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Abstract

Test log-likelihood is commonly used to compare different models of the same data or different
approximate inference algorithms for fitting the same probabilistic model. We present simple
examples demonstrating how comparisons based on test log-likelihood can contradict comparisons
according to other objectives. Specifically, our examples show that (i) approximate Bayesian
inference algorithms that attain higher test log-likelihoods need not also yield more accurate
posterior approximations and (ii) conclusions about forecast accuracy based on test log-likelihood
comparisons may not agree with conclusions based on root mean squared error.

1 Introduction

Test log-likelihood, also known as predictive log-likelihood or test log-predictive, is computed as the
log-predictive density averaged over a set of held-out data. It is often used to compare different
models of the same data or to compare different algorithms used to fit the same probabilistic model.
Although there are compelling reasons for this practice (Section 2.1), we provide examples that
falsify the following, usually implicit, claims:

• Claim: The higher the test log-likelihood, the more accurately an approximate inference
algorithm recovers the Bayesian posterior distribution of latent model parameters (Section 3).

• Claim: The higher the test log-likelihood, the better the predictive performance on held-out
data according to other measurements, like root mean squared error (Section 4).

Our examples demonstrate that test log-likelihood is not always a good proxy for posterior approxi-
mation error. They further demonstrate that forecast evaluations based on test log-likelihood may
not agree with forecast evaluations based on root mean squared error.

We are not the first to highlight discrepancies between test log-likelihood and other analysis objectives.
For instance, Quiñonero-Candela et al. (2005) and Kohonen and Suomela (2005) showed that when
predicting discrete data with continuous distributions, test log-likelihood can be made arbitrarily
large by concentrating probability into vanishingly small intervals. Chang et al. (2009) observed
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that topic models with larger test log-predictive densities can be less interpretable. Yao et al. (2019)
highlighted the disconnect between test log-likelihood and posterior approximation error in the
context of Bayesian neural networks. Our examples, however, reveal more fundamental discrepancies
between test log-likelihood and other evaluation metrics. In particular, we show how comparisons
based on test log-likelihood can contradict comparisons based on other objectives even in simple
models like linear regression.

After introducing our notation, we precisely define test log-likelihood and review arguments for its use
in Section 2. In Sections 3.1–3.3, we present several examples showing that across a range of posterior
approximations, those with higher test log-likelihoods may nevertheless provide worse approximation
quality. Then, in Section 3.4, we provide some intuition about why this phenomenon can occur when
the model is severely misspecified (Section 3.1); when using sophisticated posterior approximation
methods (Section 3.2); and even when there is little or no model misspecification (Section 3.3). In
Section 4, we show examples in both complex and simple models where test log-likelihood is higher
but root mean squared error on held-out data is worse. Our examples in Section 4 do depend on
model misspecification, but we note that model misspecification is unavoidable in practice. We
conclude in Section 5 with a reflection on when we should use test log-likelihood in practice.

2 Background

We assume we have access to training and testing data such that all data points are independently
and identically distributed (i.i.d.) from an unknown probability distribution P. Let D = {yn}Nn=1

denote the training data. In many standard analyses, practitioners will have access to a predictive
density of a future data point y⋆ given the observed D: π(y⋆|D). For instance, consider the following
three cases.

• Case A: Practitioners often model the observed data by introducing a parameter θ and
specifying that the data are i.i.d. from a conditional distribution Π(Y |θ) with density π(y|θ).
In a non-Bayesian analysis, one usually computes a point estimate θ̂ of the unknown parameter
(e.g. by maximum likelihood). Given a point estimate θ̂, the predictive density π(y⋆|D) is just
π(y⋆|θ̂).

• Case B: A Bayesian analysis elaborates the conditional model from Case A by specifying a
prior distribution Π(θ) and formally computes the density π(θ|D) of the posterior distribution
Π(θ|D) from the assumed joint distribution Π(D, θ). The Bayesian posterior predictive density
is given by

π(y⋆|D) =

∫

π(y⋆|θ)π(θ|D)dθ. (1)

• Case C: An approximate Bayesian analysis proceeds as in Case B but uses an approximation
in place of the exact posterior. If we let Π(θ|D) represent an approximation to the exact
posterior, Equation (1) yields the approximate Bayesian posterior predictive density π(y⋆|D).
Sometimes, due the difficulty of the integral in Equation (1), a further approximation may be
used to yield a predictive density π(y⋆|D).

