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Abstract

A simple Gaussian process regressor (GPR) model is employed to predict steel hardness and toughness response for tempered
martensitic steels. A dataset of over 2000 hardness values from over 250 distinct alloys was compiled, with the aim of incor-
porating a diverse set of quenched and tempered martensitic steels. The 1zod impact toughness was included for over 450 of
these alloy/temper conditions. The GPR exhibited an increase in accuracy for both the predicted hardness and Izod impact
toughness over linear regression trained on the same dataset. Shapley additive explanations (SHAP) were used to assess the
importance of the input features of tempering temperature, tempering time, and 15 elements. Tempering temperature and
carbon content were the most important input features in all models. The relative importance of the other 14 alloying elements
varied depending on the target property. The SHAP analysis highlighted the complex relationships between composition and

mechanical properties that are able to be captured by machine learning approaches.

Keywords Tempered steel - Izod impact toughness - Shapley additive explanations - Martensitic steel

Introduction

Many empirical relationships have been developed over
the years to describe processing conditions for steels. Most
notably, equations for the martensite start (Mg) temperature
[1-5], but also the austenitization temperature [1, 2, 6], tem-
pering parameter [7], as-quenched hardness and hardenabil-
ity [8], some of which are even included in ASTM standards.
The appeal of traditional empirical models (e.g., additive
models of single-factor terms such as linear regression) over
physics-based thermodynamic calculations and data-driven
complex machine learning (ML) approaches, is their inter-
pretability, reusability, and applicability to small datasets.
Furthermore, they can be easily extended by adding another
term, e.g., for elements that were not considered previously
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or cross-correlative terms. More complex models like artifi-
cial neural networks (ANNSs) or nonparametric models, such
as Gaussian process regression, may require considerable
amounts of data, fitting time, or both and remain largely
black boxes [9]. On the other hand, very complex relation-
ships can be modeled; handling the tradeoff between accu-
racy and complexity has a long history [10, 11]. A common
problem of complex models is overfitting to the data, which
can be mitigated by regularization and cross-validation
methods [10].

A countervailing limitation of traditional empirical mod-
els is their failure to extrapolate correctly beyond the under-
lying composition ranges for which they are devised. Hence,
a patchwork of partially overlapping composition ranges has
been used to fit such models, leading to competing param-
eterizations in regions of overlap. One example is the more
than twenty equations for the Mg temperature [3—5]. None-
theless, confined to interpolation, these empirical equations
often perform very well on the metric to which they were fit.
In fact, a comparative study between ML models trained on
a comprehensive compositional dataset and a simple linear
regression model fit to the appropriate subsets of the data
found that the more complex models did not significantly
reduce the relative error over the simple linear regression,
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while simple random forest regression (RFR) and adaptive
boosting showed improvement on both training and test sets
[12]. The same study showed that traditional empirical mod-
els from the literature performed better with respect to mean
absolute error on the subsets on which those models were
trained, although it is not clear how much of the data should
be considered outside of the training set [12]. In a study pre-
dicting hardness of low alloy steels, ANN and support vector
regression (SVR) models performed significantly worse than
a traditional empirical equation developed from the same
dataset [13]. It is worth noting here that the SVR fit a statis-
tically robust linear model, which is a considerably simpler
approach than the traditional model. Furthermore, the ANN
did not incorporate in its final activation that Vickers hard-
ness may not be negative, which inhibits the ANNs ability
to model the relationship well. On the other hand, RFR and
k-nearest neighbor (kNN) models made slight improvements
over the already very accurate traditional model’s predic-
tion [13]. In other cases, ANNs sometimes performed better
and sometimes worse than linear regression in predicting
tensile strength of low alloy steels [14]. In general, it may
be concluded that complex ML models require judicious
application to be of general use.

As intimated above, more complex models require larger
datasets to model more complex relationships. These data-
sets must not just be larger, but also representative of the
modeling domain and its complex relationships. For non-
Bayesian models, the dataset also has to be large enough for
a meaningful cross-validation and generalization error esti-
mates [10]. A rule of thumb is an order of magnitude more
samples than input features. Despite the recent proliferation
of ML studies predicting properties of steel (and other met-
als), many of these models are trained on compositionally
limited datasets, constraining their applicability in the same
way as existing traditional empirical models. As an extreme
example, some ML studies have even limited their dataset to
a single alloy with multiple processing conditions, employ-
ing an ANN to predict tempered hardness of AISI 1045 with
only 18 training points [15]. Another example is the applica-
tion of an ANN with 30 parameters to predict hardness in 9
wt% Cr steel with only 36 training points [16]. Obviously,
overfitting is a considerable risk with complex, expressive
models and such limited data. The low diversity of the data-
set also greatly restricts the domain in which these models
can be expected to give accurate predictions.

