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Abstract

Contrastive Learning (CL) has been applied to ex-
tract meaningful representations from molecules,
facilitating various applications in molecular prop-
erty prediction and drug design. However, the
straightforward application of standard CL to
molecular datasets may result in suboptimal
performance, primarily due to the false posi-
tive/negative pairs introduced by conventional
graph augmentations like node masking and sub-
graph removal. To address this challenge, we
propose a novel probability CL framework that
uses learnable weight distribution to alleviate the
impact of false positive/negative pairs and allow
for effective optimization through stochastic ex-
pectation maximization. Moreover, to incorpo-
rate the 3D structural information and make the
CL framework 3D-aware, we adopt a transformer
based encoder to integrate the 3D coordinates as
input, develop a compatible molecular augmenta-
tion method called position noise injection and uti-
lize additional 3D recovery loss. The experimen-
tal results indicate that our method outperforms
existing approaches in 13 out of 15 molecular
property prediction benchmarks, achieving new
state-of-the-art results in average. Additionally,
it excels in the protein-ligand binding task com-
pared to standard contrastive learning and other
unsupervised learning methods, underscoring its
potential in practical drug design.

1. Introduction

We investigate the problem of learning representations from
molecules. Molecular representation learning (MRL) has
gained tremendous attention due to its critical role in learn-
ing from limited supervised data for applications such as
molecular property prediction(Rong et al., 2020; Wang et al.,
2022; Fang et al., 2022) and drug design.(Koukos et al.,
2019; Liu et al., 2022; Méndez-Lucio et al., 2021) The
model aims to learn generic representations from various
augmentations of the molecules that could benefit down-
stream applications.

With the success of contrastive learning method in com-
puter vision and multi-modality pretraining(He et al., 2020;
Radford et al., 2021), a variety of contrastive learning meth-
ods have been proposed for molecular representation learn-
ing. MolCLR(Wang et al., 2022) introduces a contrastive
learning framework for molecular representation learning,
utilizing atom masking and edge removal as data augmen-
tation and enhancing the performance of GNN models on
various downstream molecular property prediction bench-
marks. GraphMVP (Liu et al., 2022) considers both 2D
topology and 3D geometry during pre-training, although its
downstream tasks only require 2D topology.

Although existing works have proven contrastive learning
to succeed in learning molecular representations. However,
we propose that it still faces two drawbacks.

First, despite the proven effectiveness of contrastive loss in
empirical applications for molecular representation learning,
a lingering question has been largely overlooked in prior
works. That is, the reliability of the positive” and nega-
tive” labels in augmented molecule pairs raises concerns.
Most augmentations applied to molecular datasets involve
removing parts of the molecular graph, such as nodes, edges,
and subgraphs. Within the entire molecular dataset, there
could be multiple molecules with similar structures and
chemical properties labeled as negative pairs. In essence,
due to their extensive volume and numerous augmentation
processes, molecular datasets naturally contain numerous
falsely aligned pairs.

Illustratively, Figure 1 provides an example of false posi-
tives/negatives resulting from graph augmentations in Mol-
CLR (Wang et al., 2022). In this context, we employ
two distinct graph augmentations to enhance two disparate
molecules. The augmented molecule pair originating from
the same molecule is categorized as positive, while other
molecule pairs within the same batch are considered neg-
ative. However, as illustrated in the figure, two molecules
augmented using the same augmentation method should
indeed be regarded as positive, given their structural similar-
ity. Similarly, the same molecule augmented using different
augmentation methods is structurally negative, yet it is in-
correctly treated as instances of positive pairs.
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Figure 1. Existing problem in molecular contrastive learning.
Adopt node removal and edge removal for molecular contrastive
learning can lead to false positive and false negative problems.
Blue lines indicate positive pairs and yellowing lines indicate
negative pairs. The numbers on each line indicate the chemical
similarity between the augmented pair of molecules. In this case,
positive pairs indeed have lower similarity than negative pairs.

Second, existing molecular contrastive learning methods
are weak in leveraging the 3D geometric information and
thus are seldom used for 3D related molecular tasks. From
the input side, most molecular contrastive learning methods
utilize graph neural networks (GNNs) as molecular feature
extractors, which have limitations in capturing overall de-
pendencies within the input molecule and typically do not
incorporate 3D positions as part of their input. From the
data augmentation side, existing data augmentation methods
are designed for 2D molecular graphs. From output side,
the training objective of contrastive learning is not inher-
ently 3D aware, making the knowledge it discovers less
generalized in 3D space.