In all of these cases, we will refer to the practitioner as having access to a model Π that determines
the predictive distribution Π(y⋆|D); in particular, we allow “model” henceforth to encompass fitted
models and posterior approximations. One can ask how well the resulting Π(y⋆|D) predicts new data
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generated from P. Practitioners commonly assess how well their model predicts out-of-sample using
a held-out set of testing data D⋆ = {y⋆n}N

⋆

n=1
, which was not used to train the model. To compute

test log-likelihood, they average evaluations of the log-predictive density function over the testing
set:

TLL(D⋆; Π) :=
1

N⋆

N⋆

∑

n=1

log π(y⋆n|D), (2)

where our notation makes explicit the dependence of the test log-likelihood (TLL) on testing data D⋆

and the chosen model Π. In particular, researchers commonly use test log-likelihood to select between
two models of the data, say Π and Π̃; that is, they select model Π over Π̃ whenever TLL(D⋆; Π) is
higher than TLL(D⋆; Π̃). Note that the abbreviation NLPD (negative log predictive density) is also
commonly used in the literature for the negative TLL (Quiñonero-Candela et al., 2005; Kohonen and
Suomela, 2005). In Appendix C, we briefly discuss some alternative metrics for model comparison.

2.1 The case for test log-likelihood

In what follows, we first observe that, if we wanted to choose a model whose predictive distribution is
closer to the true data distribution in a certain KL sense, then it is equivalent to choose a model with
higher expected log-predictive density (elpd). Second, we observe that TLL is a natural estimator of
elpd when we have access to a finite dataset.

The unrealistic case where the true data-generating distribution is known. The expected
log-predictive density is defined as

elpd(Π) :=

∫

log π(y⋆|D)dP(y⋆).

Our use of the abbreviation elpd follows the example of Gelman et al. (2014, Equation 1). If we
ignore an additive constant not depending on Π, elpd(Π) is equal to the negative Kullback–Leibler
divergence from the predictive distribution Π(y⋆|D) to the true data distribution P(y⋆). Specifically,
if we assume P has density p(y⋆), we have

KL (P(y⋆) ∥Π(y⋆|D)) =

∫

p(y⋆) log p(y⋆)dy⋆ − elpd(Π).

Thus, elpd(Π) > elpd(Π̃) if and only if the predictive distribution Π(y⋆|D) is closer, in a specific KL
sense, to the true data distribution than the predictive distribution Π̃(y⋆|D) is.

Test log-likelihood as an estimator. Since we generally do not know the true generating
distribution P , computing elpd(Π) exactly is not possible. By assumption, though, the test data are
i.i.d. draws from P . So TLL(D⋆; Π) is a computable Monte Carlo estimate of elpd(Π). If we assume
elpd(Π) is finite, it follows that a Strong Law of Large Numbers applies: as N⋆ → ∞, TLL(D⋆; Π)
converges almost surely to elpd(Π). Therefore, with a sufficiently high amount of testing data, we
might compare the estimates TLL(D⋆; Π) and TLL(D⋆; Π̃) in place of the desired comparison of
elpd(Π) and elpd(Π̃). Note that the Strong Law follows from the assumption that the y⋆n values are
i.i.d. under P ; it does not require any assumption on the model Π and holds even when the model Π
is misspecified.

3



2.2 Practical concerns

Since TLL(D⋆; Π) is an estimate of elpd(Π), it is subject to sampling variability, and a careful
comparison would ideally take this sampling variability into account. We first elaborate on the
problem and then describe one option for estimating and using the sampling variability in practice;
we take this approach in our experiments below.

To start, suppose we had another set of N⋆ testing data points, D̃⋆. Then generally TLL(D⋆; Π) ̸=
TLL(D̃⋆; Π). So it is possible, in principle, to draw different conclusions using the TLL based on
different testing datasets. We can more reasonably express confidence that elpd(Π) is larger than
elpd(Π̃) if the lower bound of a confidence interval for elpd(Π) exceeds the upper bound of a
confidence interval for elpd(Π̃).

We next describe one way to estimate useful confidence intervals. To do so, we make the additional
(mild) assumption that

σ2

TLL(Π) :=

∫

[log π(y⋆|D)− elpd(Π)]2 dP(y⋆) < ∞.

