Communication-Efficient Training Workload
Balancing for Decentralized Multi-Agent Learning

Abstract—Decentralized Multi-agent Learning (DML) enables
collaborative model training while preserving data privacy. How-
ever, inherent heterogeneity in agents’ resources (computation,
communication, and task size) may lead to substantial varia-
tions in training times. This heterogeneity creates a bottleneck,
lengthening the overall training time due to straggler effects
and possibly wasting spare resources of faster agents. To mini-
mize training time in heterogeneous environments, we present
a Communication-efficient Training Workload Balancing for
Decentralized Multi-agent Learning (ComDML), which balances
the workload among agents through a decentralized approach.
Leveraging local-loss split training, ComDML enables parallel
updates, where slower agents offload part of their workload to
faster agents. To minimize the overall training time, ComDML
optimizes the workload balancing by jointly considering the com-
munication and computation capacities of agents, which hinges
upon integer programming. A dynamic decentralized pairing
scheduler is developed to efficiently pair agents and determine
optimal offloading amounts. We prove that in ComDML, both
slower and faster agents’ models converge, for convex and non-
convex functions. Furthermore, extensive experimental results on
popular datasets (CIFAR-10, CIFAR-100, and CINIC-10) and
their non-L.L.D. variants, with large models such as ResNet-56 and
ResNet-110, demonstrate that ComDML can significantly reduce
the overall training time while maintaining model accuracy,
compared to state-of-the-art methods. ComDML demonstrates
robustness in heterogeneous environments, and privacy measures
can be seamlessly integrated for enhanced data protection.

Index Terms—decentralized multi-agent learning, federated
learning, edge computing, heterogeneous agents, workload bal-
ancing

I. INTRODUCTION

Effective training of Deep Neural Networks (DNN5s) often
requires access to a vast amount of data typically unavailable
on a single device. Transferring data from different devices
(a.k.a., clients or agents) to a central server for training raises
security and privacy concerns, as well as communication costs
and challenges. To address these issues, there is a growing
trend towards cooperative training of machine learning models
across a network of devices, eliminating the need to transfer
the local training data. Federated Learning (FL) [1] algorithms
have gained substantial attention as a privacy-preserving dis-
tributed learning paradigm. In FL, a central server acts as
a coordinator among participating agents, enabling them to
update a global model using their locally trained weights. The
training process of FL, however, causes a major challenge
when dealing with real-world resource-constrained devices
(e.g., mobile/IoT devices and edge servers) that often exhibit
heterogeneous computation and communication capacities,
along with varying dataset sizes. Such heterogeneity not
only introduces substantial variations in training time across

agents, leading to the straggler problem (i.e., some devices
significantly lag behind others) but also wastes the available
spare resources of faster agents.

To address the challenges due to the unbalanced workload
on resource-constrained devices, different methods have been
proposed recently. One popular approach involves splitting
the global model into an agent-side model (consisting of the
initial layers of a global model) and a server-side model (the
remaining layers), where agents only need to train the smaller
agent-side model using Split Learning (SL) [2], [3]. However,
SL requires agents to wait for backpropagated gradients from
the server to update their models, resulting in substantial
communication overhead in each training round. To address
the latency and communication issues of SL, a federated
SL algorithm is developed by incorporating local-loss-based
training [4]. However, their approach uses fixed agent-side
models, limiting their adaptability to varying computation and
communication resources in dynamic environments. Along
another line, agents can be segmented into tiers based on
their training speed, and agents from the same tier are selected
in each training round to mitigate the straggler problem [5],
[6]. However, existing tier-based approaches [5], [6] require
agents to train the entire global model locally, which is not
scalable for training large models. For these methods [2]-[6],
a central server is required to coordinate the training of all
agents. A centralized server, both prone to latency bottlenecks
[7], [8], and susceptible to failures and targeted attacks [9], can
significantly undermine the reliability of the entire distributed
learning process. To mitigate these issues, decentralized (peer-
to-peer) systems have emerged as an alternative [10]-[12].
Distinct from distributed systems that utilize a central server
for coordination, these systems rely on peer-to-peer commu-
nication, offering improved resilience and security given the
lack of a single point of failure. Workload balancing in these
decentralized systems presents challenges due to the absence
of a centralized scheduler.

In this paper, we propose a novel Communication-Efficient
Training Workload Balancing for Decentralized Multi-Agent
Learning (ComDML) that effectively addresses the challenges
of training workload balancing in decentralized systems, op-
erating without a server or coordinator. In ComDML, the
training workload is balanced by allowing slower agents to
offload a portion of their workload to faster agents, ensuring
efficient utilization of available resources (see Fig. 1). To
reduce synchronization and communication overhead between
each paired agent, ComDML employs local-loss-based split
training, where the paired agents can determine how to



split the model and then train the split model in parallel.
ComDML’s core objective is to minimize the overall training
time. ComDML achieves it by employing an integer pro-
gramming formulation that balances agent workloads based on
both computation and communication capacities. Recognizing
heterogeneous environments where agent computation and
communication capabilities fluctuate, ComDML leverages a
dynamic, decentralized pairing scheduler. This scheduler pairs
agents and assigns workloads based on observed capabilities,
ensuring efficient computation and communication in hetero-
geneous settings. The scheduler prioritizes pairing the slowest
agents first by maintaining a shared list of training times. This
list guides agents to pair up at each round, starting with the
slowest, to minimize the overall training time. This pairing
strategy employs lightweight, low-overhead local split model
profiling, which quantifies the communication overhead (in
terms of intermediate data size) for various pairing options. To
make workload offloading decisions, slower agents consider
both local profiling and the communication and computation
capacities of faster agents, ensuring optimal workload bal-
ancing for the shortest total training time. In this way, the
proposed pairing scheduler operates in a decentralized manner
with minimal information exchange among agents.