To overcome the aforementioned difficulties, this paper in-
troduces modifications to existing frameworks for molecular
contrastive learning. In addressing issues related to false
positive and false negative pairs, we present a systematic
approach to molecular contrastive learning by redefining it
within a probability framework. This involves incorporating
random weights for data pairs. Utilizing Bayesian methods,
these random weights can be accurately determined through
sampling, and the model parameters can be efficiently opti-
mized using stochastic expectation maximization.

To extend the application of contrastive loss to 3D tasks in
drug design, we introduce the following modifications: First,
we employ a molecule encoder based on the Transformer
architecture instead of GNN to embed 3D global context
into molecular features, taking both atom type and atom
3D coordinates as input. This choice not only enhances the
model’s understanding of the molecular 3D geometry but
also ensures scalability to larger datasets and more intricate
molecular architectures. Second, we also adopt a new 3D
data augmentation technique called position noise injection
to generate positive and negative pairs for molecular con-

trastive learning. Position noise injection randomly injects
noise into the 3D coordinates of one or more atoms in a
molecule. This method mimics the real world chemical
reactions and prompts the model to learn correlations be-
tween the involvements of one molecule in various reactions.
Third, we adopt two additional 3D loss functions, masked
atom prediction loss and 3D position recovery loss, as a
supplementary for contrastive learning loss function.

We pretrain our model on two large scale datasets, one
molecular dataset and the other protein pocket dataset, and
then evaluate its performance on molecular property predic-
tion tasks MoleculeNet (Wu et al., 2018) and protein-ligand
binding tasks(Koukos et al., 2019). With molecular prop-
erty prediction tasks, we aim to test our model’s ability in
extracting useful features from molecular and with protein-
ligand binding tasks, we aim to test the model’s ability in
a real-world 3D drug design task. Experiments show that
our method outperforms all other molecular representation
learning baselines, including contrastive and non-contrastive
methods.

The contribution of this paper is summarized as:

* To address issues related to false positive and false
negative pairs, we present a systematic approach to
molecular contrastive learning by redefining it within
a probability framework. We propose a novel opti-
mization algorithm based on Bayesian method and
stochastic expectation maximization.

* We investigate 3D molecular contrastive learning by
explicitly using 3D coordinate as input to Transformer
encoder.

* We design a new 3D augmentation method called posi-
tion noise injection to generate positive and negative
pairs for moleculars, aiding the model in learning cor-
relations between the involvements of one molecule in
various reactions.

* We adopt two additional 3D constraint loss functions to
help contrastive loss more generalizable to 3D space.

2. Methods

Following existing works, we begin by elucidating the foun-
dational setup and notation in molecular contrastive learning.
In learning, one randomly samples a batch of N molecules.
Subsequently, employing stochastic augmentation strate-
gies, each molecule sample x; is transformed into two aug-
mented molecules, denoted as (x;,x’;). Among these 2N
augmented molecules, (x;,x’;) is considered as positives
and the other 2( N —1) in the same batch as negative samples.
After that, a neural network encoder f(x; ) parameterized
by 6 is adopted to extract representation vectors z from
augmented molecular examples.



A probability contrastive learning framework for 3D molecular representation learning

Let 5,4+ 2 sim(z;,2’;) represent the similarity score be-
tween the positive pair (x;,x’;) after the encoder, and
;- = sim (z;,z,) signifies the similarity score between
the negative pair (x;,xx), and sim(-,-) represents any
positive-valued similarity metric. In this paper, we adopt
the commonly used exponential cosine similarity, defined
as sim(z;,20) 2 =1 72/lzlllz2]l7 \where  denotes a tem-
perature parameter.

2.1. Probability Weighted Contrastive Learning

In standard contrastive learning, one tries to encode data
samples to a latent space such that positive pairs stay close
to each other while negative pairs are pushed away. The
idea is described by the following loss function:

N
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However, one issue of directly applying the contrastive learn-
ing into molecular representation learning is the potential
false positive positive and negative molecular pairs, as dis-
cussed in the introduction. This could confuse the learning,
ending up with sub-optimal representations. Is there a way
to automatically identify and differentiate these pair data?
In the following, we propose a Bayesian approach to address
this issue that allows the algorithm for automatic inference
of the degree of positiveness and negativeness of data pairs,
involving enhancing the standard contrastive loss by incor-
porating learnable stochastic weights for all data pairs. To
be more specific, we introduce local learnable weights, de-
noted as wj for each positive pair and w;;, for each negative
pair. We then define a weighted contrastive loss based on
these introduced weights. This modification aims to miti-
gate the issues by automatically assigning relatively lower
weights (or no weights) to false positive and false negative
pairs;
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One problem with the above formulation, however, is that it
is not realistic to compute and store all the weights in the
learning process. This precaution arises from the quadratic
growth in the number of weights to be calculated as the
training data size increases. Furthermore, the random nature
of our augmentation method further adds complexity to the
pre-calculation and storage of these weights.

