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A new source of information is proposed for the
perception of three-dimensional (3D) shape from
shading that identifies surface concavities from the
curvature of the luminance field. Two experiments
measured the abilities of human observers to identify
concavities on smoothly curved shaded surfaces
depicted with several different patterns of illumination
and several different material properties. Observers
were required to identify any apparent concavities along
designated cross sections of the depicted objects and to
mark each concavity with an adjustable dot. To analyze
the results, we computed both the surface curvature and
the luminance curvature along each image cross section.
The results revealed that most responses were in
concave regions of the luminance profiles, although they
were often shifted in phase relative to the curvature of
the depicted surfaces. This pattern of performance was
surprisingly robust over large changes in the pattern of
illumination or surface material properties. Our analysis
predicts that observers should make false alarm
responses in regions where a luminance concavity does
not correspond to a surface concavity, and our empirical
results confirm that prediction.

Qualitative perception of
three-dimensional shape from
patterns of luminance curvature

Human observers have a remarkable ability to
perceive the three-dimensional (3D) shapes of objects
from patterns of image shading (i.e., chiaroscuro), and
manipulations of these patterns have been used to
create the appearance of 3D shape in pictorial art for
over two millennia. Figure 1 shows a pebble mosaic
that was discovered by archeologists in the northern

Greek city of Pella, which was the capital of Macedonia
during the reign of Alexander the Great in the fourth
century BCE. Note how the systematic variations in
shading provide a sense of volume to the depicted
surfaces. This is particularly clear in the depiction of
the cloth capes.

Although observers’ perceptions of 3D shape
from shading have been investigated for almost five
decades, we know surprisingly little about the relevant
information that makes this phenomenon possible. The
first computational models for determining shape from
shading were developed in the 1970s by Bertholdt Horn
and his colleagues at MIT, and this quickly became a
cottage industry within the field of computer vision
(e.g., see Horn, 1975; Ikeuchi & Horn, 1981; Pentland,
1984; Lee & Rosenfeld, 1985). These models were
designed to computationally invert the physical process
by which light reflects from an object to determine
the local orientation of each visible surface region.
The problem with this approach is that it requires
numerous assumptions that are seldom if ever satisfied
in the natural environment. For example, most models
assume that surfaces scatter light uniformly in all
directions with no specular highlights and that they
are illuminated from a single direction with no cast
shadows or interreflections from other surfaces. It was
later shown by Belhumeur, Kriegman, and Yuille (1999)
that shading information under these conditions is
inherently ambiguous, such that any given pattern of
shading is consistent with an infinite family of possible
interpretations that are all related by affine shearing or
stretching transformations in depth.

Numerous psychophysical experiments have
measured observers’ perceptions of 3D shape
from shading. Many of these have investigated
the stability of perceived shape over changes
in the pattern of illumination (e.g., Caniard &
Fleming, 2007; Christou & Koenderink, 1997;
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Figure 1. A pebble mosaic of a stag hunt from 300 BCE by
Gnosis. This is one of the earliest known examples of the use of
shading (i.e., chiaroscuro) for the depiction of 3D shape in
pictorial art.

Curran & Johnston, 1996; Egan & Todd, 2015;
Koenderink et al., 1996a, 1996b; Nefs et al., 2005),
and the results have confirmed that observers’
shape judgments are often distorted by an affine
transformation in depth relative to the ground truth.
For example, if the primary source of illumination is to
the right of an object, the surface regions on the right
will appear slightly closer in depth, whereas those on
the left will appear slightly farther away. The opposite
effect will occur if the object is illuminated from the left.
Note that this is perfectly consistent with the bas-relief
ambiguity described by Belhumeur, Kriegman, and
Yuille (1999).

It is important to recognize that these affine
distortions have no effect at all on the overall pattern
of surface concavities and convexities. This suggests
that a good way of achieving shape constancy for
ambiguous stimuli might be to base the appearance of
3D shape on the qualitative aspects of surface curvature
that remain relatively stable over changes in viewing
conditions (see also Koenderink & van Doorn, 1980;
Kunsberg & Zucker, 2018, 2021), rather than a map
of local surface depths or orientations, which is much
less stable. One justification for this approach is that
observers’ verbal descriptions of 3D surfaces typically
involve the identification of topographic features, such
as bumps, dimples, ridges, valleys, and saddles, and how
those features are arranged with respect to one another.

Figure 2. The rim of a smoothly curved object. The regions
outlined by dashed lines in the interior are labeled as elliptic
(E), hyperbolic (H), and parabolic (P) based on the curvature
along the contour.

Note that all of these features are defined by the pattern
of surface concavities and convexities.

One source of information about qualitative 3D
shape is provided by an object’s smooth occlusion
contour, which is also referred to as the rim
(Koenderink, 1984; Koenderink & van Doorn, 1982).
The surface curvature perpendicular to the rim (on
the attached side) is always convex. Thus, if a contour
bends inward toward the object, then an attached
surface region has a positive Gaussian curvature like a
sphere (i.e., it is elliptic). If the contour bends outward
away from the object, then an attached surface region
has a negative Gaussian curvature like a saddle (i.e.,
it is hyperbolic), and if it is straight, then an attached
surface region has zero Gaussian curvature like a
cylinder (i.e., it is parabolic). Koenderink and van
Doorn (1982) also showed that when the rim ends
abruptly in an image, that can only occur in a hyperbolic
region. Figure 2 shows the rim of a smoothly curved
object presented in isolation. The red dashed curves
in this figure show the signs of Gaussian curvature in
adjacent regions along the contour. Note that the inner
boundaries of these regions cannot be determined
based solely on the rim. That requires an analysis of the
image shading.