Then, since the y⋆n are i.i.d. draws from P, a Central Limit Theorem applies: as N⋆ → ∞,

√
N⋆ (TLL(D⋆; Π)− elpd(Π))

d→ N (0, σ2

TLL(Π)).

Although we cannot generally compute σTLL(Π), we can estimate it with the sample standard
deviation σ̂TLL(Π) of the evaluations {log π(y⋆n|D)}N⋆

n=1
. The resulting approximate 95% confidence

interval for elpd(Π) is TLL(D⋆; Π)± 2σ̂TLL/
√
N⋆. In what follows, then, we will conclude elpd(Π) >

elpd(Π̃) if
TLL(D⋆; Π)− 2σ̂TLL(Π)/

√
N⋆ > TLL(D⋆; Π̃) + 2σ̂TLL(Π̃)/

√
N⋆. (3)

For the sake of brevity, we will still write TLL(D⋆; Π) > TLL(D⋆; Π̃) in place of Equation (3) below.

To summarize: for a sufficiently large test dataset D⋆, we expect predictions made from a model
with larger TLL to be closer (in the KL sense above) to realizations from the true data-generating
process. In our experiments below, we choose large test datasets so that we expect TLL comparisons
to reflect elpd comparisons. Our experiments instead illustrate that closeness between Π(y⋆|D) and
P (in the KL sense above) often does not align with a different stated objective.

3 Claim: higher test log-likelihood corresponds to better posterior

approximation

In this section, we give examples where test log-likelihood is higher though the (approximation)
quality of an approximate posterior mean, variance, or other common summary is lower. We start
with examples in misspecified models and then give a correctly specified example. We conclude with
a discussion of the source of the discrepancy: even in the well-specified case, the Bayesian posterior
predictive need not be close to the true data-generating distribution.

Practitioners often use posterior expectations to summarize the relationship between a covariate
and a response. For instance, the posterior mean serves as a point estimate, and the posterior
standard deviation quantifies uncertainty. However, as the posterior density π(θ|D) is analytically
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heteroscedastic model:

xn ∼ N (0, 1), yn | xn ∼ N (xn, 1 + log(1 + exp(xn))). (4)

Further suppose we model these data with a misspecified homoscedastic model:

θ ∼ N ([0, 0]⊤, [1, 0; 0, 1]), yn | θ, φn ∼ N (θTφn, 1), (5)

where φn = [xn, 1]
⊤, and θ = [θ1, θ2]. Figure 1 shows the posterior mean and the 95% predictive

interval of the misspecified regression line θ⊤φ from (A) the exact Bayesian posterior; (B) the
mean field variational approximation restricted to isotropic Gaussians; and (C)–(F) variational
approximations with re-scaled marginal variances. Each panel includes a scatter plot of the observed
data, D100. We also report the 2-Wasserstein distance between the exact posterior and each
approximation and the TLL averaged over N∗ = 104 test data points drawn from Equation (4);
note that the 2-Wasserstein distance can be used to bound differences in means and variances
(Huggins et al., 2020). The variational approximation (panel (B) of Figure 1) is quite accurate:
the 2-Wasserstein distance between the approximation and the exact posterior is ∼10−4. See also
Figure 2, which shows the contours of the exact and approximate posterior distributions. As we scale
up the variance of this approximation, we move away from the exact posterior over the parameters
but the posterior predictive distribution covers more data, yielding higher TLL. The left panel
of Figure 11 in Appendix B.3 shows the same pattern using the KL divergence instead of the
2-Wasserstein distance.

TLL and a discrepancy in inferences. Researchers are often interested in understanding
whether there is a relationship between a covariate and response; a Bayesian analysis will often
conclude that there is no relationship if the posterior on the corresponding effect-size parameter
places substantial probability on an interval not containing zero. In our example, we wish to check
whether θ1 = 0. Notice that the exact posterior distribution (panel (A) in Figures 1 and 2) is
concentrated on positive θ1 values. The 95% credible interval of the exact posterior1 is [0.63, 1.07].
Since the interval does not contain zero, we would infer that θ1 ̸= 0. On the other hand, as the
approximations become more diffuse (panels (B)–(F)), TLL increases, and the approximations begin
to place non-negligible probability mass on negative θ1 values. In fact, the approximation with
highest TLL (panel (F) in Figures 1 and 2) yields an approximate 95% credible interval of [-0.29,1.99],
which covers zero. Had we used this approximate interval, we would have failed to conclude θ1 ≠ 0.
That is, in this case, we would reach a different substantive conclusion about the effect θ1 if we (i)
use the exact posterior or (ii) use the approximation selected by highest TLL.

