reasoning as Equation (24) implies that
f_‘p(ﬁW’ ’f/p) - fp(f}77 ﬁp) <2 sup fp(ﬁ’ya 77p) - fp(,'f/’y’ D@P’Y’ 77p, D@Fp)

nPed,

35



GIORDANO, INGRAM AND BRODERICK

Combining the previous two displays gives

2 X
172 — 7P ||5 < G, S ’f” (n7,nP) — fp(n”,f”mp,ffp)‘-
3 neQy,

Next, we use Assumption 1 to control the difference between the samples and limiting
objectives. Take &' = C5d/2. Let

&= sup | P, 27,00, 27) — )| and € = fsup [ (0 2) = L ()]

nv,nP ne n

Since we can only increase the error by allowing the global parameter to vary separately
for each local ULLN, we have £ < & 25:1 EP. Therefore, {Vp: EP < ¢’} = {€ < ¢’} and
{€>6}={3p:EP > ¢}. A union bound then gives

P
PE>06)<P (U {&P > 6} > Z P(EP > 0') < Crexp(—CoN +logP) <e, (27)
p

where the final inequality follows from taking N > Ny large enough to satisfy Assumption 1
and Ny > C’Q_1 (logP — log (01_16)).
By Equations (25) and (26),

P p P
N A{er <o} = ({17 — Pl <o} and ({€" <0} =& <8 = |77 — il <
p=1 p=1 p=1

The conclusion then follows from Equation (27). [ |

Proof of Example 2.

Suppose that, for each p, fP(n7,nP) is twice-differentiable and convex, and the domain
is compact. Let the first and second-order derivatives be denoted by V f? and V2 fP respec-
tively, and let C3 lower bound the minimum eigenvalue of all V2 f?.

Then a Taylor series expansion with integral remainder gives

_ _ oy
Ponr) - G i) = G (70 ) 4wt
where
Loy 5y Y Y
wiion = [ (07 BY s+t =i+ oo =iy (2 ) - o
o \7 n n
(Apply Dudley (2018, Theorem B.2) with t = f(177 + t(n? — 17), 7 + t(n? — 7P)).) Since

7 is an optimum, Z]};l VfP(i7,7P) = 0. Since V2P is positive definite for every p, there
exists a C3 > 0 such that

* * 2 * 2
RP(1,m) > C3 (Iln” =0z + (" — 77p||2) :
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It follows that

L) —Ln(n) >Cs | Pln? =17

P
2 *
o+ >l ="
p=1

2
2| -

from which Assumption 2 follows.

Appendix D. Model details
D.1 ARM models

We selected 53 from the Stan example models repository'*. The models we used are as
follows, with their parameter dimension in parentheses:

separation (2), wells_ dist100 (2), nes2000_vote (2), wells_ dl00ars (3), earn height
(3), sesame_one pred b (3), radon_complete_pool (3), earningsl (3), kidscore_momiq
(3), kidscoremomhs (3), electric_one pred (3), sesame_one pred.a (3), sesame_one pred 2b
(3), logearn_ height (3), electric_multi preds (4), congress (4), wells_interaction_c
(4), earnings2 (4), logearn logheight (4), kidiqmulti_preds (4), wells_ dae (4),
wells_interaction (4), logearn height male (4), ideo_reparam (5), logearn_interaction
(5), kidscore momwork (5), kidiq interaction (5), wells dae c (5), mesquite_volume
(5), earnings_interactions (5), wells dae_inter (5), wells daae c (6), wells dae_ inter c
(7), mesquite_vash (7), wells_predicted_log (7), mesquite (8), mesquite.vas (8),
mesquite_log (8), sesame multi preds_3b (9), sesame multi preds_3a (9), pilots
(17), election88 (53), radon_intercept (88), radon no_pool (89), radon_group (90),
electric (100), electric_1b (101), electric_la (109), electric_ic (114), hiv (170),
hiv_inter (171), radon.vary si (174), radon_inter_vary (176).

