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Two entanglement conditions and their connection to negativity
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We examine two conditions that can be used to detect bipartite entanglement, and show that they can be used

to provide lower bounds on the negativity of states. We begin with two-qubit states, and then show how what was

done there can be extended to more general states. The resulting bounds are then studied by means of a number

of examples. We also show that if one has some knowledge of the Schmidt vectors of a state, better bounds can

be found.
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I. INTRODUCTION

Entanglement is a resource for many different tasks in

quantum information, among them, teleportation, entangle-

ment swapping, and some forms of quantum cryptography.

Quantifying the entanglement in a state can then be a useful in

determining how much of this resource a given procedure will

use. For bipartite entanglement, the von Neumann entropy of

the reduced density matrix of the state is the standard measure

of entanglement. It can, however, sometimes be difficult to

calculate, in particular for mixed states of large dimension.

An alternative, which can be useful for bipartite states whose

partial transpose is not positive, is the negativity [1–3]. It was

first defined in Ref. [1], used to study the volume of separable

states in Ref. [2], and a number of its properties analyzed in

Ref. [3]. For large systems finding the negativity can also be

laborious, and in some cases, all one is interested in is a guar-

antee that at least a certain amount of entanglement is present.

This can often be accomplished with simple conditions [4–7],

for example, by making a small number of measurements or

using entanglement witnesses. Here, we want to see if we

can use some other conditions that show the existence of

entanglement to place bounds on how entangled a state is. It

was shown that if we have a state in H = Ha ⊗ Hb, that the

state is entangled if

|〈A†B〉|2 > 〈A†AB†B〉 or |〈AB〉|2 > 〈A†A〉〈B†B〉, (1)

where A and B are arbitrary non-Hermitian operators, and A

acts in Ha and B acts in Hb [8–12]. If, for a particular state,

neither of these conditions is satisfied, then we can say nothing

about the entanglement of that state. We should also note that

these conditions will detect entanglement in a state only if the

partial transpose of the state is not positive [10]. We would

like to see if we can relate the extent to which one of these

inequalities is satisfied, i.e., the difference between the left-

and right-hand sides of the inequality, to a measure of the

entanglement of a state. Since these conditions only detect

entanglement in states whose partial transpose is not positive,

the natural measure to study is the negativity. The negativity

of a state is defined as follows. Let ρ be a state on Ha ⊗ Hb,

and let ρTb be the partial transpose of ρ with respect to system

b, i.e.,

ρTb

m,μ;n,ν = a〈m| b〈μ|ρTb |n〉a|ν〉b = a〈m| b〈ν|ρ|n〉a|μ〉b

= ρm,ν;n,μ. (2)

The negativity of ρ is defined to be

N (ρ) =
‖ρTb‖1 − 1

2
, (3)

where the above norm is the trace norm. The idea behind this

measure is that if the partial transpose of a state is not positive,

it is entangled. If the partial transpose of a state is positive,

then ‖ρTb‖1 = Tr(ρTb ) = 1, and the negativity is zero. On the

other hand, suppose

ρTb =
∑

j

λ
(+)
j |φ(+)

j 〉〈φ(+)| +
∑

j

λ
(−)
j |φ(−)

j 〉〈φ(−)|, (4)

where λ
(+)
j > 0 and λ

(−)
j < 0. Now, because the trace of the

transpose of an operator is the same as the trace of the opera-

tor, we have that
∑

j

λ
(+)
j +

∑

j

λ
(−)
j = 1, (5)

but

‖ρTb‖1 =
∑

j

λ
(+)
j +

∑

j

|λ(−)
j | > 1. (6)

Thus, negativity measures how many and how big are the

negative eigenvalues in the partial transpose. Negativity is

convex and monotonic under probabilistic local operations

and classical communication (LOCC)[3]. The quantities in

Eq. (1) can be measured, since any non-Hermitian operator

A can be expressed in terms of its real and imaginary parts,

(A + A†)/2 and i(A − A†)/2, which are Hermitian. If these

operators are simple, for example, rank one projections, they
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should not be too hard to measure. The information gained

from such measurements, while no substitute for full state

tomography, can provide a floor to the negativity of a state.

