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Two entanglement conditions and their connection to negativity
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We examine two conditions that can be used to detect bipartite entanglement, and show that they can be used
to provide lower bounds on the negativity of states. We begin with two-qubit states, and then show how what was
done there can be extended to more general states. The resulting bounds are then studied by means of a number
of examples. We also show that if one has some knowledge of the Schmidt vectors of a state, better bounds can

be found.
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I. INTRODUCTION

Entanglement is a resource for many different tasks in
quantum information, among them, teleportation, entangle-
ment swapping, and some forms of quantum cryptography.
Quantifying the entanglement in a state can then be a useful in
determining how much of this resource a given procedure will
use. For bipartite entanglement, the von Neumann entropy of
the reduced density matrix of the state is the standard measure
of entanglement. It can, however, sometimes be difficult to
calculate, in particular for mixed states of large dimension.
An alternative, which can be useful for bipartite states whose
partial transpose is not positive, is the negativity [1-3]. It was
first defined in Ref. [1], used to study the volume of separable
states in Ref. [2], and a number of its properties analyzed in
Ref. [3]. For large systems finding the negativity can also be
laborious, and in some cases, all one is interested in is a guar-
antee that at least a certain amount of entanglement is present.
This can often be accomplished with simple conditions [4-7],
for example, by making a small number of measurements or
using entanglement witnesses. Here, we want to see if we
can use some other conditions that show the existence of
entanglement to place bounds on how entangled a state is. It
was shown that if we have a state in H = H, ® H,, that the
state is entangled if

{A'B)|> > (ATAB'B) or [(AB)|* > (ATA)(B'B), (1)
where A and B are arbitrary non-Hermitian operators, and A
acts in H, and B acts in H,, [8—12]. If, for a particular state,
neither of these conditions is satisfied, then we can say nothing
about the entanglement of that state. We should also note that
these conditions will detect entanglement in a state only if the
partial transpose of the state is not positive [10]. We would
like to see if we can relate the extent to which one of these
inequalities is satisfied, i.e., the difference between the left-
and right-hand sides of the inequality, to a measure of the
entanglement of a state. Since these conditions only detect
entanglement in states whose partial transpose is not positive,
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the natural measure to study is the negativity. The negativity
of a state is defined as follows. Let p be a state on H, ® H,,

and let p” be the partial transpose of p with respect to system
b, ie.,
Py = a(ml (il p™n)alv)e = alml p(vlpln)alie)s
— v 2)
The negativity of p is defined to be
Ny = 12 =1 = ©

where the above norm is the trace norm. The idea behind this
measure is that if the partial transpose of a state is not positive,
it is entangled. If the partial transpose of a state is positive,
then ||p™|; = Tr(p™) = 1, and the negativity is zero. On the
other hand, suppose

P =" 2PN+ Y AT e @
J

J

where k;+) > 0 and )»5._) < 0. Now, because the trace of the
transpose of an operator is the same as the trace of the opera-

tor, we have that
ST = ®
J J

but
Io% 1 =D A7+ Y 7 > L ©
j J

Thus, negativity measures how many and how big are the
negative eigenvalues in the partial transpose. Negativity is
convex and monotonic under probabilistic local operations
and classical communication (LOCC)[3]. The quantities in
Eq. (1) can be measured, since any non-Hermitian operator
A can be expressed in terms of its real and imaginary parts,
(A+A")/2 and i(A — A")/2, which are Hermitian. If these
operators are simple, for example, rank one projections, they
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should not be too hard to measure. The information gained
from such measurements, while no substitute for full state
tomography, can provide a floor to the negativity of a state.
Determining the actual negativity does require state tomogra-
phy, and requires far more measurements that the procedures
outlined here would entail.

II. TWO QUBITS

We will first look at a very simple example, and then see
what can be done in a more general setting. Let us start with
the first condition. We will consider two qubits, which we
shall denote by @ and b, and set A = o) and B = ab(f) , where

o) =10),(1] and 5, = |0),(1]|. We then have that
(A'B) = (0{Pa, ) = por10, (7)

where we made use of the fact that o{" = [1),(0]. We also
have that

(A"AB'B) = (0Po oy oy ) = pn. (®)

Expressing all quantities in terms of matrix elements of the
partially transposed density matrix, we have that p(?g.” =

