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ABSTRACT

Amid corrosion degradation of metallic structures causing expenses
nearing $3 trillion or 4% of the GDP annually along with major
safety risks, the adoption of Al technologies for accelerating the ma-
terials science life-cycle for developing materials with better corro-
sive properties is paramount. While initial machine learning models
for corrosion assessment are being proposed in the literature, their
incorporation into end-to-end tools for field experimentation by
corrosion scientists remains largely unexplored. To fill this void, our
university data science team in collaboration with the materials sci-
ence unit at the Army Research Lab have jointly developed MOSS,
an innovative Al-based digital platform to support material sci-
ence corrosion research. MOSS features user-friendly iPadOS app
for in-field corrosion progression data collection, deep-learning
corrosion assessor, robust data repository system for long-term
experimental data modeling, and visual analytics web portal for
material science research. In this demonstration, we showcase the
key innovations of the MOSS platform via use cases supporting the
corrosion exploration processes, with the promise of accelerating
the discovery of new materials. We open a MOSS video demo at:
https://www.youtube.com/watch?v=CzcxMMRsxkE
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1 INTRODUCTION

Motivation. Corrosion represents a world-wide problem, costing
the global economy nearly $3 trillion annually equivalent to ap-
proximately 4% of global GDP [2, 9]. It also raises significant safety
concerns, as corrosion can severely degrade the structural integrity
of metallic infrastructures, posing threats to human lives and the en-
vironment. The development of materials with superior corrosion
resistance properties has thus been recognized as a critical research
area in the materials science community [1, 4, 5, 10, 15, 18, 19, 23].

State-of-Art. Historically, the development of corrosion-resistant
materials has relied on time-consuming manual procedures and
experiments [22]. This traditional approach is plagued by ineffi-
ciencies and worse yet, human error. To overcome this, radical
changes in corrosion assessment processes are needed. The re-
cent advances in artificial intelligence (AI) promise to innovate the
materials science life-cycle to streamline processes and improve
results. As first steps into this direction, machine learning models
for corrosion assessment began to be explored in the academic
literature [3, 11, 17, 21, 22]. However, the integration of these Al
models into comprehensive end-to-end tools to support in-field
experimentation by material scientists remains largely unexplored.

Our Approach. In this work, we respond to this critical need
by introducing MOSS, an innovative Al-based digital platform de-
signed to support corrosion research and assessment. This initiative
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is the result of a collaboration between the data science team at
WPI and the materials science unit at the Army Research Lab. Our
MOSS platform encompasses a suite of user-centric services aimed
at supporting the corrosion research process. One, this includes an
intuitive iPadOS app for reliable and efficient collection of corro-
sion progression data in the field by capturing images of treated
materials and auto-linking them to prior instances over time. Two,
this tool incorporates deep-learning modules for supporting effec-
tive analytics, including the rapid assessment of corrosion of these
recorded experimental materials. Three, the MOSS features a robust
data repository for storage and modeling of the collected experi-
mental data characterized by rich metadata and properties, such as
geo-location, time, materials, and more. Four, the visual analytics
web portal provides advanced services to support material scien-
tists in their exploration of their experimental data — supporting
corrosion exploration processes such as pattern recognition and
corrosion rating classification.

In this demonstration, we showcase through real-world use cases
how MOSS supports and expedites corrosion assessments over time
and with it the development of new corrosion-resistant materials.
This ultimately may contribute to the reduction of the economic
burden and safety problems caused by corrosion of our national
infrastructure. Our vision is to inspire a broader adoption of Al
technologies in corrosion research in particular and, in doing so,
ignite a revolution in the field of materials sciences in general. Our
MOSS platform has been deployed and attempted at the Army
Research Lab. We provide a video demo at: https://www.youtube.
com/watch?v=CzcxMMRsxkE

2 BACKGROUND AND MOSS SYSTEM

2.1 Background on Corrosion Assessment

Figure 1 depicts manufacturing processes of the material products
under testing, the testing procedures, and labeling procedure. The
materials are composed using a layered stack up consisting of a
topcoat, primer, pretreatment, surface profile, and substrate layer
onto panels for corrosion assessment. The five constituent layers
of the coating stack up for each sample are reinforced by multiple
replicates of the same stack up to provide an adequate statistical
sample for material performance testing. Corrosion experiments
are conducted by domain scientists in two main scenarios: indoor
laboratory-based tests and outdoor natural environment tests. The

Figure 1: Standard Corrosion Science Experiment: Each mate-
rial is manufactured into sample panels (Left Top). They are
assessed (Left Bottom) after being exposed to indoor (Right)
or outdoor (Middle) environments.
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indoor tests are used as quality control and speed-up of sample
production to reduce the labor investment needed for outdoor tests.
Outdoor corrosion tests consist of placing panels directly into their
natural target environments, such as, humid sites in Florida or hot
sites in Arizona. Corrosion technicians evaluate the anti-corrosive
performance of material sample panels according to material sci-
ence standards and record them in notebooks or Excel tables [22].
In order to improve the quality, reliability, and utility of these long-
term testing performance data, an end-to-end platform should be
designed and developed to unify data collection, management, anal-
ysis, assessment automation, and further research for the discovery
of corrosion-resistant materials.