A straightforward baseline for calculating these weights can

be envisioned as follows: we can consider these weights
in a binary fashion, with all weights initialized to one. In
the learning process, if for some positive pairs the similarity
score falls below a specified threshold, we set the corre-
sponding weights to zero, marking these positive pairs as
false positives. Conversely, if for some negative pairs the
similarity score exceeds a threshold, we set the associated
weights to zero, indicating false negatives. A challenge
associated with this baseline method, however, lies in the es-
tablishment of a rigid similarity threshold to create a binary
division of weights between zero and one. This approach
proves less suitable for our molecular contrastive task as
these heuristically chosen thresholds might not be optimal.

To address this challenge, we propose a principled Bayesian
approach that allows adaptively inferring the optimal
weights by Bayesian inference. Specifically, we treat the
weights to be random variables and assign appropriate priors
to them. We consider two types of priors: a Bernoulli prior
to model weights as binary random variables and a Gamma
prior to represent them as positive values. For simplicity,
we model positive weights using the Gamma distribution
and negative weights using either the Gamma distribution
or the Bernoulli distribution, as expressed by the following
formulas:

Option 1 - Gamma priors for continuous weighting:

w; ~ Gamma(a,by ), w;, ~ Gamma(a_,b_).
Option 2 - Bernoulli priors for selective weighting:

-~ Gamma(ay, bt ),

w;, ~ Bernoulli(a_).
here, a4, b4, a_ and b_are shape and rate parameters for
Gamma distribution and a_ is the probability parameter for
Bernoulli distribution.

With our reformulation, we can define a joint distribution
over the global model parameter and local random weight
variables wj' and w;,, as:

p({wf}, {w;}.6:D) 3)
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One problem with the above formulation, however, is that
posterior inference of the weights is challenging, due to the
lack of convenience posterior distributions.

Fortunately, inspired by (Chen et al., 2022), we can intro-
duce an augmented random variable u; that is associated to
data point x;. Consequently, we can define an augmented
joint posterior distribution of the random variables 8, u, w,
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It is worth noting that this joint distribution is equivalent
to the original distribution (3), because (3) is recovered if
one marginalize out the auxiliary random variables u in
(4). In other words, optimization thought (4) is equivalent
to optimization over (3). Consequently, we can perform
learning and inference based on the augmented posterior of
p(0,u,w | D), which preserves a much convenient form
for posterior inference. In the following, we propose an effi-
cient algorithm based on stochastic expectation maximiza-
tion (stochastic EM) to alternatively infer the local random
variables w and optimize the global model parameter 6.

2.2. Efficient Inference and Learning with Stocastic
Expectation Maximization

We propose a stochastic EM algorithm for efficient inference
and learning of our model. Stochastic EM is a stochastic
variant of the EM algorithm, which is an iterative method
for finding the maximum likelihood of model parameters
in statistical models when data is only partially, or when
model depends on unobserved latent variables.

In our setting, the objective of stocastic EM is to maximize
the posterior in equation 4. The basic idea is to alterna-
tively 1) optimizing model parameter 6 with fixed (u, w)
and 2) sampling (u, w) with fixed 8. To this end, we fol-
low standard procedures in stochastic EM to divide the
learning into three steps: Simulation, Stochastic Expec-
tation, and Maximization. Specifically, simulation corre-
sponds to sampling local random variables u and w for a
batch of data; stochastic expectation then uses the sampled
auxiliary random variables to update the model parame-
ter 6 by maximizing a stochastic objective Q(8), defined
as: Qi41(0) = Q¢(0) + A (logp(6,u,w | D) — Q:(0))
at iteration ¢ + 1, where {)\;} is a sequence of decreasing
weights. In the following, we detail the three steps.

