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Abstract Material scientists have made progress in controlling alloy performance
through microstructure quantification. However, attempts at numerically modeling
microstructures have failed due to the complex nature of the solidification process. In
this research, we present the AlloyGAN deep learning model to generate microstruc-
tures for castable aluminum alloys. This innovative model demonstrates its capacity
to simulate the evolution of aluminum alloy microstructures in response to variations
in composition and cooling rates. Specifically, it is successful to simulate various
effects on castable aluminum, including: (1) the influence of Si and other elements
on microstructures, (2) the relationship between cooling rate and Secondary Dendritic
Arm Spacing, and (3) the impact of P/Sr elements on microstructures. Our model
delivers results that match the accuracy and robustness of traditional computational
materials science methods, yet significantly reduces computation time.

Keywords Deep learning + Aluminum alloys + Microstructure + Generative
Adversarial Network

Introduction

The global metal market, crucial for industries like construction and aerospace,
hinges on alloys for their reliable properties. With a projected worth of $18.5 trillion
by 2030, alloy manufacturing is a key market driver [1]. Aluminum alloy casting
and novel alloy development are crucial yet expensive, with a high rate of product
rejections, which must be re-melted and re-cast due to various defects. Annually, the
industry sees tens of millions of tons of metal casting products fall into this cycle

B. Yin
Data Science Program, Worcester Polytechnic Institute, Worcester, MA, USA
e-mail: byin@wpi.edu

Y. Fan (X))
DeepAlloy, Portland, OR, USA
e-mail: yfan.deepalloy @gmail.com

© The Minerals, Metals & Materials Society 2024 804
The Minerals, Metals & Materials Society (ed.), TMS 2024 153rd Annual Meeting &

Exhibition Supplemental Proceedings, The Minerals, Metals & Materials Series,
https://doi.org/10.1007/978-3-031-50349-8_69



Simulating Castable Aluminum Alloy Microstructures with AlloyGAN ... 805

[2]. Thus, efficient and reliable simulation models for accelerating scientific alloy
discovery and reducing costs of manufacturing will bring immense economic and
environmental benefits.

Traditional numerical methods have struggled with the complex solidification
process in alloy formation, characterized by vast nonlinear chemical and phys-
ical interactions [3—7]. These models are intricate, computationally demanding, and
require specific knowledge of material science, limiting their accessibility to the
broader research community [8—13].

The problem thus is the urgent need for more efficient and accurate methods
to generate microstructure images of metal alloys, based on initial conditions like
chemical composition and manufacturing setting. Training from limited data, these
methods should accurately model complicated chemical reactions while ensuring
scientific validity and less computational complexity for practical application.

Deep learning techniques like VAEs, GANs, and Diffusions are being explored
for microstructural analysis of materials in an early stage [14—18]. Their applica-
tion remains limited, however, particularly in generating scientifically valid images
based on basic alloy compositions. The existing deep learning methods haven’t fully
addressed the complexities inherent in material science [19-22]. This void empha-
sizes the need for innovative solutions capable of dealing with the complex nonlinear
dynamics of the alloy microstructure formation and delivering robust generation
capabilities to accelerate scientific alloy discovery.

To bridge this gap, we propose AlloyGAN, a ground-breaking approach lever-
aging the power of deep learning to create scientifically valid alloy microstruc-
ture images from basic alloy compositions (see Fig. 1). By integrating materials
database, domain knowledge, and deep learning approach, AlloyGAN is thereby
successfully simulating the microstructure of alloys with complex compositions
and casting parameters. This innovative method seamlessly integrates materials
databases, domain knowledge, and deep learning techniques, thereby enabling the
accurate simulation of alloy microstructures with intricate compositions and casting
parameters. The AlloyGAN model comprises three key components: a reliable mate-
rials database, a robust neural network, and domain expertise in materials science. By
inputting alloy compositions and casting parameters, the model can produce corre-
sponding microstructures. These generated micrographs closely resemble real-world
microstructures, empowering materials engineers and scientists to assess material
performance effectively.