3.2 TLL in the wild

Next, we examine a more realistic scenario in which the difference between the quality of the
posterior approximation and the exact posterior distribution TLL arises naturally, without the need
to artificially increase the marginal variance of the variational approximations. To explore this
situation, we will first introduce another example of misspecification and repeat the type of analysis
described in Section 3.1.

1Throughout we used symmetric credible intervals formed by computing quantiles: the 95% interval is equal to the

2.5%–97.5% interquantile range.
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that TLL(D⋆; Π̂) captures how close the approximate posterior predictive Π̂(y⋆|D) is to the true
data-generating process P(y⋆) in a particular KL sense:

TLL(D⋆, Π̂) ≈ −KL
(

P(y⋆) ∥ Π̂(y⋆|D)
)

+ constant.

To illustrate this notion of closeness, or equivalently discrepancy, in Figure 5, we draw a pink line
between P(y⋆) and Π̂(y⋆|D). We observe that the TLL importantly does not approximate (even up
to a constant) the analogous discrepancy from the approximate posterior predictive Π̂(y⋆|D) to the
exact posterior predictive Π(y⋆|D) (blue line in the upper surface); that is, it does not capture how
close the posterior predictive approximation is to the exact posterior predictive. The TLL likewise
does not approximate (even up to a constant) the corresponding discrepancy from the approximate
posterior Π̂(θ|D) to the exact posterior Π(θ|D) (yellow line in the lower surface); that is, it does not
capture how close the posterior approximation is to the exact posterior.

The pink and blue lines would (nearly) align if the posterior predictive were very close to the true
data-generating distribution. For a misspecified model, the posterior predictive need not be close
to the true data-generating distribution. For a well-specified model, the posterior predictive and
true data-generating distribution may still be far for a finite dataset. On that view, as suggested
by an anonymous referee, we might expect the observed phenomenon to disappear asymptotically
in the well-specified setting if sufficient regularity conditions hold. The argument, essentially,
is that (i) the actual posterior Π(θ|D) converges to a point-mass at the true data generating
parameter; this convergence implies (ii) that the actual posterior predictive Π(y⋆|D) converges to
the true data distribution P(y⋆), from which it follows that for large enough training datasets (iii)

KL
(

Π(y⋆|D) ∥ Π̂(y⋆|D)
)

≈ KL
(

P(y⋆) ∥ Π̂(y⋆|D)
)

. However, we emphasize first that essentially

every real data analysis is misspecified. And second, if a practitioner is in a setting where they are
confident there is no uncertainty in the unknown parameter value, there may be little reason to take
a Bayesian approach or go to the sometimes-considerable computational burden of approximating
the Bayesian posterior.

4 Claim: higher test log-likelihood corresponds to lower predictive

error

As noted in Sections 2.1 and 3.4, TLL estimates how close a predictive distribution is from the true
data-generating process in a specific KL sense. On that view and analogous to Section 3, we would
not expect conclusions made by TLL to match conclusions made by comparing other predictive
losses. Rather than focus on more esoteric losses in our experiments, we note that TLL and RMSE
are often reported as default measures of model fit quality in papers. If conclusions made between
TLL and RMSE do not always agree (as we expect and reinforce experimentally next), we should
not expect TLL to always reflect performance according to other predictive losses beyond RMSE. If
the TLL is of fundamental interest, this observation is of little consequence; if TLL is a convenient
stand-in for a potential future loss of interest, this observation may be meaningful.

Misspecified Gaussian process regression. We next construct two models Π and Π̃ such
that TLL(D⋆; Π) < TLL(D⋆; Π̃) but Π̃ yields larger predictive RMSE. Suppose we observe D100 =
{(xn, yn)}100n=1

from the following data generating process:

xn ∼ U(−5,+5) yn|xn ∼ N (sin(2xn), 0.1). (10)
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arise even in very simple and low-dimensional models and even when the training dataset is very
large.

Specifically, suppose that we observe D = {(xn, yn)}100,000n=1
generated according to

xn ∼ U(0, 25), yn|xn ∼ Laplace(xn, 1/
√
2), (12)

which we model using one of the following misspecified conditional linear models:

Π : yn|xn ∼ N (θxn, σ
2)

or

Π̃ : yn|xn ∼ Laplace(0.45 + θxn, λ).