Using standard assumptions in FL [13], [14] and local-loss-
based training techniques [4], [15], we show the convergence
of ComDML for both convex and non-convex functions. The
convergence analysis is novel as it considers multiple split
models for each paired agent in a heterogeneous environ-
ment. Using ComDML, we conduct training experiments on
large models (ResNet-56 and ResNet-110 [16]) across various
numbers of agents using popular datasets including CIFAR-
10 [17], CIFAR-100 [17], and CINIC-10 [18], alongside
their non-identical and independent distribution (non-1.I.D.)
variants. Our extensive experimental results demonstrate that
ComDML achieves a remarkable reduction in overall train-
ing time by up to 71% while maintaining model accuracy
comparable to state-of-the-art methods. We also evaluated its
performance under various privacy measures. These measures
included minimizing distance correlation between raw data
and intermediate representations, shuffling data patches, and
applying differential privacy to model parameters. Our results
demonstrate that ComDML can effectively incorporate these
privacy techniques with minimal impact on model accuracy.

II. BACKGROUND AND RELATED WORK
A. Collaborative Multi-agent Learning

Federated learning (FL) is a privacy-preserving machine
learning technique that allows multiple parties (clients or
agents) to collaboratively train a machine learning model
without having to share their data [1]. This is achieved through
frequent communication with a central server for model
exchange and updates, facilitating the collaborative learn-
ing process [19]. State-of-the-art deep learning models (e.g.,
ResNet or AlexNet) have become increasingly large in recent
years, which can make the computation and communication
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Fig. 1. Comparison of model training with and without workload balancing.
Workload balancing reduces training time by offloading the workload from
agent 1 to agent 2, which would otherwise be idle.

cost of FL prohibitive. The computational cost of resource-
constrained agents and the communication overhead of FL can
become significant challenges, particularly for large models
[20]. [21] reduces communication overhead by transmitting
smaller models, leading to faster training and lower resource
consumption. In a related context, [22] specifically addresses
device selection for communication purposes. In addition to
communication optimization, [23] studies resource allocation
strategies. Leveraging network pruning on client models, [24]
improves inference performance, by reducing model size and
communication volume. Notably, these algorithms require a
central server and are not designed for decentralized systems.
In contrast, ComDML does not require a central coordinator,
and it addresses heterogeneity by workload balancing.

B. Server-less and Peer-to-Peer Decentralized Learning

Existing FL. methods (see a comprehensive study of FL
[19]) have traditionally relied on a central server to man-
age agent selection, model broadcasting, aggregation, and
updating. In these methods, agents are required to repeatedly
download and update the global model and send it back to
the server. However, such processes face limitations when
training large models on resource-constrained devices in het-
erogeneous environments, leading to issues like the straggler
problem. Additionally, they are susceptible to vulnerabilities
stemming from potential failures of the central server and
network bottlenecks. To address the straggler problem, [13]
selects a smaller set of agents for training in each global
iteration, but at the cost of increased training rounds. [25] deals
with stragglers by ignoring the slowest 30% of agents, while
FedProx [26] assigns different numbers of training rounds to
agents. These approaches face the challenge of determining
optimal parameters (i.e., percentage of slowest agents and
number of local epochs).
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To tackle the challenge of central server failures, [10]
proposes a server-less framework for cross-silo FL, targeting
scenarios with a relatively small number of agents with pow-
erful communication and computation capabilities to enable
sequential operation. Recent research has focused on fully de-
centralized approaches, such as the work by [27], which aims
to achieve fully decentralized learning. Gossip learning, as
introduced in [28], offers an alternative approach to serverless
decentralized learning by enabling devices to exchange model
updates with their neighbors. Building on this concept, [11]
explores the application of gossip learning as a substitute for
FL. GossipFL [12] introduces a sparsification algorithm to re-
duce agent communication to a single peer with a compressed
model in a gossip learning setting. Another way to eliminate
the central server is the integration of blockchain technology.
For instance, [29] proposes a blockchain-based solution with
committee consensus, while [30] investigates the utilization of
blockchain in combination with Smart Contracts. However, it
is important to note that these methods do not explicitly con-
sider agent heterogeneity and require agents to train the entire
global model. The learning performance may degrade a lot
due to the straggler problem, particularly in scenarios where
agents have varying computation/communication capabilities
or limited resources. In this paper, we address these issues
by developing a decentralized workload balancing algorithm
that does not rely on a central server and can effectively pair
agents in dynamic heterogeneous environments.

ITI. WORKLOAD BALANCING FOR DECENTRALIZED
MULTI-AGENT LEARNING

This work focuses on DML systems as introduced by L
[31], where multiple agents collaborate on a learning task

within a networked environment, absent a central coordinating
server. Beyond applications in healthcare, mobile services, and
vehicle networks, DML is fueling advancements in emerging
areas like swarm robotics, smart cities, and the metaverse [7].
Within a DML system, multiple agents collaboratively train a
global model using their local datasets and then synchronize
with other agents to update the model. In practice, agents
usually have heterogeneous computation resources as well as
heterogeneous data, thus the training workload across agents
can be highly different, which leads to very different training
times. Therefore, faster agents may have to wait for slower
agents (stragglers) for a long time to synchronize the model
update. Such a bottleneck in synchronization may not only
significantly increase the overall training time, but also result
in a waste of the spare computation resources of faster agents.