This article will consider a second source of
qualitative information about surface curvature that
relies on the pattern of shading but can also be used
in conjunction with smooth occlusion contours. The
upper left panel of Figure 3 shows a uniformly convex
surface that is illuminated from the right. The two

Downloaded from arvojournals.org on 12/10/2023



Journal of Vision (2023) 23(5):10, 1–16 Todd, Yu, & Phillips 3

Figure 3. Four surfaces with Lambertian shading. The curves to the right of each object show the depth and luminance profiles of a
horizontal cross section through its center. For the curves in the top row, the depth and luminance profiles have the same number of
concavities. For the ones in bottom row, the luminance profiles have a greater number of concavities than the depth profile.

curves to the right of the image show the depth and
luminance profiles along a horizontal cross section
through the center of the object. Note that they are
both uniformly convex, but they are not aligned with
one another. The peak of the depth profile is at the
center of the object, whereas the peak of the luminance
curve is shifted toward the direction of illumination.
With generic patterns of illumination, a uniformly
convex luminance pattern can only occur for uniformly
convex surfaces. The fact that the occlusion contour is
also uniformly convex provides converging information
to support that interpretation.

The upper right panel of Figure 3 shows an hourglass
shape illuminated from the right to demonstrate what
happens when a surface contains both convex and
concave regions. The two curves to the right of the
image show the depth and luminance profiles along
a horizontal cross section through the center. Note
that the two curves have similar shapes but that the
phase of the luminance profile is shifted toward the
direction of illumination. Along any cross section
through a surface, the regions immediately adjacent
to a smooth occlusion contour will always be convex,
and each concavity will always be bounded on both
sides by a convexity. If the depth profile along a
surface cross section contains a concavity, then the
luminance profile will contain a concavity as well
(unless the illumination is specifically tailored to
eliminate that).

These observations suggest that the presence of
luminance concavities in an image could provide useful
information about the presence of surface concavities.
Consider the pebble mosaic shown in Figure 1, where
all of the depicted concave regions are colored as dark
luminance concavities, and all of the depicted convex
regions are colored as light luminance convexities.
Although this is a surprisingly effective artistic device,
the shading observed in the natural environment is
much more complex.

Exploiting information from luminance curvature
in more natural settings poses a number of difficulties.
For example, in order to localize surface concavities,
it is necessary to compensate for possible phase shifts
between the depth and luminance profiles along any
surface cross section. Todd and Reichel (1989) argued
that this could be achieved by comparing the luminance
at points on the occlusion boundary that are at opposite
ends of a surface cross section. Note that the luminance
profile in the upper right panel of Figure 3 is much
brighter on the right than on the left, which indicates
that the illumination is heavily skewed to the right.
Thus, the deepest part of the depth profile should be
located on the left side wall of the luminance concavity
that faces toward the direction of illumination.

Another problem that needs to be addressed
for identifying surface concavities from luminance
curvature is that luminance concavities can arise for a
variety of reasons, and the number of concavities along
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a luminance profile is generally greater than the number
of concavities along its corresponding depth profile.
A good example of this is shown in the lower right
panel of Figure 3. The depicted object is the same as
the one in the upper right panel, but the illumination
is from the front rather than a peripheral direction.
When a surface concavity faces directly toward the
light source, the frequency of its luminance variations
is doubled, producing two luminance concavities, and
the deepest part of the surface concavity corresponds
to a luminance maximum (see Langer & Bülthoff,
2000; Pentland, 1989; Todd, Egan, & Kallie, 2015). In
this particular case, the prominent smooth occlusion
contour makes it obvious that the central region of the
surface is concave, but there are other situations where
the number of apparent concavities is perceptually
ambiguous for this type of stimulus.

The lower left panel of Figure 3 shows the same
object as the upper left panel, but it is illuminated from
two peripheral directions on the left and right. This
creates a luminance valley that runs vertically from top
to bottom, and it appears to us as a physical valley on
the depicted surface. Note that the occlusion contour at
the top and bottom indicates that that these regions are
convex, but that seems to be overridden in this case by
the pattern of luminance curvature. This observation
suggests that spurious luminance concavities can create
illusory perceptions of surface concavities.

Another important factor that can produce spurious
luminance concavities is the pattern of surface
curvature. Thus far, we have described the cross section
through a surface as if it were a planar space curve
with just one component of curvature. However, we
can also think of a surface cross section as an elastic
ribbon whose local orientations can vary in multiple
directions. Figure 4 shows shaded images of ribbon
surfaces with two types of curvature. The one on top
has been subjected to a bending transformation such
that all changes in the surface normal are confined
to the plane of the central axis. This is the curvature
that is depicted by the depth and luminance profiles in
Figure 3. The surface on the bottom has been subjected
to a twisting transformation such that all changes in the
surface normal are perpendicular to the plane of the
central axis. Note that both components of curvature
can influence the pattern of shading along a surface
cross section. In particular, the twist component can
produce spurious luminance concavities in regions
where the bending component has zero curvature or is
uniformly convex.