Alloy Microstructure Database

Datasets play a crucial role in the training of deep learning models. Our
dataset comprises 21,000 microstructure images, encompassing nine distinct alloys
subjected to various manufacturing conditions, as detailed in Table 1. Each row
within the table corresponds to a specific alloy type with unique chemical compo-
sitions. Furthermore, each alloy undergoes diverse cooling rates and modification
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Fig. 1 Workflow of the AlloyGAN model. The model consists of three integral components: a
materials database, a neural network, and materials knowledge. When alloy compositions and
other relevant parameters are provided as input, the model proceeds to generate corresponding
micrographs that closely mimic real-world microstructures
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Table 1 Summary of the alloys employed in training the AlloyGAN deep learning model. It encom-
passes micrographs of nine distinct alloys, each subjected to varying cooling rates and modification
conditions, all of which are integral to the training process

Alloy | Si Fe Cu Mn Mg Ni Cooling rate (K/s) | Modification
A356 |7 0.5 025 |035 |03 0 2.5, 10, 57, 143 Yes, No
A360 |9.5 0.6 0.1 005 |05 0 2.5,10, 57, 143 No

A369 115 |1 0.5 025 |04 0.05 |25,10,57,143 Yes, No
A339 |12 1.2 2 0.5 1 1 2.5,10, 57, 143 No

A393 |22 1.3 0.9 0.1 1 23 2.5, 10, 57, 143 Yes, No
A355 |5 065 |125 |055 |05 0 2.5,10, 57, 143 No

A308 |55 0.8 4.5 0.5 0.1 0 2.5,10, 57, 143 No

A319 |6 1 4 04 0.55 [035 |25,10,57,143 No

A332 |95 0.9 3 0.5 2.1 0.5 2.5,10, 57, 143 No

processes. These alloys were prepared using both sand and permanent mold tech-
niques, resulting in cooling rates ranging from 1 to 100 K/s. Notably, alloys A356,
A369, and A393 were modified by the addition of minute quantities of Strontium
or Phosphorus (St/P), inducing significant alterations in the microstructures of these
Si-based aluminum alloys through complex chemical reactions.

AlloyGAN Deep Learning Model

AlloyGAN builds upon the foundational principles of conditional Generative Adver-
sarial Networks (¢cGANSs) and incorporates unique adaptations that leverage prior
knowledge of solidification reactions to generate scientifically valid alloy microstruc-
ture images. Similar to other Generative Adversarial Networks, AlloyGAN
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comprises two major components: the Generative Network and the Discriminative
Network. The role of the Generative Network is to produce synthetic microstruc-
ture images, while the Discriminative Network acts as a classifier, attempting to
distinguish between real and generated data.

Through numerous training epochs, typically numbering in the hundreds or thou-
sands, the Generative Network undergoes training loops to generate virtual micro-
graphs that closely resemble real ones. Simultaneously, the Discriminative Network
is trained to become progressively more proficient at discerning whether a given
micrograph is genuine or generated (‘fake’). The ultimate objective is for the Gener-
ative Network to produce micrographs so authentic that even experts would struggle
to distinguish them from real ones. Meanwhile, the Discriminative Network should
reach a point where it has a 50-50 chance of correctly identifying whether an image
originates from the Generative Network.

Results and Discussion

As training epochs progress, these micrographs increasingly resemble real castable
aluminum alloy structures. We assess the quality of the generated micrographs using
three key metrics: (1) the model’s capacity to accurately depict the influence of Si
content on microstructures. (2) Its ability to demonstrate the relationship between
Secondary Dendritic Arm Spacing and cooling rates. (3) Its effectiveness in revealing
the effects of Sr/P modifications on microstructures.

Figure 2 displays representative micrographs of model-generated images featuring
varying Si contents. In these images, white pixels represent Al phases, while black/
gray pixels represent Si or Si compounds. As the Si content increases, the AlloyGAN
model accurately depicts the rising presence of Si or Si compounds in the generated
micrographs.