Determining the actual negativity does require state tomogra-

phy, and requires far more measurements that the procedures

outlined here would entail.

II. TWO QUBITS

We will first look at a very simple example, and then see

what can be done in a more general setting. Let us start with

the first condition. We will consider two qubits, which we

shall denote by a and b, and set A = σ (−)
a and B = σ

(−)
b

, where

σ (−)
a = |0〉a〈1| and σ

(−)
b

= |0〉b〈1|. We then have that

〈A†B〉 = 〈σ (+)
a σ

(−)
b

〉 = ρ01;10, (7)

where we made use of the fact that σ (+)
a = |1〉a〈0|. We also

have that

〈A†AB†B〉 = 〈σ (+)
a σ (−)

a σ
(+)
b

σ
(−)
b

〉 = ρ11;11. (8)

Expressing all quantities in terms of matrix elements of the

partially transposed density matrix, we have that ρ
TB

00;11 =
ρ01;10 and ρ

TB

11;11 = ρ11;11, so our first entanglement condition

becomes

κ = |ρTB

00;11|
2 − ρ

TB

11;11 > 0. (9)

Now the matrix

M =

(

ρ
TB

00;00 ρ
TB

00;11

ρ
TB

11;00 ρ
TB

11;11

)

(10)

is a submatrix of the 4 × 4 matrix ρTB . Now, let ṽ be a nor-

malized four-component vector in the two-qubit space whose

ṽ01 and ṽ10 components are zero, that is, only ṽ00 and ṽ11 are

nonzero. Then

〈ṽ|ρTB |ṽ〉 = (ṽ∗
00 ṽ

∗
11)M

(

ṽ00

ṽ11

)

. (11)

For a general normalized four-component vector v, the small-

est 〈v|ρTB |v〉 can be is the lowest negative eigenvalue of ρTB ,

which we shall denote by λmin. The above equation implies

that

λmin � (ṽ∗
00 ṽ

∗
11)M

(

ṽ00

ṽ11

)

, (12)

and this further implies that the lowest eigenvalue of M, which

is the smallest value the right-hand side can attain, must be

greater than λmin. Next, we want to see what the condition in

Eq. (9) places on the eigenvalues of M. We have that

det M = ρ
TB

00;00ρ
TB

11;11 − |ρTB

00;11|
2
� −κ, (13)

where we have used the fact that 0 � ρ
TB

00;00, ρ
TB

11;11 � 1. The

fact that det M < 0 means that one of the eigenvalues is pos-

itive and the other is negative. Let the positive eigenvalue be

ξ+ and the negative one be ξ−. We then have that

ξ+ + ξ− � 1, ξ+ξ− � −κ. (14)

If we now plot the regions allowed by these two conditions,

keeping in mind that ξ+ > 0 and ξ− < 0, we see that the

largest possible value of ξ− is given by the point where the

line ξ− = 1 − ξ+ and the branch of ξ+ξ− � −κ with ξ+ > 0

and ξ− < 0 intersect. This happens when

1 − ξ+ =
−κ

ξ+
. (15)

This gives

ξ+ = 1
2
[1 + (1 + 4κ )1/2], ξ− = 1 − ξ+

= 1
2
[1 − (1 + 4κ )1/2]. (16)

We, therefore, have that

λmin �
1
2
[1 − (1 + 4κ )1/2]. (17)

Combining this result with

N (ρ) =
1

2

4
∑

j=1

(|λ j | − λ j ) �
1

2
(|λmin| − λmin) = −λmin,

(18)

we find that

N (ρ) � 1
2
[(1 + 4κ )1/2 − 1]. (19)

This is the desired result that gives us a lower bound on the

negativity in terms of κ , a quantity that is directly related to

out entanglement condition.