Po1:10 and plef;l | = P11;11, SO our first entanglement condition
becomes
s 2 T;
€ = 1pog.111” = Pitn > 0. €))
Now the matrix
Ty Ty
Poo:00  Poo:11
M= 7 T, (10)
P00 Piin

is a submatrix of the 4 x 4 matrix p’?. Now, let ¥ be a nor-
malized four-component vector in the two-qubit space whose
Do1 and ¥;p components are zero, that is, only Dy and ;; are
nonzero. Then

o Ty %~ oo

®]p"|v) :(USOUTI)M<T}H>. (11)
For a general normalized four-component vector v, the small-
est (v|p"|v) can be is the lowest negative eigenvalue of p’,

which we shall denote by Ani,. The above equation implies
that

~k o~k T)
hanin < (V50 v@M(Tjjf), (12)

and this further implies that the lowest eigenvalue of M, which
is the smallest value the right-hand side can attain, must be
greater than Ap;,. Next, we want to see what the condition in
Eq. (9) places on the eigenvalues of M. We have that

T, T 2
detM = pogooPitar = 1Poginl” < =, (13)

where we have used the fact that 0 < ,oOTg;OO, ,ole; 11 < 1. The
fact that det M < 0 means that one of the eigenvalues is pos-
itive and the other is negative. Let the positive eigenvalue be
&, and the negative one be £_. We then have that

§++6 <1, &8 < -« (14)

If we now plot the regions allowed by these two conditions,
keeping in mind that £, > 0 and &_ < 0, we see that the
largest possible value of £_ is given by the point where the

line £ =1 — &, and the branch of £, &_ < —k with &, > 0
and £_ < 0 intersect. This happens when

—K
-g= g (15)
This gives
Er=31+0+40)"7, & =1-&
= 11— (1 +40)"%. (16)
We, therefore, have that
Amin < 3[1 = (1 +4)'2]. (17)

Combining this result with

4
1 1
N(p) = 5 D (1A= 2) = 5 (Aminl = Amin) = —Amin
j=1
(18)

we find that
N(p) = 3[(1 +4)!% —1]. (19)

This is the desired result that gives us a lower bound on the
negativity in terms of «, a quantity that is directly related to
out entanglement condition.

It is possible to improve this result if we have more in-
formation. In particular, if we know pgago + 0151, = poooo +
p11:11, which we shall denote by a, we can replace the condi-
tion &, + & < 1by &, + &_ < a. This leads to the condition

£ = 1a— (@ +46)"* (20)

and
N(p) > i@+ 4K)'* — al. (21)

Let us call the right-hand side g(a) and look at it as a function
of a for 0 < a < 1. We see that

dg 1 a
da 2| (a®+ 4k)1/2
which means that g(a) is a decreasing function of a. There-

fore, setting @ = poo.00 + p11:11 instead of @ = 1 will produce
a better inequality.

- 1] <0, 22)

III. EXTENDING THE TWO-QUBIT RESULT

We can extend the result in Eq. (19) to systems beyond
qubits. Suppose we have a bipartite state on H, ® H;, where
H, and H;, can be of any finite dimension. Let A = |10) (11|
and B = [§)p(&1], where (nolni) =0, and (§lé;) = 0. If
we make the identifications |j), <> [nj)a and |j)p < &)
for j =0, 1, then the arguments in the qubit section go
through. Another way of doing this is to note that for any
projection operator I, on H, ® H,, we have [|p’|; >
1T 1]l and we can choose I, = Pl(a) ® P(b), where
P = no)a{nol + In)a(m| and P\ = [&)s(&0] + [&1)s(81 .
The matrix for IT,,p™ 11, is 4 x 4 and equivalent to two
qubits.

For the higher-dimensional systems, we can improve our
results. Suppose we have two sets of operators, A; and By,
which are as before, and Ay = |92).(n3] and B = |&), (&3],
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where {|n;)|j=0,1,2,3} and {|§;)|j=0,1,2,3} are or-
thonormal sets. Let us further suppose that for the state p,

[(ATB;)* — (ATA;BB;) = k; > 0, (23)
for j = 1,2. We can now make use of the following result,
which will be proved shortly. If l'[fllb) and I'Iﬁ) are two orthog-
onal projections, i.e., Hfllb)l'lﬁf = 0, then