The research described in the present article was
designed to explore these phenomena in a more
systematic manner. Its goals were threefold: first, to
test the hypothesis that apparent surface concavities
along an image cross section are primarily located
within concave regions of the luminance profile;
second, to determine the ability of human observers

Figure 4. Ribbon surfaces with two types of curvature. The
central axes of both surfaces are planar space curves. The top
surface has undergone a bending transformation such that all
changes in the surface normal are confined to the plane of the
central axis. The bottom surface has undergone a twisting
transformation such that all changes in the surface normal are
perpendicular to the plane of the central axis. Note that both
types of curvature can influence the shading along the central
axis.

to compensate for phase shifts between corresponding
depth and luminance profiles; and third, to investigate
the extent to which spurious luminance concavities can
produce illusory perceptions of surface curvature.

Experiment 1

In this experiment, observers were required to
identify local concavities along designated horizontal
cross sections of smoothly curved surfaces. All of the
depicted materials were Lambertian, but they were
presented with four different patterns of illumination.

Methods

Apparatus
The experiment was performed using a Dell Precision

3620 PC with an NVIDIA Quadro P4000 graphics
card, running the Windows 10 operating system. The
stimulus images were presented on a 10-bit, 27-in. LCD
monitor with a spatial resolution of 2,560 × 1,440
pixels, a gamma of 2.2, and at a nominal luminance of
300 cd

m2 . The images had a spatial resolution of 1,200 ×
1,200 pixels, and they were presented within a 22.4-cm
× 22.4-cm region of the display screen. The displays
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Figure 5. The four different objects used in the present
experiments. All of them are illuminated primarily from the
right.

were viewed monocularly at a distance of 70 cm, and
head movements were restricted using a chinrest.

Stimuli
The stimuli were created using the Maxwell renderer,

which is able to produce photo-realistic images with a
space of possible materials that are all parameterized
by physically measurable properties of real surfaces.
Maxwell is an unbiased renderer in that it does not use
heuristics to speed up rendering times at the cost of
physical accuracy. All of the stimuli were rendered as
16-bit images at a high quality level, and their exposures
were adjusted so that none of the intensity values was
outside the range that is displayable on the 10-bit
monitor. It is also important to emphasize that all of the
renderings included the natural effects of cast shadows
and indirect reflections, which have often been excluded
in previous studies of the perception of 3D shape from
shading. In order to compute luminance curvature for
these stimuli, we needed to reduce the image noise as
much as possible. This was facilitated by smoothing the
images using Innobright’s Altus denoising algorithm.
These computations were performed using three
networked workstations with a total of 96 Xeon cores.

All of the depicted objects had a Lambertian
reflection function that scatters light equally in
all directions. We used four different objects
(see Figure 5) with four different horizontal cross
sections and four different patterns of illumination
in all possible combinations. Figure 6 shows one of

Figure 6. A single object with four different patterns of
illumination used in the present experiment. Moving clockwise
from the upper left, the object is illuminated primarily from the
left, primarily from the right, equally from the left and right,
and from the front.

the possible objects with all of the different patterns
of illumination. Three of the illumination conditions
used a standard photographic lighting setup with two
area lights at a 55° angle relative to the line of sight
on opposite sides of the depicted object. In the left
illumination condition, the light on the left was five
times more intense than the one on the right, and in
the right illumination condition, the intensities of
these lights were reversed. There was also an equal
illumination condition in which both lights had the
same intensity. Finally, a frontal illumination condition
was included, in which a single small area light was
positioned directly along the line of sight.

Procedure
There have been several previous studies in which

observers have been asked to judge apparent depth
changes along designated cross sections through an
image. In one technique developed by Koenderink et al.
(2001), a 3D surface is presented on a display screen and
a line through the image is marked by a row of equally
spaced dots (see also Egan et al., 2011; Liu & Todd,
2004; Thaler et al., 2007; Todd et al., 2004). Note that
the projection of these dots onto the depicted surface
defines a planar space curve. Adjacent to the image of
a surface, an identical row of dots is presented against
a blank background, and observers are asked to adjust
the second row of dots so that it matches the apparent
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Figure 7. The task employed in Experiment 1. An image was
presented with four small dots on each side to designate a
particular cross section. Observers marked each apparent
concavity along the cross section with one of the adjustable
dots.

depth relief of the designated surface cross section.
If these judgments are obtained for planar curves at
multiple positions and orientations through the surface,
it is possible to reconstruct a best-fitting smooth surface
from those judgments (Koenderink et al., 2001).

In another related procedure, observers are presented
with an image of a smooth surface, and a horizontal
cross section through the surface is designated by a
row of small dots on each side (see Figure 7). These
dots can be individually moved along the designated
cross section with a handheld mouse. Observers are
required to identify any local depth extrema (minima
or maxima) along the surface cross section and to
mark each location with one of the adjustable dots
(see Todd et al., 2004; Todd & Thaler, 2010). What is
especially interesting about these tasks is that observers
are able to isolate changes along a single planar space
curve while ignoring the changes in any other direction.
Thus, they can easily identify a local extremum in a
designated direction even though it is not an extremum
in an orthogonal direction.

