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Abstract

Due to the often limited communication band-
width of edge devices, most existing federated
learning (FL) methods randomly select only a
subset of devices to participate in training at each
communication round. Compared with engaging
all the available clients, such a random-selection
mechanism could lead to significant performance
degradation on non-IID (independent and identi-
cally distributed) data. In this paper, we present
our key observation that the essential reason re-
sulting in such performance degradation is the
class-imbalance of the grouped data from ran-
domly selected clients. Based on this observa-
tion, we design an efficient heterogeneity-aware
client sampling mechanism, namely, Federated
Class-balanced Sampling (Fed-CBS), which can
effectively reduce class-imbalance of the grouped
dataset from the intentionally selected clients.
We first propose a measure of class-imbalance
which can be derived in a privacy-preserving way.
Based on this measure, we design a computation-
efficient client sampling strategy such that the ac-
tively selected clients will generate a more class-
balanced grouped dataset with theoretical guaran-
tees. Experimental results show that Fed-CBS out-
performs the status quo approaches in terms of test
accuracy and the rate of convergence while achiev-
ing comparable or even better performance than
the ideal setting where all the available clients
participate in the FL training.
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1. Introduction

With the booming of IoT devices, a considerable amount of
data is generated at the network edge, providing valuable
resources for learning insightful information and enabling
intelligent applications such as self-driving, video analytics,
anomaly detection, etc. The traditional wisdom is to train
machine learning models by collecting data from devices
and performing centralized training. Data migration usually
raises serious privacy concerns. Federated learning (FL)
(McMahan et al., 2017a) is a promising technique to mit-
igate such privacy concerns, enabling a large number of
clients to learn a shared model collaboratively, and the learn-
ing process is orchestrated by a central server. In particular,
the participating clients first download a global model from
the central server and then compute local model updates
using their local data. The clients then transmit the local
updates to the server, where the local updates are aggregated
and then the global model is updated accordingly.

In practice, due to limited communication and computing
capabilities, one usually can not engage all the available
clients in FL training to fully utilize all the local data. There-
fore, most FL methods only randomly select a subset of
the available clients to participate in the training in each
communication round. However, in practice, the data held
by different clients are often typically non-IID (independent
and identically distributed) due to various user preferences
and usage patterns. This leads to a serious problem that the
random client selection strategy often fails to learn a global
model that can generalize well for most of the participating
clients under non-IID settings (Goetz et al., 2019; Cho et al.,
2020; Nishio & Yonetani, 2019; Yang et al., 2020).

Several heuristic client selection mechanisms have been
proposed to tackle the non-IID challenge. For example, in
the method of (Goetz et al., 2019), the clients with larger
local loss will have a higher probability to be selected to
participate in the training. Power-of-Choice (Cho et al.,
2020) selects several clients with the largest loss from a ran-
domly sampled subset of all the available clients. However,
selecting clients with a larger local loss may not guarantee
that the final model can have a smaller global loss. An-
other limitation of previous research on client selection is
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(a) Global Balanced & One-class (b) Global Balanced & Two-class (c) Global Imbalanced & One-class (d) Global Imbalanced & Two-class

Figure 1. Three different FL client selection strategies on MNIST. All means engaging all the 100 clients in training. Random means
randomly selecting 10 clients. Class Balanced means that we keep the class-balance by intentionally selecting 10 clients. In Figure
1a and 1b, the global dataset of all the 100 clients’ training data is class-balanced. In Figure 1c and 1d, the global dataset is class-
imbalanced. Each client has only one class of data in (a) and (c) and each client has two classes of data in (b) and (d). The results show
significant performance degradation with imbalanced data from random client selection. It is worth noting that when the global dataset is
class-imbalanced, selecting all the clients leads to worse performance compared with the Class Balanced strategy, which suggests the
importance of keeping class-balance for client selection.

the missing comparison between their strategy and the ideal
case, where all the available clients participate in the train-
ing. In general, existing works not only miss a vital criterion
that can measure the performance of their methods, but also
fail to investigate the essential reason why random client
selection can lead to performance degradation on non-IID
data compared with fully engaging all the available clients.

In this paper, we focus on image classification tasks. First,
we demonstrate our key observation for the essential reason
why random client selection results in performance degra-
dation on non-IID data, which is the class-imbalance of the
grouped dataset from randomly selected clients. Based on
our observation, we design an efficient heterogeneity-aware
client sampling mechanism, i.e., Federated Class-Balanced
Sampling (Fed-CBS), which effectively reduces the class-
imbalance in FL. Fed-CBS is orthogonal to numerous exist-
ing techniques to improve the performance of FL (Li et al.,
2018; Wang et al., 2020b; Karimireddy et al., 2019; Chen
et al., 2020; Reddi et al., 2020; Hao et al., 2021; Yang et al.,
2021) on non-IID data, meaning Fed-CBS can be integrated
with these methods to improve their performance further.
Our major contributions are summarized as follows:

• We reveal that the class-imbalance is the fundamental
reason why random client selection leads to perfor-
mance degradation on non-IID data in Section 2.

• To effectively reduce the class-imbalance, we design
an efficient heterogeneity-aware client sampling mech-
anism, i.e., Fed-CBS, based on our proposed class-
imbalance metric in Section 3. We provide theoretical
analysis on the convergence of Fed-CBS in Section
4, as well as the analysis of the NP-hardness of this
problem.

• We empirically evaluate Fed-CBS on FL benchmark
(non-IID datasets) in Section 5. The results demon-
strate that Fed-CBS can improve the accuracy of FL
models on CIFAR-10 by 2% ⇠ 7% and accelerate the
convergence time by 1.3⇥ ⇠ 2.8⇥, compared with
the state-of-the-art method (Yang et al., 2020) that

also aims to reduce class-imbalance via client selec-
tion. Furthermore, our Fed-CBS achieves comparable
or even better performance than the ideal setting where
all the available devices are involved in the training.

2. Preliminary and Related Work

We first clarify three definitions. The local dataset is the
client’s own locally-stored dataset, which is inaccessible to
other clients and the server. Due to the heterogeneity of
local data distribution, the phenomenon of class-imbalance
frequently happens in most of the local datasets. The global

dataset is the union of all the available client local datasets.
It can be class-balanced or class-imbalanced, but it is often
imbalanced. The grouped dataset is the union of several
clients’ local datasets which have been selected to partici-
pate in training for one communication round. It follows
that the grouped dataset is a subset of the global dataset.

2.1. Pitfall of Class-Imbalance in Client Selection

Some recent works (Yang et al., 2020; Wang et al., 2020b;
Duan et al., 2019) have identified the issue of class-
imbalance in the grouped dataset by random selection under
non-IID settings. Since class-imbalance degrades the classi-
fication accuracy on minority classes (Huang et al., 2016)
and leads to low training efficiency, we are motivated to
verify whether the class-imbalance of the randomly-selected
grouped dataset is the essential reason accounting for the
performance degradation.

We conduct some experiments on MNIST to verify our
proposition1. As shown in Figure 1a and Figure 1b, the
random selection mechanism shows the worst performance
when the global label distribution is class-balanced. If we
keep the grouped dataset class-balanced by manually select-
ing the clients based on their local label distribution, we can

1Detailed experiment settings are listed in the Appendix (Sec-
tion C.1)
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obtain accuracy comparable to the case of fully engaging all
the clients in training.

Another natural corollary is that when the global dataset is
inherently class-imbalanced, engaging all clients in training
may lead to worse performance than manually keeping the
grouped dataset class-balanced. The results in Figure 1c
and Figure 1d prove our hypothesis and verify the impor-
tance of class-imbalance reduction. This also indicates that
only keeping diversity in the data and fairness for clients
is not enough, which was missed in the previous literature
(Balakrishnan et al., 2021; Huang et al., 2021; Yang et al.,
2020; Wang et al., 2020b; Shen et al., 2022; Wang et al.,
2021). More experimental results on larger datasets will
be provided to verify the importance of class-imbalance
reduction (Section 5).

2.2. Related Work

Some effort has been made to improve client selection for FL
in previous literature. (Cho et al., 2020; Goetz et al., 2019)
select clients with larger local loss, but this cannot guar-
antee that the final global model has a smaller global loss.
Focusing on the diversity in client selection, the authors of
(Balakrishnan et al., 2021) select clients by maximizing a
submodular facility location function defined over gradient
space. A fairness-guaranteed algorithm termed RBCS-F
was proposed in (Huang et al., 2021), which models the
fairness-guaranteed client selection as a Lyapunov optimiza-
tion problem. Although diversity and fairness are impor-
tant, the experimental results in Section 2.1 demonstrate
that they are not enough for client selection if the class-
imbalance issue is not considered. The authors in (Ribero &
Vikalo, 2020) model the progression of model weights by an
Ornstein-Uhlenbeck process and design a sampling strategy
for selecting clients with significant weight updates. How-
ever, the work only considers the identical data distribution
setting. Following the existing works (Goetz et al., 2019;
Cho et al., 2020), we only focus on the data heterogeneity
caused by non-IID data across clients. Additionally, we
included a comparison of our method with other clustered-
based client sampling algorithms in the appendix.

