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AbstractÐDecentralized Multi-agent Learning (DML) enables
collaborative model training while preserving data privacy. How-
ever, inherent heterogeneity in agents’ resources (computation,
communication, and task size) may lead to substantial varia-
tions in training times. This heterogeneity creates a bottleneck,
lengthening the overall training time due to straggler effects
and possibly wasting spare resources of faster agents. To mini-
mize training time in heterogeneous environments, we present
a Communication-efficient Training Workload Balancing for
Decentralized Multi-agent Learning (ComDML), which balances
the workload among agents through a decentralized approach.
Leveraging local-loss split training, ComDML enables parallel
updates, where slower agents offload part of their workload to
faster agents. To minimize the overall training time, ComDML
optimizes the workload balancing by jointly considering the com-
munication and computation capacities of agents, which hinges
upon integer programming. A dynamic decentralized pairing
scheduler is developed to efficiently pair agents and determine
optimal offloading amounts. We prove that in ComDML, both
slower and faster agents’ models converge, for convex and non-
convex functions. Furthermore, extensive experimental results on
popular datasets (CIFAR-10, CIFAR-100, and CINIC-10) and
their non-I.I.D. variants, with large models such as ResNet-56 and
ResNet-110, demonstrate that ComDML can significantly reduce
the overall training time while maintaining model accuracy,
compared to state-of-the-art methods. ComDML demonstrates
robustness in heterogeneous environments, and privacy measures
can be seamlessly integrated for enhanced data protection.

Index TermsÐdecentralized multi-agent learning, federated
learning, edge computing, heterogeneous agents, workload bal-
ancing

I. INTRODUCTION

Effective training of Deep Neural Networks (DNNs) often

requires access to a vast amount of data typically unavailable

on a single device. Transferring data from different devices

(a.k.a., clients or agents) to a central server for training raises

security and privacy concerns, as well as communication costs

and challenges. To address these issues, there is a growing

trend towards cooperative training of machine learning models

across a network of devices, eliminating the need to transfer

the local training data. Federated Learning (FL) [1] algorithms

have gained substantial attention as a privacy-preserving dis-

tributed learning paradigm. In FL, a central server acts as

a coordinator among participating agents, enabling them to

update a global model using their locally trained weights. The

training process of FL, however, causes a major challenge

when dealing with real-world resource-constrained devices

(e.g., mobile/IoT devices and edge servers) that often exhibit

heterogeneous computation and communication capacities,

along with varying dataset sizes. Such heterogeneity not

only introduces substantial variations in training time across

agents, leading to the straggler problem (i.e., some devices

significantly lag behind others) but also wastes the available

spare resources of faster agents.

To address the challenges due to the unbalanced workload

on resource-constrained devices, different methods have been

proposed recently. One popular approach involves splitting

the global model into an agent-side model (consisting of the

initial layers of a global model) and a server-side model (the

remaining layers), where agents only need to train the smaller

agent-side model using Split Learning (SL) [2], [3]. However,

SL requires agents to wait for backpropagated gradients from

the server to update their models, resulting in substantial

communication overhead in each training round. To address

the latency and communication issues of SL, a federated

SL algorithm is developed by incorporating local-loss-based

training [4]. However, their approach uses fixed agent-side

models, limiting their adaptability to varying computation and

communication resources in dynamic environments. Along

another line, agents can be segmented into tiers based on

their training speed, and agents from the same tier are selected

in each training round to mitigate the straggler problem [5],

[6]. However, existing tier-based approaches [5], [6] require

agents to train the entire global model locally, which is not

scalable for training large models. For these methods [2]±[6],

a central server is required to coordinate the training of all

agents. A centralized server, both prone to latency bottlenecks

[7], [8], and susceptible to failures and targeted attacks [9], can

significantly undermine the reliability of the entire distributed

learning process. To mitigate these issues, decentralized (peer-

to-peer) systems have emerged as an alternative [10]±[12].

Distinct from distributed systems that utilize a central server

for coordination, these systems rely on peer-to-peer commu-

nication, offering improved resilience and security given the

lack of a single point of failure. Workload balancing in these

decentralized systems presents challenges due to the absence

of a centralized scheduler.