It is possible to improve this result if we have more in-

formation. In particular, if we know ρ
TB

00;00 + ρ
TB

11;11 = ρ00;00 +
ρ11;11, which we shall denote by a, we can replace the condi-

tion ξ+ + ξ− � 1 by ξ+ + ξ− � a. This leads to the condition

ξ− = 1
2
[a − (a2 + 4κ )1/2] (20)

and

N (ρ) � 1
2
[(a2 + 4κ )1/2 − a]. (21)

Let us call the right-hand side g(a) and look at it as a function

of a for 0 � a � 1. We see that

dg

da
=

1

2

[

a

(a2 + 4κ )1/2
− 1

]

< 0, (22)

which means that g(a) is a decreasing function of a. There-

fore, setting a = ρ00;00 + ρ11;11 instead of a = 1 will produce

a better inequality.

III. EXTENDING THE TWO-QUBIT RESULT

We can extend the result in Eq. (19) to systems beyond

qubits. Suppose we have a bipartite state on Ha ⊗ Hb, where

Ha and Hb can be of any finite dimension. Let A = |η0〉a〈η1|
and B = |ξ0〉b〈ξ1|, where 〈η0|η1〉 = 0, and 〈ξ0|ξ1〉 = 0. If

we make the identifications | j〉a ↔ |η j〉a and | j〉b ↔ |ξ j〉b

for j = 0, 1, then the arguments in the qubit section go

through. Another way of doing this is to note that for any

projection operator 
ab on Ha ⊗ Hb, we have ‖ρTB‖1 �

‖
abρ
TB
ab‖1 and we can choose 
ab = P

(a)
1 ⊗ P

(b)
1 , where

P
(a)
1 = |η0〉a〈η0| + |η1〉a〈η1| and P

(b)
1 = |ξ0〉b〈ξ0| + |ξ1〉b〈ξ1|.

The matrix for 
abρ
TB
ab is 4 × 4 and equivalent to two

qubits.

For the higher-dimensional systems, we can improve our

results. Suppose we have two sets of operators, A1 and B1,

which are as before, and A2 = |η2〉a〈η3| and B = |ξ2〉b〈ξ3|,
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where {|η j〉 | j = 0, 1, 2, 3} and {|ξ j〉 | j = 0, 1, 2, 3} are or-

thonormal sets. Let us further suppose that for the state ρ,

|〈A†
jB j〉|2 − 〈A†

jA jB
†
j B j〉 = κ j > 0, (23)

for j = 1, 2. We can now make use of the following result,

which will be proved shortly. If 

(1)
ab

and 

(2)
ab

are two orthog-

onal projections, i.e., 

(1)
ab



(2)
ab

= 0, then

‖ρTB‖1 �
∥

∥

(1)
ab

ρTB

(1)
ab

∥

∥

1
+

∥

∥

(2)
ab

ρTB

(2)
ab

∥

∥

1
. (24)

In our case we choose 

(1)
ab

= P
(a)
1 ⊗ P

(b)
1 as before and



(2)
ab

= P
(a)
2 ⊗ P

(b)
2 , where P

(a)
2 = |η2〉a〈η2| + |η3〉a〈η3|, and

P
(b)
2 = |ξ2〉b〈ξ2| + |ξ3〉b〈ξ3|. We can then apply Eq. (19) twice

to get

N (ρ) �
1

2

2
∑

j=1

[(1 + 4κ j )
1/2 − 1]. (25)

We now need to prove Eq. (24). We start by noting that any

Hermitian operator can be expressed as the difference of two

positive operators, in particular, ρTB = S − T , where S and

T are positive. This implies that ‖ρTB‖1 = Tr(S + T ). Now

define

ρTB

p = 

(1)
ab

ρTB

(1)
ab

+ 

(2)
ab

ρTB

(2)
ab

= 

(1)
ab

S

(1)
ab

− 

(1)
ab

T 

(1)
ab

+ 

(2)
ab

S

(2)
ab

− 

(2)
ab

T 

(2)
ab

.