To the best of our knowledge, (Duan et al., 2019) and (Yang
et al., 2020) are the first two attempts to improve client
selection by reducing class-imbalance. An extra virtual
component called a mediator is introduced in Astraea of
(Duan et al., 2019), which has access to the local label
distributions of the clients. With these distributions, As-

traea will conduct client selection in a greedy way. The
method of (Yang et al., 2020) first estimates the local label
distribution of each client based on the gradient of model
parameters and adopts the same greedy way to select clients
as Astraea. Since directly knowing the exact value of local
label distributions of clients in Astraea will cause severe

concerns on privacy leakage, we consider the method in
(Yang et al., 2020) as the state-of-the-art method aiming to
improve client selection through class-imbalance reduction.

However, the solution presented by (Yang et al., 2020) has
several limitations. First, their method requires a class-
balanced auxiliary dataset that consists of all classes of
data at the server. However, that is not always available
in some large-scale FL systems since it requires the server
to collect raw data from clients, which breaches privacy.
Second, their estimations of the clients’ local label distri-
bution are not accurate as shown in Figure 2. Theorem 1
in (Yang et al., 2020) supports their estimations, but it can-
not be generalized to multi-class classification tasks since
it has only been proved in the original paper (Anand et al.,
1993) for two-class classification problems. Finally, the
performance of greedily conducting the client selection is
not guaranteed due to the nature of the greedy algorithm.
We provide an example in Figure 3 to show its weakness.
Their method will select C1 as the first client since it is
the most class-balanced one. Then C2 will be selected
because the grouped dataset of C1 [ C2 is the most class-
balanced among the choices C1[C2, C1[C3 and C1[C4.
Similarly, it will choose C3 since the grouped dataset of
C1 [ C2 [ C3 is more class-balanced than C1 [ C2 [ C4.
Their method is deterministic and thus only one combination
{C1, C2, C3} is obtained. However, this is clearly not the
optimal solution since {C1, C3, C4} is more class-balanced
than {C1, C2, C3}. The above weaknesses motivate us to
design a more effective solution for this problem.

3. Methodology

We first propose a metric to measure class-imbalance in
Section 3.1. Then we derive the measure with privacy-
preserving techniques in Section 3.2. Based on this measure,
we then design our client sampling mechanism and show its
superiority in Section 3.3.
3.1. Class-Imbalance Measure

Assume there are B classes of data in an image classifica-
tion task, where B � 2. In the k-th communication round,
we assume there are Nk available clients and we select M
clients from them. To make the presentation concise, we
ignore the index “k” and assume the set of indices for the
available clients is {1, 2, 3, ..., N} and the n-th available
client has its own training dataset Dn. We adopt the follow-
ing vector of size B to represent the local label distribution
of Dn, where ↵(n,b) � 0 and

PB
b=1 ↵(n,b) = 1,

↵n =
⇥
↵(n,1),↵(n,2), ...,↵(n,b), ...,↵(n,B)

⇤
. (1)

We aim to find a subset M of {1, 2, 3, .., N} of size M ,
such that the following grouped dataset Dg

M =
S

n2M
Dn is

class-balanced. Assuming the n-th client’s local dataset has
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Figure 2. The exact local label distributions and the estimated ones of the first 5 clients in the experiment of (Yang et al., 2020). Label
distribution quantifies the ratio between the number of data from 10 classes (C-1, C-2, ..., C-10) in each client’s local dataset.

(a) Greedy method (b) Our method

Figure 3. An example demonstrating the weakness of greedy method to deal with class imbalance. Supposing we work on a 6-class
classification task and aim to select 3 clients from 4 available clients C1, C2, C3, C4. Each of them has 30 images. The compositions
of their local datasets are [5, 5, 5, 5, 5, 5], [6, 6, 6, 6, 6, 0], [0, 0, 0, 10, 10, 10] and [10, 10, 10, 0, 0, 0] respectively. The greedy method
in (Yang et al., 2020) is deterministic. It can only derive one result {C1, C2, C3} instead of the optimal solution {C1, C3, C4} (see
the text description). But our method is based on probability modeling, which directly models the distribution of the optimal solution
{C1, C3, C4}. Thus when sampling from it, the optimal solution can be returned with high probability.

qn training samples, the following vector ↵g
M can represent

the label distribution of the grouped dataset Dg
M,

↵g
M =

P
n2M qn↵nP

n2M qn
=

P
n2M qn↵(n,1)P

n2M qn
, ...,

P
n2M qn↵(n,b)P

n2M qn
, ...,

P
n2M qn↵(n,B)P

n2M qn

�
.

Instead of dealing with the Kullback-Leibler (KL) diver-
gence as (Duan et al., 2019; Yang et al., 2020), which is
complicated to analyze, we propose the following function
to measure the magnitude of class-imbalance of M, which
we call Quadratic Class-Imbalance Degree (QCID):

QCID(M) ,
BX

b=1

(

P
n2M qn↵(n,b)P

n2M qn
�

1

B
)2.

Essentially, QCID(M) reflects the L2 distance between
the distribution of the grouped dataset Dg

M and the ideally
class-balanced dataset that has a uniform label distribution.
Although there exist several more commonly-used proba-
bilistic distances other than L2, it is easier to analyze QCID

and more efficient to calculate while keeping privacy as
shown in the next section.

3.2. Privacy-Preserving QCID Derivation

Our privacy goal is to calculate the value of QCID while
keeping clients’ local distributions {↵n} hidden from the
server since it contains sensitive information. Unlike
Kullback-Leibler (KL) divergence which is difficult to an-
alyze, we can expand the expression of QCID to explore

how the pairwise relationships of the clients’ local label
distributions {↵m} affects the class-imbalance degree of
M, where m 2M. Below we provide a theorem to show
the feasibility of our method.
Theorem 3.1. The QCID value is decided by the sum of

inner products between each two vectors ↵m,↵m0 2 {↵m}

with m 2M, i.e.,

QCID(M) =

P
n2M,n02M qnq0n↵n↵T

n0

(
P

n2M qn)2
�

1

B

Theorem 3.1 reveals the fact that there is no need to know
the local label distribution of each client to calculate the
QCID, as long as we have access to the inner products
between each other. To derive the QCID for any subset
M ✓ {1, 2, 3, .., N}, we only need to know the following
N ⇥N matrix S with element sn,n0 being ↵n↵T

n0 , which
is the inner product between the local label distributions of
the available clients n and n0.

S =

2

6664

q1q1↵1↵T
1 q1q2↵1↵T

2 · · · q1qN↵1↵T
N

q2q1↵2↵T
1 q2q2↵2↵T

2 · · · q2qN↵2↵T
N

...
...

. . .
...

qNq1↵N↵T
1 qNq2↵N↵T

2 · · · qNqN↵N↵T
N

3

7775

Although it is possible to calculate QCID with S, another
concern arises, can a malicious party infer the values of

{↵i} from S ? Then we have another theorem to provide
privacy protection.
Theorem 3.2. One can not derive the values of {↵i} from

the value of S.
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Based on these two theorems, our privacy goal can be sim-
plified as enabling the server to derive S without access
to {↵i}. There are several ways to achieve our goal. One
option is to leverage the server-side trusted execution envi-
ronments (TEEs), e.g., Intel SGX (Anati et al., 2013), which
allows calculating S without leaking information of {↵n}.
Another potential solution is to adopt Fully Homomorphic
Encryption (FHE) (Chen et al., 2017; Brakerski et al., 2014;
Fan & Vercauteren, 2012; Halevi & Shoup, 2014; 2015) to
enable the server to compute on encrypted data (i.e., {↵i})
to derive S. We provide an example of the system skelon in
Section A.2 to illustrate how to derive S without knowing
the local label distributions {↵i} using FHE. Since we focus
on efficient algorithms to reduce class-imbalance instead
of designing the fundamental infrastructure for computing
(which is beyond our scope and not a contribution of this
paper), we leave the detailed system design for future work.

3.3. A Client Sampling Mechanism

To select the most class-balanced grouped dataset Dg
M, we

need to find the optimal subset M⇤ that has the lowest
QCID value, which is defined as follows:

M
⇤ , argmin

M✓{1,2,3,..,N}

P
n2M,n02M qnqn0↵n↵T

n0

(
P

n2M qn)2
�

1

B
.

The main challenge is computational complexity. To find
the exact optimal M⇤, we need to loop through all the
possible cases and find the lowest QCID value. The com-
putational complexity thereafter will be O

⇣�N
M

�
⇥M2

⌘
,

which is unacceptable when N is extremely large.

A probability approach To overcome the computational
bottleneck, instead of treating M as a determined set, we
consider it as a sequence of random variables, i.e. M =
{C1, C2, ..., Cm, ..., CM} and assign it with some probabil-
ity. Our expectation is that M should have higher proba-
bility to be sampled with if it is more class-balanced. This
means P (C1 = c1, C2 = c2, ..., Cm = cm, ..., CM = cM )
should be larger if M = {c1, c2, ..., cM} has a lower
QCID value. Our sampling strategy generates the ele-
ments in M in a sequential manner, i.e., we first sample
M1 = {c1} according to the probability of P (C1 = c1),
then sample c2 to form M2 = {c1, c2} according to the
conditional probability P (C2 = c2|C1 = c1). The same
procedure applies for the following clients until we finally
obtain M = {c1, c2, ..., cM}. In the following, we will
design proper conditional probabilities such that the joint
distribution of client selection satisfies our expectations.