2.2 MOSS Platform and Its Components

The architecture of the MOSS platform is depicted in Figure 2.
MOSS is composed of a set of interconnected components that each
play a crucial role in enhancing the efficiency, accuracy, and scope
of corrosion studies. These components encompass an intuitive
iPadOS app for scientific data collection over time, a deep-learning
module for tasks such as automatic corrosion assessment, a visual
analytics web portal for corrosion research, and a unified backend
for long-term storage and modeling of experimental data serving
the app and web. Altogether, MOSS charged with the power of Al
supports an efficient material discovery process.

3 MOSS CAPABILITIES AND INNOVATIONS
3.1 Mobile App for Data Collection

In response to the limitations of traditional manual data collection
for corrosion progression data, we introduced a more efficient solu-
tion - an iPad app designed for MOSS data collection. The primary
aim of the app is to enable the systematic and consistent capture of
corrosion images over time, thereby minimizing human error and
increasing efficiency in data acquisition across diverse experimental
conditions (time and locations) and technicians. The MOSS plat-
form incorporates a QR code system to track and manage corrosion
samples (See Sec. 3.3). Researchers can easily scan the QR code in
the field using an iPad app to access and update sample data.

The app also allows for real-time annotation and documenta-
tion of image metadata, ensuring accurate and comprehensive data
records that can be taken while on the field, yet is seamlessly in-
tegrated with the digital experimental repository. Considering the
potential connectivity issues in remote field locations, the app func-
tions robustly under low WiFi conditions, saving data locally first,
then executing a delayed secure upload to the server once WiFi
is available. This ensures that the data collection to the backend
server is not compromised, regardless of field conditions.

3.2 MOSS Deep-Learning Models

The heart of MOSS is its distinctively engineered deep learning
models for automating corrosion assessment and generation (See
Figure 2). For classifying corrosion, it incorporates models like
HRNet [24], ResNet [20], MAE [6], PIRL [16]. In terms of genera-
tion, the platform leverages cGAN [14] to create future corrosion
images. To bridge the gap between indoor and outdoor corrosion
ratings, MOSS utilizes domain adaptation techniques such as CDAN
[12], JAN [13], MCC [7]. For material scientists to gain trust in the



MOSS: Al Platform for Discovery of Corrosion-Resistant Materials

Experimental & !
Material Metadata \ e :

ocal
Collection Geolocation & / Storage :
Time-stamping / ? 9 1
e 1
. Experimental Capture via Engineer - . -
2 1sfer |
o Tracking Image (Camera Sensor) Annotations i nd |
Technician \
MOSS Mobile APP -- Data Collector 1
- . 1
R e e 1 !
1 ° J R 1 |
1 X} a ) ! :
Insights | |eo°® . : 1 ™ i
—_— = . 1 :
¢ ! | Corrosion Corrosion Corrosion | ' \
L. : Pattern Rating Progression : |
Inspirations | |visualizer| | Assessor Generator |, Automatic !
Researcher 1 1 Data Transfer !
1

]

1

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

MOSS Unified Database

w e Deep
) {‘é} Learning
Models
¥_/ Automatic
Sample ID Material Data
(QR coded) > Metadata Transfer

Tue 13 June

N

Experimental
Image and Rating

.

Environmental Observation

32 °C

35/26°C

\4)

Partly cloudy throughout the day.
wing:24kmn  REQItIME

Automatic
Data

Transfer | Humary:.72% Weather API

1
]
1
]
1
1
1
1
1
1
1
1
Cocoa Beach !
1
1
1
]
1
1
1
1
1
1
1
]
1

Condition > € Timestamp

Figure 2: MOSS Platform to Support Material Discovery

technology, we also incorporate Explainable Artificial Intelligence
(XAI) into our deep-learning models. This includes prediction con-
fidence based on softmax outputs and Grad-CAM results, which
highlight the image areas most utilized by the model. Illustrated
by Figure 2’s "Corrosion Rating Assessor”, these insights can spark
new research hypotheses and aid the development of more durable,
corrosion-resistant materials.

As demonstrated in Figure 5, MOSS is capable of rating each
material sample based on a given image into 1 of 10 classes of
corrosion severity levels, where the class indicates the level of
corrosion from none to extremely severe. These embedded models
have been trained on a diverse dataset of corrosion images which
we curated and released to the community [8, 22]. Importantly, they
are designed for quick response, providing the corrosion prediction
results within less than 2 seconds per request. In addition, the
models are integrated into the MOSS unified repository via plug-ins.
This tactical arrangement eases the process of adding new models
or updating existing ones, thereby ensuring the MOSS platform
remains at the cutting edge of corrosion research and technology.