In this paper, we propose a novel Communication-Efficient

Training Workload Balancing for Decentralized Multi-Agent

Learning (ComDML) that effectively addresses the challenges

of training workload balancing in decentralized systems, op-

erating without a server or coordinator. In ComDML, the

training workload is balanced by allowing slower agents to

offload a portion of their workload to faster agents, ensuring

efficient utilization of available resources (see Fig. 1). To

reduce synchronization and communication overhead between

each paired agent, ComDML employs local-loss-based split

training, where the paired agents can determine how to







environments. In particular, faster devices have to wait for

straggler devices that take longer time to complete tasks, which

would slow down the overall training process and waste the

spare computation resources of faster devices. Furthermore,

the central server, both a bottleneck and a prime target for

potential attacks [32], poses a significant risk of disrupting

the training process through failures or downtime. To address

this challenge, we consider a DML system without a central

server and enable workload balancing among agents.

B. Workload Balancing via Local-loss based Split Training

To achieve efficient workload balancing for DML, we

employ local-loss-based split training. Specifically, the model

w = (w
am
s

i ,w
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f

i ) is split into two parts: a slow agent-side

model w
am
s

i and a fast agent-side model w
am
f

i . This split model

allows slower agent i to train only the slow agent-side model

w
am
s

i and an auxiliary network w
auxm

i . The auxiliary network

consists of additional layers connected to the slow agent-side

model and is used to compute the local loss on the slow

agent-side model. By incorporating the auxiliary network, we

enable parallel model updates for each agent [4], avoiding

the significant synchronization and communication overhead

associated with split learning [2], which can significantly slow

down the training process. In this paper, we adopt the approach

of employing a few fully connected layers for the auxiliary

network, following the approach in [4], [15]. Consider M split

models to determine how a slower agent splits the model for

offloading to a faster agent. By offloading a portion of the

model to the faster agent, the workload on the slower agent

reduces, aiming to achieve equal training time for the paired

agents.
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loss function of the slow agent-side and f
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the corresponding fast agent-side loss function for the paired

agents, where m denotes how the slower agent splits the model

to be offloaded to the faster agent. The goal of the slower agent

i is to find w
am⋆
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i and w
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i that minimize the loss function

on the slow agent-side for each paired agent.
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The faster agent j shares its computation resources to

simultaneously optimize wj by minimizing local objective

function and find w

am
f ⋆

i that minimizes (3):
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where zn denotes the intermediate output of the slow agent-

side model w
am
s ⋆

i given the input xn. This process continues

until all agents have completed their training tasks in a training

round. At the end of each round, the models are aggregated

using the AllReduce method [33] (see Sec. IV-B).

C. Optimization for Workload Balancing

In a decentralized system with multiple agents, the objective

of workload balancing is to minimize the overall training

time. To this end, two key questions need to be addressed:

1) how to pair a faster agent with a slower agent for workload

balancing, and 2) how much workload to offload when two

agents are paired. Using the proposed local-loss-based split

training for workload balancing, we need to jointly optimize

the communication and computation time when addressing

these two key questions.

Specifically, let γij ∈ {0, 1} denote the workload balancing

decision, and γij = 1 means offloading agent i’s workload

w

am
f

i to agent j by using split model m. The overall training

time τi for agent i in each round can be presented as:
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where τi(w) denotes agent i’s computation time of learning

the model w. τij(w
am
f

i ) denotes the communication time when

agent i offloads its workload to agent j, which depends on

the speed of communication link between agents i and j, as

well as the amounts of intermediate data based on w
am
s

i . In

(4), if agent i does not offload workload, the overall training

time consists of τi(w) and the computation and communi-

cation time for processing the workload of slower agents
∑

j γji

[

τi(w
am
f

j ) + τji(w
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f

i )
]

if any; if agent i offloads

workload, the overall training time consists of the computation

time of learning a slow agent-side model τi(w
am
s

i ). and the

corresponding communication time
∑

j γijτij(w
am
f

i ) with a

faster agent.