Let Tn denote the number of times that client n has been
selected. Once client n has been selected in a communica-
tion round, Tn ! Tn+ 1, otherwise, Tn ! Tn. Inspired
by combinatorial upper confidence bounds (CUCB) algo-
rithm (Chen et al., 2013) and previous work in (Yang et al.,

2020), in the k-th communication round, the first element is
designed to be sampled with the following probability:

P (C1 = c1) /
1

[QCID(M1)]�1
+ �

s
3 ln k

2Tc1

, �1 > 0,

where � above is the exploration factor to balance the
trade-off between exploitation and exploration. The sec-
ond term will add a higher probability to the clients that
have never been sampled before in the following commu-
nication rounds. After sampling C1, the second client is
defined to be sampled with probability

P (C2 = c2|C1 = c1) /

1
[QCID(M2)]�2

1
[QCID(M1)]�1

+ ↵
q

3 ln k
2Tc1

,�2 > 0.

For the m-th client, where 2 < m M , we define

P (Cm = cm|Cm�1 = cm�1, ..., C2 = c2, C1 = c1)

/
[QCID(Mm�1)]�m�1

[QCID(Mm)]�m
, �m�1,�m > 0.

With the above sampling process, the final probabil-
ity to sample M is P (C1 = c1, C2 = c1, ..., CM =
cM ) = P (C1 = c1) ⇥ P (C2 = c2|C1 = c1) · · · ⇥
P (CM = cM |CM�1 = cM�1, ..., C2 = c2, C1 = c1) /
1/[QCID(M)]�M . Since �M > 0, this matches our goal
that the M with lower QCID value should have higher
probability to be sampled with. Our mechanism, Fed-CBS,
is summarized in Algorithm 1 .

Algorithm 1 Fed-CBS

Initialization: initial local model w(0), client index sub-
set M = ?, K communication rounds, k = 0, Tn = 1
while k < K do

// Client Selction:
for n in {1, 2, ..., N} do

if n 2M then

Tn ! Tn + 1
else

Tn ! Tn;
end if

end for

Update M using our proposed sampling strategy in
Section 3.3
// Local Updates:

for n 2M do

w(k+1)
n  Update(w(k)).

end for

// Global Aggregation:
w(k+1)

 Aggregate(w(k+1)
n ) for n 2M

end while
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Details and analysis For any 1 < m < M , we have

P (C1 = c1, C2 = c1, ..., Cm = cm) /
1

[QCID(Mm)]�m
.

This means when we generate the first m elements of
M, we expect the Mm should be more class-balanced
since the Mm with lower QCID value has a higher prob-
ability of being sampled. This is different from the algo-
rithm in (Yang et al., 2020), which greedily chooses the cm
from {1, 2, .., N}/Mm�1 that makes Mm the most class-
balanced one. Unlike the greedy algorithm which has no
guarantees on finding the optimal client set, our method can
generate the globally optimal set of clients in the sense of
probability. An example is provided in Figure 3 to demon-
strate that our method can overcome the pitfall of the greedy
method. After selecting the first two clients, {C1, C3} our
method is less class-balanced than {C1, C2} chosen by the
greedy method. However, after making the last choice, our
method has the chance to derive a perfectly class-balanced
set {C1, C3, C4}. In contrast, the greedy method can only
get one result {C1, C2, C3}, which is less class-balanced.

We require the distribution of P (C1 = c1, C2 =
c1, ..., Cm = cm) to be more dispersed when m is small.
This is because we expect our sampling strategy to explore
more possible cases of client composition at the begin-
ning. We require the distribution of P (C1 = c1, C2 =
c1, ..., Cm = cm) to be less dispersed when m is large.
This is because as we approach the end of our sampling
process, we expect our sampling strategy can find the Mm

that is more class-balanced. Especially when m = M , we
hope the strategy to find the client cM which can make M

the most class-balanced. Since

P (C1 = c1, C2 = c1, ..., Cm = cm) /
1

[QCID(Mm)]�m

we can set 0 < �1 < �2 < ... < �M to satisfy the above
requirements.

Remark: We set a lower bound for QCID(Mm) as Lb

since QCID(Mm) = 0 in some special cases will cause

P (Cm = cm|Cm�1 = cm�1, ..., C1 = c1) ! 1. When
viewing the conditional distribution as the likelihood in
Bayesian inference, our probability can be interpreted as
an estimate of the posterior distribution. This allows us to
comprehend our algorithm through the lens of Bayesian
sampling (Welling & Teh, 2011; Liu & Wang, 2019; Zhang
et al., 2020a; 2019). In our future studies, we will further an-
alyze the connection between them. Below we present two
theorems to show the superiority of our proposed sampling
strategy.
Theorem 3.3 (Class-Imbalance Reduction). We denote the

probability of selecting M with our strategy with �M as

P�M and the probability of selecting M with the random

selection as Prand. Our method can reduce the expectation

of QCID compared to the random selection mechanism. In

other words, we have

EM⇠P�M
QCID(M) < EM⇠PrandQCID(M).

Furthermore, if increasing the value �M , the expectation of

QCID can be further reduced, i.e., for �0
M > �M , we have

EM⇠P�0
M
QCID(M) < EM⇠P�M

QCID(M).

Theorem 3.4 (Computation Complexity Reduction). The

computation complexity of our method is O
�
N ⇥M2

�
,

which is much smaller than the exhaustive search of

O

⇣�N
M

�
⇥M2

⌘
.

Theorem 3.4 shows that the computation complexity of our
method is independent of the number of classes. Since the
dimension of neural networks is typically much larger than
the class distribution vector ↵n, the additional communica-
tion cost is almost negligible. Besides, we also prove the
NP-hardness of the problem formally in Section B.3 in the
appendix.

4. Convergence Analysis

To analyze the convergence of our method, we first define
our objective functions and adopt some general assumptions.
Our global objective function eF > 0 can be decomposed
as eF = 1

B

PB
b=1

eFb, where eFb is the averaged loss function
with respect to all the data of the b-th class in the global
dataset. Similarly, the n-th client’s local objective function
Fn can be decomposed as Fn =

PB
b=1 ↵(n,b)Fn,b, where

Fn,b is the averaged loss function with respect to all the data
of the b-th class in the n-th client’s local dataset, and ↵(n,b)

is defined in Equation 1. Moreover, let w(k) denote the
global model parameters at the k-th communication round
and w(0) denote the initial global model parameters. If not
stated explicitly, r denotes rw throughout the paper.

Assumption 4.1 (Smoothness). The global objective func-
tion eF and each client’s averaged loss function Fn,b are Lip-
schitz smooth, i.e.

���r eF (w)�r eF (w0)
���  L eF kw�w0k and

krFn,b(w)�rFn,b(w0)k  Ln,bkw �w0
k, 8n, b,w,w0.

Assumption 4.2 (Unbiased Gradient and Bounded
Variance). The stochastic gradient gn at each client
is an unbiased estimator of the local gradient:
E⇠ [gn(w | ⇠)] = rFn(w), with bounded variance
E⇠

h
kgn(w | ⇠)�rFn(w)k2

i
 �2, 8w, where �2

� 0.

Assumption 4.3 (Bounded Dissimilarity). There ex-
ist two non-negative constants � � 1, �2

� 0 such that
PB

b=1
1
B

���r eFb(w)
���
2
 �

���
PB

b=1
1
Br

eFb(w)
���
2
+ �2, 8w.

Assumption 4.4 (Class-wise Similarity). For each class b,
the discrepancy between the gradient of global averaged
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all rand pow-d Fed-cucb Fed-CBS

Communication Rounds
↵=0.1 757±155 951±202 1147±130 861±328 654±96

↵=0.2 746±95 762±105 741±111 803±220 475±110

↵=0.5 426±67 537±115 579±140 1080±309 384±74

E[QCID](10�2)
↵=0.1 1.01±0.01 8.20±0.21 12.36±0.26 7.09±2.27 0.62±0.20

↵=0.2 0.93±0.03 7.54±0.27 10.6±0.48 5.93±1.01 0.51±0.12

↵=0.5 0.72±0.03 5.87±0.24 7.36±0.57 6.47±0.77 0.36±0.04

Table 1. The communication rounds required for targeted test accuracy and the averaged QCID values. The targeted test accuracy is 45%
for ↵ = 0.1, 47% for ↵ = 0.2 and 50% for ↵ = 0.5. The results are the mean and the standard deviation over 4 different random seeds.

Figure 4. Test accuracy on Cifar-10 under three heterogeneous settings.

loss function and the local one is bounded by some con-
stant in l2 norm. That means, for every n and b, we have���r eFb(w)�rFn,b(w)

���
2
 2

n,b, 8w.