3.3 MOSS Unified Repository

MOSS includes a robust data repository system for the storage and
modeling of experimental data with user authentication. This sys-
tem is built to securely house experimental data, allowing for long-
term studies and the building of comprehensive corrosion models.
It interacts with the MOSS mobile app, capturing and processing
data that is then enriched with domain-specific entity relations for
a more insightful analysis. The system is also integrated with a real-
time weather API that automatically fetches weather information
based on assessed timestamps and geolocation (See Figure 2).

The system features a range of data management tools, includ-
ing data versioning, metadata management, and advanced search
capabilities. This allows researchers to easily locate data from past
experiments, enhancing the efficiency of their research and enabling
the creation of increasingly accurate and detailed models of corro-
sion progression. It also implements a QR code system for tracking
corrosion samples, with key records updated via MOSS mobile app
in the field such as collection date and location, thereby ensuring
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accurate results attribution in the lab and improving experimental
management, collaboration, and data integrity. To further enhance
its utility, it incorporates deep learning models capable of automat-
ically evaluating and creating images relevant to corrosion. All of
these features are accessible via the MOSS web portal. This system
enables interactive data analysis and deep learning predictions (See
Figure 2), making MOSS an invaluable tool for researchers.

3.4 MOSS Analytics Web Portal

The MOSS platform encapsulates an innovative data analysis web
portal, providing a sophisticated toolset for supporting the research
and analysis of material discovery. It engines visual exploration,
interactive analysis, automatic corrosion assessment, and the gener-
ation of actionable insights underpinned by advanced deep-learning
methodologies. Connecting with the MOSS unified data repository
backend, this portal not only empowers the researchers to make
data-driven decisions but also facilitates collaboration with field
technicians in designing effective experiments.

Merging advanced technology into this intuitive interface, the
portal streamlines the research process, offering a new paradigm
in how scientists engage with and manage corrosion studies (See
Figure 2). The "Corrosion Pattern Visualizer" enables intuitive in-
terpretation of data by allowing researchers to visually analyze
and identify key corrosion patterns and trends, thus enhancing
decision-making in corrosion studies. The "Corrosion Rating As-
sessor" leverages deep learning and XAI models to provide inter-
pretable assessments of corrosion severity. This, as seen in Figure
2 and Figure 5, ensures results are accessible and fosters a deep
connection between material scientists and Al models. Lastly, the
"Corrosion Progression Generator" employs generative Al models
to simulate the future progression of corrosion, encouraging a pre-
dictive understanding of corrosion patterns and fostering collabora-
tion between researchers and Al tools, which ultimately contributes
to the discovery of corrosion-resistant materials.

4 DEMONSTRATION

The MOSS platform, in a real-world setting, is utilized in field stud-
ies to analyze corrosion progression in different materials. The
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accompanying app facilitates comprehensive real-time data collec-
tion, including photos, material condition notes, and environmental
readings, even under limited internet connectivity. Once data is
collected, it is uploaded for analysis on the server and web portal.
The platform’s deep-learning module assesses each material sam-
ple’s corrosion state, providing clear and automatic insights into
corrosion understanding.

iPadOS App to Serve Data Collection. Initial data collection
is carried out using the user-friendly iPadOS app. A technician
can collect, annotate, and save their experimental procedures and
observations in an organized fashion. After logging in, the techni-
cian can begin to review or create new experiment sessions and
tasks. Users can review past experiments and detailed records. Each
material sample, complete with its details such as surface substrate,
pretreatment, profile, primer, topcoat, timestamp, and a unique QR
code, can be reviewed and shared among a team.

As seen in Figure 3, a new experiment can be created, wherein
a user can photograph the material and input corrosion measure-
ments. Corresponding rating scores are then calculated and dis-
played in boxes, with our deep learning algorithm offering a pre-
dicted corrosion rating for optional inclusion.

Data Repository to enable long-term data integration. Af-
ter collecting data for an experiment session, the user can select and
back the data up to the data repository. This data repository allows
for long-term and comparative studies, assisting in building a com-
prehensive understanding of corrosion progression. The system’s
advanced search capabilities, along with data versioning features,
ensure efficient data management and uphold data integrity.

New Experiment New Data
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Figure 3: Capture, record, and save all experimental informa-
tion about a new experiment.

Web portal to enable Deep Learning and Visual Analysis.
After collecting and saving data, further analysis and discoveries
can be done through our web portal. As seen in Figure 4, the web
portal allows for interactive data visualization from MOSS unified
database to recognize patterns and interrelationships of detailed
corrosion ratings on samples, weather conditions, and materials.
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Figure 5: Automatically assess a corrosion panel image with
embedded deep learning classification model. Confidence
shows the softmax probability of the predicted class.

Most importantly, corrosion and Al researchers can easily access
the data and view manual and automatic assessments by interacting
with the embedded deep-learning models. Sample image results
from the database can be displayed on the web portal (See "Get
results by server" tab in Figure 5), where researchers can also upload
local images to view deep-learning results (See "Get results by
uploading" tab and results shown in Figure 5)

5 CONCLUSION

This demonstration showcases our MOSS platform that supports
the discovery of metallic materials with superior corrosion-resistant
properties — promising to improve global safety.
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