(26)

Now this equation expresses ρTB
p as the difference of two

positive operators, so
∥

∥ρTB

p

∥

∥

1
= Tr

(



(1)
ab

S

(1)
ab

+

(1)
ab

T 

(1)
ab

+ 

(2)
ab

S

(2)
ab

+ 

(2)
ab

T 

(2)
ab

)

=
∥

∥

(1)
ab

ρTB

(1)
ab

∥

∥

1
+

∥

∥

(2)
ab

ρTB

(2)
ab

∥

∥

1
. (27)

But we also have that

Tr(S + T ) = ‖ρTB‖1

� Tr
[



(1)
ab

(S + T )

(1)
ab

+

(2)
ab

(S + T )

(2)
ab

]

, (28)

so that ‖ρTB‖1 � ‖ρTB
p ‖1.

IV. A SECOND APPROACH

Using different methods it is possible to derive a different

negativity bound from the first inequality. We define κ as

before and wish to find a lower bound on the negativity in

terms of it. We shall assume that the operators A and B are

bounded. Note that this means that the case in which they they

are mode annihilation operators is not covered here, because

annihilation operators are unbounded. We begin by noting that

Tr(ρAB†) = Tr[ρTB A(B†)TB ] = Tr(ρTB AB∗),

Tr(ρA†AB†B) = Tr[ρTB A†A(B†B)∗]. (29)

Now ρTB can be expressed as the difference of two positive

operators, ρ+ and ρ−,

ρTB = ρ+ − ρ−. (30)

Letting μ± = Tr(ρ±), we have that μ+ − μ− = 1 and

N (ρ) = (μ+ + μ− − 1)/2 = μ−.

Denote the eigenvalues and eigenstates of ρ+ as λ(+) and

|ψ (+)
n 〉, respectively. We then have that

|Tr(ρ+AB∗)| =

∣

∣

∣

∣

∣

∑

n

λ(+)
n 〈ψ (+)

n |AB∗|ψ (+)
n 〉

∣

∣

∣

∣

∣

�
∑

n

λ(+)
n

[

〈ψ (+)
n |A†A(B∗)†B∗|ψ (+)

n 〉
]1/2

�

(

∑

n

λ(+)
n

)1/2

×

(

∑

n

λ(+)
n 〈ψ (+)

n |A†A(B∗)†B∗|ψ (+)
n 〉

)1/2

�
√

μ+{Tr[ρ+A†A(B†B)]}1/2, (31)

where we have used the fact that (B∗)†B∗ = (B†B)∗.

Now define z± = Tr(ρ±AB∗) and V± = Tr[ρ±A†A(B†B)∗].

Note that

z+ − z− = 〈AB†〉, V+ − V− = 〈A†AB†B〉. (32)

In addition, from above we have that |z+| � (μV+)1/2, and,

similarly, |z−| � (μV−)1/2. Therefore, we have that,

κ = |z+ − z−|2 − 〈A†AB†B〉 � (|z+| + |z−|)2 − 〈A†AB†B〉,
(33)

and this implies that

κ + 〈A†AB†B〉 � [(μ+V+)1/2 + (μ−V−)1/2]2

� [(1 + μ−)1/2(V− + 〈A†AB†B〉)1/2

+ (μ−V−)1/2]2. (34)

We now make use of the assumption that the operators A and

B are bounded. We have that

|V−| � ‖ρ−A†A(B†B)∗‖1 � μ−‖A†A(B†B)∗‖, (35)

where the norm with the subscript 1 is the trace norm and the

norm without a subscript is the operator norm. Substituting

this into the above inequality we find that

[κ + 〈A†AB†B〉]1/2

� (1 + μ−)1/2[μ−‖A†A(B†B)∗‖ + 〈A†AB†B〉]1/2

+μ−‖A†A(B†B)∗‖1/2. (36)