A very similar procedure was employed in the present
experiments. Observers were asked to identify surface
concavities along designated surface cross sections
and to mark the deepest part of each concavity with
one of the adjustable dots. Note that the definition of
“deepest” in this context is defined by the orientation
of the concavity rather than its distance from the point
of observation (see Figure 8). Before participating in
the actual experiment, the observers were trained using
a pencil-and-paper task. We first explained the concept

Figure 8. Observers were instructed to mark the deepest point
within a concavity relative to a line that is tangent to both of its
boundaries. They practiced this task on simple line drawings like
the one shown here by marking an X at the appropriate points.
Note that the concavity on the right coincides with a depth
extremum, but that is not the case for the one on the left.

of a one-dimensional (1D) curvature and then showed
them a series of smooth curves like the one in Figure 8.
They were required to mark the deepest part of each
concavity as defined by the instructions by drawing an
X on it. Note in Figure 8 that the depicted curve has
two concavities. The deepest part of the one on the
right is located at a depth extremum, but that is not
the case for the one on the left. All of the observers
demonstrated that they understood the instructions by
marking the correct points on this preliminary task.
Observers were specifically instructed to judge the 1D
curvature along the designated cross sections and to
ignore any components of curvature in other directions.

Ten observers judged each of the 64 possible scan
lines five times each over four experimental sessions.
During any given experimental session, each object was
presented with just a single pattern of illumination, so
that judgments of a given object with one illumination
could not influence judgments of the same object with
a different illumination presented shortly thereafter. All
of the observers had normal (or corrected-to-normal)
visual acuity.

Results

The first step for analyzing the data was to compute
the surface and luminance curvatures along each
surface cross section that observers were asked to judge.
This was achieved by fitting a second-order patch
centered on each pixel in an image using a least squares
procedure. The patch was defined by the following
equation: Z = aX2 + bY2 + cXY + dX + eY, where X
and Y are the horizontal and vertical coordinates of
a given pixel and Z is the intensity of the luminance
surface at each pixel location. From the coefficients of
the best-fitting patch, we could analytically compute

Downloaded from arvojournals.org on 12/10/2023



Journal of Vision (2023) 23(5):10, 1–16 Todd, Yu, & Phillips 7

Figure 9. Some patterns of response for Experiment 1. Each panel contains a shaded image on the left with a designated surface cross
section that observers were asked to judge and a typical pattern of response for that cross section. The right side of each panel shows
the depth and luminance profiles along the designated surface cross section. Convex regions along each curve are colored black, and
concave regions are colored magenta. The dashed black lines show the mean locations where observers’ responses were clustered,
the cyan or yellow band around each line shows ± two standard deviations of the response distribution, and the number just above
each line shows the percentage of trials where that region was marked. Note in the left panel that there is a phase shift between the
depth and luminance profiles and that observers are able to compensate for that. The image on the right is perceptually ambiguous.
Some observers see a single concavity centered on the luminance maximum, whereas as others see two distinct concavities centered
on the luminance minima.

all aspects of curvature, including mean curvature,
Gaussian curvature, and the principal directions of
curvature. For these particular stimuli, a patch that
spanned 41 × 41 pixels yielded excellent results such
that the r2 values were almost always in excess of
0.95. For regions near the occlusion boundary of an
object, all background pixels were excluded from the
least squares analysis. The curvatures of the depicted
surfaces (i.e., the ground truth) were computed in
exactly the same way. In that case, the computations
were performed on a high-resolution 16-bit depth map
of the surface that was smoothed with a denoising
algorithm. Curvatures were computed by fitting a
second-order patch centered on each pixel to determine
the best-fitting parameters of that patch.

Let us now consider some specific examples of
the observers’ responses. Figure 9 is divided into two
panels, each of which contains a shaded image on the
left and a typical pattern of response along a single
horizontal cross section that observers were asked to
judge. The right side of each panel shows the depth
and luminance profiles along that cross section. Convex
regions along each curve are colored black, and concave
regions are colored magenta. The dashed black lines
connecting those curves show the mean locations of
observers’ responses as determined by an optimal
k-means cluster analysis; the bands around each line
show ± two standard deviations of the response
distribution; the number just above each line shows the
percentage of possible responses where that region was
marked.

The left panel of Figure 9 shows the generic case
where the depicted object is illuminated from a
peripheral direction. Note that the left side of the object

is much brighter than the right side, which indicates
that it is primarily illuminated from the left. The
luminance profile has the same spatial frequency as the
depth profile, but it is phase shifted to the left. When
observers were asked to mark the deepest point of the
surface concavity, they were able to take that phase
shift into account. That is to say, their responses were
clustered near an inflection point on the luminance
profile along a sidewall that faces toward the direction
of illumination, and that region was marked on 100%
of the possible trials. Many of these responses were
within the concave region of the luminance profile,
although others were located just across the boundary
within a convex region. Note that there are two other
small luminance concavities on the right side of the
cross section in this figure. One of these corresponds to
an extremely shallow concavity that is barely detectable
in the surface depth profile, but that region was still
marked on 24% of the possible trials.

The right panel of Figure 9 shows a different object
cross section with frontal illumination that produces
a more complex relationship between its depth and
luminance profiles. As was pointed out by Pentland
(1989), frontal illumination can cause the spatial
frequency of the luminance profile to be double that
of the depth profile, and the deepest part of a surface
concavity in that case often corresponds to a local
luminance maximum (Langer & Bülthoff, 2000; Todd
et al., 2015). Note that the depth profile has two peaks
and one trough, whereas the luminance profile has
three peaks and two troughs. Our results show that
this particular stimulus is perceptually ambiguous.
Some observers report that there is a single surface
concavity along the designated cross section (which is
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Figure 10. Examples of spurious luminance concavities from Experiment 1 that do not correspond to a surface concavity. Both of
these images depict surfaces that are illuminated equally from the left and right. This causes spurious luminance concavities to occur
in regions where the surface depth is a local minimum, and these regions are often mistakenly judged as surface concavities along the
designated surface cross section.