Assumptions 4.1, 4.2 and 4.3 have been widely adopted in
previous literature on the theoretical analysis of FL (Li et al.,
2019; Cho et al., 2020; Wang et al., 2020a). Assumption
4.4 is based on the similarity among the data from the same
class. Similar to the standard setting (Wang et al., 2020a),
the convergence of our algorithm is measured by the norm
of the gradients, stated in Theorem 4.5.
Theorem 4.5. Under Assumptions 4.1 to 4.4, if the to-

tal communication rounds K is pre-determined and the

learning rate is set as ⌘ = s

10L
p

⌧(⌧�1)K
, where s < 1,

L = max{n,b} Ln,b and ⌧ is the number of local update

iterations, the minimal gradient norm of eF is bounded as:

min
kK

���r eF
⇣
w(k)

⌘���
2


1

V
[
�2s2

25⌧K
+

sL eF�
2

10L
p
⌧(⌧ � 1)K

+ 52 +
10L

p
⌧(⌧ � 1) eF

�
w(0)

�

s
p
K

+ �2E[QCID]],

where V = 1
3 � �BE[QCID] and  = max{n,b} n,b.

If the class-imbalance in client selection is reduced,
E[QCID] will decrease. Consequently, 1

V and E[QCID]
V

will also decrease, making the convergence bound on the
right side tighter2. Therefore, Theorem 4.5 not only pro-
vides a convergence guarantee for Fed-CBS, but also proves

2Theorem 4.5 requires the �M in our method to be large enough
to make E[QCID] < 1

3�B according to Theorem 3.3. How to

the class-imbalance reduction in client selection could bene-
fit FL, i.e., more class-balance leads to faster convergence.

5. Experiments

We conduct thorough experiments on three public bench-
mark datasets, CIFAR-10 (Krizhevsky et al.), Fashion-
MNIST (Xiao et al., 2017) and FEMNIST in the Leaf
Benchmark (Caldas et al., 2018). In all the experiments,
we simulate cross-device federated learning (CDFL), where
the system runs with a large number of clients with only
a fraction of them available in each communication round,
and we make client selections on those available clients.
The results show that our method can achieve faster and
more stable convergence compared with four baselines: ran-
dom selection (rand), Power-of-choice Selection Strategy
(pow-d) (Cho et al., 2020), the method in Yang et al. (2020)
(Fed-cucb), and the ideal setting where we select all the
available clients (all). To compare them efficiently in the
main text, we present the results from Cifar-10 where the
whole dataset is divided to 200 (or 120) clients, since we
need to engage all the clients for the ideal setting. To sim-
ulate more realistic settings where there are thousands of
clients, we conduct our method on FEMNIST in the Leaf
Benchmark with more then 3000 clients. Due to the space
limit, we move the results of FEMNIST, Fashion-MNIST,
and the ablation studies to Section C.5 & D in the Ap-
pendix. For Fashion-MNIST, we adopt FedNova (Wang

explicitly derive a lower bound for �M is also very interesting and
we leave it as a theoretical future work.
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et al., 2020a) to show that our method can be organically
integrated with existing orthogonal works which aim at im-
proving FL.

Experiment Setup We target cross-device settings where
the devices are resource-constrained, i.e., most of the de-
vices do not have sufficient computational power and mem-
ory to support the training of large models. Therefore, we
adopt a compact model with two convolutional layers fol-
lowed by three fully-connected layers and FedAvg (McMa-
han et al., 2017b) as the FL optimizer. The batch size is 50
for each client. In each communication round, all of them
conduct the same number of local updates, which allows
the client with the largest local dataset to conduct 5 local
training epochs. In our method, we set the �m = m, � = 10
and Lb = 10�20. The local optimizer is SGD with a weight
decay of 0.0005. The learning rate is 0.01 initially and the
decay factor is 0.9992. We terminate the FL training after
3000 communication rounds and then evaluate the model’s
performance on the test dataset of CIFAR-10. More details
of the experiment setup are listed in Section C.2.

5.1. Results for Class-Balanced Global Datasets

In this experiment, we set 200 clients in total with a class-
balanced global dataset. The non-IID data partition among
clients is based on a Dirichlet distribution parameterized by
the concentration parameter ↵ in Hsu et al. (2019). Roughly
speaking, as ↵ decreases, the data distribution will become
more non-iid. In each communication round, we uniformly
and randomly set 30% of them (i.e., 60 clients) available and
select 10 clients from those 60 available ones to participate
in the training.

As shown in Table 4, our method can achieve the lowest
QCID value compared with other client selection strategies.
As a benefit of successfully reducing the class-imbalance,
our method outperforms the other three baseline methods
and achieves comparable performance to the ideal setting
where all the available clients are engaged in training. As
shown in Table 4 and Figure 4, our method can achieve faster
and more stable convergence. The enhancement in stability
can also be perceived as a reduction in gradient variance, a
concept that has been explored in previous studies (Johnson
& Zhang, 2013; Zhang et al., 2020b; Defazio et al., 2014;
Zhao et al., 2018; Chatterji et al., 2018). It is also worth
noting that due to the inaccurate distribution estimation and
the limitations of the greedy method discussed in Section
2.2, the performance of Fed-cucb is much worse than ours.

5.2. Results for Class-Imbalanced Global Datasets

In real-world settings, the global dataset of all the clients
is not always class-balanced. Hence, we investigate two
different cases to show the superiority of our method and
provide more details of their settings in Section C.3. To sim-
plify the construction of a class-imbalanced global dataset,

each client only has one class of data with the same quantity.
We report the best test accuracy in Table 2 and present the
corresponding QCID values in Section C.4.

5.2.1. CASE 1: UNIFORM AVAILABILITY

Settings. There are 120 clients in total, and the global
dataset of these 120 clients is class-imbalanced. To measure
the degree of class imbalance, we let the global dataset have
the same amount of n1 data samples for five classes and the
same amount of n2 data samples for the other five classes.
The ratio r between n1 and n2 is respectively set to 3 : 1
and 5 : 1. In each communication round, we uniformly set
30% of them (i.e., 36 clients) available with replacement
and select 10 clients to participate in the training.

As shown in Table 2 and Figure 5, our method can achieve
faster and more stable convergence, and it even achieves
slightly better performance than the ideal setting where all
the available clients are engaged. The performance of Fed-
cucb (Yang et al., 2020) is better than the results on the
class-balanced global dataset, which is partly due to the
simplicity of each client’s local dataset composition in our
experiments. The third line in Figure 2 indicates Fed-cucb
can accurately estimate this simple type of label distribution.

Figure 5. Test accuracy on Cifar-10 with class-imbalanced global
dataset in Case 1.

5.2.2. CASE 2: NON-UNIFORM AVAILABILITY

Settings. There are 200 clients in total. In each communica-
tion round, 30% of them (i.e., 60 clients) are set available
uniformly in each training round with replacement. By non-
uniformly setting the availability, the global dataset of those
60 available clients is always class-imbalanced. To measure
the degree of class imbalance, we make the global dataset
have the same amount of n1 data samples for the five classes
and have the same amount of n2 data samples for the other
five classes. The ratio r between n1 and n2 is set to 3 : 1
and 5 : 1. We select 10 clients to participate in the training.

As shown in Table 2 and Figure 5, our method consistently
achieves higher test accuracy and more stable convergence,
and it also outperforms the ideal setting where all the avail-
able clients are engaged. Since the global dataset of the
available 60 clients in each communication round is always
class-imbalanced, engaging all of them is not the optimal
selection strategy in terms of test accuracy.
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all rand pow-d Fed-cucb Fed-CBS

Case 1 3:1 55.17±0.94 50.99±0.97 53.51±0.34 55.11±0.26 56.86±0.34

5:1 50.93±1.64 47.36±2.34 52.73±1.85 53.75±0.58 54.94±0.73

Case 2 3:1 54.01±0.60 50.81±2.03 53.98±1.87 54.48±1.31 57.71±0.50

5:1 50.42±1.27 48.33±3.03 53.54±1.18 53.38±1.48 57.99±0.46

Table 2. Best test accuracy for our method and other four baselines.

Figure 6. Test accuracy on Cifar-10 with class-imbalanced global
dataset in Case 2.

6. Conclusion

We unveil the essential reason for performance degradation
on non-IID data with random client selection strategy in
FL training, i.e., the class-imbalance. Motivated by this
insight, we propose an efficient heterogeneity-aware client
sampling mechanism, Fed-CBS. Extensive experiments val-
idate that Fed-CBS significantly outperforms the status quo
approaches and yields comparable or even better perfor-
mance than the ideal setting where all the available clients
participate in the training. We also provide the theoretical
convergence guarantee of Fed-CBS. Our mechanism has
numerous potential applications, including medical classi-
fication tasks. In addition, since Fed-CBS is orthogonal to
most existing work to improve FL on non-IID data, it can
be integrated with them to further improve the performance.
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A. Privacy Protection in the framework

A.1. Proof of Theorem 3.2

Proof. By the definitions of {↵i}, we define the following matrix A↵

A↵ ,

2

66664

q1↵1

...
qn↵n

...
qN↵N

3

77775
=

2

66664

q1↵(1,1) q1↵(1,2) ... q1↵(1,b) ... q1↵(1,B)

...
qn↵(n,1) qn↵(n,2) ... qn↵(n,b) ... qn↵(n,B)

...
qN↵(N,1) qN↵(N,2) ... qN↵(N,b) ... qN↵(N,B)

3

77775

By the definitions of S, we have
S = A↵ ·A|

↵ (2)

To derive the exact values of {↵i} based on S, we need to solve the problem 2. However, given S, the A↵ which satisfies
S = A↵ ·A|

↵ is not unique. If Ā↵ is a solution to the problem 2, then for any orthogonal matrix Q i.e. Q ·Q| = I where
the I is the identity matrix, the new matrix Ā↵ ·Q is also solution to the problem 2. This is because

Ā↵ ·Q · (Ā↵ ·Q)| = Ā↵ ·Q ·Q|
· Ā|

↵ = Ā↵ · Ā|
↵ = S

Hence, the A↵ which satisfies S = A↵ ·A|
↵ is not unique and we finish our proof.