This inequality should give us a lower bound for μ− in terms

of κ , and because N (ρ) = μ− it will give us a lower bound

on the negativity. Note that for κ = 0, we have that μ− = 0

satisfies the inequality, so that presumably, if κ > 0, we will

get a nonzero lower bound for μ−. In addition, note that

|A†A(B†B)∗‖ = ‖A†A‖ ‖(B†B)∗‖. Now (B†B)∗ is obtained by

taking the matrix for B†B in the computational basis (operator

transpose and complex conjugation are basis-dependent oper-

ations) and taking its complex conjugate. This implies that the

eigenvalues of (B†B)∗ are just the complex conjugates of the

eigenvalues of B†B, so that ‖(B†B)∗‖ = ‖B†B‖.
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We can obtain a slightly simpler version of this inequality

by making use of the inequality

(1 + z)1/2 = 1 +
∫ z

0

ds
1

2

1

(1 + s)1/2
� 1 +

z

2
, (37)

to simplify the right-hand side of the inequality. Setting x =
〈A†AB†B〉 and y = ‖A†A(B†B)∗‖, we have that

(κ + x)1/2
�

(

1 +
μ−

2

)√
x
(

1 +
yμ−

2x

)

+ μ−
√

y. (38)

This can be easily solved for μ−.

V. SECOND INEQUALITY FOR QUBITS

Let us look at the second inequality in Eq. (1) for two

qubits, and choose A = σ (+)
a and B = σ

(+)
b

. In terms of density

matrix elements, we have

〈AB〉 = ρ00;11 = ρ
TB

01;10,

〈A†A〉 =
1

∑

j=0

ρ0 j;0 j =
1

∑

j=0

ρ
TB

0 j;0 j,

〈B†B〉 =
1

∑

j=0

ρ j0; j0 =
1

∑

j=0

ρ
TB

j0; j0. (39)

Substituting these expressions into the second inequality we

find for the difference of the two sides

κ = |〈AB〉|2 − 〈A†A〉〈B†B〉

=
∣

∣ρ
TB

01;10

∣

∣

2 −
(

ρ
TB

00;00 + ρ
TB

01;01

)(

ρ
TB

00;00 + ρ
TB

10;10

)

. (40)

Now ρ
TB

01;01, ρ
TB

10;10, ρ
TB

01;10, and its complex conjugate form

a 2 × 2 matrix, which we shall denote by M. By the same

argument as before, the absolute value of the lowest negative

eigenvalue of this 2 × 2 matrix will be a lower bound for the

negativity. The difference from the previous case is that the

above expression involves one additional quantity besides the

elements of the 2 × 2 matrix, ρ
TB

00;00, which we shall denote,

for convenience, by 1 � α � 0.

Let the eigenvalues of M be ξ1 and ξ2. Since det(M ) = ξ1ξ2

and ρ
TB

01;01 + ρ
TB

10;10 = ξ1 + ξ2, we find

−κ = (ξ1 + α)(ξ2 + α). (41)

We also have the condition, since Tr(ρTB ) = 1, that α + ξ1 +
ξ2 � 1. In order to satisfy the first condition, we must have

either ξ1 + α < 0 or ξ2 + α < 0. Let us assume ξ2 + α < 0.

The next step is to find where the line α + ξ1 + ξ2 = 1 inter-

sects the hyperbola in Eq. (41). Solving both equations for ξ1

and then putting them equal to each other we find

1 − α − ξ2 =
−κ

ξ2 + α
− α, (42)

with the negative solution

ξ2 = 1
2
{1 − α − [(1 + α)2 + 4κ]1/2}, (43)

which implies that

ξ2 �
1
2
{1 − α − [(1 + α)2 + 4κ]1/2}. (44)

This implies that the negativity must satisfy

N (ρ) � 1
2
{[(1 + α)2 + 4κ]1/2 − 1 + α}. (45)

Note that even when κ = 0, the bound for the negativity is not

zero. That means that the condition that ξ2 < 0 is a stronger

condition for detecting entanglement than the condition κ >

0, where κ is given by Eq. (40).