Simulation Given the joint posterior distribution in equation
3 and the current batch of data, the posterior distributions of
the local random variables u and w can be directly read out,
which simply follow Gamma or Bornoulli distributions of

'In the sense that marginalizing over the augmented random
variables {w; }and {w;, }inp (0, U, {w;},{w;.} | D) gives
back to the original p ({w:r} , {w;k} ,0; D). Thus, learning and
inferences on the two forms are equivalent.

the following forms:

u; | {w;,wy,, 0} ~

Gamma (au, by + w s+ + Z w;ks,»kf) , Vi, and
w; | {u,0} ~ Gamma (1 + a4, u;s;4 + by ), and

Option 1: w;, | {u, 0} ~ Gamma (a_, u;s;— +b_), Vi, k
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Option 2: w;, | {u,0} ~ Bernoulli <1 e TR
Stochastic Expectation We then proceed to calculate the
stochastic expectation based on the simulated local random
variables above. For notation simplicity, we define Qo (0) =
0. Then we can reformulate ;11 (@) by decomposing the
recursion, resulting in

t
Qt+1(0) = Z)\T logp(eauTaWT | DT)?

7=0
. 5
where A\, £ ), H (1—Xy),
t'=1+1

where 7 indexes the minibatch and the corresponding local
random variables at the current time 7.

Maximization The stochastic expectation objective pro-
vides a convenient form for stochastic optimization over
time, similar to online optimization (Bent & Van Henten-
ryck, 2005). Specifically, at each time ¢, we can initialize the
parameter 6 from the last step, and update it by stochastic
gradient ascent on the log-likelihood, log p (6, u,, w, | D,)
calculated from the current batch of data. To reduce vari-
ance, we propose to optimize a marginal version by inte-
grating out u, from p (6, u., w, | D, ), which essentially
reduces to our original weighted contrastive loss in equa-
tion 1. With the above steps, it is ready to optimize the
model by stochastic EM. The detailed steps are described in
Algorithm 1.

2.3. Data Augmentation

An essential aspect of contrastive learning involves employ-
ing data augmentation to generate positive and negative
pairs. Given our emphasis on graph data, the data augmen-
tation methods employed differ from those utilized in other
studies focusing on image or text data.

Within our specific framework, we implement three
strategies for augmenting input molecules represented as
molecule graphs: atom masking, position noise injection,
and sub-molecule destruction.

Atom Masking This type of augmentation has been widely
used in existing molecular contrastive learning frameworks.
It aims to mask atoms in a molecule with a specific ratio.
When an atom is masked, its atom type is changed into a dis-
tinct mask token [MASK], and its feature is also substituted

)
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Algorithm 1 Contrastive Learning with Stochastic EM

1: Initialize 0; sett = 1

2: for a batch of molecules in loader do

3:  Augment each molecule x; into a pair (x;,x’;)

4:  Calculate positive/negative similarity scores sT and
s~ for all the molecule pairs
Initialize all the weights w™ and w™ to be one
for & = 1 to iter [4 in practice] do

Sample u and w according to distributions
end for
Calculate the weighted contrastive loss in equation 2
with the sampled w on the current batch of data
10:  Update the model parameter by stochastic gradient
descent with the calculated weighted contrastive loss

11: t=t+1
12: end for

B AN

correspondingly. This masking process compels the model
to grasp the inherent atom information within molecules.

Position Noise Injection When involved in a chemical re-
action, the 3D positions of a molecule are always corrupted.
This occurs as the first step in a reaction, which invariably
involves the breaking and forming of chemical bonds. Such
processes typically lead to changes in the positions of atoms
within a molecule.

To emulate real-world reactions, we propose a novel data
augmentation method named Position Noise Injection. This
method entails introducing random noise into the input 3D
coordinates of the atoms at a specified ratio. To prevent
excessively noisy positions, which would render the learning
process unfeasible, we constrain the strength of the injected
random noise (n) to be less than or equal to 1 A.

Sub-Molecule Destruction The process of sub-molecule
destruction may be conceptualized as a fusion of atom mask-
ing and position noise injection. Sub-molecule destruction
commences with the selection of a randomly chosen origin
atom. The destruction procedure starts by masking the near-
est neighbors of the initial atom, followed by the nearest
neighbors of those neighbors, until the count of masked
atoms attains a specified ratio relative to the total number of
atoms. Subsequently, noise is introduced to the positions of
the masked atoms. In all experimental scenarios, we adhere
to the default setting, wherein 25 percent of the atoms in a
molecule are masked and destroyed.