On the other hand, large datasets of one particular family
of steel can provide multiple, high-fidelity property predic-
tions. An example dataset is that of ferritic creep resistant
(9-12Cr) which has been used extensively: for robust com-
parisons of ML methods, studying the impact of various
input features including calculated and measured micro-
structures, and prediction of multiple properties including
creep life [17], yield [18], rupture [19], and hot strength [20].
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However, since the training data is comprised of only one
class of steel with a consistent microstructure that produces
a singular strengthening mechanism, the model is expected
to falter when extended to other classes of steels. Even in
a subset of steels with the same strengthening mechanism,
e.g., low C stainless steels with intermetallic (rather than
carbide) strengthening phases, training on the subset of the
data with one dominant phase (R-phase) and then making
predictions on the subset of data with different dominant
phases (Ni;Ti and Cu clusters) resulted in a steep decline in
predictive capability of the support vector regression model.
This occurred even while including physical metallurgy
input parameters such as the equilibrium volume fraction
of the intermetallic phase in addition to the compositions
in order to describe the mechanism more specifically [21].
Even when a dataset is comprehensive compositionally, it
may have other specific features that limit extensibility. For
example, in their predictions of tensile strength, Jiang et al.
[22] included 23 processing parameters including the power
rate of multiple fans on a production line. Xie et al. also
used multiple plant and production line inputs in their ML
prediction of several mechanical properties of hot rolled low
alloy steel plate [23].

In this work, we employ the simplest possible inputs and
perform a direct comparison between traditional empirical
modeling (i.e., linear regression) and an ML model trained
on the same dataset. The dataset is comprised of numerous
classes of quenched and tempered martensitic steels, from
simple Fe—C to high-C tool steels, including both stand-
ard AISI grades and experimental alloys, and low strength
through ultra-high strength steels (UHSS). We also publish
our dataset for reference in future studies involving more
sophisticated ML models.

In quenched and tempered martensitic steels, the steel
is first heated above the austenite transformation tempera-
ture where 100% austenite phase is achieved; second, it is
quenched rapidly, forming martensite when it reaches the
martensite start (Mg) temperature on cooling. The austen-
ite to martensite transformation proceeds until reaching
the martensite finish (M;) temperature possibly resulting in
incomplete martensite transformation, and retained austen-
ite, if the M; is below room temperature. Third, the temper-
ing process is applied to generate the final microstructure of
tempered martensite that is generally toughened by finely
dispersed phases. For low alloy quenched and tempered steel
systems, strength is understood to be primarily derived from
supersaturated carbon in the as-quenched condition. Carbon
super-saturation within the martensite lattice octahedral sites
causes a significant hydrostatic stress and leads to tremen-
dous increases in strength. The decrease in strength during
tempering is associated with the formation of transition car-
bides that reduce the degree of C super-saturation and is also
accompanied by an increase in toughness.
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There are a few existing relationships to describe the
hardness of low alloy steels in their as-quenched [8] and
tempered [7, 24, 25] state as a function of composition.
The as-quenched hardness prediction, for example, is based
solely on the carbon content with an upper bound of 0.61
wt% C after which the hardness is assumed to saturate [8]:

H[HRC] = 33.087 + 50.723X - + 33.662X_.

1
—2.7048X;. — 107.02X,. + 43.523X". W

The limit placed at 0.61 wt% C is due to the severe
depression of the M, and M; temperature from further
additions of C leading to an incomplete transformation of
austenite to martensite. The amount of retained austenite
increases nearly linearly as the transformation temperatures
are lowered and has been shown to be directly correlated to
the carbon content [26].