™1 = [0 e nQ)||, + MG e™ 0], @4

In our case we choose Hfl? =Pl(“) ®P1(b) as before and
My, = P @ P, where P, = [m)a(na| + [n3)a(msl, and
Pz(b) = |&E)p(&2| + |&3)5(E3]. We can then apply Eq. (19) twice
to get

2

1
N(p) > 5;[(1 +4icp)'F = 11. (25)

We now need to prove Eq. (24). We start by noting that any
Hermitian operator can be expressed as the difference of two
positive operators, in particular, p™® =S —T, where S and
T are positive. This implies that || p”#||; = Tr(S + T). Now
define

T 1) Ty (D) (2) Tzy7(2)
’OPB = Habp Bnah + Habp Bnab
—_ M (1) (1) (1) (2) (2) 2) 2)
- Hab Snab - Hab Tnab + 1_Iab Snab - Hab Tnab .
(26)

Now this equation expresses ,opTB as the difference of two
positive operators, so

lop]l, = Tr (M1, STy,
FGT 4 ngsng + nTn)
= |0y e 0y, + |ng e g, @
But we also have that
Tr(S+T) = llp™Is

> Tr[()(S + 7)1

+n2¢+7nd, (28)

so that [p" 1 > Il o2l

IV. A SECOND APPROACH

Using different methods it is possible to derive a different
negativity bound from the first inequality. We define « as
before and wish to find a lower bound on the negativity in
terms of it. We shall assume that the operators A and B are
bounded. Note that this means that the case in which they they
are mode annihilation operators is not covered here, because
annihilation operators are unbounded. We begin by noting that

Tr(pAB') = Tr[p"*AB")*] = Tr(p™ABY),
Tr(pATAB'B) = Tr[p™ATA(B'B)*]. (29)
Now o’ can be expressed as the difference of two positive

operators, p4 and p_,
T

PP =py—p-. (30)

Letting pu4 = Tr(p+), we have that uy —u_ =1 and
Np)=Wus+pu-—1/2=p_.

Denote the eigenvalues and eigenstates of p, as A" and
|1}, respectively. We then have that

ITr(p4 AB*)| = | Y AP (W PIAB* [y P)

n

< Z )L,(1+)[<¢,5+)|ATA(B*)TB*|1/f,(,+)>]

172

n

172

1/2
x (Z AL“(@&*HA*A(B*)WWU)

< Vi Telp ATAB B2, 3D

where we have used the fact that (B*)"B* = (BTB)*.
Now define z+ = Tr(p+AB*) and Vi = Tr[p-ATA(BTB)*].
Note that
2+ —z- = (AB"), V. —V_=(ATAB'B).  (32)

In addition, from above we have that |z, | < (uV4 )2, and,
similarly, |z_| < (,uV_)l/ 2. Therefore, we have that,

Kk = lz4 —z-|* — (ATAB'B) < (24| + |z_|)* — (A"AB"B),

(33)
and this implies that
k + (ATAB'B) < [(u Vi)' + (u_V)'/?)
<A+ p ) (Vo + (ATAB'B))'?
+(u_Vo)'PP (34)

We now make use of the assumption that the operators A and
B are bounded. We have that

IV_| < lp-ATAB'B)Y* Iy < u_llIATAB'B)*||, 35)

where the norm with the subscript 1 is the trace norm and the
norm without a subscript is the operator norm. Substituting
this into the above inequality we find that

[k + (ATAB'B)]'/?
< (14 pu)"*[u_|ATAB'BY*|| + (ATAB'B)]'/?
+ n_ATAB'B)* |2 (36)

This inequality should give us a lower bound for p_ in terms
of k, and because N(p) = u_ it will give us a lower bound
on the negativity. Note that for « = 0, we have that u_ =0
satisfies the inequality, so that presumably, if ¥ > 0, we will
get a nonzero lower bound for w_. In addition, note that
|ATA(B'B)*|| = |ATA|| ||(B"B)*||. Now (B'B)* is obtained by
taking the matrix for B'B in the computational basis (operator
transpose and complex conjugation are basis-dependent oper-
ations) and taking its complex conjugate. This implies that the
eigenvalues of (B'B)* are just the complex conjugates of the
eigenvalues of B'B, so that ||(B'B)*|| = |B'B||.
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We can obtain a slightly simpler version of this inequality
by making use of the inequality

<1+z>‘/2=1+/ dst 1 37)

o 2(1+s)12 S +2
to simplify the right-hand side of the inequality. Setting x =
(ATAB'B) and y = |ATA(BTB)*||, we have that

(kK +x)'* < (1 + %)\/}(1 + yg—x’) +u_y.  (38)

This can be easily solved for p_.