The problem of joint optimization of communication and

computation for workload balancing can be formulated as min-

imizing the training time of the slowest agent (i.e., straggler):

min
{γij},{w

am
f

i
}
max

i
τi, s.t. γij ∈ {0, 1} ∀i, j. (5)

In (5), we need to jointly optimize the workload balancing

decisions {γij} and the offloaded workload (i.e., how to split

the model w = (w
am
f

i ,w
am
s

i ) when γij = 1). Note that

problem (5) is an integer programming problem, which is

challenging to solve in a decentralized learning system without

any centralized scheduler.



IV. DECENTRALIZED WORKLOAD BALANCING

A. Agent Pairing

To effectively address the optimization problem in (5), we

require a pairing strategy that dynamically pairs agents based

on their computation and communication capacities in each

training round. This dynamic approach is crucial due to the

inherent variability of agent capabilities within heterogeneous

environments. Static pairing assignments can lead to signifi-

cant straggler problems, as agents with limited resources may

be paired together, or slow agents may remain unpaired. Such

pairings can inadvertently increase the overall training time.

To mitigate these issues, we propose a dynamic decentralized

pairing scheduler. This scheduler dynamically pairs agents in a

decentralized manner to minimize overall training time based

on agents’ computation and communication capacities.

As agents train their models in parallel, the training time

in each round is determined by the slowest agent, denoted as

max
i

τi. This training time for the slowest agent becomes a

critical factor, as other agents must wait for it before model

aggregation can commence. To minimize the overall training

time, our objective is to minimize the maximum training time

among all agents, as expressed in (5). Leveraging a list of indi-

vidual training times, updated and maintained by each agent,

agents dynamically pair themselves each round, prioritizing

the slowest agent first, to minimize the overall training time

for each pair. In this approach, agents are paired or trained

independently based on their resources and available neigh-

bors. To ensure optimal pairings, the process meticulously

considers the communication link speed, processing speed,

and dataset size of a faster agent. This decentralized approach

empowers each agent to independently implement the pairing

scheduler, fostering scalability and resilience without reliance

on a central coordinator. Information exchange is minimized,

as agents only need to share their processing speeds and local

dataset sizes with their neighbors. Individual training times are

calculated based on these shared metrics, and network speeds

can be directly observed.

B. Training Workflow

The training process of ComDML in each round is described

in the following steps, which are detailed in Algorithm 1

and illustrated in Fig. 2. This algorithm achieves remarkable

resource optimization with minimal overhead, enabling agents

to fully leverage spare resources for significant performance

gains.

To facilitate the decentralized agent pairing, each agent

locally conducts split model profiling prior to the training

process. The split model profiling calculates the relative train-

ing time (i.e., the training time compared to the case where

the model is not split) and intermediate data size for each

split model m. Specifically, for M different split models, each

agent calculates the relative training time of the slow agent-

side T am
s , the fast agent-side T am

f and the intermediate data

size νm of each split model m using a batch with the same

size. The profiling helps each agent to estimate the overall

training time of each split model based on the actual size of

the dataset when pairing.

1⃝ Agent pairing. In each round, slower agents initially

pair up in order of their estimated training times. The agent

pairing algorithm ensures that each pair minimizes their train-

ing time and completes their tasks within a similar time.

Specifically, all available agents broadcast their processing

speed pj and individual training time τj (i.e., time required to

complete its task without workload offloading) to all connected

agents in their network. Through a greedy algorithm (function

Pairing(·)), agents are paired in order of their individual

training times. Starting with the agent with the longest training

time, each agent selects a faster agent that can significantly

reduce its training time by offloading part of its workload. This

pair then informs the next agent in the list to pair up. This

ensures that paired agents complete their training in similar

time. Agent i estimates the overall training time if it offloads

its workload to agent j, using the AgentTrainingTime(·)
function. This function factors in the processing speeds of

both agents pi and pj , agent j’s estimated individual training

time τ̂j , the network speed cij , and and the data transfer

size during offloading. To estimate the training time for split

model m, agent i utilizes the split model profile to convert

pi and pj into the processing speeds on the slow agent-side

pmi and the fast agent-side pmj of model m, respectively. Let

Ñi denote the number of data batches of agent i. Agent i

estimates the time for different split model m as follows:

τ̂mij = max
(

Ñi

pm
i

, τ̂j +
Ñiν

m

cij
+ Ñi

pm
j

)

, where τ̂mij represents the

estimated training time for agent i when using split model

m. This process is implemented in the Pairing(·) function in

Algorithm 1.