To address this challenge, one promising solution is to
balance the training workload based on the computation and
communication resources by offloading the workload from
slower agents to faster agents, to address the straggler problem.
Fig. 2 illustrates this workflow. It is worth noting that the
training workload of each agent is highly correlated with
the local dataset size of each agent. When offloading the
workload from slower agents to faster agents, faster agents
still need to frequently communicate with slower agents to
exchange intermediate training information, and the amount of
communication depends on how much workload is offloaded.
Due to the heterogeneous communication capacity between
agents, the communication overhead may offset the benefits
of workload balancing. Therefore, optimal workload balancing
requires jointly considering the heterogeneous communication
and computation resources of agents. In this paper, we aim
to develop a communication-efficient training workload bal-
ancing approach for collaborative multi-agent learning in a
decentralized system.

A. Decentralized Multi-agent Learning

Consider K agents in a decentralized system (see Fig. 2),
where {(z,, yn)}g;l denotes the dataset of agent i. Here, x,,
represents the nth training sample, y,, is the associated label,
and NN; is the number of samples in agent i’s dataset.

For convenience, define f;(w) = N% Ziv’:l (e, yn) s w),
with w being the model parameters. The DML problem can
be formulated as a decentralized optimization problem:

K

. Ni
Hgn; ~ fiw) (1)
where N = Zfil N;. f(w) denotes the global objective
function, and f;(w) represents the ith agent’s local objective
function, which measures the individual loss over its hetero-
geneous dataset using a loss function ¢. Each agent possesses
its local data and collaborates with other agents to find the
optimal w that minimizes the global objective (1).

Federated optimization techniques (e.g., [1], [26]) have
been proposed to solve the problem (1). However, these FL
methods encounter challenges in training models on resource-
constrained devices, especially large models in heterogeneous

min f(w) <



environments. In particular, faster devices have to wait for
straggler devices that take longer time to complete tasks, which
would slow down the overall training process and waste the
spare computation resources of faster devices. Furthermore,
the central server, both a bottleneck and a prime target for
potential attacks [32], poses a significant risk of disrupting
the training process through failures or downtime. To address
this challenge, we consider a DML system without a central
server and enable workload balancing among agents.

B. Workload Balancing via Local-loss based Split Training

To achieve efficient workload balancing for DML, we
employ local-loss-based split training. Specifically, the model
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model wa;n and a fast agent-side model wa‘f This split model
allows slower agent ¢ to train only the slow agent-side model
w?s and an auxiliary network w$“*" . The auxiliary network
consists of additional layers connected to the slow agent-side
model and is used to compute the local loss on the slow
agent-side model. By incorporating the auxiliary network, we
enable parallel model updates for each agent [4], avoiding
the significant synchronization and communication overhead
associated with split learning [2], which can significantly slow
down the training process. In this paper, we adopt the approach
of employing a few fully connected layers for the auxiliary
network, following the approach in [4], [15]. Consider M split
models to determine how a slower agent splits the model for
offloading to a faster agent. By offloading a portion of the
model to the faster agent, the workload on the slower agent
reduces, aiming to achieve equal training time for the paired
agents.

Given the model w, we define fia <
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loss function of the slow agent-side and fla I ;lf , Wy :L) as
the corresponding fast agent-side loss function for the paired
agents, where m denotes how the slower agent splits the model
to be offloaded to the faster agent. The goal of the slower agent

i is to find w{* and w?**" that minimize the loss function

on the slow agent-side for each paired agent.
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where z,, denotes the intermediate output of the slow agent-
side model w; s given the input «,,. This process continues
until all agents have completed their training tasks in a training
round. At the end of each round, the models are aggregated
using the AllReduce method [33] (see Sec. IV-B).

C. Optimization for Workload Balancing

In a decentralized system with multiple agents, the objective
of workload balancing is to minimize the overall training
time. To this end, two key questions need to be addressed:
1) how to pair a faster agent with a slower agent for workload
balancing, and 2) how much workload to offload when two
agents are paired. Using the proposed local-loss-based split
training for workload balancing, we need to jointly optimize
the communication and computation time when addressing
these two key questions.

Specifically, let v;; € {0, 1} denote the workload balancing
dec’insion, and v;; = 1 means offloading agent ¢’s workload

w,’ to agent j by using split model m. The overall training

time 7; for agent ¢ in each round can be presented as:

miw) + 3, e [l ) 4 T
if > 4 vi; = O(Agent ¢ does not offload workload)
Tz(wa ),
if Z vi; = 1(Agent 7 offloads workload to one agent),
(C))
where 7;(w) denotes s agent i’s computation time of learning

Ti =

the model w. 7;;(w; ' ) denotes the communication time when
agent ¢ offloads its workload to agent j, which depends on
the speed of communication link between agents i and ﬁz as
well as the amounts of intermediate data based on w . In
(4), if agent ¢ does not offload workload, the overall trarmng
time consists of 7;(w) and the computation and communi-
cation time for processingﬂ the workload of slower agents
>, Vi |:Tz( )+ 1wy )} if any; if agent 4 offloads
workload the overall training time consists of the computation
time of learning a slow agent-side model 7;(w;"* 2 and the
corresponding communication time vijTij(w;’ ) with a
faster agent.

The problem of joint optimization of communication and
computation for workload balancing can be formulated as min-
imizing the training time of the slowest agent (i.e., straggler):

min

Crshfwi? )

max7;, s.ty; € {0,1} Vi, j.

)

In (5), we need to jointly optimize the workload balancing
decisions {~;;} and the offloaded workload (i.e., how to split
the model w = (wff ,w;* ) when v;; = 1). Note that
problem (5) is an integer programming problem, which is
challenging to solve in a decentralized learning system without

any centralized scheduler.



