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Abstract

In this work we explore recent advances in instruction-tuning language models on
a range of open instruction-following datasets. Despite recent claims that open
models can be on par with state-of-the-art proprietary models, these claims are often
accompanied by limited evaluation, making it di�cult to compare models across
the board and determine the utility of various resources. We provide a large set of
instruction-tuned models from 6.7B to 65B parameters in size, trained on 12 instruc-
tion datasets ranging from manually curated (e.g., OpenAssistant) to synthetic and
distilled (e.g., Alpaca) and systematically evaluate them on their factual knowledge,
reasoning, multilinguality, coding, safety, and open-ended instruction following
abilities through a collection of automatic, model-based, and human-based metrics.
We further introduce TÜLU , our best performing instruction-tuned model suite
finetuned on a combination of high-quality open resources.
Our experiments show that di�erent instruction-tuning datasets can uncover or
enhance specific skills, while no single dataset (or combination) provides the best
performance across all evaluations. Interestingly, we find that model and human
preference-based evaluations fail to reflect di�erences in model capabilities exposed
by benchmark-based evaluations, suggesting the need for the type of systemic
evaluation performed in this work. Our evaluations show that the best model in
any given evaluation reaches on average 87% of ChatGPT performance, and 73%
of GPT-4 performance, suggesting that further investment in building better base
models and instruction-tuning data is required to close the gap. We release our
instruction-tuned models, including a fully finetuned 65B TÜLU , along with our
code, data, and evaluation framework to facilitate future research.2

1 Introduction

The latest generation of large language models has brought unprecedented attention to the potential of
language technologies. To support imperative user requests and a chat interface, these models often
undergo an instruction-tuning step which involves training on supervised input/output pairs. Recent
instruction tuning corpora are often gathered via crowdsourcing (Dolly [12], Open Assistant [26])
or via distillation from another model (Alpaca [43], Vicuna [8]). However, while some public,
instruction-tuned models are advertised as comparable to powerful closed-source proprietary models
such as ChatGPT, most experiments that support such claims only cover a small set of tasks, and
mostly rely on model-based evaluation metrics [8, 56]. We contend that the evaluation setup should
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include tasks that test core reasoning and fact-recall skills of the model, in addition to testing model-
or human-annotated generation quality, which may be more open-ended and subjective.
This paper provides a comprehensive evaluation of instruction-tuning resources: specifically, we
conduct a large number of instruction tuning experiments spanning a dozen public corpora, and
models ranging in scale from 6.7B to 65B. We evaluate both specific model capabilities (i.e., factual
knowledge, reasoning, multilinguality, coding, safety) and open-ended instruction-following abilities.
We report results based on automatic, model-based, and human-based evaluation metrics.
Our evaluation reveals that instruction tuning over di�erent datasets appears to promote specific
skills, and no one dataset provides the best performance across all evaluations. We also find that
the underlying base model is paramount, with better base models (whether it be models trained on
more tokens or larger models) performing better across the board. Surprisingly, we also find that the
best-performing models in model-based evaluation are not the same as those that perform best on
benchmark-based automatic evaluations, potentially partially due to GPT-4’s strong bias toward long,
diverse generations.
Building on our findings, we introduce TÜLU , a suite of 7B to 65B LLAMA models finetuned on a
combination of data sources. TÜLU 65B is the largest publicly-released fully-instruction tuned
LLAMA variant at the time of writing, to the best of the authors’ knowledge. It is trained on 7 popular
available datasets, and yields the best average performance across most model sizes while remaining
within 29% of the best-performing model on each individual task. In summary, our key findings
include:

• Instruction datasets targeted at specific domains and/or capabilities are extremely e�ective at
improving model performance in those aspects.

• Larger or pretrained-for-longer base models consistently perform better than smaller ones after
instruction tuning.

• Our model TÜLU – fine-tuned LLaMa on a combination of existing instruction datasets – achieves
the best average performance across benchmarks, although it is not the overall best when considering
di�erent evaluation settings independently.

• Even a very large (65B) model finetuned on a large mix of instruction datasets fails to outperform
ChatGPT, although it does perform significantly better than similar smaller models.

• Model-based preference evaluation on open-ended instruction following correlates strongly with
the average number of unique tokens generated by a model, suggesting that model-based preference
evaluation has biases that may hide di�erences in model capabilities.

We open-source the code for training and evaluating these large language models. We also release
checkpoints trained on the di�erent instruction datasets and their mixtures, including TÜLU . We
hope this facilitates further development and investigation of open instruction-tuned models.

2 Background: Instruction Tuning and Resources

2.1 Instruction Tuning

Instruction tuning, in general, refers to the practice of finetuning pretrained language models to better
understand and respond to a wide variety of human requests that are expressed in natural language
[32, 49, 35]. In particular, instruction tuning is concerned with requests that include some indication
of the task to be performed within the request itself (e.g., including task instructions in the input
prompt). It has arisen as a critical step for generalizing models to new scenarios without dedicated
training, and for letting non-experts naturally interact with these models. The training paradigms
of instruction tuning can vary from supervised learning using demonstrations [49, 39, 48, 31] to
reinforcement learning from feedback data [35, 3]. In this work, we focus on the supervised learning
setup considering the current open resources for the RL-based approach are still rare, and we leave its
exploration for future work.
The success of instruction tuning requires at least two key components: 1) a powerful pretrained
language model that has grasped a vast amount of knowledge from web-scale pretraining, and 2) an
instruction dataset that is diverse and representative enough to adapt the LM to potential downstream
usage. We study these two factors in this work and introduce our studied open resources below.
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Table 1: Instruction datasets investigated in this work. CoT and FLAN V2 are sampled to 100K
to match the sizes of other datasets. We report the average number of conservation turns ( ÑN

rounds
),

average length of prompts ( ÑL
prompt

), average length of completion ( ÑL
completion

).
Datasets Sourced from # Instances ÑNrounds ÑLprompt ÑLcompletion

SuperNI [48] NLP datasets + Human-written Instructions 96,913 1.0 291.1 38.7
CoT [50] NLP datasets + Human-written CoTs 100,000 1.0 266.0 53.2
Flan V2 [31] NLP datasets + Human-written Instructions 100,000 1.0 355.7 31.2
Dolly [12] Human-written from scratch 15,011 1.0 118.1 91.3
Open Assistant 1 [26] Human-written from scratch 34,795 1.6 34.8 212.5
Self-instruct [47] Generated w/ vanilla GPT3 LM 82,439 1.0 41.5 29.3
Unnatural Instructions [23] Generated w/ Davinci-002 68,478 1.0 107.8 23.6
Alpaca [43] Generated w/ Davinci-003 52,002 1.0 27.8 64.6
Code-Alpaca [6] Generated w/ Davinci-003 20,022 1.0 35.6 67.8
GPT4-Alpaca [36] Generated w/ Davinci-003 + GPT4 52,002 1.0 28.0 161.8
Baize [52] Generated w/ ChatGPT 210,311 3.1 17.6 52.8
ShareGPT3 User prompts + outputs from various models 168,864 3.2 71.0 357.8

2.2 Instruction Datasets

We attempt to collect a representative sample of di�erent styles of datasets (listed in Table 1), including
datasets: (1) created by researchers from existing NLP datasets (SuperNI [48], Flan V2 [31]); (2)
written by humans from scratch for the purpose of instruction tuning (Dolly [12], Open Assistant 1
[26]); (3) generated by proprietary models (Self-Instruct [47], Unnatural Instructions [23], Alpaca
[43], Baize [52], GPT4-Alpaca [36]); (4) comprised of user-shared prompts accompanied by model-
generated completions (ShareGPT3 [8]); (5) built for specific skills (CoT [50] for chain-of-thought,
Code-Alpaca [6] for code generation). See Appendix C for further details.

2.3 Pretrained Models

Table 2: Base models that we
finetuned in this work.

Base LMs # Params # Tokens

LLaMa [44]
6.7B 1.0T

13.0B 1.0T
32.5B 1.4T
65.2B 1.4T

LLaMa-2 [45] 6.7B 2.0T
13.0B 2.0T

OPT [54] 6.7B 180B

Pythia [4] 6.9B 300B

We primarily use the LLAMA suite [44, 45], a series of pretrained
models ranging in size from 6.7B to 65B parameters. We initially
experimented with the LLAMA-1 models for the first version of
this paper and added LLAMA-2 in our camera ready, which use
similar numbers of parameters but were trained over significantly
more tokens. These models represent the largest, highest-quality
pretrained models available to the community (albeit under restric-
tive licensing). We also consider OPT [54] and Pythia [4] models
with a size comparable to the LLAMA 6.7B model, to examine the
e�ect of di�erent base models. For simplicity, we will round all
the sizes to the nearest integer number. We note several ongoing
e�orts to pre-train similar- or better-quality models [18, 33, 1].
We believe our findings should hold for these models and future
stronger open base models.