Figure 11. Examples of spurious luminance concavities from Experiment 1 that do not correspond to a surface concavity. The
designated cross sections in these images both contain a twist in the pattern of curvature that causes spurious luminance concavities
in regions where the vertical component of the surface normal is a local extremum in the horizontal direction. These regions are often
mistakenly judged as surface concavities along the designated surface cross section.

the physically correct response), and their settings are
typically clustered near a local luminance maximum.
This is represented in the figure by a yellow band.
Other observers report that there are two distinct
concavities along the cross section that appear to be
separated by a convex region, and those responses are
typically clustered near the luminance minima. These
are represented in the figure as cyan bands.

It is important to point out that the presence of
a luminance concavity does not guarantee that a
corresponding region of the depth profile will contain
a concavity. It is possible to have spurious luminance
concavities along a surface cross section in which the
depth profile is uniformly convex. If observers use
luminance concavities as a source of information about
surface concavities, they are likely to produce false
alarm responses in those regions. Figure 10 shows two
examples of spurious luminance concavities from the
equal illumination condition, which produced two to
three times more spurious concavities than any of the
other conditions. In both examples, there is a spurious

luminance concavity on the left that corresponds to a
peak of the surface depth profile. Observers did indeed
mark these regions as apparent surface concavities
on 72% and 28% of the trials, respectively. It is also
interesting to note in this figure that there is no phase
shift in the observers’ responses, which are clustered
around the lowest point on all of the luminance
concavities. This is likely because the two ends of the
designated cross section both have the same luminance,
thus indicating that there is no peripheral skew to the
direction of illumination.

Two other examples of spurious luminance
concavities are shown in Figure 11. These are both
caused by twist in the pattern of curvature along
the designated surface scan line. That is to say, the
vertical component of the surface normal changes
systematically with its horizontal position along the
designated cross section (see Figure 12). This causes
local reductions of luminance, which are perceptually
interpreted as a surface concavities. In the left panel
of Figure 11, the depicted cross section was uniformly
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Figure 12. The curves on the top show the luminance profiles
from Figure 11. The ones on the bottom show the vertical
component of the surface normal along those cross sections
relative to zero (i.e., the twist). Note how the spurious
luminance concavities are aligned with local extrema in the
vertical slant of the surface.

Figure 13. An image of a surface with frontal illumination.
Frequency doubling does not occur along the designated cross
section because of twist in the surface curvature. As the depth
of the surface increases near the center of the scan line, there
is also an increase in the vertical tilt of the surface that causes
the shading to become darker.

convex, but the twist of the surface normals produced
a spurious luminance concavity that was marked as a
physical concavity on 100% of the trials. In the right
panel, the spurious luminance concavity was marked on
90% of the trials.

Another interesting effect of twist is shown in
Figure 13. The left panel shows a surface with frontal
illumination like the right panel of Figure 9. Horizontal
cross sections through the center of the object exhibit
the frequency doubling that is characteristic of frontal
illumination, but the cross section that is marked near
the top does not. As the depth of the surface increases
near the center of the scan line, there is also an increase
in the vertical tilt of the surface that causes the shading
to become darker. This is the result of twist in the
pattern of surface curvature along the designated
surface cross section.

It is interesting to note that observers marked actual
surface concavities on 74% of the trials, but spurious

Figure 14. The overall results for Lambertian surfaces in
Experiment 1.

luminance concavities were marked on only 44% of the
trials. One possible reason for this is that the spurious
luminance concavities tended to have lower amplitudes
than those that are associated with concavities in
the depicted surface. There were large individual
differences in the number of apparent concavities that
were marked. Some observers consistently marked tiny
concavities that are barely visible, whereas others were
more conservative. There may also have been other
sources of information that competed with luminance
curvature to identify which luminance concavities were
likely to be spurious.

Let us now consider the overall pattern of observers’
responses. An analysis of the different possible image
cross sections revealed that 57% of the pixels were
in convex regions of the luminance profiles and 43%
were in concave regions. If observers had responded
randomly, then that same relative proportion of
concavities and convexities should also be reflected in
the pattern of responses, but that is not what occurred.
Out of 4,372 total responses, only 19% were in convex
regions of the luminance profiles and 81% were in
concave regions. The stacked bar chart in Figure 14
provides a breakdown of the hits and false alarms.
Note that most observers’ responses were in concave
regions of the luminance profile. Some of those
responses (about 20%) were false alarms in spurious
luminance concavities that did not correspond to a
surface concavity. Of the responses in convex regions
of the luminance profile, roughly two thirds were hits
that fell within regions where the lighting was aligned
with the central axis of a concavity so that its deepest
part is a luminance maximum (Langer & Bülthoff,
2000; Pentland, 1989; Todd, Egan, & Kallie, 2015) or
a convex region that is just across the boundary of
a concave region that faces toward the direction of
illumination.
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Experiment 2

Most of the early research on the perception of
shape from shading was restricted to surfaces with
Lambertian reflectance functions, but that has gradually
changed with the development of more sophisticated
computer rendering models (e.g., Fleming et al., 2004;
Khang et al., 2007; Marlow & Anderson, 2021; Mooney
& Anderson, 2014; Nefs et al., 2006; Pont & te Pas,
2006; Sawayama & Nishida, 2018; Todd et al., 2014;
Wijntjes et al., 2012). Experiment 2 was designed to
determine if human observers can reliably identify
surface concavities from the patterns of reflection
on non-Lambertian materials and whether those
judgments are consistent with the results obtained with
Lambertian materials.