To understand the Theorem 3.2, we provide the following example. We can conduct the following permutation on the
columns of A↵ (i.e. moving the first column to the place before the last column), we can derive a new matrix Ā↵.

Ā↵ ,

2

66664

q1↵(1,2) ... q1↵(1,b) ... q1↵(1,1) q1↵(1,B)

...
qn↵(n,2) ... qn↵(n,b) ... qn↵(n,1) qn↵(n,B)

...
qN↵(N,2) ... qN↵(N,b) ... qN↵(N,1) qN↵(N,B)

3

77775

We can find that Ā↵ also satisfies S = Ā↵ · Ā|
↵. Actually, there are also many other permutations that can derive the

solutions to the problem 2. Hence, in our framework shown in 7, the selector can not estimate the exact label distribution of
the clients.

A.2. An Example of Deriving S Using FHE

FHE (Brakerski et al., 2014; Fan & Vercauteren, 2012; Halevi & Shoup, 2015) enables an untrusted party to perform
computation (addition and multiplication) on encrypted data. In Figure 7, we provide a framework as an example to show
it is possible to derive S without knowing the values of local label distributions {↵i} using FHE. Our framework can be
realized using off-the-shelf FHE libraries such as (Chen et al., 2017).

There is a selector in our example. It is usually from a third party and keeps a unique private key, denoted by K�1
1 . The

corresponding public key is denoted by K1. In the confidential transmission between server and clients, each client first uses
K1 to encrypt their label distribution vector ↵k as K1(↵k), and transmits it to the server. Since only the server has access to
K1(↵k), no one else including the selector can decrypt it and get ↵k. When the server gets all K1(↵k), it will conduct FHE
computation to get the matrix K1(S) = K1({↵T

i ↵j}ij) = {K1(↵i)TK1(↵j)}ij . Then the server transmits the K1(S) to
selector, and selector uses K�1

1 to access the final result S. Since only the selector has K�1
1 , only it knows S. After that, the

selector will conduct client selection following some strategy to derive the result M and transmit it back to the server. At
last, the server will collect the model parameters of the clients in M and conduct FL aggregation. In the whole process, the
server, selector or any other clients except client n can not get ↵n. Furthermore, all clients and servers have no access to the
inner product results S, which prevents malicious clients or servers from inferring the label distributions of the other clients.
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Figure 7. An example of FHE to securely transmit S.

The server, selector or any other clients except client n can not get ↵n, which protects the privacy of the clients. Furthermore,
only the clients have no access to the inner product results S, which prevents malicious clients or servers from inferring the
label distributions of the other clients. We also prove that it is impossible even for the selector to derive {↵i} from S with
theorem 3.2.

B. Proof of Theorem 3.1, 3.3, 3.4 and 4.5

B.1. Proof of Theorem 3.1

Proof.
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B.2. Proof of Theorem 3.3

Proof. To select M clients from N available clients, there are
�N
M

�
different choices to construct M, denoted by

M
(1),M(2), ...,M(

�N
M

�
), respectively. Let xi , QCID(M(i)) and N̄ , (

�N
M

�
). Then we have

EM⇠P�M
QCID(M) = x1

1

x
�M
1

1

x
�M
1

+ 1

x
�M
2

+ ...+ 1

x
�M
N̄

+ x2
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x
�M
2

1

x
�M
1

+ 1

x
�M
2
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x
�M
N̄

+ ...+ xN̄

1

x
�M
N̄

1

x
�M
1

+ 1

x
�M
2

+ ...+ 1

x
�M
N̄

And EM⇠PrandQCID(M) =
1

N̄
(x1 + x2 + ...+ xN̄ )

Without loss of generality, we assume x1  x2  ...  xN̄ and define the following yi for the notation simplicity:

yi =

8
<

:

1

x
�M
i

if 0  i  N̄

1

x
�M
i�N̄

if N̄ < i  2N̄ � 1
(3)

Now we calculate the following ratio:

EM⇠P�M
QCID(M)
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=

N̄(x1
1

x
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1
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1
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=
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Since we assume that x1  x2  ...  xN̄ , we have 1

x
�M
1

�
1

x
�M
2

� ... � 1

x
�M
N̄

. Besides, it is easy to find xi and xi0

satisfying xi 6= xi0 . Then for each 1  j  N̄ , according to the rearrangement inequality, we have

N̄X
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1
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Similarly, for �0
M such that �0

M � �M , denote �0
M = �M +��. We have
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Now we calculate the following ratio:
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Since we assume that x1  x2  ...  xN̄ , we have 1
x��
1

�
1

x��
2

� ... � 1
x��
N̄

. Then for each 1  i  j  N , according to

the rearrangement inequality, we have
xi

x��
i

+
xj

x��
j


xi

x��
j

+
xj

x��
i

Furthermore, among all the (xi, xj) pairs, it is easy to find one (xi, xi0) such that it satisfies xi 6= xi0 . Thus we have
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x��
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x��
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x��
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x��
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< 1) EM⇠P�0
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QCID(M) < EM⇠P�M

QCID(M)

B.3. Proof of NP-hardness

We provide the following proof to prove the NP-hardness. First, we need to clarify the definitions of the following three
problems.

Problem 1: We need to select M clients among N clients such that the grouped dataset of these M clients is class-balanced.
There are B (B 2) classes in total. Our goal is to prove the NP-hardness of Problem 1.

Problem 2: We need to select N clients among 2 N clients such that the group dataset of these N clients is class-balanced.
There are 2 classes in total. We denote the distribution of the local dataset of the n-th client as [xn, yn], where xn and yn are
non-negative integers.

Problem 2 is a particular case of Problem 1. If we can prove the NP-hardness of Problem 2, then Problem 1 is also NP-hard.

Problem 3 (Partition problem): Deciding whether a given multiset S of K positive integers can be partitioned into two
subsets S1 and S2 such that the sum of the numbers in S1 equals the sum of the numbers in S1. We denote the S as
{s1, s2, . . . , sK}

It is well-known that the Partition problem is an NP-complete problem. Hence the overall idea of our proof is to reduce
Problem 2 to Problem 3. Then we can show that Problem 2 is NP-hard.

Proof. Case 1: We first consider the case where K is an even number, where K = 2N . We denote the sum of all the
elements in S as W , where W = s1 + s2 + . . .+ sK . We define a new positive value P as

P = min{ |2W �Ks1| , |2W �Ks2| , . . . , |2W �KsK |}+ 1
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Now, we define the following non-negative xn and yn, where 1  n  K

x1 = Ks1 + P, y1 = 2W �Ks1 + P
x2 = Ks2 + P, y2 = 2W �Ks2 + P

xK = KsK + P, yK = 2W �KsK + P

Now we can consider the [x1, y1] , [x2, y2] , . . . , [xK , yK ] as the class distributions defined in Problem 2 . If Problem 2 is
not NP-hard, we can find N = K

2 clients among the above K clients such that the grouped dataset is class-balanced within
polynomial time complexity. We denote those N clients’ distribution as [x̄1, ȳ1] , [x̄2, ȳ2] , . . . , [x̄K , ȳN ]. Then we denote
the corresponding elements in S as s̄1, s̄2, . . . , s̄N . Since it is class-balanced solution, we have

x̄1 + x̄2 + . . .+ x̄N = ȳ1 + ȳ2 + . . .+ ȳN

By summarizing all the x̄n and ȳn. we can derive that (x̄1 + ȳ1) + (x̄2 + ȳ2) + . . .+ (x̄N + ȳN ) = N(2W + 2P ). Then
we have x̄1 + x̄2 + . . .+ x̄N = N(W + P ) According to the definition of x̄1, x̄2, . . . , x̄N , we have

(Ks̄1 + P ) + (Ks̄2 + P ) + . . .+ (Ks̄N + P ) = N(W + P )

Since K = 2N we have s̄1 + s̄2 + . . .+ s̄N = W
2 . This means we can solve the Partition problem within polynomial time

complexity when K is an even number. Case 2: If K is an odd number, where K = 2N � 1, we can just add an auxiliary
element s0 = 0 to the original S and derive a new set St = S [ {s0}. If Problem 2 is not NP-hard, we can follow the same
process as in Case 1 to solve the Partition problem within polynomial time complexity when K is an odd number.