Elements other than C, such as Mo and V, can provide
solid solution strengthening in low temperature tempering
regimes; however, at higher tempering temperatures they
contribute to particular carbide formations that can either
decrease or increase hardness depending on their size and
location [27, 28]. Compositional variations can be utilized
to form advantageous carbides, or slow the formation of
deleterious carbides, as in the case of Si which inhibits
the formation of cementite by changing the activity for C
[27]. Alloying strategies also include mitigating detrimental
effects of residual impurity elements. For example, Ti and Al
are utilized to reduce the effects of O and N by forming fine
particles that are then used as grain pinning particles. The
effects of S are commonly addressed by the addition of Mn
to form a ductile second phase, MnS, that can be relatively
innocuous to the steel due to its ability to be deformed dur-
ing hot working of the steel. Residual Cu can hinder a steels
ability to be hot-rolled due to the phenomenon known as
hot shortness [29]. On the other hand, Cu is purposefully
added to form fine precipitates in some UHSS alloys where
they provide the primary strengthening mechanism in con-
trast to the supersaturation of carbon compared to the low
alloy steels. From this brief discussion, it can be seen that
the role of individual elements can be multifaceted which
provides a good example for comparing the application of
traditional empirical (e.g., linear regression) to machine
learning approaches.

Further, mechanisms that contribute positively to one
mechanical property may negatively impact another. As
an example, consider the tempered strength and toughness
for AISI 4130 in Fig. 1 where the strength monotonically
decreases with increasing tempering temperature, but impact
energy has a complicated trend. As a consequence, empirical
relationships for hardness and impact toughness do not have
a simple inverse relationship due to their different physi-
cal mechanisms. While there are several existing empirical

relationships for tempered hardness [7, 24, 25], the authors
are unaware of any similar relationships for impact tough-
ness due to its complexity. Several ML studies have explored
toughness in a limited way, either with a small number of
alloys [30, 31], or by only investigating a single class of
steel [32, 33]. An ML study of Charpy impact toughness
with a comprehensive compositional dataset resulted in
good predictions only if additional mechanical test meas-
urements were used as inputs in addition to the composi-
tion [34]. However, these additional inputs were the tensile
strength and reduction of area, which leads to large mate-
rial consumption to obtain representative test results. When
using an existing dataset where tension tests were already
performed for the material of interest this is a reasonable
approach, but for a new alloy/temper not in the dataset, it
would require less time and material to just perform the
Charpy impact testing. In studies where multiple mechani-
cal properties were predicted, impact toughness was by far
the poorest prediction of the targets [23, 35]. A study with
large amounts of industrial data was able to make fairly good
predictions [36].

The existing empirical relationships for the hardness of
the tempered state are discussed in more detail in a later
section; however, they all have a similar functional form
in that they predict hardness as a function of alloy content,
time, and temperature. They all have generally good fits
within the compositional ranges of the alloys used for the
regression analysis but are not likely to be valid beyond
this low alloy range. For example Kang [7] used steels
with the elements C, Mn, Si, Ni, Cr, and Mo only, omit-
ting many important alloying contributions for UHSS and
other steels such as Co and V. Mukherjee [24] had the
most comprehensive dataset from an elemental perspec-
tive, but most alloys had a maximum concentration of ~2
wt% for most elements; they also had some severe outliers
with predictions using their low tempering temperature

2500 . . . 505
Q 0

= 2000} H40 8
Q £
=, 1500} 4 30 %’
£ 4. & =
gmoo— ¢ ¢-¢-0-¢ =20 §
o o
‘A .4 1S
B 500l M- -0~ uts10=

. . CVN
0 1 1 o 1 5
00 600 800

Tempering Temperature [K]

Fig.1 Ultimate tensile strength (UTS) as a function of tempering
temperature in AISI 4130 steel compared to Charpy (CVN) impact
toughness. Points are colored by temper temperature. The UTS has a
straightforward trend with respect to processing condition compared
to the CVN. Data from [28]
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(<573 K) data. The model of Athavale [25] is somewhat
limited in that it utilizes the incremental hardness increase
of multiple alloying elements, but only uses data from one
hour tempers (other temper times are predicted by integrat-
ing the Jaffe-Holloman tempering parameter).

The paper is organized as follows. First, we collect a
comprehensive dataset of tempered martensitic steels of
many classes that includes both low and high alloy steels.
Second, we evaluate the effectiveness of a traditional
empirical linear regression approach as a baseline. Third
we apply a machine learning approach to the tempering
dataset. Since the traditional empirical models exhibit
clear contributions based on alloying content, i.e., in the
form of the coefficients, we use an ML modeling approach
where the impact of the input features can be quantified.
The feature importance is discussed using Shapley values
[37] which can be calculated for both linear regression
and Gaussian process regressor (GPR). The bulk of the
dataset and analysis is using the target property of hard-
ness, but the approach to also extended to a smaller dataset
of a more complex mechanical property, here Izod impact
toughness.