Methods

The apparatus, procedure, and stimulus objects
were the same as in Experiment 1, and the stimuli
were judged by the same 10 observers. The most
important differences were that the simulated objects
were all illuminated primarily from the left, and they
all had non-Lambertian reflectance functions like the
ones depicted in Figure 15, including glossy paint,
black velvet, satin cloth, and wax. The glossy paint
material had an additive combination of diffuse and

Figure 15. A single object with four different reflectance
functions used in Experiment 2. Moving clockwise from the
upper left, the depicted materials are glossy paint, velvet cloth,
satin cloth, and wax.

specular components. The black velvet material was
purely specular with grazing angle highlights. The satin
cloth material was designed to produce anisotropic
reflections. These occur on surfaces with microgrooves
such as brushed metal or woven cloth that run in one
dominant direction. This causes light to reflect in a
specular way in the direction of the grooves and in a
more diffuse way in the direction perpendicular to the
grooves. Finally, we also included a wax material for
which light is scattered inside the volume of an object.

Results

Figure 16 shows two examples of the same object
with different materials. The one on the left depicts
a velvet material with grazing angle highlights. The
luminance profile along the designated cross section has
two prominent concavities. One of these corresponds to
an actual surface concavity, and that one was marked
on 100% of the possible trials, although a few of those
responses were just outside the concave region of
the depth profile. There is also a spurious luminance
concavity on the right that was marked on 80% of the
trials. These responses were all categorized as false
alarms.

The right panel of Figure 16 shows the same object as
on the left with a glossy paint material. The luminance
profile in that case has five distinct concavities. One of
these is much larger than the others and is phase shifted
to the left of an actual surface concavity. That region
was marked on 100% of the trials, and all of those were
hits that fell within the concave region of the depth
profile. The are also four spurious concavities that are
much smaller, but only one had a response rate over
50%. It is important to keep in mind that these displays
were illuminated by a bright light on the left and a
dimmer one on the right. The luminance concavity that
is second from the right is flanked by specular highlights
from both light sources. This creates the appearance
of a small vertical groove in the surface that observers
marked on 54% of the trials.

The stacked bar chart in Figure 17 provides a
summary of the overall pattern of performance. Note
that the results are remarkably similar to those from
Experiment 1, even though the surface reflectance
functions were quite different. Most observers’
responses were in concave regions of the luminance
profile, and almost all of the remaining responses
were either just outside the boundary of a concave
region or at a local luminance maximum where the
lighting direction was aligned with the central axis of a
surface concavity. These findings are quite surprising
because they provide strong evidence that the perceived
qualitative shapes of Lambertian and non-Lambertian
surfaces may be largely based on the same optical
information.

Downloaded from arvojournals.org on 12/10/2023



Journal of Vision (2023) 23(5):10, 1–16 Todd, Yu, & Phillips 11

Figure 16. Patterns of response for a single object with two different reflectance functions. The left image depicts black velvet cloth,
and the right one depicts glossy paint.

Figure 17. The overall results for non-Lambertian surfaces in
Experiment 2.

Note in Figures 14 and 17 that the false alarm
rate increased significantly in Experiment 2 relative
to Experiment 1. This is likely because the non-
Lambertian materials produced a greater number of
spurious luminance concavities. Figure 11 shows several
examples for velvet and glossy paint materials. As in
Experiment 1, the spurious luminance concavities were
marked on a smaller percentage of trials (47%) than
those that corresponded to an actual surface concavity
(74%). This again suggests that those judgments were
influenced by some other source of information in
addition to luminance curvature that may have helped
to identify which luminance concavities were likely to
be spurious.

Discussion

An obvious difficulty for the perception of 3D shape
from shading is that the pattern of luminance that
reflects off an object toward the point of observation

can change dramatically over variations in the pattern
of illumination or the surface reflectance function.
There is abundant research to demonstrate that
observers’ perceptions of 3D shape can be distorted by
these changes (see Anderson & Marlow, 2022, for a
review), but the precise nature of those distortions can
be difficult to pin down. One experiment by Egan and
Todd (2015) tried to do that using a local orientation
adjustment task on stimuli like the ones in the present
study with varying patterns of illumination. They
analyzed the data using an algorithm developed by
Koenderink, van Doorn, and Kappers (1992, 1995)
to calculate the best-fitting surface that is maximally
consistent with the overall pattern of an observer’s
judgments in each condition. These reconstructed
surfaces were then correlated with the ground truth.
The results revealed that about 60% of the error was
due to a simple scaling in depth, in which observers
consistently underestimated the overall relief of the
objects. Another 28% of the error was due to shear
toward the direction of the light source. They also did
a test–retest correlation across different blocks, and
the residual variance in that case was just 2%. That
leaves another 10% of systematic error that cannot
be explained by an affine transformation between
observers’ perceptions and the ground truth (see
also Nefs et al., 2005). It is this qualitative nonaffine
structure that was the focus of the present investigation.