2⃝ Local model update. Then, each pair of agents collab-

oratively perform the slower agent’s task via local-loss-based

split training (see Sec. III-B). Simultaneously, each faster agent

also performs the model training using its local dataset.

3⃝ Model aggregation and update global model. At the

end of each round r, all agents participate in the AllReduce

operation [33] to synchronize their models and obtain the

average of all agents’ models. Following the aggregation

process (i.e., the ModelAggregation(·) function), all agents

have the updated model parameters that represent the average

of all K agents. The AllReduce mechanism facilitates a key

decentralized aspect of the aggregation process. It allows for

the sharing and averaging of updated model weights among

agents without the need for a centralized coordinator. Two

well-known AllReduce algorithms suitable for bandwidth-

limited scenarios are the recursive halving and doubling al-

gorithm [34] and the ring algorithm [33]. In both algorithms,

each agent sends and receives 2K−1
K

b bytes of data, where

b represents the model size in bytes. The halving/doubling

algorithm consists of 2 log2(K) communication steps, while

the ring algorithm involves 2(K− 1) steps. Given that we are

dealing with a large number of agents, we opt for the halving

and doubling algorithms for the AllReduce operation. Other

existing aggregation techniques (e.g., quantized gradients [35])



Algorithm 1 ComDML.

Initialize: R denotes the total global rounds, T am
s and

T am
f denote the relative training time for the slow and

fast agent-side sides, respectively, corresponding to model

split m with an intermediate data size of νm, A is the list

of descending order of agents by their task completion

times,
[

τ̂mij
]

denotes the list of estimated training time.

Main()

1: for r = 0 to R− 1 do

2: Agents broadcast pj and τ̂j to all connected agents

3: for agent i in order A do

4: if agent i is not paired then j⋆ ← Pairing(i)

5: end if

6: end for

7: Local model update across agents in parallel

8: ModelAggregation() ▷ Decentralized aggregation

9: end for

Pairing(i) ▷ Run on agent i

10: for all unpaired j that are connected to i do

// Estimate the training time of i if it offloads to j

11: τ̂ij ← AgentTrainingTime(pj , τ̂j)
12: end for

13: j⋆ ← argmin
j

[τ̂ij ]

14: Return γij⋆

AgentTrainingTime(pj , τ̂j) ▷ Run on agent i

15: for all split layer m do

16: pmi ← pi

Tam
s

17: pmj ←
pj

T
am
f

18: τ̂mij ← max
(

Ñi

pm
i

, τ̂j +
Ñiν

m

cij
+ Ñi

pm
j

)

19: end for

20: τ̂ij ← min
m

[

τ̂mij
]

21: m⋆ ← argmin
m

[

τ̂mij
]

22: Return τ̂ij

can also be integrated into the proposed training process to

further reduce communication overhead.

C. Privacy Protection

While ComDML excels in reducing training time, it ad-

dresses privacy concerns arising from model intermediate data

exchange. To mitigate model parameter attacks that aim to

replicate models using dummy data inputs [36], ComDML

restricts agents’ access to external datasets, query services, and

dummy data itself, effectively shielding sensitive information

from potential adversaries. Furthermore, ComDML’s model

split architecture, solidified by AllReduce aggregation, inher-

ently counters model inversion attacks by compartmentalizing

model updates between slow and fast agents. This architectural

design restricts model visibility, aligning with research that

suggests such attacks often require full model access to

succeed [37].