3 Training Models with Various Datasets

3.1 Unifying the Format

We format all datasets to follow a chatbot-style schema to unify the varied styles and formats of the
instruction datasets, shown in Figure 1. This allows us to fit arbitrary rounds of interactions between
the user and the language model (a.k.a. “assistant”) into one input sequence and encode them together
with a causal language model. We add special tokens <|user|> and <|assistant|> before user
utterances and target assistant responses respectively, and an end-of-text marker </s> at the end of
each assistant output, which, at inference time, will stop the model’s response for each round.

3 ShareGPT (https://sharegpt.com/) data was used to build the Vicuna model [8], but the exact dataset
has not been released. We instead use a reproduced version from https://huggingface.co/datasets/

anon8231489123/ShareGPT_Vicuna_unfiltered/tree/main/HTML_cleaned_raw_dataset, and fol-
low Vicuna to split the long conversations into blocks with a maximum length of 2048 tokens.
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3.2 Model Training Details

<|assistant|>
The reaction control system (RCS) on the Space 
Shuttle was designed to be fault-tolerant, 
meaning it was able to continue functioning 
even if one or more of its components failed. 
The RCS consisted of two sets of ... </s>

<|assistant|>
There were several instances where the 
reaction control system (RCS) on the Space 
Shuttle experienced failures or malfunctions 
during on-orbit missions. These ... </s>

<|user|>
Explain the fault-tolerance of the reaction 
control system on the Space Shuttle.

<|user|>
Did the RCS have any on-orbit failures?

!

!

"

"

Figure 1: An example from ShareGPT data. We use
<|role|> to set the boundary between messages.
The entire sequence is encoded together, and loss
is computed on the assistant parts (colored in blue).

During training, we compute loss only on to-
kens after <|assistant|> and before the next
<|user|> token. More formally, we consider
an instruction dataset as consisting of N tuples,
each with i turns, {(xj1, y

j
1, x

j
2, y

j
2, ...x

j
i , y

j
i )}

N
j=1,

where xi is a user prompt and yi the desired out-
put. For most instances, i = 1, and we train the
model to output yj given xj . However, in the
case of conversation datasets, we train the model
to predict yji given some conversation history
xj1, y

j
1, x

j
2, ..., x

j
i . We train decoder-only models,

and use teacher-forcing with loss masking to
train the models, where we mask all tokens be-
longing to the input sequence(s) xi. Given X as
the tokens belonging to the input, and Y as the
target tokens, the loss function is:

L = *
…
j
log p✓(tj › t<j) ù

<
1 if tj À Y
0 otherwise

where tj is the jth input token (belonging to X or Y ). See Appendix §D for further training details.

3.3 TÜLU : a Better Instruction-Tuned Model by Combining Resources

Existing studies [48, 31] (and our own evaluation below) have shown that increasing the diversity of
instructions can e�ectively improve the performance of instruction tuning. Following this motivation,
we create two mixtures of datasets:
Human data mixture, which comprises the best human-authored datasets, including FLAN V2, CoT,
Dolly, and Open Assistant 1 (we exclude SuperNI as FLAN V2 includes most tasks in SuperNI);
Human+GPT data mixture, which comprises the human mixture and three additional datasets that
have generations by OpenAI GPT models, including GPT4-Alpaca, Code-Alpaca, and ShareGPT.
For both mixtures, we concatenate datasets and leave exploring more complex sampling mixtures to
future work. We name LLAMA models trained on the Human+GPT data mixture TÜLU , after
a hybrid camel resulting from interbreeding between di�erent species. We di�erentiate the TÜLU
models trained from the LLAMA-2 base models by versioning them as TÜLU-1.1.

4 Evaluation Setup

Evaluation of instruction-following models remains a challenging problem due to the enormous
scope of “generality” and its open-ended nature. However, we argue that general-purpose models
should be able to perform some core tasks before they can generalize to satisfy various practical
needs. As such, we set up a multi-faceted evaluation to cover several key aspects of capabilities
covering core abilities and open-ended instruction following. Our evaluations closely follow prior
work on evaluating instruction-tuned models [9, 2, 47, 8, 16], but serve as the first one to compile
them together for systematic evaluation.

4.1 Facets of Evaluation

Factual knowledge is essential for language models to serve users’ information needs. We use the
Massive Multitask Language Understanding dataset (MMLU [22]) for measuring models’ factual
knowledge. MMLU consists of a set of questions about 57 subjects ranging in di�culty from
elementary levels to professional levels, and its multiple-choice format makes it suitable for probing
models’ knowledge without worrying about the open-endedness of generations.
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Reasoning is another fundamental ability for models, especially for solving complex tasks. We use
the test split of Grade School Math dataset (GSM [11]) to evaluate models’ mathematical reasoning
capabilities. We also adopt Big-Bench-Hard (BBH [42]), which contains 23 challenging tasks from
Big-Bench [41], to evaluate models’ general reasoning capabilities.
Multilinguality acts as an important perspective of models for serving people from di�erent back-
grounds. We use TyDiQA [10], a multilingual question answering benchmark covering 11 typo-
logically diverse languages for testing how much models can process non-Engish text. We use the
gold-passage setup where one passage containing the reference answer is given.
Coding is a particular application that people have used language models for and might be important
for integrating these models with external tools [5]. We use the HumanEval dataset [7] to evaluate
the models’ capability to generate functionally correct programs from docstrings. To avoid ambiguity
with our human evaluation, we call this dataset Codex-Eval in this paper.
Open-ended instruction following. While the performance on the benchmarks above quantifies the
models’ ability at specific skills, it may not reflect how well the models can handle instructions from
real users, which cover highly diverse requests and are often open-ended. For example, the popular
ShareGPT dataset contains instances of users asking for programming help, resume formatting tips,
educational role-playing, pronunciation suggestion, fanfiction writing, and more. We evaluate such
open-ended instructability of models using both model-based evaluation (§4.2) and human evaluation
(§4.3), both of which consist of multiple test sets from existing studies [47, 8, 26, 3, 19].
Safety is of particular concern regarding the fast-developing language models to ensure the ethical
and proper use of them. Following LLAMA-2 [45], we employ ToxiGen [21] to measure the amount
of toxic language and hate speech generation across di�erent groups when the models are prompted
to do so. We also adopt TruthfulQA [30] to measure how well models can avoid generating known
falsehoods due to misconceptions or false beliefs while providing useful information.
For all the benchmark-based evaluations, we follow their standard metrics, while we subsample some
benchmarks to a reasonable size to improve the e�ciency of doing chain-of-thought reasoning. We
refer the reader to Appendix §E for the setup details.

4.2 Model-Based Evaluation using GPT-4

To evaluate the open-ended instructability, we first adopt a model-based approach introduced in
AlpacaEval [27]. The test set consists of 805 instructions, with 252 instructions from the Self-Instruct
evaluation [47], 188 from the Open Assistant evaluation [26], 129 from the helpful evaluation by
Anthropic [3], 80 from the Vicuna evaluation [8], and 156 from the Koala evaluation [19].
We use their simulated GPT-4 annotator, which computes the win rate of the testing model as judged
by GPT-4 when compared to the outputs produced by Davinci-003. We use the AlpacaEval codebase
and prompts [27] to make our scores directly comparable to those on the AlpacaEval leaderboard4

When doing pairwise comparisons with GPT-4, the orders of model outputs are randomized to avoid
position bias during evaluation [46]. We do not evaluate vanilla LLAMA models due to them having
little instruction-following ability without further prompt engineering.

4.3 Human Evaluation

To further test the quality of the open-ended generations, we conduct a human evaluation based on
332 instructions that combine the Self-Instruct evaluation set [47] and Vicuna evaluation set [8].
Inspired by Bai et al. [3], we design a similar interface (Figure 5) for gathering human judgments of
model outputs along the following dimensions. We note that we evaluated based on our fine-tuned
LLAMA-1 models, as LLAMA-2 was not available at the time of this experiment.
Individual acceptability. We ask human raters to assess whether each system’s responses were
acceptable in isolation. This is a binary decision, and we ask the raters to mark a response as acceptable
if and only if the response answered the request in the query, had no significant errors, and did not
have repetitive information.

4https://tatsu-lab.github.io/alpaca_eval/
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Table 3: Comparison of di�erent instruction tuning datasets, showing that di�erent instruction-tuning
datasets can excel in di�erent aspects, and mixtures perform best on average. Cells are blue if the
finetuning boosts the vanilla LLAMA performance, and orange if the finetuning hurts the performance.