(13)

Both Π and Π̃ depend on two unknown parameters. Π depends on a slope θ and a residual variance
σ2 and Π̃ depends on a slope θ and a residual scale λ. The kind of misspecification is different across
models; while Π has the correct mean specification but incorrect noise specification, Π̃ has incorrect
mean specification but correct noise specification.

We computed the maximum likelihood estimates (MLEs) (θ̂Π, σ̂Π) and (θ̂
Π̃
, λ̂

Π̃
) for both models.

The two fitted models induce the following predictive distributions of y⋆|x⋆:

Π(y⋆|x⋆,D) : y⋆|x⋆ ∼ N (θ̂Πx
⋆, σ̂2

Π)

and

Π̃(y⋆|x⋆,D) : y⋆|x⋆ ∼ Laplace(0.45 + θ̂
Π̃
x⋆, λ̂

Π̃
).

(14)

The means of these predictive distributions are natural point estimates of the output y⋆ at input x⋆.

Using a test set of size N⋆ = 395,000, we observed TLL(D⋆; Π) = −1.420 < −1.389 = TLL(D⋆; Π̃).
The standard error of either TLL estimate is only 0.002. Hence, based on sample mean and standard
error, we conclude that Π̃ has better elpd than Π. These values suggest that on average over inputs
x⋆, Π̃(y⋆|x⋆,D) is closer to P(y⋆|x⋆) than Π(y⋆|x⋆,D) in a KL sense. However, using the same test
set, we found that Π yielded more accurate point forecasts, as measured by root mean square error
(RMSE):

(

1

N⋆

N⋆

∑

n=1

(y⋆n − θ̂Πx
⋆
n)

2

)1/2

= 1.000 < 1.025 =

(

1

N⋆

N⋆

∑

n=1

(y⋆n − 0.45− θ̂
Π̃
x⋆n)

2

)1/2

. (15)

In addition, the 95% confidence intervals for the RMSE do not overlap: the interval for Π’s RMSE
is [0.997, 1.005] and that for Π̃’s RMSE is [1.022, 1.029]. The comparison of RMSEs suggests that
on average over inputs x⋆, the predictive mean of Π(y⋆|x⋆,D) is closer to the mean of P(y⋆|x⋆) than
the predictive mean of Π̃(y⋆|x⋆,D). In other words, the model with larger TLL – whose predictive
distribution is ostensibly closer to P – makes worse point predictions than the model with smaller
TLL.

5 Discussion

Our paper is neither a blanket indictment nor recommendation of test log-likelihood. Rather, we
hope to encourage researchers to explicitly state and commit to a particular data-analysis goal –
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and recognize that different methods may perform better under different goals. For instance, when
the stated goal is to approximate (summary statistics of) a Bayesian posterior, we argue that it is
inappropriate to rely on test log-likelihood to compare different approximation methods. We have
produced examples where a model can provide a better test log-likelihood but yield a (much) poorer
approximation to the Bayesian posterior – in particular, leading to fundamentally different inferences
and decisions. We have described why this phenomenon occurs: test log-likelihood tracks closeness of
approximate posterior predictive distributions to the data-generating process and not to the posterior
(or posterior predictive) distribution. At the same time, we recognize that evaluating posterior
approximation quality is a fundamentally difficult problem and will generally necessitate the use of a
proxy. It may be useful to consider multiple of the available options; a full accounting is beyond
the scope of this paper, but they include using conjugate models where exact posterior summary
statistics are available; comparing to established MCMC methods on models where a sufficiently large
compute budget might be expected to yield a reliable approximation; simulation-based calibration
(Talts et al., 2018); sample-quality diagnostics (Gorham and Mackey, 2015; Chwialkowski et al.,
2016; Liu et al., 2016); and a host of visual diagnostics (Gabry et al., 2019). A careful investigation
to understand how a particular method struggles or succeeds may be especially illuminating.