An important assumption of our research is that the
appearance of shape constancy must be based on the
qualitative properties of objects that are invariant over
affine transformations. These properties are more stable
over changing viewing conditions than traditional
methods of representing shapes such as local surface
depths or orientations, and the visual information by
which they are specified requires an analysis of the
second-order differential structure of the luminance
field. This approach is exemplified in one of the earliest
analyses of shape form shading by Koenderink and
van Doorn (1980). They studied the properties of
saddle points in the luminance field that are not local
maxima or minima but where the first spatial derivative
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is zero in all directions. Saddle points can also be
defined as regions where isointensity contours cross one
another. For Lambertian surfaces with homogeneous
illumination, saddle points in the luminance field will
always correspond to parabolic points on a surface
where one of the principal curvatures is zero. A similar
analysis has been developed more recently by Kunsberg
and Zucker (2018, 2021). They exploit saddle points
in the luminance field and local maxima of luminance
gradients to construct critical contours in an image that
define the boundaries of bumps and dimples.

Our examination of qualitative structure looked
at concavities and convexities of the luminance field
along individual surface cross sections. Observers were
asked to mark the deepest point on each perceived
concavity along a cross section with an adjustable
dot. One possible strategy for performing this task
is to adopt the “darker-is-deeper” heuristic proposed
by Langer and Zucker (1994). According to that
hypothesis, observers should always pick points that are
local luminance minima. This did occur on some trials,
especially in the equal illumination condition. However,
there were many other trials where observers marked
local luminance maxima, and most of those responses
were consistent the ground truth. The deepest part of a
concavity will be a local luminance maximum whenever
the concavity faces directly toward the primary source
of illumination (see Langer & Bülthoff, 2000; Todd,
Egan, & Kallie, 2015). When that occurred in the
present experiments, the results indicated that these
regions can be perceptually multistable. Observers
sometimes mark a local luminance maximum, which
is the correct response, but they can also mark the
two local luminance minima on each side, which
adds an additional concavity relative to the ground
truth. That is an example of a nonaffine perceptual
distortion.

For peripheral directions of illumination, the
luminance profile is phase shifted relative to the depth
profile, and the deepest part of a concavity will be
somewhere in between a local luminance minimum
and a local luminance maximum. The results indicate
that observers are able to compensate for these phase
shifts to help identify the correct locations of surface
concavities (see also Todd & Reichel, 1989). A likely
source of information to make that possible is the
relative luminance along smooth occlusion contours.
For example, if the right side of a surface cross section
is much brighter than the left, then the direction of
illumination is skewed to the right, and the deepest part
of a concavity is located to the left of the luminance
minimum. An exception to this occurs in the equal
illumination condition. Because that condition balances
the luminance on both sides of a surface cross section,
there is no reason to compensate for peripheral
illumination, and observers’ responses tend to follow
the darker-is-deeper rule (e.g., see Figure 10).

Our primary interest in conducting these experiments
was to discover how observers’ responses would
be affected by the presence of spurious luminance
concavities that do not correspond to a surface
concavity. These can occur when an object is
illuminated from opposite sides at the same time or
when there is twist in the curvature of the surface along
a designated cross section. If luminance concavities are
an important source of information about the presence
of surface concavities, then spurious luminance
concavities should produce false alarm responses in
our concavity detection task. This prediction was
clearly confirmed by the results. With Lambertian
surfaces in Experiment 1, 20% of the responses were
false alarms to spurious concavities, and that rate
increased to 32% for non-Lambertian surfaces in
Experiment 2. This provides compelling empirical
evidence that luminance concavities are a perceptually
useful source of information about the presence of
surface concavities.

There are other aspects of our data to suggest that
the effects of luminance curvature can be modulated
by other sources of information. For example, the
spurious luminance concavities were marked at a much
lower rate than those that corresponded to an actual
surface concavity. Some of that may be due to the
relative widths and magnitudes of those concavities,
but we suspect there are other factors involved. One
likely source of information for modulating luminance
curvature is an object’s smooth occlusion contour
(Egan & Todd, 2015; Marlow, Mooney, & Anderson,
2019; Mooney, Marlow, & Anderson, 2019). This
information is especially salient for regions that are
close to the contour, but its impact is likely to diminish
for interior regions that are farther away.

One possible criticism of this research is that the
judgments were limited to 1D cross sections of a surface
and cannot therefore provide useful information about
the overall shape of an object. However, this type of
criticism ignores the wealth of information that can
be obtained from many different measurements in
neighboring regions (e.g., see Koenderink et al., 2001)
For example, Figure 18 shows a series of concavity
judgments along numerous horizontal cross sections
of an object. The cyan curve that connects the judged
points reveals a systematic pattern of apparent negative
curvature that forms an s-shaped valley along the entire
vertical extent of the surface. Hoffman and Richards
(1984) have argued that contours connecting local
negative curvature extrema are ideal candidates for
segmenting smooth surfaces into parts. Hertzmann
(2020) has proposed a related hypothesis that the
contours used to depict smooth surfaces in line drawings
often correspond to valleys of negative curvature in the
luminance field. It will be interesting to see in future
research if that finding holds up over variations in
surface materials or the pattern of illumination.
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Figure 18. Concavity judgments from a series of horizontal cross
sections reveal an s-shaped valley along the entire vertical
extent of the depicted object.

An implicit assumption of our computational
analysis is that the convex regions of a luminance
profile have negative second spatial derivatives and that
concave regions have positive second spatial derivatives.
It follows from this assumption that the perceived sign
of relief should be reversed if the intensity gradients
within an image are inverted. Figure 19 shows a pair
of images to test that prediction. The one on the left
is a stimulus from Experiment 1, and the one on the
right is a negative version of that. Two corresponding
points in each image are marked by small dots. Note in
the left panel that the two dots appear to be in concave
regions of the surface and that the second derivative of
the luminance field in a horizontal direction is positive.