We know these solutions to Case 2& Case 1 conflict with the fact that the Partition problem is NP-hard. Hence, Problem 2 is
NP-hard. Then Problem 1 is NP-hard, and we finish our proof.

B.4. Proof of Theorem 3.4

Proof. According to (Schneider & Barker, 1989), we first define the principle submatrix, which is a submatrix where the set
of remaining row indices is the same as the remaining set of column indices .

Before selecting the first client, we need to calculate the following value for all clients c1 2 {1, 2, 3, ..., N},

P (C1 = c1) /
1

[QCID(M1)]�1
+ �

s
3 ln k

2Tc1

, �1 > 0.

To derive the QCID(M1) for each c1 2 {1, 2, 3, ..., N}, according to Theorem 3.1, we need to find the principle submatrix
of S, denoted by S1, in which the set of column indices is M1. Then we need to calculate the sum of all the elements in S1.
Since there are N different values for c1 and the dimension of S1 is 1⇥ 1, we need to conduct the computation for N times.

After selecting M1 = {c1}, we need to select c2 2 {1, 2, 3, ..., N}/M1 to form M2 = M1
S
{c2}.

Before selecting the second client, we need to calculate the following value for all the M2 = {c1, c2} where c2 2
{1, 2, 3, ..., N}/M1,

P (C2 = c2|C1 = c1) /

1
[QCID(M2)]�2

1
[QCID(M1)]�1

+ ↵
q

3 ln k
2Tc1

To derive the QCID(M2) for each c2 2 {1, 2, 3, ..., N}/{M1}, according to Theorem 3.1, we need to find the principle
submatrix of S, denoted by S2, in which the set of column indices is M2. Then we need to calculate the sum of all the
elements in S2. Since there are N � 1 different values for c2, there will be N � 1 different S2. Also, because we have
already calculate the sum of all the elements in S1, which is a submatrix of S2, in our first step, we now only need to sum
over all the other elements in S2. Since the dimension of S2 is 2⇥ 2, we need to do the computation for (N � 1)⇥ (22 � 1)
times.
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This procedure goes on. After selecting Mm�1 = {c1, c2, ..., cm�1}, where 3  m  M , we need to select cm 2
{1, 2, 3, ..., N}/Mm to form Mm = Mm�1

S
{cm}. Before selecting the m-th client, we need to calculate the following

value for all the Mm = {c1, c2, ..., cm} where cm 2 {1, 2, 3, ..., N}/Mm�1,

P (Cm = cm|Cm�1 = cm�1, ..., C2 = c2, C1 = c1) /
[QCID(Mm�1)]�m�1

[QCID(Mm)]�m

To derive the QCID(Mm) for each cm 2 {1, 2, 3, ..., N}/{Mm�1}, according to Theorem 3.1, we need to find the
principle submatrix of S, denoted by Sm, in which the set of column indices is Mm. Then we need to calculate the sum of
all the elements in Sm. Since there are N � (m� 1) different values for cm, there will be N � (m� 1) different Sm. Since
we have already calculate the sum of all the elements in Sm�1, which is a submatrix of Sm, in our previous step, now we
only need to sum all the other elements in Sm. Since the dimension of Sm is m⇥m, we need to conduct the computation
for (N � (m� 1))⇥ (m2

� (m� 1)2) times.

In summary, in our strategy, the total times of computations we need to conduct are

N + (N � 1)⇥ (22 � 1) + ...+ (N � (m� 1))⇥ (m2
� (m� 1)2) + ...+ (N �M)⇥ (M2

� (M � 1)2)

 N +N ⇥ (22 � 1) + ...+N ⇥ (m2
� (m� 1)2) + ...+N ⇥ (M2

� (M � 1)2)

= N ⇥M2 ,

which finishes the proof that the computation complexity for our method is O
�
N ⇥M2

�
.

B.5. Proof of Theorem 4.5

Proof. Suppose there are N available clients and their indices are denoted by {1, 2, 3, .., N}. Our goal is to get a subset M
of {1, 2, 3, .., N} following the probability law S of some client selection strategy. Let w(k,t)

n denote the model parameter
of client n after t local updates in the k-th communication round and w(k,0) denote the global model parameter at the
beginning of the k-th communication round. According to the proof of Theorem 1 in (Wang et al., 2020a), we can define the
following auxiliary variables for the setting where we adopt FedAvg as the FL optimizer and all the client conduct ⌧ local
updates in each communication round k:

Normalized Stochastic Gradient: d(k)
n = 1

⌧

P⌧�1
k=0 gn

⇣
w(k,t)

n

⌘
,

Normalized Gradient: h(k)
n = 1

⌧

P⌧�1
k=0rFn

⇣
w(k,t)

n

⌘
.

Normalized Class-wise Gradient: h(k)
(n,b) =

1
⌧

P⌧�1
k=0rF(n,b)

⇣
w(k,t)

n

⌘
.

It is easy to verify that h(k)
n =

PB
b=1 ↵(n,b)h

(k)
(n,b).

According to the proof of Theorem 1 in (Wang et al., 2020a), one can show that E
h
d(k)
n � h(k)

n

i
= 0. Besides, since clients

are independent to each other, we have E
D
d(k)
n � h(k)

n ,d(k)
n0 � h(k)

n0

E
= 0, 8n 6= n0. Recall that the update rule of the global

model can be written as follows:

w(k+1,0)
�w(k,0) = �⌘

P
n2M qnd

(k)
nP

n2M qn
,

where ⌘ is the learning rate. According to the Lipschitz-smooth assumption for the global objective function eF (Asssumption
4.1), it follows that

E
h
eF
⇣
w(k+1,0)

⌘i
� eF

⇣
w(k,0)

⌘

� ⌘ E
"*
r eF

⇣
w(k,0)

⌘
,

P
n2M qnd

(k)
nP

n2M qn

+#

| {z }
T1

+
⌘2L eF
2

E

2

4
�����

P
n2M qnd

(k)
nP

n2M qn

�����

2
3

5

| {z }
T2

(4)
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where the expectation is taken over randomly selected indices set M as well as mini-batches ⇠(k,t)i , 8n 2 {1, 2, . . . ,m}, t 2
{0, 1, . . . , ⌧ � 1}

Similar to the proof in (Wang et al., 2020a), to bound the T1 in (4), we should notice that

T1 = E

2

4
*
r eF

⇣
w(k,0)

⌘
,

P
n2M qn

⇣
d(k)
n � h(k)

n

⌘

P
n2M qn

+3

5+ E
"*
r eF

⇣
w(k,0)

⌘
,

P
n2M qnh

(k)
nP

n2M qn

+#

= E
"*
r eF

⇣
w(k,0)

⌘
,

P
n2M qnh
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nP
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1

2
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⇣
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2
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4
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⇣
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⌘
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P
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�����

2
3

5 (5)

where the last equation uses the fact: 2ha, bi = kak2 + kbk2 � ka� bk2.

T2 is similar as the one in (Wang et al., 2020a). According to the proof in Section C.3 of (Wang et al., 2020a) , we have the
following bound for T2,

T2 2�
2E

P
n2M q2n
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P
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Plugging (5) and (6) back into (4), we have
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⇣
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If we set ⌘  1
2L , we have

E
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Now we focus on the E
"����r eF
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For T3, according to the Cauchy-Schwarz inequality and Assumption 4.3, we have
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where where  = max{n,b}{n,b}. According to the results from the proof in C.5 in (Wang et al., 2020a), we have
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where L = max{n,b}Ln,b and D = 4⌘2L2⌧(⌧ � 1).

Combining the results in (8), (9), (10), (12) and (13), it is easy to derive that
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Taking the total expectation and averaging over all rounds, one can obtain
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Finally, we have
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If setting ⌘ = s
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Since eF is larger than 0, Fmin > 0. Now we let w(k) denote the global model parameter at the k-th communication round
and w(0) denote the initial parameter. After changing the notations, we can finish our proof by the following:
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C. Supplemental Experiment Settings and Results

C.1. The Experimental Settings in Section 2.1

We adopt an MLP model with one hidden layer of 64 units and FedAvg (McMahan et al., 2017b) as the FL optimizer. In
Figure 1a, we allocate the MNIST data to N = 100 clients with each client only accessing to the same amount of data from
one class. In Figure 1b, each client is associated with the same amount of data from two classes. In Figure 1c and 1d, we
first allocate the whole MNIST dataset to N = 200 clients and pick 100 to construct a class-imbalanced global dataset. The
global dataset with the 100 clients has the same amount of n1 data samples for five classes and has the same amount of n2

data samples for the other five classes. The ration r between n1 and n2 is set to 3 : 1.

In each training round (communication round), all of the clients conduct 5 local training epochs. The batch size is 50 for
each client. The local optimizer is SGD with a weight decay of 0.0005. The learning rate is 0.01 initially and the decay
factor is 0.9992. We terminate the FL training after 200 training rounds (communication rounds) and then evaluate the
model’s performance on the test dataset of MNIST.