On the other hand, in many data analyses, the goal is to make accurate predictions about future
observables or identify whether a treatment will help people who receive it. In these cases and many
others, using a Bayesian approach is just one possible means to an end. And many of the arguments
for using the exact Bayesian posterior in decision making assume correct model specification, which
we cannot rely upon in practice. In predictive settings in particular, test log-likelihood may provide
a compelling way to assess performance. In addition to being essentially the only strictly proper
local scoring rule (Bernardo and Smith, 2000, Proposition 3.13), TLL is sometimes advertised as
a “non-informative” choice of loss function (Robert, 1996). Importantly, however, non-informative
does not mean all-encompassing: as our examples in Section 4 show, test log-likelihood does not
necessarily track with other notions of predictive loss. As we discuss in Section 2.1, test log-likelihood
quantifies a predictive discrepancy only in a particular Kullback–Leibler sense. It is important to
note, however, that just because two distributions are close in KL, their means and variances need not
be close; in fact, Propositions 3.1 & 3.2 of Huggins et al. (2020) show that the means and variances
of distributions that are close in KL can be arbitrarily far apart. So even in settings where prediction
is of interest, we recommend users clearly specify their analytic goals and use evaluation metrics
tailored to those goals. If there is a quantity of particular interest in the data-generating process, such
as a moment or a quantile, a good choice of evaluation metric may be an appropriate scoring rule.
Namely, one might choose a scoring rule whose associated divergence function is known to quantify
the distance between the forecast’s quantity of interest and that of the data-generating process.
For instance, when comparing the quality of mean estimates, one option is using the squared-error
scoring rule, whose divergence function is the integrated squared difference between the forecast’s
mean estimate and the mean of the data-generating process. Another option is the Dawid–Sebastiani
score (Dawid and Sebastiani, 1999), which prioritizes accurately estimating predictive means and
variances. See Gneiting and Raftery (2007) for a list of commonly used scoring rules and their
associated divergences.
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A Variational Approximations

In Section 3 we formed isotropic Gaussian approximations to the exact posterior. In our illustrative
examples, the exact posterior itself is a Gaussian distribution, N (µ,Σ). In Sections 3.1 and 3.3 we
use variational approximations that share the same mean as the exact posterior and are isotropic,
N (µ, ρI), where I is a two-dimensional identity matrix and ρ > 0 is a scalar. In this family of
distributions, the optimal variational approximation is N (µ, ρ∗I), where,

ρ∗ = argmin
ρ∈R+

KL (N (µ, ρI) ∥ N (µ,Σ)) ,

=
2

tr(Σ−1)
.

(16)

The result follows from setting the gradient ∇ρKL (N (µ, ρI) ∥ N (µ,Σ))) to zero and rearranging
terms,

∇ρKL (N (µ, ρI) ∥ N (µ,Σ))) = 0, =⇒ ∇ρ
tr(ρΣ−1)

2
−∇ρ ln ρ = 0,

=⇒ 1

ρ
=

tr(Σ−1)

2
, =⇒ ρ =

2

tr(Σ−1)
.

(17)

Note that ρ∗ is guaranteed to be positive since Σ−1 is positive definite and thus tr(Σ−1) > 0. This
optimal variational approximation, N (µ, ρ∗I) is used in Panel (B) of Figure 1, Figure 2, and Figure 4.
The other panels use N (µ, λρ∗I), with λ ∈ [1, 5, 10, 15, 30] for Figure 1 and Figure 2. For Figure 4
(Left), λ takes values in [4, 5, 7, 9], and in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] for Figure 4 (Right).

B Experimental details and additional experiments

B.1 Confidence Intervals

An additional note on confidence intervals for TLL. Suppose we are comparing two models Π
and Π̃. Although TLL(D⋆; Π) (respectively, σ̂TLL(Π)) will generally be correlated with TLL(D⋆; Π̃)
(respectively, σ̂TLL(Π̃)), we do not expect a more careful treatment of that correlation to change our
substantive conclusions.

Confidence intervals for RMSE. To compute the RMSE confidence interval, we first compute
the mean of the squared errors (MSE, m) and its associated standard error of the mean (s). Since we
have a large number of data points and the MSE takes the form of a mean, we assume the sampling
distribution of the MSE is well-approximated by a normal distribution. We use [m− 2s,m+ 2s] as
the 95% confidence interval for the MSE. We use [

√
m− 2s,

√
m+ 2s] as the 95% confidence interval

for the RMSE. Note that the resulting RMSE confidence interval will generally not be symmetric.

B.2 Additional TLL in the wild experiments

SWAG with higher learning rates. In Figure 7 we continue the experiment described in
Section 3.2 but using higher learning rates of 12, 15, and 20. Despite moving further from the exact
posterior the test log-likelihood remains higher than those achieved by SWAG approximations with
lower learning rates (panels (B) through (E) of Figure 3).
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