While ComDML’s architecture inherently limits privacy

leakage, it acknowledges potential vulnerabilities to strong

eavesdropping attacks. To address this, it offers a versatile

framework that seamlessly integrates with diverse privacy-

preserving techniques: i) Fast agents privacy: Inherently pro-

tected through unidirectional communication (i.e., from slow

agents to fast agents), fast agent updates remain confidential.

For further privacy guarantees during model aggregation, tech-

niques like differential privacy [38] and cryptography [39] can

be integrated. ii) Slow agents privacy: ComDML prioritizes

slow agent privacy with a customizable toolkit. Techniques

like PixelDP noise layer [40], patch shuffling [41], distance

correlation [42], and SplitGuard [43] directly shield interme-

diate data, while differential privacy or cryptography secure

model aggregation. This flexibility empowers slow agents to

tailor their protection, balancing privacy and performance.

D. Convergence Analysis

We establish the convergence of slow and fast agent-side

models, considering both convex and non-convex loss func-

tions under standard assumptions. This is achieved through

local-loss-based training adapted from [15], where input dis-

tributions for fast agents dynamically evolve based on the

convergence of their slow counterparts. We define Am,r and

Am,r as the number and the set of agents with split model

m at round r, respectively. The output of the slow agent-

side model, z
am
s ,r

n , follows the density function da
m
s ,r, where

the converged density of the slow agent-side is represented as

da
m
s ,⋆. We define ca

m
s ,r ≜

∫
∣

∣da
m
s ,r(z)− da

m
s ,⋆(z)

∣

∣ dz as the

distance between the density function of the output of the slow

agent-side model and its converged state. In the following, we

introduce the standard assumptions used in the analysis.

Assumption 1 (L-smoothness): The loss function f is differ-

entiable and L-smooth, i.e., ∥∇fi(w)−∇fi(v)∥ ≤ L∥w −
v∥, ∀ fi, w, v.

Assumption 2 (µ-convex): fi is µ-convex for µ ≥ 0
and satisfies: fi(w) + (v − w)T∇fi(w) + µ

2 ∥v − w∥2 ≤
fi(v), ∀fi,w,v.

Assumption 3 (Bounded gradients): Expected squared norms

of gradients have upper bounds: E ∥∇fi(w)∥2 ≤ G2
1, ∀fi,w.

Assumption 4 (Bounded variance): The variance of stochas-

tic gradients in each agent is bounded: E[∥∇fi(ζri ,w) −
∇fi(w)∥2] ≤ σ2, ∀f,w, where ζri sampled from k-th agent

local dataset.

Assumption 5 (Bounded gradient dissimilarity): For both

slow and fast agent-sides and all split models, there are

constants G2 ≥ 0; B ≥ 1 such that 1
K

∑K
i=1 ∥∇fi(w)∥2 ≤

G2
2 +B2∥∇f(w)∥2, ∀w.

If {fi} are convex, we can relax the assumption to
1
K

∑K
i=1 ∥∇fi(w)∥2 ≤ G2

2 + 2LB2 (f(w)− f⋆) , ∀w.

Assumption 6 (Bounded distance): The time-varying param-

eter satisfies
∑

r c
am
s ,r <∞, ∀m.

Assumptions 1 to 6 have been widely employed in the liter-

ature for convergence analysis of machine learning (see [13]±

[15] and the references therein). Under these standard assump-

tions, we establish the convergence properties of ComDML.

The proof of Theorem 1 is given in the Appendix.



Theorem 1 (Convergence of ComDML): Suppose that fam
s

and fam
f satisfy Assumptions 1, 3, 4, 5, and 6. The conver-

gence properties of ComDML for both convex and non-convex

functions are summarized as follows:

• Convex: If both fam
s and fam

f are µ-convex with µ > 0,

η ≤ 1
8L(1+B2) and R ≥ 4L(1+B2)

µ
, then the slow agent-side

model converges at the rate of O
(

H2

1

RAm +D2 exp (−R)
)

and the fast agent-side model converges at the rate of

O
(

H2

√
F

am
f

0

√
RAm

+ C1+F
am
f

0

R

)

.