C.2. Additional Experimental Settings in Section 5

The model we adopt has two convolutional layers with the number of kernels being 6 and 16, respectively. And all
convolution kernels are of size 5 × 5. The outputs of convolutional layers are fed into two hidden layers with 120 and 84
units.

In our implementation of Power-of-choice selection strategy (pow-d)(Cho et al., 2020), we first sample a candidate set A of
20 clients without replacement such that client n is chosen with probability proportional to the size of their local dataset qn.
Then the server sends the current global model to the clients in set A, and these clients compute and send back to the server
their local loss. To derive M, we select M clients who have the highest loss from A.

In our implementation of the method in (Yang et al., 2020) (Fed-cucb), the exploration factor to balance the trade-off
between exploitation and exploration is set as 0.2 and the forgetting factor as 0.99, which is the same as the settings in (Yang
et al., 2020).

With the help of FHE, we can derive the matrix of inner products S accurately. Hence, in the simulation of our method,
Fed-CBS, we ignore the process of deriving S and focus on our sampling strategy.

C.3. Additional Details for the Experimental Settings in Case 1 and Case 2

Case 1 In this setting, we have 120 clients in total, and each client has only one class of data.

When n1 : n2 = 3 : 1, there are 18 clients having the data from the 1st class, 18 clients having the data from the 2nd class,
18 clients having the data from the 3rd class, 18 clients having the data from the 4th class, and 18 clients having the data
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from the 5th class. There are 6 clients with data from the 6th class, 6 clients with data from the 7th class, 6 clients with data
from the 8th class, 6 clients with data from the 9th class, and 6 clients the data from the 10th class.

When n1 : n2 = 5 : 1, there are 20 clients having the data from the 1st class, 20 clients having the data from the 2nd class,
20 clients having the data from the 3rd class, 20 clients having the data from the 4th class and 20 clients having the data
from the 5th class. There are 4 clients having the data from the 6th class, 4 clients having data from the 7th class, 4 clients
having data from the 8th class, 4 clients having data from the 9th class, and 4 clients having the data from the 10th class.

Then we uniformly set 30% (36 clients) of them available. Since there are more clients which contain the data from the first
5 classes among the above 120 clients. The global dataset of these 36 clients is often class-imbalanced.

Case 2 In this setting, we have 200 clients in total and each client has only one class of data. For all the i 2 {1, 2, ..., 10},
there are 20 clients having the data from the i�th class.

When n1 : n2 = 3 : 1, we randomly pick 9 clients from the 20 clients which have the data from the 1st class and set them
available. We randomly pick 9 clients from the 20 clients which have the data from the 2nd class and set them available.
Similarly, for the k-th class (2 < k  5), we randomly pick 9 clients from the 20 clients which have the data from the k-th
class and set them available. On the contrary, we randomly pick 3 clients from the 20 clients which have the data from the
6th class and set them available. We randomly pick 3 clients from the 20 clients which have the data from the 7th class and
set them available. Similarly, for 7 < k  10, we randomly pick 3 clients from the 20 clients which have the data from the
k-th class and set them available. There are 60 clients in total.

When n1 : n2 = 5 : 1, we randomly pick 10 clients from the 20 clients which have the data from the 1st class and set them
available. We randomly pick 10 clients from the 20 clients which have the data from the 2nd class and set them available.
For the k-tth class (2 < k  5), we randomly pick 10 clients from the 20 clients which have the data from the k-th class and
set them available. On the contrary, we randomly pick 2 clients from the 20 clients which have the data from the 6th class
and set them available. We randomly pick 2 clients from the 20 clients which have the data from the 7th class and set them
available. And for the other k-th class (7 < k  10), we randomly pick 2 clients from the 20 clients which have the data
from the k-th class and set them available. There are 60 clients in total.

Since there are more clients that contain the data from the first 5 classes among the above 60 clients, the global dataset of
these 60 clients is always class-imbalanced.

The difference between the settings of Case 1 and Case 2 is that we uniformly set 30% clients available in Case 1 but
non-uniformly set 30% clients available in Case 2. Nevertheless, the global datasets of the available clients are both
class-imbalanced in both cases.

C.4. The Averaged QCID Values for Case 1 and Case 2 in Section 5.2

E[QCID](10�2) all rand pow-d Fed-cucb Fed-CBS

Case 1 3:1 2.90±0.02 9.33±0.17 13.70±0.39 1.39±0.37 0.57±0.04

5:1 6.17±0.04 12.36±0.20 16.63±0.74 3.43±0.76 2.41±0.07

Case 2 3:1 2.50±0.00 9.91±0.16 13.68±0.72 1.89±1.72 0.001±0.001

5:1 4.44±0.00 11.70±0.20 15.68±0.96 2.63±2.40 0.002±0.001

Table 3. The averaged QCID values for four baselines and our method. Our method, Fed-CBS, has successfully reduced the class-
imbalance. Since the global dataset of all the 60 available clients is always class-imbalanced and the ratio is always fixed in case 2, the
QCID value is fixed and the derivation of it is always zero.

C.5. Experiment Results of Fashion-MNIST Dataset

Experiment Setup We adopt an MLP model with one hidden layer of 64 units and and FedNova (Wang et al., 2020a)
as the FL optimizer . Similar to the setup in the experiment of CIFAR-10, the batch size is 50 for each client. In each
communication round, all of them conduct the same number of local updates, which allows the client with the largest local
dataset to conduct 5 local training epochs. In our method, we set the �m = m, � = 10 and Lb = 10�20. The local optimizer
is SGD with a weight decay of 0.0005. The learning rate is 0.01 initially and the decay factor is 0.9992. We terminate the FL
training after 3000 communication rounds and then evaluate the model’s performance on the test dataset of Fashion-MNIST.
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all rand pow-d Fed-cucb Fed-CBS

Communication Rounds
↵=0.1 115±17 185±27 135±22 124±37 92±6

↵=0.2 173±45 284±54 218±55 216±24 166±36

↵=0.5 258±44 331±55 281±54 284±51 218±36

E[QCID](10�2)
↵=0.1 1.40±0.11 8.20±0.19 11.72±0.33 4.24±0.59 0.15±0.02

↵=0.2 1.39±0.22 7.67±0.26 10.31±0.24 4.43±0.38 0.21±0.01

↵=0.5 0.94±0.07 5.93±0.26 7.68±0.28 4.34±0.85 0.22±0.01

Table 4. The communication rounds required for targeted test accuracy and the averaged QCID values on Fashion-MNIST dataset. The
targeted test accuracy is 78% for ↵ = 0.1, 80% for ↵ = 0.2 and 82% for ↵ = 0.5. The results are the mean and the standard deviation
over 4 different random seeds.

Figure 8. Test accuracy on Fashion-MNIST dataset under three heterogeneous settings.

C.5.1. RESULTS FOR CLASS-BALANCED GLOBAL DATASET

Similar to the experiment settings, in this experiment, we set 200 clients in total with a class-balanced global dataset. The
non-IID data partition among clients is based on the settings of Dirichlet distribution parameterized by the concentration
parameter ↵ in (Hsu et al., 2019). In each communication round, we uniformly and randomly set 30% of them (i.e., 60
clients) available and select 10 clients from those 60 available ones to participate in the training.

As shown in Table 8, our method successfully reduces the class-imbalance, since it achieves the lowest QCID value
compared with other client selection strategies. Our method outperforms the other three baseline methods and achieves
comparable performance in the ideal setting where all the available clients are engaged in the training. As shown in Table
3 and Figure 8, our method can achieve faster and more stable convergence. It is worth noting that due to the inaccurate
estimation of distribution and the weakness of the greedy method discussed in Section 2.2, the performance of Fed-cucb is
much worse than ours.

C.5.2. RESULTS FOR CLASS-IMBALANCED GLOBAL DATASET: CASE 1

Similar to the settings for Cifar-10, there are 120 clients in total and each client only has one class of data with the same
quantity. The global dataset of these 120 clients is always class-imbalanced. To measure the degree of class imbalance,
we let the global dataset have the same amount n1 of data samples for five classes and have the same amount n2 of data
samples for the other five classes. The ratio r between n1 and n2 is set to 3 : 1 and 5 : 1 respectively in the experiments. In
each communication round, we randomly set 30% of them (i.e., 36 clients) available and select 10 clients to participate in
the training.

As shown in the Table 5 and Figure 9a, our method can achieve faster and more stable convergence, and even better
performance than the ideal setting where all the available clients are engaged. The performance of Fed-cucb (Yang et al.,
2020) is better than the results on class-balanced global dataset, which is partly due to the simplicity of each client’s local
dataset composition in our experiments as discussed in the experiments of Cifar-10.
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(a) Case 1 (b) Case 2

Figure 9. Test accuracy on Fashion-MINST with class-imbalanced global dataset in Case 1 and Case 2.

all rand pow-d Fed-cucb Fed-CBS

Case 1
3:1 78.42±0.79 78.46±0.90 81.08±0.21 80.83±0.91 81.75±0.34

5:1 72.42±2.22 75.49±2.56 80.15±0.41 80.50±0.95 81.42±0.50

Case 2 3:1 74.64±1.87 78.80±0.55 81.13±0.41 79.94±0.31 81.95±0.57

5:1 67.16±4.13 74.17±2.01 80.05±0.39 80.00±0.58 81.92±0.57

Table 5. Best test accuracy for our method and other four baselines on Fashion-MNIST dataset.