MMLU
(factuality)

GSM
(reasoning)

BBH
(reasoning)

TydiQA
(multilinguality)

Codex-Eval
(coding)

AlpacaEval
(open-ended) Average

EM
(0-shot)

EM
(8-shot, CoT)

EM
(3-shot, CoT)

F1
(1-shot, GP)

P@10
(0-shot)

Win % vs
Davinci-003

Vanilla LLaMa 13B 42.3 14.5 39.3 43.2 28.6 - -
+SuperNI 49.7 4.0 4.5 50.2 12.9 4.2 20.9
+CoT 44.2 40.0 41.9 47.8 23.7 6.0 33.9
+Flan V2 50.6 20.0 40.8 47.2 16.8 3.2 29.8
+Dolly 45.6 18.0 28.4 46.5 31.0 13.7 30.5
+Open Assistant 1 43.3 15.0 39.6 33.4 31.9 58.1 36.9
+Self-instruct 30.4 11.0 30.7 41.3 12.5 5.0 21.8
+Unnatural Instructions 46.4 8.0 33.7 40.9 23.9 8.4 26.9
+Alpaca 45.0 9.5 36.6 31.1 29.9 21.9 29.0
+Code-Alpaca 42.5 13.5 35.6 38.9 34.2 15.8 30.1
+GPT4-Alpaca 46.9 16.5 38.8 23.5 36.6 63.1 37.6
+Baize 43.7 10.0 38.7 33.6 28.7 21.9 29.4
+ShareGPT 49.3 27.0 40.4 30.5 34.1 70.5 42.0
+Human data mix. 50.2 38.5 39.6 47.0 25.0 35.0 39.2
+Human+GPT data mix. 49.3 40.5 43.3 45.6 35.9 56.5 45.2

Table 4: Performance of di�erent base models after training on the Human+GPT data mixture.
MMLU

(factuality)
GSM

(reasoning)
BBH

(reasoning)
TydiQA

(multilinguality)
Codex-Eval

(coding)
AlpacaEval

(open-ended) Average

EM
(0-shot)

EM
(8-shot, CoT)

EM
(3-shot, CoT)

F1
(1-shot, GP)

P@10
(0-shot)

Win % vs
Davinci-003

Pythia 6.9B 34.8 16.0 29.2 32.8 20.9 23.5 26.2
OPT 6.7B 32.6 13.5 27.9 24.1 8.9 25.9 22.2
LLAMA 7B 44.8 25.0 38.5 43.5 29.1 48.6 38.3
LLAMA-2 7B 49.2 37.0 44.2 52.8 33.9 57.3 45.7

Pairwise preference. We then ask humans to compare the outputs of two systems and select which
one they think is more helpful. This is a 5-way decision, and the raters could select if one of the
responses is “clearly” or “slightly” better than the other or if it is a tie implying that both responses
were equally good or bad.
To get a more reliable evaluation, we recruited a group of 18 expert annotators who are researchers at
AI2 or students at UW. All of them are fluent English speakers, holding bachelor’s degrees or above.

5 Results

5.1 Analysis of Instruction Tuning Datasets and Base Models

To understand how the instruction datasets listed in Table 1 contribute to model abilities, we evaluated
LLaMa 13B models trained on these datasets using our evaluation suite. Table 3 shows the results on
our benchmark evaluation set, with more extensive results in App. F. We find that:
There is not a single best instruction tuning dataset across all tasks. Di�erent datasets enable
di�erent capabilities in the model. Noteworthy examples include training on CoT being particularly
helpful for mathematical reasoning in GSM and Code-Alpaca being helpful for Codex-Eval. We
hypothesize that success on these tasks, which are significantly di�erent from the rest of the evaluation
tasks, calls for training sets where these tasks are well-represented. Apart from constructing task-
specific datasets manually, distilling task-specific data from large models also appears to be an e�ective
way to ensure this (e.g., CodeAlpaca is distilled from Davinci-003).
Combining datasets results in the best overall performance on the benchmark tasks. While
models trained on our combination datasets are often not the best model for a single task (being the
best only in 2 out of 6 evaluation settings), they are the best when measuring average performance
across tasks. This suggests that future work into better dataset mixing or instruction-tuning modular
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Table 5: Performance of TÜLU and other of our trained models to vanilla LLAMA models and the
state-of-the-art proprietary models across evaluation settings. See Table 8 for a complete list.

MMLU
(factuality)

GSM
(reasoning)

BBH
(reasoning)

TydiQA
(multilinguality)

Codex-Eval
(coding)

AlpacaEval
(open-ended) Average

EM
(0-shot)

EM
(8-shot, CoT)

EM
(3-shot, CoT)

F1
(1-shot, GP)

P@10
(0-shot)

Win % vs
Davinci-003

Vanilla LLaMa models ↓
LLaMa 7B 31.5 10.0 33.0 38.4 20.5 - -
LLaMa 13B 42.3 14.5 39.3 43.2 28.6 - -
LLaMa 30B 54.6 36.0 49.5 55.3 42.8 - -
LLaMa 65B 58.7 50.0 58.1 56.8 46.9 - -
LLaMa-2 7B 41.8 12.0 39.3 51.2 26.8 - -
LLaMa-2 13B 52.0 25.0 48.9 56.5 32.5 - -

65B models trained on alternate data mixtures ↓
ShareGPT 65B 61.3 (+2.6) 59.0 (+9.0) 55.8 (-2.3) 31.6 (-25.2) 56.2 (+9.3) 73.6 56.3
Human mix. 65B 60.4 (+1.7) 60.0 (+10.0) 54.8 (-3.3) 58.3 (+1.7) 44.6 (-2.3) 43.4 53.6

models trained on our final Human+GPT data mixture ↓

TÜLU 7B 44.8 (+13.3) 25.0 (+15.0) 38.5 (+5.5) 43.5 (+5.1) 29.1 (+8.6) 48.6 38.3
TÜLU 13B 49.3 (+7.0) 40.5 (+26.0) 43.3 (+4.0) 45.6 (+2.4) 35.9 (+7.3) 56.5 45.2
TÜLU 30B 57.7 (+3.1) 53.0 (+17.0) 51.9 (+2.4) 51.9 (-3.4) 48.0 (+5.2) 62.3 54.1
TÜLU 65B 59.2 (+0.5) 59.0 (+9.0) 54.4 (-3.7) 56.6 (-0.2) 49.4 (+2.5) 61.8 56.7

models trained on our final Human+GPT data mixture using LLAMA-2 ↓

TÜLU-1.1 7B 49.2 (+7.4) 37.0 (+25.0) 44.2 (+4.9) 52.8 (+1.6) 33.9 (+7.1) 57.3 45.7
TÜLU-1.1 13B 52.3 (+0.3) 53.0 (+28.0) 50.6 (+1.7) 58.8 (+2.3) 38.9 (+7.4) 64.0 52.9

Proprietary models ↓
ChatGPT 67.9 76.0 66.1 51.9 88.4 83.6 72.3
GPT-4 82.4 92.5 88.0 70.8 94.1 93.5 86.9

models (e.g., mixture-of-experts [40]) is a promising direction for developing models that retain
strong performance across all evaluation settings.
Base model quality is extremely important for downstream performance. We examine the impact
of using di�erent base models in Table 4, comparing LLAMA, OPT [54], and Pythia [4] models of
comparable size trained on the Human+GPT data mix. Across all evaluation settings, we find that
using LLAMA performs best by a significant margin, likely due to the fact that LLAMA is pretrained
on significantly more tokens than the other models (see Table 2). This suggests that models pretrained
on larger (or potentially higher-quality) corpora are preferable as base models for instruction tuning.
The later addition of LLAMA-2 confirms this finding by showing a significant improvement can come
from only the base model upgrade.
Some datasets degrade vanilla model performance. Notably, most datasets we evaluate cause
degradation in performance on GSM and TydiQA over the vanilla base model. We hypothesise
this is due to data style and quality. Many of the datasets we examine contain little to no examples
of chain-of-thought-style reasoning and contain little to no multilingual data. As such, training on
these datasets likely results in some forgetting of the CoT or multilingual abilities previously held
by the model, resulting in degraded performance. Additionally, we note that self-instruct appears
to cause degradations across most tasks, which we hypothesise is due to the relatively poor quality
of the original self-instruct data, being generated by a weaker model (base GPT-3) than the other
GPT-distilled datasets.