• Non-convex: If both fam
s and fam

f are non-convex with

η ≤ 1
8L(1+B2) , then the slow agent-side model converges at

the rate of O
(

H1

√
Fam

s 0

√
RAm

+ Fam
s 0

R

)

and the fast agent-side

model converges at the rate of O
(

H2

√
F

am
f

0

√
RAm

+ C2+F
am
f

0

R

)

.

where H1, H2, D, F am
s , F am

f , and Am are constants whose

definitions are provided in the Appendix for reference. Demon-

strated slow agent convergence propagates to fast agents

through C1 and C2, both exhibiting convergence.

We demonstrate that under standard assumptions, ComDML

exhibits convergence for both convex and non-convex func-

tions as the number of training rounds R increases. This

convergence behavior holds for both slow and fast agent-side

models, albeit with potentially different convergence rates for

fast and slow agent sides. It’s crucial to note that ComDML’s

reliance on local-loss-based split training renders the con-

vergence of the fast agent-side model contingent upon the

convergence of the slow agent-side model. This dependence

is explicitly characterized by constants C1 and C2 within the

analysis.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

Dataset. We conduct image classification experiments using

three publicly available datasets: CIFAR-10 [17], CIFAR-100

[17], and CINIC-10 [18]. We also consider label distribution

skew (i.e., how the distribution of labels varies across agents)

to generate non-I.I.D. variants of these datasets. To maintain

fairness, we used a fixed Dirichlet distribution (concentration

parameter = 0.5) for the non-I.I.D. datasets. Global model

performance is assessed using test images after each round.

Baselines. To the best of our knowledge, this study pioneers

the introduction of workload balancing in server-less DML.

Although FL methods like FedProx [26] aim to enhance

performance in heterogeneous environments, they rely on

a central server, incompatible with our focus on serverless

decentralized machine learning. Therefore, we primarily com-

pare ComDML with decentralized baselines: BrainTorrent

[10], Gossip Learning [11], and decentralized AllReduce [33].

FedAvg [1], though server-dependent, is included as a baseline

for comparing workload balancing. BrainTorrent is a peer-to-

peer framework where agents take turns acting as the server

and updating the global model. Gossip Learning [11] incorpo-

rates model averaging, enabling each agent to update its model

based on information received from neighboring agents. In

decentralized learning utilizing AllReduce aggregation, agents

update their models independently and then employ AllReduce

to aggregate them, eliminating the need for a central server.

Implementation. We conducted the experiment using Python

3.11.3 and the PyTorch library version 1.13.1. The code

is available online in [44]. ComDML and baseline models

were deployed on a server with the following specifications:

dual-socket Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz,

four NVIDIA GeForce GTX 1080 Ti GPUs, and 64 GB of

memory. To replicate the heterogeneity of real-world systems,

we designed a heterogeneous simulation environment where

agents possess distinct computational and communication ca-

pabilities. Each agent is equipped with a simulated CPU and

communication resources, mirroring varied computation and

communication times. This setup effectively captures the com-

plexities of real-world distributed systems, where agents often

differ in their processing power and network connectivity. We

simulated agents with CPU profiles spanning 4, 2, 1, 0.5, and

0.2 CPUs. Communication profiles were varied with 0, 10,

20, 50, and 100 Mbps links, with 0 representing disconnected

agents. At the beginning of training, each agent was assigned

one profile representing its initial computation and commu-

nication resources. These resource profiles could dynamically

shift throughout the training process, mimicking real-world

variations in agents’ resources. In all experiments, we consider

simulated communication overhead for training time, includ-

ing intermediate data transfer and model size. BrainTorrent

operates through independent model updates followed by

aggregation by a randomly selected agent. Gossip learning

implementation aligns with [11]. For AllReduce experiments,

independent model training is followed by aggregation via

AllReduce.

Model Architecture. ComDML can effectively support var-

ious models, from Multilayer Perceptrons (MLPs) and Con-

volutional Neural Networks (CNNs) to large language mod-

els (LLMs) like BERT. In our experiments, we used two

prominent CNN models: ResNet-56 and ResNet-110 [16],

which have demonstrated good accuracy on the experimented

datasets. To balance computational demands across agents,

we partition the global model at varying split layers m.