IV. DECENTRALIZED WORKLOAD BALANCING
A. Agent Pairing

To effectively address the optimization problem in (5), we
require a pairing strategy that dynamically pairs agents based
on their computation and communication capacities in each
training round. This dynamic approach is crucial due to the
inherent variability of agent capabilities within heterogeneous
environments. Static pairing assignments can lead to signifi-
cant straggler problems, as agents with limited resources may
be paired together, or slow agents may remain unpaired. Such
pairings can inadvertently increase the overall training time.
To mitigate these issues, we propose a dynamic decentralized
pairing scheduler. This scheduler dynamically pairs agents in a
decentralized manner to minimize overall training time based
on agents’ computation and communication capacities.

As agents train their models in parallel, the training time
in each round is determined by the slowest agent, denoted as
max 7;. This training time for the slowest agent becomes a

critical factor, as other agents must wait for it before model
aggregation can commence. To minimize the overall training
time, our objective is to minimize the maximum training time
among all agents, as expressed in (5). Leveraging a list of indi-
vidual training times, updated and maintained by each agent,
agents dynamically pair themselves each round, prioritizing
the slowest agent first, to minimize the overall training time
for each pair. In this approach, agents are paired or trained
independently based on their resources and available neigh-
bors. To ensure optimal pairings, the process meticulously
considers the communication link speed, processing speed,
and dataset size of a faster agent. This decentralized approach
empowers each agent to independently implement the pairing
scheduler, fostering scalability and resilience without reliance
on a central coordinator. Information exchange is minimized,
as agents only need to share their processing speeds and local
dataset sizes with their neighbors. Individual training times are
calculated based on these shared metrics, and network speeds
can be directly observed.

B. Training Workflow

The training process of ComDML in each round is described
in the following steps, which are detailed in Algorithm 1
and illustrated in Fig. 2. This algorithm achieves remarkable
resource optimization with minimal overhead, enabling agents
to fully leverage spare resources for significant performance
gains.

To facilitate the decentralized agent pairing, each agent
locally conducts split model profiling prior to the training
process. The split model profiling calculates the relative train-
ing time (i.e., the training time compared to the case where
the model is not split) and intermediate data size for each
split model m. Specifically, for M different split models, each
agent calculates the relative training time of the slow agent-
side 79", the fast agent-side T and the intermediate data
size ™ of each split model m using a batch with the same
size. The profiling helps each agent to estimate the overall

training time of each split model based on the actual size of
the dataset when pairing.

D Agent pairing. In each round, slower agents initially
pair up in order of their estimated training times. The agent
pairing algorithm ensures that each pair minimizes their train-
ing time and completes their tasks within a similar time.
Specifically, all available agents broadcast their processing
speed p; and individual training time 7; (i.e., time required to
complete its task without workload offloading) to all connected
agents in their network. Through a greedy algorithm (function
Pairing(-)), agents are paired in order of their individual
training times. Starting with the agent with the longest training
time, each agent selects a faster agent that can significantly
reduce its training time by offloading part of its workload. This
pair then informs the next agent in the list to pair up. This
ensures that paired agents complete their training in similar
time. Agent ¢ estimates the overall training time if it offloads
its workload to agent j, using the AgentTrainingTime(-)
function. This function factors in the processing speeds of
both agents p; and p;, agent j’s estimated individual training
time 7;, the network speed c;j, and and the data transfer
size during offloading. To estimate the training time for split
model m, agent ¢ utilizes the split model profile to convert
p; and p; into the processing speeds on the slow agent-side
p;* and the fast agent-side pi" of model m, respectively. Let
N; denote the number of data batches of agent ¢. Agent ¢
estimates the time for different split model m as follows:
] g T+ % + ]J?\an) where %{;L represents the
estimated training time for agent ¢ when using split model
m. This process is implemented in the Pairing(-) function in
Algorithm 1.

@ Local model update. Then, each pair of agents collab-
oratively perform the slower agent’s task via local-loss-based
split training (see Sec. III-B). Simultaneously, each faster agent
also performs the model training using its local dataset.

7T = max(

® Model aggregation and update global model. At the
end of each round r, all agents participate in the AllReduce
operation [33] to synchronize their models and obtain the
average of all agents’ models. Following the aggregation
process (i.e., the ModelAggregation(-) function), all agents
have the updated model parameters that represent the average
of all K agents. The AllReduce mechanism facilitates a key
decentralized aspect of the aggregation process. It allows for
the sharing and averaging of updated model weights among
agents without the need for a centralized coordinator. Two
well-known AllReduce algorithms suitable for bandwidth-
limited scenarios are the recursive halving and doubling al-
gorithm [34] and the ring algorithm [33]. In both algorithms,
each agent sends and receives Z%b bytes of data, where
b represents the model size in bytes. The halving/doubling
algorithm consists of 2log,(K) communication steps, while
the ring algorithm involves 2(K — 1) steps. Given that we are
dealing with a large number of agents, we opt for the halving
and doubling algorithms for the AllReduce operation. Other
existing aggregation techniques (e.g., quantized gradients [35])



Algorithm 1 ComDML.