5.2 Pushing the Limits of Open Models

Having established that (a) using a broad mix of data is best, and (b) using LLAMA as the base
model is preferable to other open alternatives, we compare the performance of models trained on the
Human+GPT data mix (TÜLU models) across all LLAMA sizes in Table 5. We find that:
Instruction tuning brings large benefits on top of LLAMA models at all sizes. On average, all
LLAMA models improve considerably after instruction tuning.
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Smaller models benefit most from instruction tuning. We find that relative improvements from
instruction tuning are largest for the smallest models, and shrink as models get larger. Notably, the
65B LLAMA model performs comparably or better than the 65B TÜLU model on MMLU, BBH,
and TydiQA. This suggests that instruction-tuning does not help to enhance strong capabilities
already present in the original model, and also highlights that care must be taken during finetuning
to avoid forgetting the base model’s original capabilities.
TÜLU still lags behind state-of-the-art proprietary models. Despite the impressive performance of
TÜLU 65B, it lags behind ChatGPT and GPT-4 in all evaluation settings, contrary to prior claims that
models trained on these open resources can match ChatGPT [56, 8]. We note we cannot discount the
possibility that either ChatGPT or GPT-4 was trained on significant portions of our evaluation
suite. However, the presence of a significant gap between TÜLU models and ChatGPT matches our
findings in the model and human-based evaluations, which are less likely to be compromised.

5.3 Evaluation of Potential Risks and Harms

ToxiGen (↓) TruthfulQA (↑)
Model ↓ 7B 13B 7B 13B
LLAMA 85.4 82.6 26.2 23.6
+ SuperNI 85.3 77.3 26.7 26.2
+ CoT 63.0 43.9 35.1 35.5
+ Flan V2 77.5 61.4 33.2 33.4
+ Dolly 72.1 78.9 30.1 32.9
+ Open Assistant 1 39.2 5.2 40.9 48.6
+ Self-instruct 89.0 89.3 22.4 22.4
+ Unnatural Inst. 35.8 55.7 27.3 31.7
+ Alpaca 63.2 58.1 33.5 39.8
+ Code-Alpaca 84.3 92.0 25.1 26.7
+ GPT4-Alpaca 3.9 1.2 51.2 56.7
+ Baize 77.2 41.2 42.4 43.9
+ ShareGPT 5.5 2.5 45.3 60.0
+ Human mix. 51.8 76.9 34.1 32.1
+ TÜLU 10.6 0.1 44.6 41.6

ChatGPT 27.7 75.2
GPT-4 10.6 82.3

Table 6: Performance of models on ToxiGen
(% toxic generations, lower is better) and Truth-
fulQA (% truthful and informative answers,
higher is better). See Table 9 and Table 10 for
the full breakdown of these two evaluations.

We evaluate our models on ToxiGen and Truth-
fulQA to measure the degree to which di�erent
datasets are likely to yield models that generate
toxic language or misinformation. We find that:
Trends remain similar to capability-focused
benchmarks. Similarly to the results in Sec. 4.1,
we find that GPT-distilled datasets yield the best
overall performance and that there is a large vari-
ance in performance across datasets.
Models trained on GPT-sourced data yield
less toxic generations than GPT. Larger mod-
els trained on GPT-distilled data appear to refuse
to produce toxic generations almost entirely, de-
spite the fact that ChatGPT and GPT-4 produce
toxic generations a non-trivial amount of the
time. We hypothesise this is due to our models
overfitting on refusal-style behaviour, refusing to
generate anything moderately toxic, while GPT
models balance refusal behaviour with helpful-
ness to a greater extent.
TruthfulQA performance does not scale. Un-
like other benchmarks, we find that TruthfulQA
performance does not improve with model size.
Further examining this, we find that larger mod-
els do output more correct facts, but also tend to

hedge and refuse to give informative answers more often, resulting in little to no overall improvements
as model size increases.

5.4 Model-Based Evaluation Results for Open-Ended Generation

We report the AlpacaEval win-rates of our models in Table 7. We find that:
Models trained on mixtures based on traditional NLP datasets perform poorly. CoT, FLAN, and
SuperNI all perform extremely poorly in open-ended instruction following, despite these datasets
providing large improvements to the model capabilities tested in Table 3.
Datasets that encourage long, diverse generations perform best. Intrigued by ShareGPT’s perfor-
mance, we plot the average number of unique tokens in model generations against the AlpacaEval
win-rate in Figure 2. We find that the evaluation is strongly correlated with the average number
of unique tokens (Pearson correlation of 0.96, p ~ 0.05). Given GPT-4’s strong performance on
other tasks, we do not believe that GPT-4 evaluation is merely counting unique tokens, but this result
highlights how model preference scores do not necessarily reward only model capabilities.
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Training Dataset ↓ 7B 13B 30B 65B
SuperNI 2.9 4.2
CoT 5.0 6.0
Flan V2 3.1 3.2
Dolly 11.0 13.7
Open Assistant 1 51.4 58.1
Self-instruct 4.0 5.0
Unnatural Instructions 7.5 8.4
Alpaca 21.4 21.9
Code-Alpaca 15.3 15.8
GPT4-Alpaca 57.3 63.1
Baize 20.0 21.9
ShareGPT 62.4 70.5 69.1 73.6
Human mix. 28.7 35.0 38.3 43.4
TÜLU 48.6 56.5 62.3 61.8

Table 7: Win-rate (%) of LLAMA models of vary-
ing sizes finetuned on the given dataset against
Davinci-003 using AlpacaEval [27].
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Figure 2: Win-rate scores of 13B models (trained
on di�erent datasets) given by GPT-4 strongly
correlate with the average numbers of unique to-
kens in the model responses (Pearson r = 0.96).
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Figure 3: Human acceptance
rates for four evaluated models.
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Figure 4: Human preference rates for three comparison pairs of
models.

ShareGPT performs best. We find that ShareGPT consistently performs best across all model
sizes, including models trained on data mixes that include ShareGPT. Models trained on ShareGPT
achieve higher win-rates than models over twice their size (e.g., 13B ShareGPT vs 65B TÜLU). We
hypothesize this is due to ShareGPT’s diversity, size, and the high average # tokens of target responses.
Overall, these results suggest that while model preference evaluation is important, it does not provide
a holistic evaluation of these models. Instead, model preference evaluation should only be included
as part of a larger, more comprehensive evaluation setup.

5.5 Human Evaluation Results for Open-Ended Generation

Finally, we show the human evaluation results in Figure 4 and we refer the reader to Appendix §G.2 for
the inner-annotator agreement. We find that the human evaluation results largely correlate with the
AlpacaEval and benchmark-based evaluation: all evaluations show that 65B TÜLU outperforms
7B TÜLU, suggesting making use of larger base models is important, and there is still a nontrivial
gap in performance between 65B TÜLU and ChatGPT. We also find that making use of distilled
datasets provides a large performance boost, suggesting that human-authored datasets are lacking
in comparison. These observations are also consistent with the acceptability scores in Figure 3.
However, we note that 7B TÜLU outperforms the human-mix 65B TÜLU in the model preference
evaluation, but if we compare the acceptability scores in Figure 3, the opposite appears true. This is
further evidence that model pairwise evaluation may not always reveal model deficiencies. In this
case, the 65B human-mix model is more likely to yield acceptable (if not high-quality) responses
than the 7B model.
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6 Related Work

Instruction Tuning of LMs Finetuning language models on diverse instruction sets alongside
regular samples has been shown to greatly improve zero-shot performance on unseen tasks [39, 51,
49, 32, 9, 48], and serves as a good base for further finetuning in supervised settings [31]. Increasing
the number of diverse prompts [39], the number of tasks [48, 9], and diversity of data [56] have all
been shown to be important to performance. More recently, a growing number of models have made
use of model-generated instruction-augmented data [47, 23, 25, 53], most often generated or collected
from larger proprietary models such as ChatGPT or GPT-4 [8, 15, 43, 52, 36, inter alia]. Despite
the explosion of models and datasets, evaluation remains inconsistent and di�cult, with di�erent
evaluation setups used across models. Prior work has examined models trained on varying dataset
sources with the aim of identifying ‘the best mixture’ [31, 24], but is often limited to examining
only benchmark performance, and covers a smaller number of instruction sources than in this work.
QLoRA [14] also explores (quantized and parameter-e�cient) instruction-tuning of recent models
and datasets, but explores a smaller range of models, datasets, and evaluations than this work.