Slow agents locally update the model up to their designated

layer m, while a fast agent handles the remaining layers. To

facilitate local loss training within slow agents, we introduce

an auxiliary network comprising a fully connected layer and

an average pooling layer. The input dimension of the f.c. layer

is adjusted to match the output of each slow agent-side model.

Hyper-parameters. We used the Stochastic Gradient Descent

(SGD) optimizer with a momentum of 0.9 for all datasets. The

initial learning rate (i.e., η0) was set to 0.001 for all datasets.

Upon the accuracy reached a plateau, the learning rate was

reduced by a factor of 0.2 when there were 10 agents. For

scenarios with 20, 50, and 100 agents, we implemented a

reduction factor of 0.5. The local batch size for each agent

was set to 100, and the local epoch was consistently set to

one for all experiments.



TABLE I
PERFORMANCE OF 2-AGENT DECENTRALIZED TRAINING WITH VARYING

LAYER OFFLOADING. THE EVALUATION COMPARES THE FAST AGENT

TRAINING TIME, COMMUNICATION TIME, COMBINED IDLE TIME OF

AGENTS, AND TOTAL TRAINING TIME OF THE PROCESS (ALL IN SECONDS)
REQUIRED TO ACHIEVE 90% ACCURACY ON CIFAR-10 USING THE

RESNET-56.

Layers

Offloaded

Times in the 1st Setting (s) Times in the 2nd Setting (s)
Train Comm. Idle Total Train Comm. Idle Total

0 5573 34 14489 20096 5578 17 3560 9165
1 5781 655 14472 20909 5856 327 2966 9150

10 6740 3532 4787 15059 6364 1766 350 8481
19 7625 3544 1682 12851 6547 1772 137 8456

28 7906 1261 2049 11217 7859 630 3368 8490
37 8003 1265 84 9352 8275 632 7318 8908
46 8939 611 5042 9551 9334 305 8351 9640
55 10343 640 9833 10983 10101 320 9964 10421

B. Experimental Results

1) Impact of heterogeneity on workload offloading deci-

sions: Table I compares the performance of local-loss-based

split training between two agents, using various portions of

the model offloaded from a slower agent to a faster agent

in two settings: 1) one agent with 2 CPUs and one agent

with 0.25 CPU, with a communication speed of 50 Mbps, and

2) one agent with 2 CPUs and one agent with 1 CPU, with

a communication speed of 100 Mbps. We evaluate training

time for the CIFAR-10 dataset’s classification task, targeting

90% accuracy. Table I presents the fast agent’s training time,

communication time, the combined idle time of both agents

and the overall training time under different workload of-

floading decisions. The results reveal the significant impact of

heterogeneous computation and communication resources on

the optimal workload offloading and the total training time. In

ComDML, offloading 0 layers signifies performing the training

task independently without assistance.

Offloading the training workload from the slower agent to

the faster agent can effectively reduce the total training time,

as demonstrated in Table I. For instance, in the 1st setting,

offloading 37 layers of the model to the faster agent resulted in

a significant 53% decrease in overall training time compared to

the scenario without workload offloading. Note that as an agent

offloads more layers, the model size on its side decreases,

reducing the computational workload. However, this offloading

of more layers may increase the data transmitted (i.e., the

size of the intermediate data and partial model). As shown in

Table I, the optimal number of layers to offload is non-trivial,

as it depends on various factors, such as the communication

link speed between agents, the computation power of each

agent, and the workload offloading strategy. Hence, dynami-

cally pairing agents with suitable offloading strategies during

the training process is of paramount importance to achieve

substantial reductions in total training time.