Data Summary

The intent of this dataset is to incorporate the breadth of
quenched and tempered martensitic steels, and as such,
encompass a large composition space. Fifteen alloying ele-
ments are tracked to describe the composition. The target
property of this dataset is the hardness. The secondary target
property of Izod impact toughness was also collected from
handbook data where it existed.

We attempt to incorporate the data used and cited in pre-
vious empirical [7, 24, 25] and other modeling (e.g., [21])
works to facilitate comparisons; however, most did not pub-
lish their datasets. In some cases, these previous modeling
papers also included propriety industry data. Further, some
of the literature data used in the previous datasets was dis-
carded during our data assessment step described in a fol-
lowing section. A full description of the dataset is in the
online supplementary material. The data in this dataset was
collected from literature and handbook sources [25, 38-55]
and is available on Materials Commons [56].

The handbook and literature data collected were assessed
for compatibility with the desired model bounds. First, to
limit this model to martensitic quench and tempered steels,
mixed microstructure (e.g., microstructures of austen-
ite + ferrite, martensite + austenite, bainite, etc.) effects were
removed. Second, the remaining dataset was divided into
two classes, low and high alloy steels, based on their alloy-
ing content.

@ Springer

Data Processing and Assessment

To rule out the effects of mixed microstructure on the
mechanical properties, we assess the collected data (~3000
alloy, temper, time combinations) for adherence to marten-
sitic structure. The original data source is checked for data
on microstructural features. If the retained austenite frac-
tion is reported in the original source, a threshold of >3%
retained austenite is considered to be a mixed microstruc-
ture. This threshold is based on an observable fraction
via X-ray diffraction (XRD). For example, it is noted in
Grange et al. [53] that their high carbon (0.5, 0.72, 0.98
wt% C) steels had measurable amounts of retained aus-
tenite (3, 7, 13% RA, respectively); these datapoints are
therefore dropped from the final dataset. Some of the data
used in the Mukherjee empirical fit [24] was found to be
mixed microstructure including reported mixtures of lath
martensite and bainitic ferrite [38] or reported retained
austenite fractions as high as 17% [57], so these were not
included in our dataset despite being used in previous
models.

Even if the microstructure is not directly reported, the
likelihood of mixed microstructure being present can be
estimated via the hardenability of the steel and the dimen-
sions of the heat-treated part from which mechanical test
coupons were extracted. For example, in the Modern Steels
handbook [52] the mechanical property data is reported for
various round diameters of steel bar, where the properties
were reported as being measured from the center of the bar.
Alloys with low hardenability and slow cooling rates (e.g.,
thick sections) will not form 100% martensite throughout the
component, leading to a mixed microstructure in the sample
incompatible with this model. To assess the probability of
mixed microstructure in such parts, we consider the dimen-
sion of the component relative to the ideal diameter (DI)
for the steel. The DI is calculated using the methodology of
ASTM 255 [8]. If the dimension of the part is larger than
the calculated DI, it is likely that the center of the part where
samples are obtained is not 100% martensite and is discarded
from the dataset. Data reported from Jominy end quench
tests, e.g., [25], will also vary in microstructure along the
length of the test coupon and the measured properties as a
function of the cooling rate; therefore only the J1 position
is utilized due to it being the highest cooling rate position.

The data were all converted to the same units: degrees
Kelvin for the tempering temperature, seconds for the tem-
pering time, Joules for the Izod impact toughness, and Vick-
ers hardness (HV). The hardness values were all converted
to Vickers using the methods from ASTM E140-12b [58].
In the cases that the data does not have an explicit temper
time (e.g., some handbook data), we assume a time of 1 h,
which is consistent with the median value of the data that
has a reported time and is congruent with typical industrial
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practice [59]. Data with assumed times are annotated in the
dataset if other users would prefer to discard the time data.