Evaluation of LMs Given the success of LMs on NLP and instruction-following tasks, many
evaluation frameworks have been proposed. Frameworks such as HELM [28] and LM Evaluation
Harness [17] cover a broad range of NLP tasks but are often focused on evaluating the base models
as opposed to instruction-tuned ones. Similar to our work, Chung et al. [9] focus on a series of
benchmark evaluations focused around factuality and reasoning, but largely neglect open-ended
instruction following abilities. Releases of large (closed) proprietary models such as GPT-4 [34]
and PaLM v2 [2] are often accompanied by comprehensive evaluations over a wide variety of
benchmarks, although both similarly neglect evaluation of open-ended instruction following, and
without open releases of pretraining or instruction tuning data there is no way to test for evaluation
data contamination.
Recently, evaluation frameworks such as AlpacaEval [27] and Chatbot Arena [55] have been proposed
to evaluate the open-ended instruction following ability of LMs, moving beyond benchmark-based
evaluations. These either make use of other models (in the case of AlpacaEval) or humans (in the
case of Chatbot Arena) as annotators for judging model generations. We make use of this recent
work and evaluate our models on traditional benchmarks, model-based evaluation, and human-based
evaluation. Concurrent to this work, Gudibande et al. [20] examine models trained on GPT model
outputs and argue that such models learn to mimic only the style, not the content, of their teacher GPT
models. While we similarly find that existing datasets fail to train models close to strong proprietary
models, the diversity of performance we observe across datasets suggests that significant performance
improvements can be achieved through imitation data, so long as it contains a diverse and wide-ranging
set of skills and domains.

7 Conclusion

In this work, we provide an extensive evaluation of a wide variety of publicly-available resources for
instruction-tuning models, and compare them to the strongest proprietary models currently available.
We find that using strong base models is vital to performance, combining datasets works best on
average (but does result in slight performance drops compared to best performance in specific tasks),
and our strongest open models do not yet match ChatGPT or GPT-4. Furthermore, we believe that
our evaluation highlights the need for the continued development of strong base models and broader,
diverse datasets. Finally, we hope that our evaluation and released code and models enable more
comprehensive evaluations and spur research to close these gaps and shed insights on all large language
models, closed or open.
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Supplementary Material

A Limitations

Despite the comprehensiveness of our evaluations, we note that we did not exhaustively cover all
possible evaluations: for example, we do not explicitly evaluate models on their multi-turn dialogue
abilities nor their summarization abilities. Instead, we focus on a core set of capabilities we believe
important, and cover broad open-ended tasks via our model and human preference-based evaluations.
We also note that we do not cover all possible instruction datasets and open models released re-
cently, due to the computational cost of doing this. Instead, we focus on a wide set of datasets we
believe are broadly representative of the type of open instruction datasets available (human-authored,
skill-targeted, GPT-distilled, etc), and focused on the strongest base model widely available when
performing experiments. Future work could investigate whether more recent strong base models (e.g.,
the Falcon model [1]), or other instruction datasets, perform significantly better or di�erently from
the models explored in this work.
Finally, we note that open-ended instruction-based evaluation is highly subjective and di�cult due to
its extremely open-ended nature. There is likely no one answer that is definitively the best for any
given query, and di�erent annotators (whether they be human or model) will have di�erent biases
and preferences. We also note that in the case of model-based evaluations, we primarily compare our
model outputs to Davinci-003 generations, which may result in overly rewarding models that avoid
shortcomings of Davinci-003, or not properly rewarding models that share strengths with Davinci-003.
Despite not being completely exhaustive in this work, we believe that by covering a broad range of
models, it still serves as a useful and important contribution in showing what type of open resources
work, and where future community e�orts should go (better base models, more diverse instruction-
tuning datasets).

B Broader Impact

We believe that a rigorous evaluation of existing resources is broadly positive, exposing the strengths
and deficiencies of currently widely-available resources. Furthermore, as all resources used are widely
available, the harm posed by training these models is fairly small. We do note that training and
releasing especially large instruction-tuned models without well-tested guides carries a degree of risk,
and such initially release our largest models with a gated setup (requiring users to apply for access
and be manually approved) to limit potential harms.

C Instruction Datasets Details

We provide a brief description of all the instruction datasets used (and licenses) below:

• SuperNI: A collection of diverse NLP tasks with instructions, created by Wang et al. [48]. The
dataset uses the Apache-2.0 license.

• CoT: A collection of datasets annotated with chain-of-thoughts [50]. We use the CoT mixture from
the FLAN v2 collection [9], splitting it out as a separate dataset. The FLAN mixture is released
under the Apache-2.0 license, although the component datasets may not use this license.

• Flan V2: A collection of NLP tasks that combines a number of existing NLP datasets with various
data augmentations, introduced by Chung et al. [9]. The mixture is released under the Apache-2.0
license, although the component datasets may not use this license.

• Dolly: A collection of instruction-following samples created by Databricks employees [12]. The
dataset is released under the Creative Commons Attribution-ShareAlike 3.0 Unported License.

• Open Assistant 1: A crowdsourced human-annotated assistant-style conversation corpus, consist-
ing of a large number of sample conversations in a wide variety of languages [26]. The dataset is
released under the Apache-2.0 license.

• Self-Instruct: A dataset of instruction-following samples created by prompting GPT-3 to create
new samples given some example instances [47]. The dataset is released under the Apache-2.0
license.
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• Unnatural Instructions: A dataset of instruction-following samples created by prompting Davinci-
002 using the method introduced by Honovich et al. [23]. The dataset is released under the MIT
license.

• Alpaca: A dataset created using a self-instruct-style method with Davinci-003 as the generation
model and some over improvements over self-instruct [43]. The dataset is released under a
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.

• Code-Alpaca: A dataset created using the Alpaca method, but focussing on code generation [6].
The dataset is released under the Apache-2.0 license.

• GPT-4 Alpaca: A dataset created using the Alpaca dataset as inputs, but replacing the example
generations with generations from GPT-4 [36]. We include this to see the e�ect of using a better
quality generation model. The dataset is released under the Apache-2.0 license.

• Baize: A dataset created by prompt ChatGPT and letting it converse with itself [52]. The dataset is
released under the GNU General Public License v3.0.

• ShareGPT: A collection of user interactions with various chat systems publicly shared. We use the
‘html-cleaned’ variant available at https://huggingface.co/datasets/anon8231489123/
ShareGPT_Vicuna_unfiltered/tree/main/HTML_cleaned_raw_dataset. We then split
long conversations (over 2048 tokens) into max-2048 token chunks, following the Vicuna setup
[8]. We do not do any further filtering of samples. This dataset is released under the Apache-2.0
license.

We note that the SuperNI and CoT datasets are included in the FLAN V2 collection but only account
for a small portion of our subsampled FLAN V2 dataset.
We also note that we broadly use popular already publicly available instruction-tuning datasets,
and in the case of human-authored datasets, largely use datasets created explicitly (with participant
knowledge) for the purpose of training models (e.g., Dolly, Open Assistant 1). As instruction-tuning
data, most data is not likely to contain personally identifying details, although we note that we did not
make an e�ort to remove o�ensive content, so our models may produce toxic or harmful generations.

D Model Training Details and Compute

We train all models for two epochs with a learning rate of 2e*5 (1e*5 for 30B and 65B models), with
no weight decay and a learning rate with linear decay and linear warmup for 3% of the total training
steps. We use a maximum sequence length of 2048 (1024 for 30B and 65B), truncating samples where
necessary. During training, we make use of the DeepSpeed library [38] and ZeRO optimizer [37]
to allow for large-scale model finetuning. In all cases, we fully finetune models. We trained models
primarily on the CSC LUMI GPU cluster, each node on which contains 4 AMD MI250x GPUs.

E Evaluation Setups

We provide further details on the evaluation setups used below. We also note that we release evaluation
code along with our training code to allow easy reproduction.

• MMLU: We use the o�cial MMLU evaluation script and prompts available at https://github.
com/hendrycks/test, with modifications to allow for batch processing. We evaluate using 0
and 5 few-shot examples, following the original setup of MMLU.

• GSM: We evaluate models on the test set of GSM. Following Wei et al. [50], we evaluate with
and without chain-of-thought (CoT vs Direct). Both settings use 8 few-shot in-context examples
(in the chain-of-thought setting, the few-shot examples are accompanied by chain-of-thoughts).
Because all answers in GSM are numbers, we extract the last number in the model response as the
final answer. To allow for faster evaluation, we randomly sampled 200 examples from the 1319
testing examples, which we find gives similar performance as the full-set evaluation.

• BBH: We follow the setup described in the original paper Suzgun et al. [42], and evaluate with and
without chain-of-thought (CoT vs Direct). The o�cially provided prompts, which have 3 few-shot
in-context examples are used for both CoT and Direct setups. For the CoT setup, we extract the first
word after the phrase ‘So the answer is’, or the entire response if there is no such substring present.
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• TydiQA We follow the setup described in the PaLM 2 technical report [2] to evaluate models’
performance in answering multilingual questions under two settings: 1) when the gold passage that
contains the answer is given (GoldP/GP); 2) when there is no context given (Closed-Book/CB).
One in-context example is used to familiarize the model with the answering format.