V. SECOND INEQUALITY FOR QUBITS

Let us look at the second 1nequa11ty in Eq. (1) for two
qubits, and choose A = 0" and B = 6. In terms of density
matrix elements, we have

<AB> = Poo;11 = P()T'f-lo,

Zp()j(]j Zp()j()]

(ATA) =

B) = Z piosjo = Z P jo- (39)
j=0 j=0

Substituting these expressions into the second inequality we
find for the difference of the two sides

K= |<AB)|2 —(ATA)/(B'B)

|i001 10 (/’gg;oo + ng;m)(ﬂ%;oo + plTS;lo)' (40)

Now pOTlf;m, ,013;10, :Oon;w’ and its complex conjugate form
a 2 x 2 matrix, which we shall denote by M. By the same
argument as before, the absolute value of the lowest negative
eigenvalue of this 2 x 2 matrix will be a lower bound for the
negativity. The difference from the previous case is that the
above expression involves one additional quantity besides the
elements of the 2 x 2 matrix, png;oo’ which we shall denote,
for convenience, by 1 > o > 0.

Let the eigenvalues of M be &, and &;. Since det(M) = &,&;
and pqlo; + Pito = &1 + &2, we find

—k = (&1 + )&+ o). (4D

‘We also have the condition, since Tr(,oTB) =1,thato + & +
& < 1. In order to satisfy the first condition, we must have
either £, +a <0 or & 4+ a < 0. Let us assume & + o < 0.
The next step is to find where the line o + & + & = 1 inter-
sects the hyperbola in Eq. (41). Solving both equations for &
and then putting them equal to each other we find

l—a—& = &_J’:a —a, 42)
with the negative solution
=3{1—a—[(1+a)+4]"%, 43)
which implies that
£ <3l —a—[(1+a) + 4]} (44)

This implies that the negativity must satisfy
N(p) = (I +a) + 4> —1+a).  @45)

Note that even when ¢ = 0, the bound for the negativity is not
zero. That means that the condition that &, < 0 is a stronger
condition for detecting entanglement than the condition x >
0, where « is given by Eq. (40).

VI. EXAMPLES

For a bipartite state expressed in terms of its Schmidt basis

N
W) =" Vaulujalvi)s, (46)
j=1

the negativity is [3]

1
N(W)ap (WD) = 3

N
Va1 (47)
j=1

We can use this to study several simple examples and compare
the actual negativity of a state to the lower bounds we have

obtained.
Consider the two-qubit state |W),, = +/A0|01)sp +
We then have

VA1[10)4 and let A =0, and B—U( ),
that (ATAB'B) = 0 and (ATB Aokt giving us kK = AgAjp.
Substituting this into Eq. (19) gives us

N(p) =

Now in this case we know that N(p) = +/AgA1, so let us first
verify the inequality. Substituting and rearranging we get

1 1 172
Vv AoAr + 3 > <Z +)»o)»1) , (49)

which can be seen to be true by squaring both sides. Now
0 < Aor; < 1/4, and when AgA; = 0, both the negativity and
the bound are 0, whereas when AgA; = 1/4, the negativity is
1/2 whereas the bound is (1/2)(+v/2 — 1) = 0.207.

Now let us look at Eq. (36) for the same state and for the
same choice of A and B. In this case, |[ATA| = |B'B| = 1.
The inequality becomes

VITYSIES

and N(p) = u—. We now have to try to solve this for p_. It
is easier to solve a weaker inequality, using (1 4+ pu_)"/? <
14+ pn_/2,

LA 4+ 4r0r)'? = 11. (48)

p-(l+pn )" +u_, (50)

VAorr < (-

or (2 /2) 4+ 2u_ — «/Agr1 = 0. For this to be true p_ must
be greater than the two roots of the corresponding quadratic
equation, which gives us

N(p) = p— = (4 +2y/rr)'* = 2. (52)

Again, when AgA; = 0, both the negativity and the bound are
0, and when AgA; = 1/4, the bound is \/_ —2=0.24.