Initialize: R denotes the total global rounds, 7% and
T° denote the relative training time for the slow and
fast agent-side sides, respectively, corresponding to model
split m with an intermediate data size of ", A is the list
of descending order of agents by their task completion
times, [7/7'] denotes the list of estimated training time.
Main()

1: forr=0to R—1 do
2: Agents broadcast p; and 7; to all connected agents
3: for agent ¢ in order A do
4 if agent i is not paired then j* < Pairing(7)
5: end if
6: end for
7: Local model update across agents in parallel
8: ModelAggregation() > Decentralized aggregation
9: end for
Pairing(7) > Run on agent ¢
10: for all unpaired j that are connected to 7 do
/I Estimate the training time of : if it offloads to j
11: 7i; < AgentTrainingTime(p;, 7;)
12: end for

13: j* <— arg mjn [7%3]
J
14: Return ~;
AgentTrainingTime(p;, 7;)
15: for all split layer m do
16: pt ¢ Lin

> Run on agent ¢

T(LS
. m _Pi_
17: pj & o ) ) )
. ~m Ni ~ 4 Nov™ Ny
18: T;; < max (p;n,TJ + T p;n>

19: end for
. A 1 Fm
20: 75 = min [7]7]
21: m* < argmin [ﬁ’j"]
~ m
22: Return 7;;

can also be integrated into the proposed training process to
further reduce communication overhead.

C. Privacy Protection

While ComDML excels in reducing training time, it ad-
dresses privacy concerns arising from model intermediate data
exchange. To mitigate model parameter attacks that aim to
replicate models using dummy data inputs [36], ComDML
restricts agents’ access to external datasets, query services, and
dummy data itself, effectively shielding sensitive information
from potential adversaries. Furthermore, ComDML’s model
split architecture, solidified by AllReduce aggregation, inher-
ently counters model inversion attacks by compartmentalizing
model updates between slow and fast agents. This architectural
design restricts model visibility, aligning with research that
suggests such attacks often require full model access to
succeed [37].

While ComDML’s architecture inherently limits privacy
leakage, it acknowledges potential vulnerabilities to strong

eavesdropping attacks. To address this, it offers a versatile
framework that seamlessly integrates with diverse privacy-
preserving techniques: i) Fast agents privacy: Inherently pro-
tected through unidirectional communication (i.e., from slow
agents to fast agents), fast agent updates remain confidential.
For further privacy guarantees during model aggregation, tech-
niques like differential privacy [38] and cryptography [39] can
be integrated. if) Slow agents privacy: ComDML prioritizes
slow agent privacy with a customizable toolkit. Techniques
like PixelDP noise layer [40], patch shuffling [41], distance
correlation [42], and SplitGuard [43] directly shield interme-
diate data, while differential privacy or cryptography secure
model aggregation. This flexibility empowers slow agents to
tailor their protection, balancing privacy and performance.

D. Convergence Analysis

We establish the convergence of slow and fast agent-side
models, considering both convex and non-convex loss func-
tions under standard assumptions. This is achieved through
local-loss-based training adapted from [15], where input dis-
tributions for fast agents dynamically evolve based on the
convergence of their slow counterparts. We define A™" and
A™7" as the number and the set of agents with split model
m at round r, respectively. The output of the slow agent-
side model, zn® ’r, follows the density function da;n’r, where
the converged density of the slow agent-side is represented as
d*<"*. We define c®<" £ [ |d*""(z) — d**(z)| dz as the
distance between the density function of the output of the slow
agent-side model and its converged state. In the following, we
introduce the standard assumptions used in the analysis.

Assumption 1 (L-smoothness): The loss function f is differ-
entiable and L-smooth, i.e., |V fi(w) — Vfi(v)|| < L|jw —
|, V fi, w, v.

Assumption 2 (u-convex): f; is p-convex for yu > 0
and satisfies: fi(w) + (v — w)"Vfi(w) + §llv — w|* <
fi(v),Yfi,w,v.

Assumption 3 (Bounded gradients): Expected squared norms
of gradients have upper bounds: E ||V fi(w)||* < G2,Vf;, w.

Assumption 4 (Bounded variance): The variance of stochas-
tic gradients in each agent is bounded: E[|V f;(¢I, w) —
Vfi(w)|? < o2,Vf,w, where ¢’ sampled from k-th agent
local dataset.

Assumption 5 (Bounded gradient dissimilarity): For both
slow and fast agent-sides and all split models, there are
constants Gy > 0; B > 1 such that %Zf{:l IV f;(w)]? <
G5+ B?|Vf(w)]? Vw.

If Ii fi} are convex, we can relax the assumption to
% 2, [V fi(w)|* < G+ 2LB? (f(w) — f*),Yw.

Assumption 6 (Bounded distance): The time-varying param-
eter satisfies ) 4T < oo, Ym.

Assumptions 1 to 6 have been widely employed in the liter-
ature for convergence analysis of machine learning (see [13]-
[15] and the references therein). Under these standard assump-
tions, we establish the convergence properties of ComDML.
The proof of Theorem 1 is given in the Appendix.



Theorem 1 (Convergence of ComDML): Suppose that <
and f“?n satisfy Assumptions 1, 3, 4, 5, and 6. The conver-
gence properties of ComDML for both convex and non-convex
functions are summarized as follows:

« Convex: If both f%" and f°f are p-convex with pu > 0,

n < m and R > %ﬂ, then the slow agent-side

2
model converges at the rate of O (% + D% exp (—R))
and the fast agent-side model converges at the rate of

0 HyV F(“fno 4 Cl-l,-FU'}nO
\/RATVL R

« Non-convex: If both f*s and f%/ are non-convex with

n < m, then the slow agent-side model converges at
/a0 a0 _
the rate of O | Rfﬁ + £ ) and the fast agent-side

Hz\/W + C2+Fa7fn0>

VRA™ R :
where Hy, Hy, D, Fa", F“?, and A™ are constants whose
definitions are provided in the Appendix for reference. Demon-
strated slow agent convergence propagates to fast agents
through C; and C5, both exhibiting convergence.