• Codex-Eval We use the HumanEval dataset in the Codex paper [7] for evaluating models’ coding
ability. The dataset contains 164 programming problems, where models are prompted to complete
the Python function given its docstring. Following the original paper, we compute unbiased
estimates of pass@k to measure the functional correctness of models’ outputs. We report both
pass@1 and pass@10. The pass@1 results were obtained by sampling with a temperature of 0.1
and the pass@10 results with a temperature of 0.8.

• ToxiGen We follow the setup in Touvron et al. [45], but use the original set of prompts from
Hartvigsen et al. [21], which are designed to elicit toxic generations for certain groups. We take
only the prompts designed to produce toxic language (‘hateful’ prompts) and use 500 prompts
per group to reduce evaluation costs. For base language models, we pass in the original ToxiGen
prompts unchanged and greedily decode up to the first new line (or a maximum of 512 tokens). For
instruction-tuned models, we place the prompt in the corresponding template, and ask the model to
complete the prompt, until the model generates a stop token (or a maximum of 512 tokens). We
pass the generated text into a roberta-large model trained to detect toxic content finetuned as part of
Hartvigsen et al. [21]5. We then report the percentage of generations deemed toxic by the classifier.

• TruthfulQA Following Touvron et al. [45], we mainly use the generation setting of TrutufulQA
[30]. The TrutufulQA dataset contains 818 questions, which are used to prompt the tested model to
generate answers. We use the default QA prompt format with 6 in-context QA examples. We follow
the o�cial script in their o�cial implemention 6 to do greedy decoding and answer postprocessing.
We also follow their instruction to train two GPT-based classifiers for judging the truthfulness
and informativeness of the model response. We report the rate of the responses being truthful
(% Trutuful), informative (% Informative), and both (% Informative and Truthful) as our metrics.
Following Touvron et al. [45], we only report the (% Informative and Truthful as our primary
metric in the main paper.

• AlpacaEval We use the package provided by Li et al. [27], following the default setup which asks
the evaluated model to generate responses for 805 prompts and employ GPT-4 to compare the
response with Davinci-003. We employ the “alpaca_eval_gpt4_0314” annotator config instead of
“alpaca_eval_gpt4” to make the results reproducible. We allow the evaluated model to generate up
to 8192 tokens, without specifying special stop sequences. The reported win-rate is the percentage
of model generations that GPT-4 reports as being preferred over the generations from Davinci-003.

For all the evaluations, we load models using the 8-bit mode [13] provided in the Huggingface
Transformers library, which we find speeds up the inference significantly and has negligible impact
on the final performance. When doing generation, we use greedy decoding and a max length of 512
tokens, unless otherwise specified.

F Overview of All Automatic Evaluation Results

Table 8 presents a compilation of the results of all models trained as part of this work on all the
core capability evaluation benchmarks. We list multiple scenarios for all evaluation settings except
AlpacaEval, which has one setting. Please refer to §E for the meanings of the reported metrics. We
also calculate an average across benchmarks in Table 8. This is calculated by first calculating a
per-benchmark average by taking the average across scenarios. We then compute the overall average
with each benchmark weighted equally.
Additionally, for safety evaluation, we provide ToxiGen results broken down by group targeted in
Table 9 for all models, from which we can see some groups are specially targeted, even after instruction
tuning. We all provide full TruthfulQA results in Table 10. The results are broken down into %
informative and % truthful - see Lin et al. [29] for details on these metrics.

5https://huggingface.co/tomh/toxigen_roberta
6https://github.com/sylinrl/TruthfulQA/
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Table 8: An overview of the performance of all models finetuned for this work, along with proprietary
models, on selected benchmarks. To calculate the average, we calculate the average per benchmark
and then take the average across these. See App. F for more details.

MMLU GSM BBH TydiQA Codex-Eval AlpacaEval Average
0-shot 5-shot Direct CoT Direct CoT GP CB P@1 P@10 v Davinci-003 -

Proprietary models ↓
GPT-4 82.4 83.9 35.0 92.5 50.9 88.0 70.8 27.6 85.7 94.1 93.5 74.8
ChatGPT 67.9 69.9 32.5 76.0 49.0 66.1 51.9 20.0 72.2 88.4 83.6 63.4

LLaMa 65B finetuning experiments ↓
Vanilla LLaMa 58.7 63.3 14.0 50.0 46.2 58.1 56.8 18.1 23.5 46.9 - -
ShareGPT 61.3 62.8 23.0 59.0 40.0 55.8 31.6 9.8 30.8 56.2 73.6 48.1
Human mix. 60.4 61.4 8.5 60.0 53.1 54.8 58.3 15.9 23.9 44.6 43.4 44.0
H+GPT mix ( ) 59.2 60.8 10.0 59.0 48.4 54.4 56.6 13.3 29.2 49.4 61.8 47.0

LLaMa 30B finetuning experiments ↓
Vanilla LLaMa 54.6 57.9 12.0 36.0 41.4 49.5 55.3 15.8 22.0 42.8 - -
ShareGPT 54.6 57.5 20.5 47.5 42.2 51.1 34.6 10.7 28.1 49.8 69.1 44.6
Human mix. 56.5 58.8 5.5 52.0 46.8 50.6 57.5 14.5 24.8 41.3 38.3 40.4
H+GPT mix ( ) 57.7 58.4 6.0 53.0 47.1 51.9 51.9 13.0 27.2 48.9 62.3 44.9

LLaMa 13B finetuning experiments ↓
Vanilla LLaMa 42.3 46.4 7.0 14.5 37.1 39.3 43.2 11.5 16.2 28.6 - -
SuperNI 49.7 50.3 2.5 4.0 9.4 4.5 50.2 9.6 8.2 12.9 4.2 20.0
CoT 44.2 45.2 12.5 40.0 38.7 41.9 47.8 9.1 12.8 23.7 6.0 27.3
Flan V2 50.6 51.2 3.0 20.0 41.7 40.8 47.2 11.4 9.0 16.8 3.2 24.8
Dolly 45.6 45.1 7.0 18.0 32.3 28.4 46.5 11.6 12.9 31.0 13.7 25.5
Open Assistant 1 43.3 36.7 5.0 15.0 35.9 39.6 33.4 10.3 16.1 31.9 58.1 32.0
Self-instruct 30.4 32.1 4.5 11.0 33.2 30.7 41.3 8.5 8.7 12.5 5.0 18.6
Unnat. Instruct. 46.4 45.7 5.5 8.0 37.9 33.7 41.0 8.5 14.4 23.9 8.4 23.5
Alpaca 45.0 46.9 7.0 9.5 36.0 36.6 31.1 7.9 14.6 29.9 21.9 25.7
Code-Alpaca 42.5 44.3 4.5 13.5 35.9 35.6 38.9 10.2 21.3 34.2 15.8 26.0
GPT4-Alpaca 46.9 47.1 9.0 16.5 38.2 38.8 23.5 6.2 15.1 36.6 63.1 33.7
Baize 43.7 41.6 5.0 10.0 37.2 38.7 33.6 7.2 15.1 28.7 21.9 25.4
ShareGPT 49.3 47.7 6.0 27.0 23.1 40.4 30.5 7.1 16.1 34.1 70.5 35.2
Human mix. 50.2 51.2 6.0 38.5 43.9 39.6 47.0 8.8 11.9 25.0 35.0 32.7
H+GPT mix ( ) 49.3 51.9 4.5 40.5 40.7 43.3 45.6 9.2 21.2 35.9 56.5 37.9

LLaMa-2 13B finetuning experiments ↓
Vanilla LLaMa-2 52.0 55.5 10.0 25.0 41.8 48.9 56.5 17.2 18.1 32.5 - -
H+GPT mix ( ) 52.3 54.6 5.0 53.0 44.1 50.6 58.8 15.7 23.5 38.9 64.0 43.7