(%4‘2), (51)
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K N
0.9r
0.25¢ E—
0.8t
0.201 0.7
— Negativit
015 06 g Y
0.10 0.5¢ Kk — bound
’ 0.4¢
0.05¢ 0.3¢
: : : : Ao : : : : : Ao
0.2 0.4 0.6 0.8 1.0 0.3 0.4 0.5 0.6 0.7
(a) (b)
K N
0.02¢ /\ 0.5f
‘ ‘ ‘ ‘ SN 04l
0.4 0.6 8 1.0 : — Negativity
-0.02¢ b
0.3 b J
_0oak Kk — boun
0.04 026
-0.06¢
0.1
-0.08
‘ ‘ ‘ ‘ : Ao
0.3 0.4 0.5 0.6 0.7

(c)

(d)

FIG. 1. (a), (b) « and negativity /bound plot for p = 1 (no noise). (c), (d) ¥ and negativity /bound plot for p = 2/3.

The previous example can be generalized to a system with
noise. With noise, the two-qubit system is in the mixed state

1_
P =plWhas (W] + 4")

1¥)ap = v/20101)ap + v/21110) s,

where 0 < p < 1 is the noise parameter. The negativity is
found by diagonalizing p’?,

1,

(53)

(I+p)
N(p) = pyf o+, (54)
while x with noise is
1—
K = pz)»o)xl — ( 2 p). (55)

These are plotted versus Ag in Fig. 1 for the cases p = 1 and
p = 2/3. Since our bound is only useful when « > 0, we see
that in the presence of noise the lower bound is only useful
for a limited range of A¢. In addition, its value is significantly
reduced.

We can also go back to the first example and use a different
set of operators A, B in the hope that they will produce a bet-
ter bound than our original choice of A} = o™, B; = a,ff),
which yielded «; = AgA;. (See Fig. 2.) The choice A, = | +
x)(—x| and B, = | — x)(+x|, where | £x) = (1/+/2)(|0) £
[1)), makes use of vectors that are superpositions of the
Schmidt basis vectors |0) and |1), and this gives us

K2 = 5 (1+2y/od)? = 11 = 2/3ghy),

(56)

and the new bound is

N(p) = (1 +4x2)"* — 11. (57)

Bounds from both sets are plotted in Fig. 3 and the behaviors
of k| and «, are displayed in Fig. 2. We see that the choice
of operators derived from the Schmidt basis is slightly better
than that derived from a superposition of these basis vectors.
The negativity is an entanglement monotone under LOCC,
and this implies that if we trace out part of the system and find
the negativity of the reduced system, it will be less than the
negativity of the original system [3]. Therefore, if we find a
lower bound on the negativity of the reduced system, it is also
a lower bound on the negativity of the original system. With
this in mind, let us now look at a four-qubit system, where the

K
0.2} - =
0.1r K1
. . ‘ . Ao K2
0.2 0.4 0.6 0.8 1.0
-0.1F
_0_2,

FIG. 2. ki, k; as a function of Ag. k, becomes negative for certain
values of Ay, which numerically are found to be 0 < Ay < 0.057 109
and 0.942 891 < Ay < 1. These values are excluded in the plot in
Fig. 3.
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N
0.5¢
0.4r — Negativity
03¢ K1 — bound
0.2F Ko — bound
0.1

e oe o M
0.2 0.4 0.6 0.8

FIG. 3. Negativity and « bounds as a function of Aq. They are
only plotted for the range in which the x« bounds are greater than
zero (see Fig. 2). The k; bound is better than the x, bound.

first two qubits will be one subsystem and the second two will
be the second subsystem, in the state

1
W) = > /il i) Ikk). (58)

J-k=0

We will consider two choices of operators. For the first, we
will choose A =10)(1| ® I and B = |1)(0] ® I. In doing so
we find that

K = [{ATB)|> — (ATAB'B) = (v/hoor1o + vAo1A11)*. (59)

For the second choice we will choose two sets of operators and
combine the results. We first choose the operators A;, B and
Ay, By, where A; = |00)(10], B; = |10)(00]|, which yields «;
and then choose A, = |01)(11]|, By = |01)(11], which yields
k2. We have that

K1 = AgoAlo,
Ky = A.o])x]]. (60)

We can then combine x| and «; into a new bound using
Eq. (25).
The negativity of the state |W) is

N(p) = 3V + VAot + VAo +Van)? — 1. (61)

If we fix A9 = Ago and XAo; = Aq1, and we use the normaliza-
tion condition of |W), which is 21g9 4+ 2A;; = 1, we are able
to compare the negativity with the «; bound and the «, bound
by plotting everything as a function of Ay only. In this case,
we have

K = e K1 = )\(2)0, Ky = (% — )»()0)2, (62)
N(p) = 5(1 + 8/roorn), (63)

and the plot is shown in Fig. 4. We note that the bound
obtained by combining k; and «, is lower than the « bound,
showing that in this case the first choice of the operators A and
B is the better one.