VI. EXAMPLES

For a bipartite state expressed in terms of its Schmidt basis

|
〉 =
N

∑

j=1

√

λk|u j〉a|v j〉b, (46)

the negativity is [3]

N (|
〉ab〈
|) =
1

2

⎡

⎢

⎣

⎛

⎝

N
∑

j=1

√

λ j

⎞

⎠

2

− 1

⎤

⎥

⎦
. (47)

We can use this to study several simple examples and compare

the actual negativity of a state to the lower bounds we have

obtained.

Consider the two-qubit state |
〉ab =
√

λ0|01〉ab +√
λ1|10〉ab and let A = σ (−)

a , and B = σ
(−)
b

. We then have

that 〈A†AB†B〉 = 0 and 〈A†B〉 =
√

λ0λ1 giving us κ = λ0λ1.

Substituting this into Eq. (19) gives us

N (ρ) � 1
2
[(1 + 4λ0λ1)1/2 − 1]. (48)

Now in this case we know that N (ρ) =
√

λ0λ1, so let us first

verify the inequality. Substituting and rearranging we get

√

λ0λ1 +
1

2
�

(

1

4
+ λ0λ1

)1/2

, (49)

which can be seen to be true by squaring both sides. Now

0 � λ0λ1 � 1/4, and when λ0λ1 = 0, both the negativity and

the bound are 0, whereas when λ0λ1 = 1/4, the negativity is

1/2 whereas the bound is (1/2)(
√

2 − 1) = 0.207.

Now let us look at Eq. (36) for the same state and for the

same choice of A and B. In this case, ‖A†A‖ = ‖B†B‖ = 1.

The inequality becomes

√

λ0λ1 � μ−(1 + μ−)1/2 + μ−, (50)

and N (ρ) = μ−. We now have to try to solve this for μ−. It

is easier to solve a weaker inequality, using (1 + μ−)1/2 �

1 + μ−/2,

√

λ0λ1 � μ−

(μ−

2
+ 2

)

, (51)

or (μ2
−/2) + 2μ− −

√
λ0λ1 � 0. For this to be true μ− must

be greater than the two roots of the corresponding quadratic

equation, which gives us

N (ρ) = μ− � (4 + 2
√

λ0λ1)1/2 − 2. (52)

Again, when λ0λ1 = 0, both the negativity and the bound are

0, and when λ0λ1 = 1/4, the bound is
√

5 − 2 = 0.24.
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(a) (b)

(c) (d)

FIG. 1. (a), (b) κ and negativity/bound plot for p = 1 (no noise). (c), (d) κ and negativity/bound plot for p = 2/3.

The previous example can be generalized to a system with

noise. With noise, the two-qubit system is in the mixed state

ρ =p|
〉ab〈
| +
(1 − p)

4
I,

|
〉ab =
√

λ0|01〉ab +
√

λ1|10〉ab, (53)

where 0 � p � 1 is the noise parameter. The negativity is

found by diagonalizing ρTB ,

N (ρ) = p

√

λ0λ1 +
(1 + p)

4
, (54)

while κ with noise is

κ = p2λ0λ1 −
(1 − p)

4
. (55)

These are plotted versus λ0 in Fig. 1 for the cases p = 1 and

p = 2/3. Since our bound is only useful when κ > 0, we see

that in the presence of noise the lower bound is only useful

for a limited range of λ0. In addition, its value is significantly

reduced.