LLaMa 7B finetuning experiments ↓
Vanilla LLaMa 31.5 33.8 5.0 10.0 32.2 33.0 38.4 9.0 11.0 20.5 - -
SuperNI 44.1 43.5 3.0 4.5 37.4 3.3 43.4 7.5 7.0 12.1 2.9 17.6
CoT 41.8 42.2 6.5 27.5 36.2 33.9 36.3 5.6 8.8 15.7 5.0 22.0
Flan V2 45.4 46.9 3.5 13.0 34.4 36.0 38.5 9.0 9.8 12.9 3.1 21.3
Dolly 38.1 35.0 4.5 5.5 28.3 23.8 39.8 9.7 11.4 22.5 10.9 20.1
Open Assistant 1 33.0 30.2 6.0 10.0 21.5 31.8 26.8 6.8 10.4 21.7 51.4 25.1
Self-instruct 35.6 32.7 3.5 7.0 31.5 29.4 34.5 7.1 6.2 11.8 4.0 17.3
Unnat. Instruct. 43.1 37.8 3.5 7.0 32.9 32.7 37.3 6.9 9.2 16.8 7.5 20.2
Alpaca 41.6 40.0 7.0 7.5 34.1 31.2 29.4 7.3 10.4 21.7 21.4 22.7
Code-Alpaca 34.3 33.7 6.5 7.0 31.1 30.6 35.8 9.5 16.6 28.2 15.3 22.0
GPT4-Alpaca 42.2 37.4 6.5 10.5 30.9 32.3 20.6 4.9 13.2 26.2 57.3 28.3
Baize 40.5 38.1 4.0 6.5 31.3 34.0 29.1 6.8 11.5 26.5 20.0 22.4
ShareGPT 44.5 39.5 6.0 9.5 9.7 34.1 22.8 7.2 12.3 21.2 62.4 27.6
Human mix 46.2 48.2 4.5 25.5 38.8 35.6 43.2 8.0 9.5 20.2 28.7 28.1
H+GPT mix ( ) 44.8 47.1 7.0 25.0 38.5 38.5 43.5 8.0 18.6 29.1 48.6 33.1

LLaMa-2 7B finetuning experiments ↓
Vanilla LLaMa-2 41.8 46.1 8.0 12.0 32.2 39.3 51.2 15.1 13.3 26.8 - -
H+GPT mix ( ) 49.2 50.5 6.5 37.0 38.6 44.2 52.8 11.9 20.4 33.9 57.3 38.3

Non-LLaMa 7B finetuning experiments ↓
OPT 6.7B 25.0 24.6 7.0 3.0 0.0 28.5 18.8 4.2 0.6 0.9 - -
+H+GPT mix 32.6 33.7 3.0 13.5 30.6 27.9 24.1 3.6 5.2 8.9 25.9 19.6

Pythia 6.9B 25.8 26.2 4.5 3.5 0.0 28.1 25.6 3.6 7.5 13.7 - -
+H+GPT mix 34.8 35.0 4.0 16.0 31.7 29.2 32.8 2.8 14.9 20.9 23.5 22.4
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Table 9: ToxiGen results across models. We report the percentage of generations deemed toxic by a
separate classifier, broken down by the group the prompt is designed to produce toxic generations
about.

Asian Black Chinese Jewish Latino LGBTQ Ment. Mexican Mid. East Muslim Nat. Amer. Phys. Trans. Women Overall
Proprietary models ↓

GPT-4 6.0 0.0 31.0 0.0 4.0 4.0 14.0 4.0 9.0 5.0 0.0 8.0 3.0 61.0 10.6
ChatGPT 2.0 16.0 33.0 2.0 11.0 27.0 40.0 17.0 16.0 35.0 0.0 78.0 27.0 84.0 27.7

LLaMa 65B models ↓
LLaMa 66.4 99.4 66.2 97.0 86.8 83.6 96.0 90.6 96.0 92.2 100.0 78.6 64.2 78.6 85.4
ShareGPT 0.0 0.0 0.0 0.0 0.0 0.2 2.0 0.0 0.0 0.2 0.0 4.2 1.0 0.8 0.6
Human mix. 39.8 13.0 54.2 7.4 21.6 17.0 49.0 36.2 4.8 8.6 14.0 16.0 13.6 58.4 25.3
H+GPT mix ( ) 0.0 0.0 9.2 0.0 0.0 9.0 25.0 4.6 3.2 1.8 0.0 18.8 9.6 26.2 7.7

LLaMa 30B models ↓
LLaMa 71.2 98.2 72.8 97.4 66.6 79.6 98.6 92.8 96.0 92.0 100.0 86.4 58.4 90.4 85.7
ShareGPT 0.0 0.0 0.0 0.0 0.0 0.2 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.1
Human mix. 17.8 45.0 21.0 32.0 72.4 22.0 68.0 72.4 15.6 3.2 12.4 26.4 32.8 41.4 34.5
H+GPT mix ( ) 0.0 0.0 4.4 0.0 1.2 3.0 8.4 0.8 0.6 2.8 0.0 2.2 1.4 17.4 3.0

LLaMa 13B models ↓
LLaMa 39.2 90.6 81.6 85.8 64.6 76.6 98.8 89.0 97.0 97.0 100.0 90.0 67.8 78.6 82.6
SuperNI 56.6 97.2 88.8 87.2 95.8 74.6 45.6 96.6 87.4 39.6 78.2 76.2 79.2 79.2 77.3
CoT 13.8 54.0 37.0 42.8 62.4 59.8 25.0 71.0 32.0 43.6 51.0 21.0 58.8 42.2 43.9
Flan V2 39.8 70.6 39.4 46.0 81.8 59.6 89.0 55.8 55.2 33.2 85.8 56.6 76.0 70.6 61.4
Dolly 99.6 79.8 87.2 93.0 100.0 87.0 53.8 96.2 68.8 60.4 97.2 50.0 73.2 57.8 78.9
Open Assistant 1 0.8 0.0 0.8 0.0 0.0 27.0 11.4 2.8 1.2 1.2 0.6 5.8 20.4 0.4 5.2
Self-Instruct 98.4 99.6 57.8 95.2 89.8 86.6 97.4 96.0 95.4 76.8 100.0 78.8 80.0 97.8 89.3
Unnat. Instruct. 37.6 82.2 55.4 97.4 24.0 38.0 74.8 67.2 40.8 26.0 74.6 47.4 57.0 57.8 55.7
Alpaca 86.8 39.0 94.2 56.2 76.0 61.6 30.2 73.0 59.0 50.2 13.2 56.0 46.2 71.4 58.1
Code-Alpaca 100.0 81.6 98.0 100.0 100.0 96.4 77.8 95.8 87.8 90.6 100.0 75.0 93.6 92.0 92.0
GPT4-Alpaca 0.4 0.0 0.2 0.0 3.8 4.6 1.6 1.4 0.0 0.0 0.0 0.4 3.4 1.0 1.2
Baize 46.2 12.2 83.4 6.6 58.2 47.4 52.6 10.4 20.8 34.2 44.8 47.6 32.2 80.2 41.2
ShareGPT 0.0 0.0 5.4 0.0 0.0 3.2 5.4 0.0 1.6 2.6 0.0 1.6 6.2 9.4 2.5
Human mix. 70.8 92.4 74.4 84.6 92.4 63.2 94.8 71.4 79.8 49.8 98.6 61.2 62.0 80.8 76.9
H+GPT mix ( ) 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.0 0.1

LLaMa-2 13B models ↓
LLaMa-2 58.8 89.6 88.2 97.8 81.6 71.0 96.4 93.2 92.6 91.4 100.0 91.0 63.8 84.0 85.7
H+GPT mix ( ) 0.0 16.4 3.8 3.8 44.6 22.8 23.0 39.4 5.8 9.0 49.6 14.8 6.4 22.8 18.7

LLaMa 7B models ↓
LLaMa 43.6 94.8 85.4 91.2 96.6 75.4 98.8 91.2 95.0 89.8 100.0 92.8 63.6 77.0 85.4
SuperNI 99.4 98.2 91.8 89.8 92.4 77.0 65.4 93.8 85.0 87.6 87.2 75.8 80.2 70.0 85.3
CoT 77.4 89.0 58.2 55.8 87.8 51.4 68.8 68.2 60.8 57.6 53.8 46.8 43.0 64.0 63.0
Flan V2 54.0 68.6 89.2 92.2 54.4 75.0 80.0 87.8 88.2 83.6 96.6 68.8 69.2 77.6 77.5
Dolly 90.2 90.6 83.8 98.8 94.0 82.4 66.6 93.0 56.0 41.2 1.2 55.8 68.2 88.0 72.1
Open Assistant 1 8.0 17.6 53.8 95.2 12.2 40.8 33.6 55.6 27.2 22.6 35.4 45.0 29.2 72.0 39.2
Self-Instruct 100.0 94.8 73.4 88.4 88.0 89.6 75.4 95.8 91.2 76.4 98.6 87.8 86.8 99.4 89.0
Unnat. Instruct. 4.0 13.0 25.8 81.4 8.2 29.4 89.8 9.8 14.2 12.4 55.6 19.6 75.0 62.4 35.8
Alpaca 97.0 40.8 97.2 79.8 51.4 69.6 48.2 67.6 54.0 57.2 37.4 57.4 45.4 81.2 63.2
Code-Alpaca 98.6 80.2 99.2 100.0 91.6 88.8 60.8 99.4 83.0 69.8 66.8 79.6 72.8 90.0 84.3
GPT4-Alpaca 6.8 0.4 14.6 2.0 0.0 6.2 2.2 3.2 0.8 2.2 0.0 3.8 2.6 9.8 3.9
Baize 99.8 57.8 89.4 95.2 81.6 81.0 78.6 47.2 66.2 68.6 86.4 65.0 66.6 97.6 77.2
ShareGPT 0.0 0.0 12.0 0.0 0.8 5.4 1.0 0.4 0.6 3.6 0.4 21.6 5.6 26.0 5.5
Human mix. 20.4 74.6 54.4 61.6 53.4 40.4 63.0 68.0 55.2 44.6 50.4 38.8 24.4 76.0 51.8
H+GPT mix ( ) 0.2 0.8 3.6 0.4 0.0 1.8 26.4 2.8 0.2 3.2 75.6 15.0 0.0 18.4 10.6