C.5.3. RESULTS FOR CLASS-IMBALANCED GLOBAL DATASET: CASE 2

Similar to the settings of Cifar-10, we assume that there are 200 clients in total. In each communication round, 30% of
them (i.e., 60 clients) are set available in each training round. The global dataset of those 60 available clients is always
class-imbalanced. To measure the degree of class imbalance, we make the global dataset have the same amount n1 of data
for the five classes and have the same amount n2 of data for the other five classes. The ratio r between n1 and n2 is set to
3 : 1 and 5 : 1. We select 10 clients from these 60 clients to participate in the training.

As shown in the Table 5 and Figure 9b, our method can achieve higher test accuracy and more stable convergence, which
outperforms the ideal setting where all the available clients are engaged. Since the global dataset of the available 60 clients
in each communication round is always class-imbalanced, the performance of engaging all of them is not good.

D. Ablation Studies and Discussion

D.1. Accurate Estimation vs Inaccurate Estimation for Fed-cucb

Figure 10. Test accuracy on Cifar-10 for Fed-cucb, Fed-cucb+ and Fed-CBS.

As discussed in Sections 2.2 and 5.1, the estimation of the label distribution in Fed-cucb (Yang et al., 2020) is not accurate,
which leads to performance degradation. Hence there comes a natural question, would the performance of Fed-cucb get
improved if it got an exact estimation of the local label distribution? In our simulation, we manually let the Fed-cucb know
the exact value of each client’s local label distribution and name it as Fed-cucb+. Actually, Fed-cucb+ is the core part
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Fed-cucb+ (Astraea) Fed-cucb Fed-CBS

Best Accuracy (%) ↵=0.1 49.10±0.70 46.84±0.73 50.36±0.58

↵=0.2 50.61±0.77 48.80±1.05 51.95±0.57

↵=0.5 52.71±0.27 50.98±0.56 54.21±0.34

E(QCID) (10�2)
↵=0.1 0.83±0.18 7.09±2.27 0.62±0.20

↵=0.2 0.68±0.05 5.93±1.01 0.51±0.12

↵=0.5 0.43±0.04 6.47±0.77 0.36±0.04

Table 6. Best accuracy and the averaged QCID values.

of Astraea (Duan et al., 2019) without data augmentation. Hence, comparing our method with Fed-cucb+ can show the
superiority of our sampling strategy over the greedy method in Fed-cucb (Yang et al., 2020) and Astraea (Duan et al., 2019).

Figure 11. Test accuracy with different exploration factor �.

D.2. The Effect of Exploration Factor �

As shown in the Figure 10 and Table 6, Fed-cucb+ does improve the performance of Fed-cucb, which verifies the importance
of accurate estimation. However, our Fed-CBS still outperforms Fed-cucb+. Although, it seems that the accuracy of
Fed-cucb+ increases a little faster than Fed-CBS at the beginning of the training, our method will achieve higher accuracy
as the training proceeds further. As discussed in the Remark 3.3 in Section 3.3 and the Figure 3 of Section 5.1, this is due to
the pitfall of greedy method, where one will miss the optimal solution. This has been verified by the averaged QCID value
in Table 6, which shows that Fed-CBS can achieve lower E(QCID) than Fed-cucb+ (Astraea).

Another potential weakness of greedy method is the diversity of client composition. Following their selection process, once
the first choice of client has been made, the following choices are fixed successively. Hence there are only limited kinds of
client composition. It is interesting to investigate the relationship between the training performance and the diversity of
client composition and we leave it as future work.

In our sampling strategy, when we sample the first client, we introduce the exploration factor � to balance the tradeoff
between exploitation and exploration. When the � is small, our method will tend to exploit the class-balanced clients since
their QCID values are smaller. For fairness, we hope every client can get the chance to be selected. Hence, we can increase
the � and then our method will tend to explore the clients which have seldom been selected before. However, it might cost
many communication rounds for exploration and lead to slower convergence.

We conduct some experiments to verify the effect of exploration factor �. The settings are the same as the ones in Section
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5.1 when ↵ = 0.2. As shown in the Figure 11, as the � becomes larger, the increase of accuracy will become a little slower
at the start of the training. This because the it might cost more communication rounds for exploration. As the training
proceeds, the accuracy with larger � becomes a little higher than the ones with smaller �. Overall, the improvement on the
convergence speed and best accuracy is very slight, which means the performance of FL training is not very sensitive to the
values of exploration factor �. Generally, if we want to slightly fasten the convergence, we can decrease the value of �. If
we want to improve the best accuracy a little, we can increase the value of �.

D.3. The Performance with Different Amounts of Selected Clients

In this section, we want to investigate how the amount of selected clients will affect the FL training performance. Generally,
we think as the amount of selected clients increases, the FL training process can achieve better performance. However, once
that amount reaches some threshold ✏, the improvement will become slighter. This is because we find that select only a
subset of all the available can achieve comparable results with engaging all the available clients into the training. As for how
to decide the threshold ✏, we provide the following two principles based on QCID and our experience.

• First, if we work on a classification task with B classes, we can select at least B clients. This is because in some special
cases, each client will only have one class of data in their local dataset, such as the settings in Section 5.2. Hence, if
less than B clients are selected, the grouped dataset of the selected clients will miss some classes of data.

• Second, to avoid missing some classes of data, we increase the threshold ✏ such that the averaged QCID value could
be smaller than 1

B2 . This is because if the grouped dataset misses at least one class of data, the QCID will be larger
than 1

B2 .

We conducted some experiments to verify our prediction on the effect of the amount of selected clients. The settings are the
same as the ones in Section 5.1 when ↵ = 0.2. As shown in the left figure of Figure 12, as the amount of selected clients
increases, the FL training process can achieve better performance. However, when the amount M is larger than 10, the
improvement is slighter. In the right figure of Figure 12 , we can find that the averaged QCID value of selecting 5 clients is
larger than ( 1

10 )
2 = 0.01 and its performance is obviously worse than the others. These results verify the effectiveness of

our principles on how to set the threshold ✏. It is worth noting that due to the limitation of communication capacities, we
cannot select as many clients as possible. Hence, how to identify the appropriate threshold ✏ is critical to the FL training.

Figure 12. Left: The performance with different amounts of selected clients. Right: The QCID with different amounts of selected clients.

D.4. Additional Experimental Results on FEMNIST Dataset

We also conduct some experiments on the FEMINST Dataset to simulate more realistic settings where there are thousands
of clients. Since in practice, it is impossible to engage all the clients during training, we compare our method by randomly
selecting more clients. . There are 3500 (> 1000) clients in total and we randomly set 10%(< 30%) of them available in
each round. Then our method tries to select 30 clients from them. That is less than 1% of all the 3550 clients and also less
than the number of classes (64). Besides, we also run three baselines, randomly selecting 30 clients, randomly selecting
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120(> 100) clients, and selecting 30 clients with fed-cucb. We present the results in Table 7 and Figure 13. Our performance
is still the best. Due to the global imbalance, the rand-120 is even worse than the rand-30.

rand-30 rand-120 Fed-cucb Fed-CBS
Communication Rounds 1106 ± 24 1394 ± 11 1124± 31 980±17

Table 7. The communication rounds required for targeted test accuracy (75%). The results are the mean and the standard deviation over 3
different random seeds.

Figure 13. Test accuracy for FEMNIST

E. Comparison between Cluster-based Client Sampling Algorithms and Fed-CBS

We present the following comparison between cluster-based client sampling algorithms and our own method to demonstrate
our superiority.

Firstly, the unbiased sampling property of the clustering sampling method (Fraboni et al., 2021) may not lead to optimal
performance when dealing with class-imbalanced global training datasets. In Section 3.1 of (Fraboni et al., 2021), the
authors mention that they “require clustered sampling to be unbiased,” which implies that the expected value of client
aggregation should be equivalent to the aggregation of all clients. However, our findings, as depicted in Figures 1, indicate
that aggregating all clients does not always lead to satisfactory performance, especially when the downstream test task
is class-balanced. It should be noted that ensuring class-balance in the downstream test task is crucial for maintaining
fairness and privacy. This is because the imbalanced performance of the model across different classes can potentially reveal
sensitive information about the global training dataset.

Secondly, our method guides the clustering sampling methods. Although clustering sampling can address many root causes
of heterogeneity in the input space distributions at clients, however, since “unbiased sampling” will cause the mismatch
between the input space distributions at clients and the downstream task’s space distribution, we still need to identify key
causes to make the clustering sampling “biased” to align the input space and downstream space. This is still very challenging
because while clustering sampling methods can include many root causes of heterogeneity in the input space distributions at
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clients, we still need to be careful since most are hard to measure and contain lots of private information. Our analysis of
”class imbalance” provides a valuable measure in this regard, and we also offer an efficient means of utilizing this measure
in a privacy-preserving way. Therefore, our work can contribute to advancing clustering sampling methods in the future
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