2.4. Backbone Transformer and Additional Loss
Function

In the realm of learning molecular representations, there
are two widely recognized backbone models: graph neu-
ral networks (GNN) (Hu et al., 2020; Li et al., 2021), and
Transformer (Ying et al., 2021). When GNN serves as the

backbone model, locally connected graphs are commonly
employed to depict molecules for efficiency reasons. Nev-
ertheless, these locally connected graphs typically do not
include 3D positions of molecules, GNNs also fall short in
capturing long-range interactions among atoms. Recogniz-
ing the significance of long-range interactions in molecular
representation learning, also convinced by the previous suc-
cess of Transformer-based encoder, we opt for Transformer
as the backbone model. The Transformer fully connects the
nodes, enabling it to effectively learn potential long-range
interactions.

In accordance with the latest advancements as seen in Uni-
Mol(Zhou et al., 2023), we employ a molecule encoder
based on the Transformer architecture. This encoder takes
two inputs: atom types and atom coordinates. We straight-
forwardly use the representation of the [CLS] token as the fi-
nal encoded representation in our contrastive learning frame-
work, signifying the entire molecule.

We have integrated two additional loss functions into our
framework: the masked atom recovery loss and the position
recovery loss.

Simultaneously, the position recovery loss aims to restore
the accurate positions in the presence of injected noise. As
atom positions are equivariant to translation and rotation,
we employ an equivariant head(Satorras et al., 2021), to
predict the precise position of the atom.

3. Related works

Contrastive learning (CL) As a popular self-supervised
learning paradigm, CL focuses on learning semantically
informative representations for downstream tasks (Li et al.,
2022; Chuang et al., 2020; You et al., 2020; Hu et al., 2022).
The most widely used loss function is InfoNCE (van den
Oord et al., 2018) which pulls in the representations between
positive sample pairs while pushing away that between neg-
ative sample pairs.

Molecular representation learning Representation learn-
ing on large-scale unlabeled molecules attracts much at-
tention recently. SMILES-BERT (Wang et al., 2019) is
pretrained on SMILES strings of molecules using BERT.
Subsequent works are mostly pretraining on 2D molecu-
lar topological graphs (Li et al., 2021; Rong et al., 2020).
MoICLR (Wang et al., 2022) applies data augmentation to
molecular graphs at both node and graph levels, using a self-
supervised contrastive learning strategy to learn molecular
representations. Further, several recent works try to leverage
the 3D spatial information of molecules, and focus on con-
trastive or transfer learning between 2D topology and 3D
geometry of molecules. For example, GraphMVP (Liu et al.,
2022) proposes a contrastive learning GNN-based frame-
work between 2D topology and 3D geometry. GEM (Fang
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et al., 2022) uses bond angles and bond length as additional
edge attributes to enhance 3D information. Uni-Mol(Zhou
et al., 2023) is a universal 3D molecular pretraining frame-
work that significantly enlarges the representation ability
and application scope in drug design.

Protein-ligand binding pose prediction Docking interac-
tion between protein and ligand is one of the most important
things to understand in structure-based drug design because
it allows for leading identification and guiding molecular
optimization, and has been developed for the past decades.
Tools such as AutoDock4 (Morris et al., 2009), AutoDock
Vina (Trott & Olson, 2010; Eberhardt et al., 2021), and
Smina (Koes et al., 2013) are among the most used docking
programs. Also, machine learning-based docking methods,
such as Ay, RF2o (Wang & Zhang, 2017) and DeepDock
(Méndez-Lucio et al., 2021) have also been developed to pre-
dict proteinligand binding poses and assess protein-ligand
binding affinity. Equibind (Stirk et al., 2022) is a recent
graph deep learning based methods.

Noisy Pairs in Contrastive Learning: Noisy data pair
problem have been found and studied in visual contrastive
learning community. NLIP (Huang et al., 2023) enforces the
pairs with larger noise probability to have fewer similarities
in embedding space to improve the model training. (Han
et al., 2022) apply noise estimation component to adjust
the consistency between different modalities for the action
recognition task. RINCE (Hoffmann et al., 2022) uses a
ranked ordering of positive samples to improve InfoNCE
loss. Yet another line of research studies the false positive
pair problem in multi-view contrastive learning, which aims
to handle misalignment between multi-view data from mul-
tiple input (Zhang et al., 2019; Poklukar et al., 2022; Yang
et al., 2022). DCP (Lin et al., 2022) leverages the maximiza-
tion of mutual information to conduct consistency learning
across different views. MFLVC (Xu et al., 2022) proposes
to learn multi-level features for multiple views. DSIMVC
(Tang & Liu, 2022) establishes a theoretical framework to
reduce the risk of clustering performance degradation from
semantic inconsistent views. Although satisfactory results
are achieved in many cases, the noisy data pair problem in
molecular contrastive learning literature has not been well
studied and solved.