Some models were eliminated from consideration for being duplicates of other models,
and a small number were eliminated for poor NUTS performance (low effective sample size
or poor R hat).

D.2 Tennis

In the tennis model, each player, i = 1, ..., M has a rating ;. These ratings are drawn from
a prior distribution with a shared variance:
91’ Z’Z‘(’i N(07 02)7 (28>
The standard deviation ¢ is given a half-Normal prior with a scale parameter of 1. The
likelihood for a match n = 1,..., N between player ¢ and j is given by:
Yn ~ Bernoulli(logit ™ (6; — 6;)) (29)

where y,, = 1 if player ¢ won, and ¥y, = 0 if not.

4 https://github.com/stan-dev/example-models/tree/master/ARM
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D.3 Occupancy model

In occupancy models, we are interested in whether site i is occupied by species j. We model
occupation as a binary latent variable y;;, with probability ¥;; being the probability that
the species is occupying the site. The logit of this probability is modeled as a linear function
of environmental covariates, such as rainfall and temperature:

yij ~ Bern(\IJij),
10glt(\I/Z]) = wz(env)'rl@;env) + Vi

B N0, 1),

7 % N(0,10%).

However, y;; is assumed not to be observed directly. Instead, we observe the binary

outcome s;;;, which equals one if species j was observed at site ¢ on the k-th visit. If the

species was observed, we know that it is present (y;; = 1), assuming there are no false

positives. If it was not, it may have been missed, and we model the probability that it

would have been observed if it had been present, p;;r. Mathematically speaking, these
assumptions result in the following model:

p(sijk = 1| yij = 1) = pijr, (34)

p(sijk =1 | yij =0) =0, (35)
(0bs)T 4(ob

logit(pij) = x(p " TB, (36)

where mgzbS)T are a set of covariates assumed to be related to the probability of observing

the species, and ,6§Obs) are coefficients of a linear model relating these to the logit of the
probability p;;.

As y;; is not observed, it has to be marginalized out for ADVI models to be applicable.
The resulting likelihood is given by:

K; K;
(s|0) H H (1-— U H(l - Sz'jk) + Uy H(pz'jk)s“k(l —Pz‘jk)lfs”k . (37)
k=1 k=1

i=17j=1

Its derivation can be found in the appendix of Ingram et al. (2022). Here, K; are the number
of visits to site ¢, N is the total number of sites, J is the total number of species, and the
rest of the variables are as defined previously.

Appendix E. Preconditioning DADVI

As described in Section 3.3, in high-dimensional problems it is useful to use the conjugate
gradient (CG) algorithm to compute both LR covariances and frequentist standard €rTors.
The CG algorithm uses products of the form Ho to appr0x1mately solve H~1v, and can be
made more efficient with a preconditioning matrix M with M ~ H! (Wright and Nocedal,
1999, Chapter 5).
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The DADVI approximation itself provides an approximation to the upper left quadrant
of H~!, which can be used as a preconditioner. By the LR covariance formula Equation (11),

- . ID
C ) ~ LRCov (0) = (Ip, 0 Ht o),
pge &)~ LGy (6) (Ipy 0pyp,) <OD9xD9,)

which is just the upper-left quadrant of #H~!. Prior to computing the LR covariances,
the best available approximation of P(%O;I(e) (#) — and, in turn, the upper-left quadrant
y

of #~! — is the mean-field covariance estimate QC(E)IY) (#) = Diag (exp(fl), . ,exp(éD9)>.
7

Therefore, whenever using CG on a DADVI optimum, we pre-condition with the matrix
Cov (6) 0
<Q(9ﬁ)( ) Dew") .
ODgXDg IDg

Using the preceding preconditioner is formally similar to re-parameterizing the mean pa-
rameters into their natural parameters, as when taking a natural gradient in stochastic
optimization (Hoffman et al., 2013).
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