Figure 3 provides a quantitative representation of the increasing area fractions
of Si phases in relation to Si content within the AlloyGAN-generated micrographs.
These results serve as compelling evidence that the AlloyGAN model has effectively
learned how Si contents influence aluminum microstructures.

The Secondary Dendritic Arm Spacing (SDAS) in the AlloyGAN-generated
micrographs is assessed across various alloy compositions and cooling rates. It is
a well-established fact that in the solidification process of metals, SDAS decreases
with increasing cooling rates. This relationship can be quantified as follows [23]:

A =k(CR)™"(n > 0) (1)

whereas A represents SDAS, CR represents the cooling rate, k is a constant, and n is a
positive number. We have measured the data for A356, A319, and A355 alloys, fitted
itinto Eq. 1, and plotted the results in Fig. 4. The outcomes demonstrate a strong fit to
Eq. 1, indicating that the images generated by AlloyGAN align well with real-world
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Fig.2 AlloyGAN generated micrographs of A356, A332, A339, and A393 alloys which have Si
contents of 7,9.5, 12, and 22%, respectively. The black/gray pixels correspond to Si or Si compound
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Fig. 3 Quantitative analysis of the relationship between Si contents and the area fractions of Si
phases in AlloyGAN-generated micrographs



Simulating Castable Aluminum Alloy Microstructures with AlloyGAN ... 809

x A356 e A319 o A355

n=0.1

R?=0.9775 RZ” =0°é°735 ;
n=11 L o
. R?=0.9878 X
3 %
> 14 .
= ; /
) )
a £
5
0 1 1 1 1 1l 1 1 1 1 I 1 1 1 1 : 1 1 1 1 : 1 1 1 1 I 1 1 1 1 :
0.2 0.4 0.6 0.8 1 1.2

(CR)™

Fig. 4 Measurement of SDRS with cooling rate in AlloyGAN-generated micrographs

solidification phenomena. It underscores that the model has effectively captured how
cooling rates influence SDAS in castable aluminum alloys.

Strontium and Phosphorus are frequently employed to modify the microstruc-
ture of castable aluminum alloys. The modified microstructures typically exhibit
increased branching of eutectic Si phases, resulting in a smoother and more
rounded appearance. This transformation occurs by enhancing twin density through
a phenomenon known as impurity-induced twinning, as well as facilitating smoother
eutectic growth during solidification [24].

In Fig. 5a—c, we observe AlloyGAN-generated micrographs of A356, A369, and
A393 under unmodified conditions, while Fig. Se, f display the corresponding gener-
ated images under modification conditions. These images distinctly reveal that the Si
phases (depicted by dark pixels) are significantly finer and dispersed in the presence
of Sr/P modifications. This evidence underscores that AlloyGAN has effectively
learned how modification elements impact the microstructure of castable aluminum
alloys.

AlloyGAN Website

We have made AlloyGAN accessible via a website (http://deepalloy.com). Users can
create scientifically valid images given their text prompt to determining expected
Alloy compositions within only 1 s. Enhancements of AlloyGAN to support different
types of materials will continue to drive up its value to the material science community
and customers.
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Fig. 5 a—c A356 alloy, A369, and A393 alloys with cooling rate = 2.5 K/s, unmodified. d—f A356
alloy, A369, and A393 alloys with cooling rate = 2.5 K/s, modified

Conclusion

AlloyGAN successfully generates microstructures of aluminum alloys under an
array of promptable conditions, taking into account various chemical elements,
manufacturing environments, as well as fundamental materials domain knowl-
edge. AlloyGAN achieves results rivaling traditional computational material science
methods in accuracy, while significantly reducing time and dependency on complex
domain knowledge. With the launch of AlloyGAN, we unlock a path to remarkably
efficient and ground-breaking applications in both material verification and scientific
discovery in the field.
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