Low Versus High Alloy

In processing the data, we partition the dataset into ‘low
alloy’ and ‘high alloy’ steels, with the intent of thresholding
between the steels that most empirical relationships have
likely been fit to, and the more diverse range of steels which
our dataset encompasses. The strengthening mechanisms for
the low alloy steels will be similar to each other, in that they
have a more limited number of possible carbide formers;
in contrast, the high alloy steels could have any range of
carbides, other non-carbide precipitates (e.g., Cu clusters
etc.), etc. each of which influence the strength. As there is
not a universally accepted definition for high alloy steels, we
develop a quantitative threshold based on hardenability for
whether a steel is considered low or high alloy to segment
the dataset. There are two relevant empirical equations for
hardenability in the ASTM A255 “Standard Test Methods
for Determining Hardenability of Steel” [8] which we use
to determine the low alloy threshold. The three criteria that
must be met to be considered a “low alloy steel” in the data-
set are:

1. The carbon content must be below 0.61 wt%; this cri-
terion is based on the saturation of the hardness of as-
quenched 100% martensite microstructure in ASTM
A255 Table 7 [8]. Above 0.61 wt% C the as-quenched
hardness was no longer reported to increase as a function
of carbon content as noted previously.

2. The composition must be within the range defined in
Table 1, based on DI calculation limits from ASTM
A255 with other allowables for elements not originally
included in the standard: W, Co, Ti, and Al. The hard-
enability calculator was designed for a subset of com-
mercial steels that did not include these now common
additions in low alloy steels. Ti and Al are added in
small amounts (<0.03 wt%), termed “micro-alloying
additions” to remove N in solution by forming TiN and
AIN to act as pinning particles for fine grain practice
[29]. Co and W are found as residuals from the scrap
melting process and are removed to < 0.1 wt% during
melt refining; these low levels are innocuous to the
steel’s performance. An allowance for Sulphur was also
made as it can be purposefully added to alloys, e.g., the
AISI 1100 series steels, to improve machinability with-
out significantly affecting hardness.

3. The calculated DI must be less than or equal to 7", the
maximum dimension for which dividing factors have
been tabulated in ASTM A255.
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Table 1 Composition lilT.litS Element Maximum (wt%)
for low alloy steels, modified
from ASTM A255 multiplying Mn 1.95
factors Si 20

Ni 35

Cr 2.5

Mo 0.55

Cu 0.55

v 0.2

C 0.9

W 0.1

Ti* 0.03

Co* 0.1

Al* 0.03

B* 0.003

N* 0.02

S* 0.6

*These elements are not in

ASTM A255

N__Mo  wn

A High Alloy 100
X Low Alloy
BN Empirical

alloy content [wt%]

Fig.2 Full dataset compositions ranges. The alloy content (in wt%)
of each element contained in each sample is denoted with a A(high
alloy) or an X (low alloy) with points colored by element for read-
ability. The composition space examined within any of the previous
traditional models [7, 24, 25] is highlighted in green

Final Dataset Description

After processing, the dataset is comprised of 2004 meas-
ured hardness values of quenched and tempered martensi-
tic steel comprised of 61% low alloy steels and 39% high
alloy steels. Within this dataset there are 269 distinct alloy
compositions that have between 1 and 70 different tempered
conditions associated with the alloy. The tempered process-
ing conditions are described by temperature and time, and
the composition of the alloy is tracked for 15 elements. A
detailed summary of the dataset feature ranges is provided in
the online supplementary material, Tables S1-S3. The com-
positional values are indicated in Fig. 2, with distinctions
between high and low alloy subsets. The maximum ranges

@ Springer
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for each element that have been included in one of the three
existing empirical models (online supplementary Table S-4)
are shown in Fig. 2 as shaded regions.

Empirical Models/Linear Regression
Existing Empirical Models

The foundational work of Grange et al. [53] established
incremental changes to the hardness based on composi-
tion at several tempering temperatures. They proposed to
predict the tempered hardness by a linear combination of
these incremental alloy relationships. These relationships
were only described for a tempering time of one hour and
at discrete tempering temperatures. Athavale [25] incorpo-
rated the theories of Crafts and Lamont [60] and the Jaffe-
Holloman tempering parameter [50] in order to extend the
applicability of Grange et al.’s work. The tempering param-
eter, TP, is:

TP = T(log,, (1) + C) )

where T is the temperature in Kelvin, ¢ is the time in sec-
onds, and C is a constant that is dependent on the composi-
tion. In Athavale’s empirical model, C is described only as a
function of the carbon content [25]. The model of Kang [7]
also uses the tempering parameter, but fit the composition
dependence of C to a linear relationship of the alloying ele-
ments within the overall expression for the tempered hard-
ness, TH, in units of Vickers:

25.31

C

TH[HV] = <1542.97 - ) exp (—=1.23 x 107" « TP)

3

Mukherjee [24] did not use the tempering parameter

but did use the form of log(#) for their time inputs. They

explored 16 different regression equation forms, with the
selected equation being:

i=n

In(TH) = Ay + A, In () + A;T + Y AX, 4)

where A, and A} are the coefficients for time and tempera-
ture, respectively, and A; are the coefficients for each alloy-
ing contribution for element i. Their model had a high corre-
lation coefficient (R*>=0.924) for the predicted and measured
hardness for their training dataset but had notable extreme
outliers at low tempering temperatures (<573 K) and lower
correlation for their test dataset (R>=0.796).