LLaMa-2 13B models ↓
LLaMa-2 51.0 96.8 86.8 28.4 32.6 78.6 95.4 92.2 93.8 88.6 94.4 90.4 85.2 68.6 77.3
H+GPT mix ( ) 21.8 59.0 71.0 18.4 23.2 15.4 74.2 60.8 39.2 3.6 45.2 21.0 14.6 90.8 39.9

Non-LLaMa 7B models ↓
OPT 52.8 96.6 74.8 85.6 77.6 71.6 97.6 96.4 94.8 91.4 97.6 93.6 68.8 67.2 83.3
+ H+GPT mix 63.6 83.0 68.2 48.2 21.8 39.2 54.4 43.8 43.4 28.6 73.2 72.2 35.8 75.6 53.6
Pythia 82.2 99.6 70.6 75.0 85.6 65.8 97.6 93.8 94.2 84.4 98.6 88.4 67.2 54.2 82.7
+ H+GPT mix 37.4 72.4 94.6 58.4 54.6 36.8 78.8 47.2 55.4 43.8 39.4 68.4 37.2 72.4 56.9
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Table 10: TruthfulQA results across models. We report percentage of answers that are informative,
or truthful, or both.

% Informative % Truthful % Informative
and Truthful

Proprietary models ↓
GPT-4 99.5 82.7 82.3
ChatGPT 96.0 79.2 75.2

LLaMa 65B models ↓
Vanilla LLaMa 85.8 45.2 31.2
ShareGPT 86.8 76.6 63.5
Human mix 98.0 42.2 40.4
H+GPT mix ( ) 90.5 58.3 48.7

LLaMa 30B models ↓
Vanilla LLaMa 92.0 35.7 28.3
ShareGPT 71.0 81.4 52.5
Human mix 98.2 43.2 41.5
H+GPT mix ( ) 92.8 53.2 46.0

LLaMa 13B models ↓
Vanilla LLaMa 95.1 30.8 26.2
SuperNI 96.8 27.8 25.1
CoT 92.7 41.6 35.5
Flan V2 91.2 42.1 33.4
Dolly 98.8 34.1 32.9
Open Assistant 1 91.3 57.2 48.6
ShareGPT 91.2 68.5 60.0
Self-instruct 93.4 28.8 22.4
Unnat. Instruct. 84.6 46.9 31.7
Alpaca 99.9 39.9 39.8
Code-Alpaca 98.9 27.5 26.7
GPT4-Alpaca 87.5 69.0 56.7
Baize 87.9 56.1 43.9
Human mix. 98.4 33.3 32.1
H+GPT mix ( ) 94.6 47.0 41.6

LLaMa-2 13B models ↓
Vanilla LLaMa 2 99.0 32.1 31.1
H+GPT mix ( ) 96.7 48.3 45.3

LLaMa 7B models ↓
Vanilla LLaMa 96.7 26.4 23.6
SuperNI 98.0 28.4 26.7
CoT 93.5 40.3 35.1
Flan V2 96.1 36.1 33.2
Dolly 98.5 31.5 30.1
Open Assistant 1 92.0 48.5 40.9
ShareGPT 76.4 68.5 45.3
Self-instruct 96.5 25.5 22.4
Unnat. Instruct. 89.8 37.0 27.3
Alpaca 98.8 34.8 33.5
Code-Alpaca 99.1 25.9 25.1
GPT4-Alpaca 84.2 66.7 51.2
Baize 88.5 53.7 42.4
Human mix 97.7 36.2 34.1
H+GPT mix ( ) 98.2 46.3 44.6

LLaMa-2 7B models ↓
Vanilla LLaMa 2 93.0 33.4 26.7
H+GPT mix ( ) 97.7 43.2 40.0
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G Human Evaluation Details

G.1 Setup

Here we provide more details for the human evaluation described in §4.3. Our evaluation contains 332
instructions, including 252 instructions from the Self-Instruct evaluation set [47] and 80 instructions
from the Vicuna evaluation set [8]. Our evaluation is conducted for three pairs of models: 1) TÜLU
65B vs ChatGPT, 2) TÜLU 65B vs TÜLU 7B, 3) TÜLU 65B v.s. a 65B LLAMA model trained on the
Human data mixture, using the same set of instructions for all three comparisons.
To ensure reliable evaluation, we recruited 18 expert annotators, which are researchers at AI2 or
students at UW, for the annotation. All these annotators are fluent English speakers and hold bachelor’s
degrees or above.
We design a website, shown in Figure 5, for our annotators to conduct the evaluation, and we will
release the code for this website. When doing the evaluation, annotators are instructed to read carefully
the prompt and outputs A and B from two models, and then answer three questions asking for the
acceptance of the outputs and their comparison in terms of helpfulness. They are encouraged to use
Google or any external tools that can help with the judgment. The model information is anonymized,
and their outputs are put in random order.

Figure 5: The website interface for our human evaluation (see App. G for details). Users need to log
in to the system, read the prompt and outputs from two models (with model names anonymized and
order randomized), then answer whether output A and output B are acceptable or not individually,
and finally compare them in terms of helpfulness.

G.2 Inter-Annotator Agreement

We measure the agreement of our annotators on a subset of 119 examples (63 instances randomly
sampled from the ChatGPT3 vs TÜLU 65B comparison, and 59 instances randomly sampled from
the TÜLU 65B vs TÜLU 7B comparison). We assign two annotators for each of these examples and
compute their agreement for both the acceptance evaluation and pairwise comparison evaluation.
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The annotators achieve an agreement of 0.84 for whether a model output should be accepted or not.
For the pairwise comparison, following Zhou et al. [56], we report a tie-discounted accuracy, which
assigns one point if both annotators agreed, half a point if either annotator (but not both) labeled a tie,
and zero point otherwise. We also merged “clearly better” and “slightly better” together, so our final
options will be simply comparing which of A and B is better, or a tie. Our annotators achieved an
agreement of 0.72 for this pairwise comparison.
Although these numbers show reasonable agreement, we also note that there is a large extent of
subjectivity in human evaluation. This noise level also indicates that some prior work [8, 55] that
uses a small number of examples for human evaluation might not be reliable enough. We suggest
that the community needs to further improve the reliability and scalability of human evaluation for
instruction-following models.

H Further Investigation of Figure 2

To further investigate the degree to which the number of unique tokens is being used by GPT-4 as a
marker of quality, we created a dummy evaluator that compares two model outputs, and assigns a win
to the output with more unique tokens. We plot the win-rate calculated using this dummy evaluator
against the win-rate calculated using GPT-4 in Figure 6.
We find that while the dummy evaluator generally over-estimates the win-rate, the trend is still
strikingly linear. We note that the R2 for the trendline is .91, suggesting that the unique token count
explains a large proportion of the variance in the win rates. Based on this, we believe that the number
of unique tokens is certainly a key preference that GPT-4 cares about in its evaluation, although it is
still not the only important feature.
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Figure 6: Win-rate scores of all models judged by the dummy evaluator against win-rate of all models
using the GPT-4 evaluator.

I Model Licenses

We provide brief information about the licenses of the underlying models we make use of in this work
below.

• LLAMA: The LLAMA model weights are released under a custom license that allows using
the model for non-commercial research purposes.

• LLAMA-2: The LLAMA-2 model weights are released under a custom license that allows
for commercial and research uses with some limitations (e.g., having less than 700 mil-
lion monthly active users if used in a commercial application), and explicitly allows for
redistribution of the weights.
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• Pythia: The Pythia weights are released under the Apache-2.0 license.
• OPT: The OPT model weights are released under a custom license that allow only using the

model for non-commercial research purposes.
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