We demonstrate that under standard assumptions, ComDML
exhibits convergence for both convex and non-convex func-
tions as the number of training rounds R increases. This
convergence behavior holds for both slow and fast agent-side
models, albeit with potentially different convergence rates for
fast and slow agent sides. It’s crucial to note that ComDML’s
reliance on local-loss-based split training renders the con-
vergence of the fast agent-side model contingent upon the
convergence of the slow agent-side model. This dependence
is explicitly characterized by constants C; and Cy within the
analysis.

model converges at the rate of O (

V. EXPERIMENTAL EVALUATION
A. Experimental Setup

Dataset. We conduct image classification experiments using
three publicly available datasets: CIFAR-10 [17], CIFAR-100
[17], and CINIC-10 [18]. We also consider label distribution
skew (i.e., how the distribution of labels varies across agents)
to generate non-L.I.D. variants of these datasets. To maintain
fairness, we used a fixed Dirichlet distribution (concentration
parameter = 0.5) for the non-LIL.D. datasets. Global model
performance is assessed using test images after each round.

Baselines. To the best of our knowledge, this study pioneers
the introduction of workload balancing in server-less DML.
Although FL methods like FedProx [26] aim to enhance
performance in heterogeneous environments, they rely on
a central server, incompatible with our focus on serverless
decentralized machine learning. Therefore, we primarily com-
pare ComDML with decentralized baselines: BrainTorrent
[10], Gossip Learning [11], and decentralized AllReduce [33].
FedAvg [1], though server-dependent, is included as a baseline
for comparing workload balancing. BrainTorrent is a peer-to-
peer framework where agents take turns acting as the server
and updating the global model. Gossip Learning [11] incorpo-
rates model averaging, enabling each agent to update its model

based on information received from neighboring agents. In
decentralized learning utilizing AllReduce aggregation, agents
update their models independently and then employ AllReduce
to aggregate them, eliminating the need for a central server.
Implementation. We conducted the experiment using Python
3.11.3 and the PyTorch library version 1.13.1. The code
is available online in [44]. ComDML and baseline models
were deployed on a server with the following specifications:
dual-socket Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz,
four NVIDIA GeForce GTX 1080 Ti GPUs, and 64 GB of
memory. To replicate the heterogeneity of real-world systems,
we designed a heterogeneous simulation environment where
agents possess distinct computational and communication ca-
pabilities. Each agent is equipped with a simulated CPU and
communication resources, mirroring varied computation and
communication times. This setup effectively captures the com-
plexities of real-world distributed systems, where agents often
differ in their processing power and network connectivity. We
simulated agents with CPU profiles spanning 4, 2, 1, 0.5, and
0.2 CPUs. Communication profiles were varied with 0, 10,
20, 50, and 100 Mbps links, with O representing disconnected
agents. At the beginning of training, each agent was assigned
one profile representing its initial computation and commu-
nication resources. These resource profiles could dynamically
shift throughout the training process, mimicking real-world
variations in agents’ resources. In all experiments, we consider
simulated communication overhead for training time, includ-
ing intermediate data transfer and model size. BrainTorrent
operates through independent model updates followed by
aggregation by a randomly selected agent. Gossip learning
implementation aligns with [11]. For AllReduce experiments,
independent model training is followed by aggregation via
AllReduce.

Model Architecture. ComDML can effectively support var-
ious models, from Multilayer Perceptrons (MLPs) and Con-
volutional Neural Networks (CNNs) to large language mod-
els (LLMs) like BERT. In our experiments, we used two
prominent CNN models: ResNet-56 and ResNet-110 [16],
which have demonstrated good accuracy on the experimented
datasets. To balance computational demands across agents,
we partition the global model at varying split layers m.
Slow agents locally update the model up to their designated
layer m, while a fast agent handles the remaining layers. To
facilitate local loss training within slow agents, we introduce
an auxiliary network comprising a fully connected layer and
an average pooling layer. The input dimension of the f.c. layer
is adjusted to match the output of each slow agent-side model.
Hyper-parameters. We used the Stochastic Gradient Descent
(SGD) optimizer with a momentum of 0.9 for all datasets. The
initial learning rate (i.e., 1g) was set to 0.001 for all datasets.
Upon the accuracy reached a plateau, the learning rate was
reduced by a factor of 0.2 when there were 10 agents. For
scenarios with 20, 50, and 100 agents, we implemented a
reduction factor of 0.5. The local batch size for each agent
was set to 100, and the local epoch was consistently set to
one for all experiments.



TABLE I
PERFORMANCE OF 2-AGENT DECENTRALIZED TRAINING WITH VARYING
LAYER OFFLOADING. THE EVALUATION COMPARES THE FAST AGENT
TRAINING TIME, COMMUNICATION TIME, COMBINED IDLE TIME OF
AGENTS, AND TOTAL TRAINING TIME OF THE PROCESS (ALL IN SECONDS)
REQUIRED TO ACHIEVE 90% ACCURACY ON CIFAR-10 USING THE

RESNET-56.