Stochastic Expectation Maximization Stochastic EM
(Nielsen, 2000) stands as a pivotal algorithm in machine
learning and probabilistic modeling for large-scale Bayesian
inference. Building upon the foundations of the classi-
cal Expectation-Maximization (EM) algorithm (Lin, 2011),
Stochastic EM offers an efficient solution for parameter
estimation in situations involving vast datasets or latent vari-
ables, e.g., to maximize the log-likelihood of p(z,D | 8),
where D is the dataset, z is the local random variable and
0 is the global model parameter. By leveraging the power

of mini-batch sampling, Stochastic EM strikes a balance
between computational scalability and estimation accuracy.
It has found widespread utility in various domains, includ-
ing clustering (Allassonniere & Chevallier, 2021), topic
modeling (Zaheer et al., 2016), and latent variable model-
ing(Zhang & Chen, 2020), making it an indispensable tool
to cope with complex probabilistic models and extensive
data and a natural fit to our problem.

4. Experiments

In this section, we conduct our experiments on two differ-
ent tasks, molecular property prediction, and protein ligand
bounding pose estimation, and then compare our method
with Uni-Mol, the current state of the art method in molecu-
lar representation learning, and other strong baselines. We
first introduce the pretraining stage , then move on to fine-
tuning on downstream tasks.

4.1. Large-Scale Dataset in Pretraining

For the purpose of pretraining, we follow Uni-Mol to pre-
train on two large-scale datasets, one composed of organic
molecules, and another composed of protein pockets. Two
models are pretrained using these two datasets respectively.
As pockets are directly involved in many drug design tasks,
intuitively, the pretraining on candidate protein pockets can
boost the performance of tasks related to protein-ligand
structures and interactions.

The molecular pretraining dataset is based on multiple pub-
lic datasets. After normalizing and deduplicating, it contains
about 19M molecules.

The protein pocket pretraining dataset is derived from the
Protein Data Bank (RCSB PDB) (Berman et al., 2000),
a collection of 180K 3D structures of proteins. Fpocket
is used (Guilloux et al., 2009) to detect possible binding
pockets of the proteins. In this way, We have a dataset of
3.2M candidate pockets for pretraining.

4.2. Molecular Property Prediction & Baselines

MoleculeNet (Wu et al., 2018) is a popular benchmark for
molecular property prediction, including datasets focusing
on different molecular properties, from quantum mechanics
and physical chemistry to biophysics and physiology.

We compare our method with multiple baselines, including
contrastive and non-contrastive baselines. Uni-Mol (Zhou
et al., 2023) is current state of the art method in molecu-
lar property prediction, MolCLR (Wang et al., 2022) is a
baseline model using standard contrastive learning method,
and GEM (Fang et al., 2022)is another cutting-edge work.
Random Forest and XGBoost (Chen & Guestrin, 2016) are
used as predictors for downstream tasks.
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Table 1. ROC_AUC on molecular property prediction classification tasks (Higher is better)

Datasets BBBP | BACE | ClinTox | Tox21 | ToxCast | SIDER | HIV PCBA | MUV | MEAN
# Molecules 2039 1513 1478 7831 8575 1427 41127 | 437929 | 93078
# Tasks 1 1 2 12 617 27 1 128 17
D-MPNN 71.0 80.9 90.6 75.9 65.5 57.0 77.1 86.2 78.6 75.9
Attentive FP 64.3 78.4 84.7 76.1 63.7 60.6 75.7 80.1 76.6 73.8
N-GramRF 69.7 77.9 77.5 74.3 — 66.8 77.2 — 76.9 74.3
N-GramXGB 69.1 79.1 87.5 75.8 — 65.5 78.7 - 74.8 75.8
PretrainGNN 68.7 84.5 72.6 78.1 65.7 62.7 79.9 86.0 81.3 75.8
GraphM VP 72.4 81.2 79.1 75.9 63.1 63.9 77.0 — 7.7 73.3
GEM 72.4 85.6 90.1 78.1 69.2 67.2 80.6 86.6 81.7 79.4
MolCLR 72.2 82.4 91.2 75.0 — 58.9 78.1 — 79.6 76.7
Uni-Mol 72.9 85.7 91.9 79.6 69.6 65.9 80.8 88.5 82.1 79.8
Ours (Gamma) 76.7 88.2 89.4 80.1 69.9 63.6 83.0 89.6 79.0 80.0
Ours (Bernoulli) | 73.7 84.3 85.3 79.8 68.8 64.9 80.8 89.3 82.9 78.9
Table 2. Performance on molecular property prediction regression tasks (Lower is better)