We can also go back to the first example and use a different

set of operators A, B in the hope that they will produce a bet-

ter bound than our original choice of A1 = σ (−)
a , B1 = σ

(−)
b

,

which yielded κ1 = λ0λ1. (See Fig. 2.) The choice A2 = | +
x〉〈−x| and B2 = | − x〉〈+x|, where | ± x〉 = (1/

√
2)(|0〉 ±

|1〉), makes use of vectors that are superpositions of the

Schmidt basis vectors |0〉 and |1〉, and this gives us

κ2 = 1
16

(1 + 2
√

λ0λ1)2 − 1
4
(1 − 2

√

λ0λ1), (56)

and the new bound is

N (ρ) � 1
2
[(1 + 4κ2)1/2 − 1]. (57)

Bounds from both sets are plotted in Fig. 3 and the behaviors

of κ1 and κ2 are displayed in Fig. 2. We see that the choice

of operators derived from the Schmidt basis is slightly better

than that derived from a superposition of these basis vectors.

The negativity is an entanglement monotone under LOCC,

and this implies that if we trace out part of the system and find

the negativity of the reduced system, it will be less than the

negativity of the original system [3]. Therefore, if we find a

lower bound on the negativity of the reduced system, it is also

a lower bound on the negativity of the original system. With

this in mind, let us now look at a four-qubit system, where the

FIG. 2. κ1, κ2 as a function of λ0. κ2 becomes negative for certain

values of λ0, which numerically are found to be 0 � λ0 � 0.057 109

and 0.942 891 � λ0 � 1. These values are excluded in the plot in

Fig. 3.
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FIG. 3. Negativity and κ bounds as a function of λ0. They are

only plotted for the range in which the κ bounds are greater than

zero (see Fig. 2). The κ1 bound is better than the κ2 bound.

first two qubits will be one subsystem and the second two will

be the second subsystem, in the state

|
〉 =
1

∑

j,k=0

√

λ jk| j j〉|kk〉. (58)

We will consider two choices of operators. For the first, we

will choose A = |0〉〈1| ⊗ I and B = |1〉〈0| ⊗ I . In doing so

we find that

κ = |〈A†B〉|2 − 〈A†AB†B〉 = (
√

λ00λ10 +
√

λ01λ11)2. (59)

For the second choice we will choose two sets of operators and

combine the results. We first choose the operators A1, B1 and

A2, B2, where A1 = |00〉〈10|, B1 = |10〉〈00|, which yields κ1

and then choose A2 = |01〉〈11|, B1 = |01〉〈11|, which yields

κ2. We have that

κ1 = λ00λ10,

κ2 = λ01λ11. (60)

We can then combine κ1 and κ2 into a new bound using

Eq. (25).

The negativity of the state |
〉 is

N (ρ) = 1
2
[(

√

λ00 +
√

λ01 +
√

λ10 +
√

λ11)2 − 1]. (61)

If we fix λ10 = λ00 and λ01 = λ11, and we use the normaliza-

tion condition of |
〉, which is 2λ00 + 2λ11 = 1, we are able

to compare the negativity with the κ1 bound and the κ2 bound

by plotting everything as a function of λ00 only. In this case,

we have

κ = 1
4
, κ1 = λ2

00, κ2 =
(

1
2

− λ00

)2
, (62)

N (ρ) = 1
2
(1 + 8

√

λ00λ11), (63)

and the plot is shown in Fig. 4. We note that the bound

obtained by combining κ1 and κ2 is lower than the κ bound,

showing that in this case the first choice of the operators A and

B is the better one.

VII. PURE STATES AND THE SCHMIDT BASIS

Suppose we have a pure bipartite state |
〉ab, and we know

some of the Schmidt basis vectors (an example of this is

0.1 0.2 0.3 0.4 0.5

0.5

1.0

1.5

FIG. 4. Negativity and κ bounds as a function of λ00. The κ

bound is still better than the κ1 + κ2 bound.

discussed in the Appendix). In particular,

|
〉ab =
N

∑

j=1

√

λ j |u j〉a|v j〉b + |
 ′
ab〉, (64)

where {|u j〉a} and {|v j〉b} are subsets of the Schmidt basis, and

( a〈u j | b〈v j |)|
 ′〉 = 0 for j = 1, 2, . . . , N . We would like to

choose A and B so that 〈A†AB†B〉 = 0. One way to do this is

to choose K between 1 and N and define

|α〉 =
K

∑

j=1

|u j〉, |α̃〉 =
N

∑

j=K+1

|u j〉,

|β〉 =
K

∑

j=1

|v j〉, |β̃〉 =
N

∑

j=K+1

|v j〉. (65)