Layers Times in the 1st Setting (s) Times in the 2nd Setting (s)
Offloaded | Train Comm. Idle Total | Train Comm. Idle Total
0 5573 34 14489 20096 | 5578 17 3560 9165

1 5781 655 14472 20909 | 5856 327 2966 9150
10 6740 3532 4787 15059 | 6364 1766 350 8481
19 7625 3544 1682 12851 | 6547 1772 137 8456
28 7906 1261 2049 11217| 7859 630 3368 8490
37 8003 1265 84 9352 | 8275 632 7318 8908
46 8939 611 5042 9551 | 9334 305 8351 9640
55 10343 640 9833 10983 | 10101 320 9964 10421

B. Experimental Results

1) Impact of heterogeneity on workload offloading deci-
sions: Table I compares the performance of local-loss-based
split training between two agents, using various portions of
the model offloaded from a slower agent to a faster agent
in two settings: 1) one agent with 2 CPUs and one agent
with 0.25 CPU, with a communication speed of 50 Mbps, and
2) one agent with 2 CPUs and one agent with 1 CPU, with
a communication speed of 100 Mbps. We evaluate training
time for the CIFAR-10 dataset’s classification task, targeting
90% accuracy. Table I presents the fast agent’s training time,
communication time, the combined idle time of both agents
and the overall training time under different workload of-
floading decisions. The results reveal the significant impact of
heterogeneous computation and communication resources on
the optimal workload offloading and the total training time. In
ComDML, offloading 0 layers signifies performing the training
task independently without assistance.

Offloading the training workload from the slower agent to
the faster agent can effectively reduce the total training time,
as demonstrated in Table I. For instance, in the Ist setting,
offloading 37 layers of the model to the faster agent resulted in
a significant 53% decrease in overall training time compared to
the scenario without workload offloading. Note that as an agent
offloads more layers, the model size on its side decreases,
reducing the computational workload. However, this offloading
of more layers may increase the data transmitted (i.e., the
size of the intermediate data and partial model). As shown in
Table I, the optimal number of layers to offload is non-trivial,
as it depends on various factors, such as the communication
link speed between agents, the computation power of each
agent, and the workload offloading strategy. Hence, dynami-
cally pairing agents with suitable offloading strategies during
the training process is of paramount importance to achieve
substantial reductions in total training time.

2) Training time improvement against baselines: In Table
II, we compare the training time of ComDML with baselines
by training a ResNet-56 with 10 agents on heterogeneous

TABLE 11
COMPARISON OF TOTAL TRAINING TIME TO BASELINES WITH 10 AGENTS
ON DIFFERENT DATASETS. THE NUMBER INDICATES THE TRAINING TIME
(IN SECONDS) REQUIRED TO REACH THE TARGET ACCURACY. THE
TARGET ACCURACIES ARE AS FOLLOWS: CIFAR-10 I.1.D. 90%,
CIFAR-10 NON-I.1.D. 85%, CIFAR-100 I.I.D. 65%, CIFAR-100
NON-L.I.D. 60%, CINIC-10 I.I.D. 75%, AND CINIC-10 NON-L.I.D. 65%.

Method CIFAR-10 CIFAR-100 CINIC-10
LLD. non-LID. LLD. non-LID. LLD. non-LLD.
ComDML 7211 4177 5589 8104 10229 17208
Gossip Learning | 20337 15269 15262 28621 24636 56325
BrainTorrent | 24639 14323 18046 25867 31992 51144
AllReduce 25153 13859 18462 26623 32652 53265
FedAvg 24174 13095 17630 25113 30601 49624

agents with diverse computation and communication capac-
ities. We created these heterogenous agents by randomly
assigning 20% of the agents to each CPU and communication
speed profile combination. All agents participated in the entire
training process. To better simulate a dynamic environment,
we randomly changed the profile of 20% of the agents after
100 rounds.

The corresponding training times for each method to achieve
specific target accuracies are provided in Table II. Notably,
ComDML consistently demonstrates significant reductions in
training time compared to the baselines, while preserving
model accuracy across all scenarios. For example, ComDML
achieves a remarkable 70% reduction in training time com-
pared to FedAvg and a substantial 71% reduction compared to
BrainTorrent on the [.I.D. CIFAR-10 dataset. Unlike FedAvg,
which can be hampered by communication delays with a cen-
tral server, ComDML eliminates this bottleneck by enabling
direct peer-to-peer communication. This not only accelerates
model updates but also strengthens robustness against server
failures and network disruptions, ultimately enhancing the
overall learning process.

3) Performance of ComDML with different numbers of
agents: To evaluate the scalability of ComDML, we assessed
its performance across varying numbers of agents. Table III
shows the training time of ComDML in comparison with
baselines on the LID. CIFAR-10 dataset, using different
numbers of agents to achieve a target accuracy of 80% for
both ResNet-56 and ResNet-110 models. We employed a 20%
sampling rate for agent participation in each training round. As
observed from Table III, increasing the number of agents does
not negatively impact ComDML’s performance, underscoring
its robust scalability.

4) Integration of privacy protection methods: ComDML
smoothly integrates privacy-preserving methods with mini-
mal overhead, effectively maintaining model accuracy. Our
experiments on the CIFAR-10 dataset, employing ResNet-56
with 100 agents, demonstrate its ability to integrate privacy-
preserving techniques without compromising either accuracy
or training time. Remarkably, we obtained model accuracies
of 81.7% with distance correlation (o = 0.5) [42], 83.2% with
patch shuffling [41], and 77.6% with differential privacy (using



TABLE III
PERFORMANCE EVALUATION OF TRAINING TIME (IN SECONDS) WITH
VARYING NUMBERS OF AGENTS ON I[.I.D. CIFAR-10 DATASET AND
COMPARISON WITH OTHER BASELINES FOR RESNET-56 AND RESNET-110
MODELS TO REACH A TARGET ACCURACY OF 80%.