Datasets ESOL | FreeSolv | Lipo | QM7 | QM8 QM9 MEAN (RMSE) | MEAN (MAE)

# Molecules 1128 642 4200 | 6830 | 21786 | 133885

# Metric RMSE| MAE|

D-MPNN 1.050 | 2.082 0.683 | 103.5 | 0.0190 | 0.00814 | 1.272 34.509

GROVERIlarge 0.895 | 2.272 0.823 | 92.0 0.0224 | 0.00986 | 1.33 30.67

MolCLR 1.271 | 2.594 0.691 | 66.8 0.0178 | - 1.519 -

GraphMVP 1.029 | - 0.681 | - - - - -

GEM 0.798 | 1.877 0.660 | 58.9 0.0171 | 0.00746 | 1.112 19.642

Uni-Mol 0.788 | 1.480 0.603 | 41.8 0.0156 | 0.00467 | 0.957 13.940

Ours (Gamma) 0.775 | 1.420 0.590 | 38.5 0.0142 | 0.00395 | 0.928 12.839

Ours (Bernoulli) | 0.664 | 1.358 0.626 | 55.6 0.0154 | 0.0056 0.883 18.541

As indicated in Table 1, our method outperforms the stan-
dard contrastive learning baseline model MolCLR by a
significant margin, demonstrating the effectiveness of our
proposed approach to deal with augmentation noise. Ad-
ditionally, we outperform Uni-Mol and GEM, the current
state-of-the-art methods, with an average gain of 1.3 percent
in classification tasks and 7.6 percent in regression tasks.
This substantiates that our approach facilitates more flexi-
ble training with a higher tolerance for false positive and
false negative data pairs, thereby enhancing the model’s
performance in molecular representation learning. Due to
resource constraints, we trained the Bernoulli version of our
model for only 420,000 steps, around half of the training
steps for the Gamma prior version. This is the reason that
our Bernoulli prior version is slightly worse. However, we
anticipate that when training long enough, our Bernoulli
prior version can quickly catch up, if not better than our
Gamma prior version.

In summary, by mitigating the false positive and false neg-
ative pair problem in molecular contrastive learning, our
method outperforms all previous MRL models in almost all
property prediction tasks.

4.3. Protein-Ligand Binding Task

This is one of the most important tasks in structure based
drug design. The task is to predict the complex structure
of a protein binding site and a molecular ligand. We need
to consider how ligand lays in the pocket, that is, the 6
degrees (3 rotations and 3 translations) of freedom of a rigid
movement.

Following Uni-Mol, the molecular representation and
pocket representation are firstly obtained from their own
pretraining models by their own conformations; then, their
representations are concatenated as the input of an addi-
tional 4-layer Transformer decoder, which is finetuned to
learn the pair distances of all heavy atoms in molecule and
pocket. Then, with the predicted pair-distance matrix as
a scoring function, we first randomly place the ligand and
then optimize the coordinates of its atoms by directly back-
propagation the loss between current pair-distance and pre-
dicted pair-distance.

For the training data used in finetuning, we use PDBbind
General set v.2020(Liu et al., 2015) (19,443 complexes).
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We evaluate our method using the metric binding pose accu-
racy. Specifically, we keep the pocket conformation fixed,
while the ligand conformation is fully flexible. We eval-
uate the RMSD(root mean squared distance) between the
prediction and the ground truth. Following previous works,
we use the percentage of results below predefined RMSD
thresholds as metrics.

We compare our method with current state-of-the-art base-
lines, including Autodock Vina (Trott & Olson, 2010; Eber-
hardt et al., 2021), Vinardo (Quiroga & Villarreal, 2016),
Smina (Koes et al., 2013), Autodock4 (Morris et al., 2009)
and Uni-Mol (Zhou et al., 2023). The binding pose accu-
racy results are shown in Table 3. Not surprisingly, our
model again outperforms all the baseline methods, achiev-
ing state-of-the-art results with our Gamma-prior version
model.

Table 3. Performance on binding pose prediction.