VII. PURE STATES AND THE SCHMIDT BASIS

Suppose we have a pure bipartite state |\V),,, and we know
some of the Schmidt basis vectors (an example of this is

N
1.5F
—— Negativity
1.0F
Kk — bound
0.5 (K1 4+ K2) — bound
01 02 03 o4 05

FIG. 4. Negativity and « bounds as a function of Agy. The «
bound is still better than the «; + «, bound.

discussed in the Appendix). In particular,
N
W)ap = Y /Ajluj)alvde + [9),). (64)
j=1

where {|u;),} and {|v;),} are subsets of the Schmidt basis, and
(alujl p(v;DIW) =0 for j=1,2,...,N. We would like to
choose A and B so that (ATAB'B) = 0. One way to do this is
to choose K between 1 and N and define

K N
oy =Y lup), @ =Y luy),
j=1

J=K+1
K N

1BY=) _lvj), 1BY= D> Iv;). (65)
j=1 j=K+1

Then set A = |a)(@&| and B = |B)(B]. This givesA*A = |&){a|
and BB = |8)(B]|. With this choice we have

(ATAB'B) = 0,

N
W= Vi

J=K+1

)

Note that if the above two equations hold, then
N
> VA =2/ IATB). (67)
j=1

This gives for the negativity that
N(W)a(¥]) = 2A[ATB)| — D). (68)

For this to be useful, we would need |(ATB)| > 1/4. Also note
that we can choose K to maximize |(ATB)].

As a simple example we can consider the case that [/ ,) =
Oand A; =1/N for j =1,2,...,N, that is a maximally en-
tangled state. Assuming that N is even and K = N/2, we find
that the above inequality yields N(|W).,(\WV]) > %(N — 1),
which is, in fact, the negativity of the state.

VIII. CONCLUSION

We have shown that two conditions that can be used to de-
tect entanglement in a state can also be used to provide a lower
bound on the negativity of the state. The conditions them-
selves are rather simple and can provide quick information
about the negativity, whereas calculating the negativity itself
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involves diagonalizing the partial transpose of the density
matrix. In order to use the entanglement conditions, one needs
to make a choice of operators, and this choice determines the
negativity bounds one will obtain. The effects of this choice
were studied through a number of examples.
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APPENDIX

We want to provide an example of a situation in which
one can know some of the Schmidt basis vectors of a model
without having to solve the entire problem. Consider a spin
of size j coupled to a single-mode field by the Hamiltonian
(n=1)

H=wS;+wa'a+gSMPa+S57d). (A1)

The spin Hilbert space has the basis |m), where —j < m <
j.» and S3|m) = m|m). The operators S are the standard
spin raising and lowering operators. This Hamiltonian is used
in quantum optics to describe the Dicke model in which a
collection of N two-level atoms (j = N/2) interacts with a
single-mode field. The number of excited atoms in the state
|m) is m + j. This system has a conservation law, and the
operator S3 + a'a commutes with the Hamiltonian.

If we start in a state | — j 4 [y)|0), where |0) is the vacuum
state of the field mode, the state at any later time can be
expressed as

Iy
W)=Y dp|—j+ 1o —1). (A2)
I'=0

Note that this state is automatically expressed in its Schmidt
basis as a result of the conservation law, so in this case we
know all of the Schmidt vectors. If we start in the superposi-
tion (co| — j+ 1) +c1l — j + 1))|0), where I, > 2(1; + 1),
then things are more complicated, but nonetheless we can
identify some of the states in the Schmidt basis. At a later
time this state has the form

I
W) =co| Y dyl—j+IpIih—17)
1/=0

I3
to| Y fl—i+Blb-5) ] (A3
1, =0

In order to find the Schmidt vectors, we find the reduced
density matrices from |W) (|, one for the spin and one for the
field, and find their eigenvectors. From this, we find that the
vectors | — j+ I +s)|lp — I} —s),where | < s < —2l —
1 are Schmidt vectors.
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