Model Agent Training Method

ode 8eN] comDML Gossip L. BrainTorrent AllReduce FedAvg

20 7618 12637 14822 15660 14409

ResNet-56 50 9539 17716 20337 21339 19681
100 10461 19465 22825 23652 22577

20 11799 18834 20234 19559 19322

ResNet-110 50 15014 25574 27753 28117 27191
100 15843 28825 31526 30085 29494
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Fig. 3. Comparison of total training time (in seconds) against baseline models
under a 20% link connectivity in random topology.

Laplace noise, ¢ = 0.5, § = 107°) [38] over experiments
with 100 rounds (Other configuration details mirrored those in
the referenced papers). These results compellingly showcase
ComDML’s flexibility in balancing privacy and performance
without sacrificing efficiency.

5) ComDML’s performance with different network topolo-
gies: ComDML’s decentralized design, adaptable to diverse
network structures from random to ring topologies [7], even
copes with limited connections. It dynamically adjusts com-
munication strategies for efficiency, outperforming centralized
methods like FedAvg that are vulnerable to server bottlenecks.
By meticulously balancing communication overhead against
computation, ComDML achieves faster overall training times
compared to other baselines. It even adapts to extreme scenar-
ios with poor links, allowing independent training if needed.
This flexibility renders ComDML efficient across a wider
range of network conditions than its counterparts.

Fig. 3 highlights ComDML’s training efficiency compared
to baselines under simulated limited communication links,
where agents are randomly connected through only 20% of
the links present in a full graph. This setting mirrors those
used in the 50-agent experiments across diverse L.I.D. datasets.
ComDML’s decentralized design maintains its efficiency even
in scenarios with network disruptions or bandwidth limitations,
ensuring persistent learning progress.

VI. CONCLUSION

In this paper, we developed ComDML, an effective solution
to address the challenges of collaboratively training large
models in DML systems with diverse computational resources,
communication bandwidth, and dataset sizes. This serverless
framework enables slower agents to offload workloads to faster

ones. By employing local-loss-based split learning, ComDML
balances workloads, facilitating parallel updates and conquer-
ing resource constraints and straggler issues. We provided the-
oretical guarantees for the convergence of ComDML. Through
extensive experiments on different datasets with heteroge-
neous agents, ComDML demonstrates remarkable reductions
in training time without compromising model accuracy. It
seamlessly integrates privacy-preserving techniques without
sacrificing speed, ensuring both efficiency and confidentiality.
Importantly, ComDML achieves these results without relying
on a central server, thus offering a more scalable and efficient
alternative to state-of-the-art DML methods.

APPENDIX
A. Proof of Theorem 1

Convergence is proven for both slow and fast agent sides,
encompassing convex and non-convex functions. Slow agent-
sides converge independently, while fast agent-sides rely on
slow agent convergence for their own convergence, with rates
presented. Due to space, we show only the convergence for
convex functions. The convergence for non-convex functions
can be easily derived using the same techniques presented in
the following.

First, we introduce a lemma that will be useful for proving
the convergence of the fast agent side later on.

Lemma 1: Fubini’s theorem, in conjunction with Assump-
tion 6, enables us to make the following observation,

J

Since ), |da:n’r(z) - da?’*(z)| is convergent, we have
|d“-73’”(z) - da;n’*(z)| — 0.

1) Slow agent-side: Assume that the slow agent-side func-
tions satisfy Assumptions 1, 2, 4, and 5. Considering the model
update at round r, we have,
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We use the notation [E to denote the expectation over all
the randomness generated in the prior round. Building on the
above, we separate the mean and variance by applying Lemma
4 of [14].
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By applying Lemma 5 of [14] to 77, it is observed that,

)
The bound on 75 is obtained by combining the relaxed
triangle inequality, Lemma 3 of [14], and Assumption 5:

T1 < —2n (f“;n (wa?l) — f‘l;n <w“§n*> + % Hwa?' — s *
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After plugging back the bounds 7; and 7> into (6), we
rearrange and move the expression (% (w®" )— fo (w? *))
and then divide throughout by 7, while assuming 4Ln(B? +
1)< 1.
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Applying the linear convergence rate lemma (Lemma 1 of
[14]), we obtain the desired convergence rate for the convex
case.
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where, H := 0% + (1 — AT) G2, D = ||lw* —w*

and A™ = min,{A™" > 0}. The proof for the non-convex
case follows a similar approach, with the difference being
the disregarding of Assumption 2 and relies on the sub-linear
convergence rate lemma (Lemma 2 of [14]) This leads to:
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where, [ 1= foi (we'0) — fai'x,

2) Fast agent side: Now we provide convergence analysis
of fast agent-side models. Assume that the fast agent-side
functions satisfy Assumptions 1, 2, 4, and 5. The model’s
update adheres to the following equation,
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By quadratic upper bound of Assumption 1 (L-smoothness),
we have,
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We incorporate the weight update formula into the above
inequality, followed by taking expectation across all random-
ness. This process yields the following,
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We now prove the boundedness of 73 and 74. By applying
Cauchy-Schwartz and Jensen’s inequality, then considering
Assumption 2, and using Lemma 1, we obtain the following
bound for 73,
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Leveraging Assumption 2 and mirroring the approach for
the slow agent-side function, we establish the bound for 7y:
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By using the bounds of 73 and 73 and assuming 4Ln (B2 +
1) <1, we have,
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By applying Lemma 1, Lemma 2 from [14], defining
Fo7' = max, {f°F w?’ ) — f9F*}, and averaging the

summation over the third term, we obtain:
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With a similar strategy and disregarding Assumption 2,

and using telescoping sum the proof for non-convex functions
yields the desired rate.
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where Co = G14/G3 + B2G2 Y., c*"" 7. The fast agent-
side bound has an extra term due to its dependence on the
slow agent-side model convergence, leading to a looser bound.
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