Then set A = |α〉〈α̃| and B = |β̃〉〈β|. This gives A†A = |α̃〉〈α̃|
and B†B = |β〉〈β|. With this choice we have

〈A†AB†B〉 = 0,

〈A†B〉 =

⎛

⎝

N
∑

j=K+1

√

λ j

⎞

⎠

(

K
∑

k=1

√

λk

)

. (66)

Note that if the above two equations hold, then

N
∑

j=1

√

λ j � 2
√

|〈A†B〉|. (67)

This gives for the negativity that

N (|
〉ab〈
|) � 1
2
(4|〈A†B〉| − 1). (68)

For this to be useful, we would need |〈A†B〉| > 1/4. Also note

that we can choose K to maximize |〈A†B〉|.
As a simple example we can consider the case that |
 ′

ab〉 =
0 and λ j = 1/N for j = 1, 2, . . . , N , that is a maximally en-

tangled state. Assuming that N is even and K = N/2, we find

that the above inequality yields N (|
〉ab〈
|) � 1
2
(N − 1),

which is, in fact, the negativity of the state.

VIII. CONCLUSION

We have shown that two conditions that can be used to de-

tect entanglement in a state can also be used to provide a lower

bound on the negativity of the state. The conditions them-

selves are rather simple and can provide quick information

about the negativity, whereas calculating the negativity itself
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involves diagonalizing the partial transpose of the density

matrix. In order to use the entanglement conditions, one needs

to make a choice of operators, and this choice determines the

negativity bounds one will obtain. The effects of this choice

were studied through a number of examples.
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APPENDIX

We want to provide an example of a situation in which

one can know some of the Schmidt basis vectors of a model

without having to solve the entire problem. Consider a spin

of size j coupled to a single-mode field by the Hamiltonian

(h̄ = 1)

H = ωS3 + ωa†a + g(S(+)a + S(−)a†). (A1)

The spin Hilbert space has the basis |m〉, where − j � m �

j, and S3|m〉 = m|m〉. The operators S(±) are the standard

spin raising and lowering operators. This Hamiltonian is used

in quantum optics to describe the Dicke model in which a

collection of N two-level atoms ( j = N/2) interacts with a

single-mode field. The number of excited atoms in the state

|m〉 is m + j. This system has a conservation law, and the

operator S3 + a†a commutes with the Hamiltonian.

If we start in a state | − j + l0〉|0〉, where |0〉 is the vacuum

state of the field mode, the state at any later time can be

expressed as

|
〉 =
l0

∑

l ′=0

dl ′ | − j + l ′〉|l0 − l ′〉. (A2)

Note that this state is automatically expressed in its Schmidt

basis as a result of the conservation law, so in this case we

know all of the Schmidt vectors. If we start in the superposi-

tion (c0| − j + l1〉 + c1| − j + l2〉)|0〉, where l2 > 2(l1 + 1),

then things are more complicated, but nonetheless we can

identify some of the states in the Schmidt basis. At a later

time this state has the form

|
〉 = c0

⎛

⎝

l1
∑

l ′1=0

dl ′1
| − j + l ′

1〉|l1 − l ′
1〉

⎞

⎠

+ c1

⎛

⎝

l2
∑

l ′2=0

fl ′2
| − j + l ′

2〉|l2 − l ′
2〉

⎞

⎠. (A3)

In order to find the Schmidt vectors, we find the reduced

density matrices from |
〉〈
|, one for the spin and one for the

field, and find their eigenvectors. From this, we find that the

vectors | − j + l1 + s〉|l2 − l1 − s〉, where 1 � s � l2 − 2l1 −
1 are Schmidt vectors.
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