The maximum ranges of the datasets used for these three
empirical models are shown graphically in Fig. 2 as shaded
regions with details provided in the online supplementary
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Table S-4. The notable differences between the coverage of
the existing empirical equations and the dataset in this work
are the complete absence of cobalt and the very low limits
for W, V, Cr, Ti, Ni, and Mo. These elements are important
components of martensitic stainless steels, UHSS with high
fracture toughness K., as well as high temperature tool
steels needed for extreme environments, in which refrac-
tory alloy carbides are required to retain strength at elevated
temperatures.

These three existing equations have been applied to our
dataset, with the results shown in Fig. 3. First, we segment
our dataset by the limits for each equation so as not to exceed
the original bounds. This results in reasonable predictions,
quantified in Table 2; Mukherjee’s work had reported R? of
0.924 for their training set and 0.796 for their test set, while
Kang reported a training set R? of 0.941 and did not use a
test/validation set. Therefore, despite limiting our dataset to
the original compositional limits of the empirical equations,
there is a decrease in predictive capability compared to the
original training set.

These empirical predictions break down, as expected,
when used to predict the tempered hardness for the full
dataset including high alloyed steels. For Athavale, the high
alloys are generally underpredicted as the model does not
have terms for several elements, resulting in zero contribu-
tion; however, the predictions are still within the realm of
observable measurements. Conversely, for Mukherjee and
Kang there are many unphysical predictions (resulting in
extremely low R? below 0.03) such as hardness values in
excess of 100,000 HV and negative hardness values. This is
perhaps not unsurprising, due to the extreme extrapolation
occurring for some of the elements in the empirical equa-
tions. We therefore fit a new empirical equation to our larger,
more comprehensive dataset. This will also be used to com-
pare directly to the GPR model trained on the same dataset.

New Linear Regression Models

The full dataset was split into training (80%) and test (20%)
sets, with the empirical equation fit on the training set. A few
different forms were considered for the empirical equation,
in the manner of [24] with the best fit being of the following
form with the coefficients shown in Table 3:

i=n

TH[HV] =P, + ) X,C; + X;T + X, log,, t (5)

The predicted hardness from the traditional empirical
Eq. (5) is shown versus the measured hardness in Fig. 4.
Assessing the coefficients in Table 3, it is reassuring that
the time and tempering temperature have a negative effect
on strength that is obvious to the standard heat treatment of
quenched steels. The strong positive effect of C on hardness
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Fig. 3 Predicted vs measured hardness using existing empirical models for (top) the limits stipulated by the original model and (bottom) the full
dataset colored by low-/high-alloy split. The metrics for the predictions are in Table 2

Table 2 Statistics for linear

. . Model Original equation limit Low alloys subset Full dataset
regression equations
R? MAE RMSE R’ MAE RMSE R MAE  RMSE
Mukherjee  0.796  42.8 63.1 0.728 442 72.6 0.024  1278.0  11,562.7
Kang 0.826  37.1 59.5 0.814 397 62.4 0.001 15779 7279.8
Athavale 0.784 4145 675 0.798 375 57.6 0.245 86.3 147.9
This work 0.835 402 539 0.796 49.5 67.7

is also an obvious result. We defer discussion of the impacts
of different inputs from the linear regression model with
the GPR model to the Feature Analysis section. In terms
of statistics (Table 2), this equation is an obvious improve-
ment over prior models, but it still has quite a large MAE
and RMSE.