2) Training time improvement against baselines: In Table

II, we compare the training time of ComDML with baselines

by training a ResNet-56 with 10 agents on heterogeneous

TABLE II
COMPARISON OF TOTAL TRAINING TIME TO BASELINES WITH 10 AGENTS

ON DIFFERENT DATASETS. THE NUMBER INDICATES THE TRAINING TIME

(IN SECONDS) REQUIRED TO REACH THE TARGET ACCURACY. THE

TARGET ACCURACIES ARE AS FOLLOWS: CIFAR-10 I.I.D. 90%,
CIFAR-10 NON-I.I.D. 85%, CIFAR-100 I.I.D. 65%, CIFAR-100

NON-I.I.D. 60%, CINIC-10 I.I.D. 75%, AND CINIC-10 NON-I.I.D. 65%.

Method
CIFAR-10 CIFAR-100 CINIC-10

I.I.D. non-I.I.D. I.I.D. non-I.I.D. I.I.D. non-I.I.D.

ComDML 7211 4177 5589 8104 10229 17208

Gossip Learning 20337 15269 15262 28621 24636 56325
BrainTorrent 24639 14323 18046 25867 31992 51144
AllReduce 25153 13859 18462 26623 32652 53265

FedAvg 24174 13095 17630 25113 30601 49624

agents with diverse computation and communication capac-

ities. We created these heterogenous agents by randomly

assigning 20% of the agents to each CPU and communication

speed profile combination. All agents participated in the entire

training process. To better simulate a dynamic environment,

we randomly changed the profile of 20% of the agents after

100 rounds.

The corresponding training times for each method to achieve

specific target accuracies are provided in Table II. Notably,

ComDML consistently demonstrates significant reductions in

training time compared to the baselines, while preserving

model accuracy across all scenarios. For example, ComDML

achieves a remarkable 70% reduction in training time com-

pared to FedAvg and a substantial 71% reduction compared to

BrainTorrent on the I.I.D. CIFAR-10 dataset. Unlike FedAvg,

which can be hampered by communication delays with a cen-

tral server, ComDML eliminates this bottleneck by enabling

direct peer-to-peer communication. This not only accelerates

model updates but also strengthens robustness against server

failures and network disruptions, ultimately enhancing the

overall learning process.

3) Performance of ComDML with different numbers of

agents: To evaluate the scalability of ComDML, we assessed

its performance across varying numbers of agents. Table III

shows the training time of ComDML in comparison with

baselines on the I.I.D. CIFAR-10 dataset, using different

numbers of agents to achieve a target accuracy of 80% for

both ResNet-56 and ResNet-110 models. We employed a 20%

sampling rate for agent participation in each training round. As

observed from Table III, increasing the number of agents does

not negatively impact ComDML’s performance, underscoring

its robust scalability.

4) Integration of privacy protection methods: ComDML

smoothly integrates privacy-preserving methods with mini-

mal overhead, effectively maintaining model accuracy. Our

experiments on the CIFAR-10 dataset, employing ResNet-56

with 100 agents, demonstrate its ability to integrate privacy-

preserving techniques without compromising either accuracy

or training time. Remarkably, we obtained model accuracies

of 81.7% with distance correlation (α = 0.5) [42], 83.2% with

patch shuffling [41], and 77.6% with differential privacy (using
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Applying the linear convergence rate lemma (Lemma 1 of
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and Am = minr{Am,r > 0}. The proof for the non-convex

case follows a similar approach, with the difference being

the disregarding of Assumption 2 and relies on the sub-linear

convergence rate lemma (Lemma 2 of [14]) This leads to:
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2) Fast agent side: Now we provide convergence analysis

of fast agent-side models. Assume that the fast agent-side

functions satisfy Assumptions 1, 2, 4, and 5. The model’s

update adheres to the following equation,
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inequality, followed by taking expectation across all random-
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We now prove the boundedness of T3 and T4. By applying

Cauchy-Schwartz and Jensen’s inequality, then considering

Assumption 2, and using Lemma 1, we obtain the following
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Leveraging Assumption 2 and mirroring the approach for
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summation over the third term, we obtain:
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With a similar strategy and disregarding Assumption 2,

and using telescoping sum the proof for non-convex functions

yields the desired rate.
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s ,r. The fast agent-

side bound has an extra term due to its dependence on the

slow agent-side model convergence, leading to a looser bound.
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