Methods 10A]15AT20A[30A]50A
Autodock Vina | 44.21 | 57.54 | 64.56 | 73.68 | 84.56
Vinardo 4175 | 57.54 | 62.81 | 69.82 | 76.84
Smina 4737 | 59.65 | 65.26 | 74.39 | 82.11
Autodock4 21.75 | 31.58 | 35.44 | 47.02 | 64.56
Uni-Mol 43.16 | 68.42 | 80.35 | 87.02 | 94.04
Ours (Bernoulli) | 48.77 | 70.18 | 78.95 | 85.26 | 94.04
Ours (Gamma) 45.61 | 69.47 | 80.70 | 88.42 | 96.84

4.4. Qualitative analysis

Distribution of similarity scores Our method is largely mo-
tivated by the observation that previous MCL approaches
neglect potential semantic dissimilarity between positive
samples and that accounting for this phenomenon can im-
prove learned molecule representations. In Figure 2(See
Appendix A), we plot the distribution of similarity scores
for both positive and negative samples. Figure 2 left reveals
that our method yields larger similarity scores with lower
variance for positive pairs compared to MolCLR baseline
which uses standard contrastive learning method. Figure 2
right reveals that our method also mitigates the false nega-
tive problem in standard CL. It also shows that our method
sometimes assigns lower similarity scores to positive pairs.
While it may seem counter intuitive to assign lower similar-
ity scores to positive samples, we argue that doing so is the
very reason our method captures dissimilarity between posi-
tive pairs. By allowing some degree of alignment between
the right set of negative examples, our method is able to
minimize the inconsistencies between shared context of re-
lated positives and negatives. This in turn allows us to learn
an overall more coherent representation space, resulting in
increased robustness and downstream performance.

Abalation Study We conducted an ablation study to in-
vestigate the contributions of different components to our

Table 4. Abalation Study on BBBP dataset

Methods ROC_AUC
Ours (Gamma) 76.7
- Additional loss 75.5
- Probability framework | 73.2

model’s performance. Specifically, we ablated two compo-
nents: the probability framework used to reformulate the
standard contrastive loss, and the additional 3D aware loss
functions.

Table 4 presents the results of the ablation study. As is
evident, the removal of the additional loss component led
to a decrease in ROC_AUC by 1.2 points. This implies
that the additional loss component plays a crucial role in
enhancing the model’s performance. On the other hand,
eliminating the probability framework component resulted
in a more substantial decrease in ROC_AUC, specifically
by 3.5 points. This suggests that reformulating the standard
contrastive loss into a probability framework yields greater
performance improvement for the model.

5. Conclusion

In this paper, we investigate an important yet unnoticeable
limitation of molecular contrastive learning, where aug-
mented graph data come with false positive and false neg-
ative data pairs. As a remedy, we propose a principled
solution to molecular contrastive learning by reformulat-
ing it into a probability framework and introducing random
weights for data pairs. With a Bayesian data augmentation
technique, the random weights can be efficiently inferred
via sampling, and the model parameter can be effectively
optimized via stochastic expectation maximization.

We also extend molecular contrastive learning framework
to 3D molecular tasks by explicitly using 3D coordinate as
input of Transformer encoder, designing a new 3D augmen-
tation method called position noise injection, adopting two
additional 3D constraint loss functions to help contrastive
loss more generalizable to 3D space.

The effectiveness of our innovative approach has been
proven through rigorous evaluations on molecular prop-
erty prediction and drug design benchmarks. The results
also showcase the wide-ranging applicability and improved
robustness of our proposed method over both standard
contrastive learning method and non-contrastive learning
method for learning molecular representations.

We believe our method is a valuable addition to the literature
on molecular contrastive representation learning, which can
further boost the performance of state-of-the-art molecular
representation learning models for drug design.
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A. Similarity Score Distribution
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Figure 2. Similarity Scores — Similarity scores distribution for negative pairs in joint space after pre-training with original MolCLR
loss and our proposed loss is provided. Compared to Using pretrained MolCLR model, our method yields similarity scores with lower
mean and lower variance for negative pairs. While MolCLR have two peaks of negatives similarity scores around 1 and 2.7, our method
concentrates them at only one peak of 1.0ur method yields similarity scores with higher mean and lower variance for positive pairs. Our
method concentrates at higher levels as it allows for some degree of semantic dissimilar between positives. The similarity scores are dot

Distribution of Scores for negative samples

= Ours
=3 MolCLR

similarity, they are not normalized to enhance the difference for visual purposes.
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