The dots in the right panel also appear to be in concave
surface regions, but the second derivatives of shading
in those regions are negative. Indeed, the reversal of
shading in this case seems to have a negligible influence
on the overall perceived shape of the object.

One possible explanation of this involves a simple
cue conflict. The smooth occlusion contours adjacent
to the two dots provide information that neighboring
surface regions are concave, and that overrides the
information provided by the luminance curvature.
However, that cannot be the whole story. Smooth
occlusion contours are only informative about surface
regions in their immediate local neighborhoods, but
negative images cause shading gradients to be reversed
over the entire surface. This suggests that some other
source of information may trigger a reinterpretation
of luminance curvature so that positive second
derivatives are associated with surface convexities, and
negative second derivatives are associated with surface
concavities.

A key to understanding how this might be possible
is that positive and negative images are generally easy
to distinguish from one another. When viewing a
real surface (or a positive image of one), the surface
curvature perpendicular to a smooth occlusion contour
is always convex in its immediate local neighborhood on
the attached side (Koenderink, 1984; Koenderink & van
Doorn, 1982). The luminance curvature perpendicular
to a smooth occlusion contour is most often convex as
well, but that is not guaranteed. To get a better sense
of the overall statistics, we examined the luminance
curvature at the ends of the 128 cross sections observers
were asked to judge, which provided a sample of
256 regions in the immediate vicinity of a smooth
occlusion contour. If we exclude the black velvet
conditions, over 97% of the adjacent regions had a
convex luminance curvature. Thus, if the distribution
of curvatures around a smooth occlusion contour is

Figure 19. A positive image of a smooth surface (left) and a negative image (right) produced by inverting the shading gradients from
the one on the left. Corresponding regions in these images are marked by small dots.
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Figure 20. Positive and negative images of a random noise surface. Corresponding regions in these images are marked by small dots.
Note that the apparent relief for the negative image on the right is reversed relative to the positive image on the left. The region
marked by the leftmost dot appears convex in the positive image and concave in the negative image. Conversely, the region marked
by the rightmost dot appears concave in the positive image and convex in the negative image.

overwhelmingly convex, that provides strong evidence
that the luminance pattern is a positive image of a
3D surface and that negative second derivatives of
luminance are associated with surface convexities. If
the distribution is overwhelmingly concave, then the
luminance pattern is likely to be a negative image
of a 3D surface, and negative second derivatives of
luminance are associated with surface concavities. The
black velvet conditions were outliers in this analysis
because 78% of the sampled regions had a concave
luminance curvature. However, those conditions could
easily be mistaken for negative images (e.g., examine the
black velvet surfaces in Figures 15 and 16).

Figure 20 is intended to show what happens when
surfaces are viewed without any smooth occlusion
contours at all. The left panel depicts a positive image
of a random noise surface illuminated from the right,
and two of its regions are marked by small dots. A
negative image of the same surface is shown in the right
panel with the same pair of corresponding dots. Note
that the apparent sign of surface relief is completely
reversed in that case. The region marked by the leftmost
dot appears convex in the positive image and concave
in the negative one. Conversely, the region marked by
the rightmost dot appears concave in the positive image
and convex in the negative one.

In the absence of smooth occlusion contours, it is
difficult to discern the direction of illumination or
to distinguish between positive and negative images.
Because much of the information about 3D shape
has been removed, observers can only rely on ad hoc
heuristics to distinguish concavities from convexities.
This could involve a bias to perceive surfaces such
that apparent depth increases with height in the visual
field (Langer & Bülthoff, 2001; Reichel & Todd, 1990)
or a bias to perceive surfaces as convex rather than

concave (Langer & Bülthoff, 2001; Liu & Todd, 2004).
For the example in Figure 14, observers seem to adopt
the “darker-is-deeper” heuristic of Langer and Zucker
(1994), even though that is likely to produce inaccurate
responses (see Langer & Bülthoff , 2000; Todd, Egan,
& Kallie, 2015). The key thing to note in all of these
examples is that the overall pattern of concavities and
convexities remains invariant. All that is affected is
whether surface concavities are defined visually by
positive or negative second derivatives of the luminance
field.

Conclusions

When human observers attempt to verbally describe
3D surfaces, they typically identify salient topographic
features, such as bumps, dimples, ridges, valleys, and
saddles, and how those features are arranged with
respect to one another. These qualitative descriptions
are defined by the pattern of surface concavities and
convexities, and the visual information on which
they are based involves the second-order differential
structure of the luminance field (Koenderink &
van Doorn, 1980; Kunsberg & Zucker, 2018, 2021).
The research described in the present experiments
investigated perceived qualitative shape by asking
observers to identify concavities along surface cross
sections. The results revealed that most responses were
in concave regions of the luminance profiles, although
they were often shifted in phase relative to the curvature
of the depicted surfaces. This pattern of performance
was surprisingly robust over large changes in the
pattern of illumination or surface material properties.
Our analysis predicts that observers should make false
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alarm responses in regions where a luminance concavity
does not correspond to a surface concavity, and our
empirical results confirmed that prediction. We also
showed how the interaction of luminance curvature
with smooth occlusion contours can account for the
perception of 3D shape in negative images for which all
luminance gradients are reversed.

Keywords: shape from shading, luminance curvature,
shape constancy
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