The linear regression for the impact data is performed for
the following form, where the Izod value is scaled by the
natural log to maintain a positive prediction:

i=n

In (IZODLJ]) = Py + ) X,C; + X;T (©6)

The coefficients for Eq. (6) are in Table 3; several are zero
because the Izod dataset does not contain alloys with these
elements, but they are left in for consistency with the full data-
set and the other tables in the paper. It is immediately appar-
ent that the relationships between many of the input features
have opposite impacts for predicting hardness versus tough-
ness. The coefficients for temper temperature and carbon have

opposite signs from the coefficients for the hardness predic-
tion, as expected, i.e., increased carbon content is known to
increase strength but decrease toughness while increased tem-
per temperature decreases strength while increasing toughness.
While the hardness prediction from Eq. (5) is obviously
a vast improvement over existing empirical equations, par-
ticularly for high-alloy steels, it still has relatively high error.
Further, the Izod prediction (Fig. 5), while also not an unrea-
sonable R? value, has almost half of the predicted points
outside of + 10 J from the measured value (with a MAE of
12.3 and RMSE of 16.5). Therefore, we move on to perform-
ing Gaussian Process Regression on the dataset in order to
improve the predictions of both hardness and Izod.

Gaussian Process Regression
The input features are comprised of tempering time, temper-

ature, and alloy compositions in wt%. The target variables
are hardness and Izod impact toughness. Since all of these
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Table 3 Coefficients for empirical Egs. (5) and (6)

variables describe a physical quantity with an associated
length scale, we apply the following rescaling procedures to

Prediction HARDNESS 170D . . )

_ preprocess our data. First, since both target variables must
Coefficient HV InIZODID e positive, we apply a logarithm scaling. Specifically, we
P, 776.91 1.891 rescale each target y as x=1In(y). In addition, we rescale time
X, [K] —0.6l1 0.00444 as x=1In,(y) similar to convention in the literature [41] and
X, [s] —18.41 0 consistent with Eq. (2). In [33], normalizing the time via
X, [wt%] logscale was necessary in order to enable their ANN to make
C 193.29 —3.239 predictions. Second, for all variables, for which we denote
Mn 853 0.004 a sample by x, we apply a Z-score normalization such that
Si 63.73 —0.488 the scaled distribution of a variable has a mean of zero and
Cr 0.18 —0.019 standard deviation of unity, i.e.,

\'% 46.84 —0.198 X —
U
w 16.18 0 Z(x) = (M
Mo 35.97 0.685
Ni 9.96 0.008 where u and o represent the mean and standard deviation
Co 131 0 of all samples for each variable, respectively. The scaled
Al 71.63 0 distributions for each of the input features and hardness are
Cu 19.05 0 shown in Fig. 6; the distributions for the Izod impact dataset
Ti —18.11 0 are shown in online supplementary Figure S-2.
N —338.72 0 With the rescaled data, we employ a Gaussian process
B 1991.27 0 regressor (GPR) to compute probabilistic predictions of
S —129.00 —0.943 targets given the input features. The GPR requires a prede-
fined kernel function specifying the covariance matrix. We
Fig.4 Predicted vs measured = Training Set Test Set —
hardness using Eq. (5) for the % 1000 T T gl — 1000 X
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employ a general kernel form comprised of three fundamen-
tal kernels and five hyperparameters:
K(xi,xj;O) =01RBF(xi,xj;lRBF)
+ 6,Dot Product (xi, xj;ao) 8
+ White Noise (x;, X;: xpise )
where the hyperparameters are denoted by

0= [91, lrgrs 0550y, lNoise]. Each of the three kernels may be
expressed as:

2
=
RBF(‘xi’xj;lRBF) = eXp _2— (93)
2y
Dot Product(x;, x;00) = 65+ x; - ; (%9b)
White Noise(x,-,xj;lNoise) = lNoisea(xi’xj) ©c)

In Egs. (9), Il-Il denotes the Euclidean distance, - denotes
the dot product, and & denotes the Kronecker delta which is
unity when both arguments are equal, and zero otherwise.
For training the GPR, fitting the covariance matrix to data
via log maximum likelihood, and finally making predictions,
we employ the python module Scikit learn [61].

Cross-Validation

The objective in optimizing Eq. (8) is twofold. First, the ker-
nel hyperparameters, 6, must optimize the prediction quality
of our model. Simultaneously, we must provide an accu-
rate assessment of the performance of the optimized kernel
against data which has been excluded from the optimization
process. To accomplish these two tasks, we employ a nested
cross-validation scheme comprised of an inner hyperparam-
eter optimization step and a separate outer validation step
with fixed hyperparameters.

The nested K-I cross-validation algorithm is com-
prised of three computational loops. The outer most
loop cycles over all combinations of trial kernel func-
tions, specifically initializing 6, 0,, [y, € {0,1}. For
each superposed kernel function, the second internal
loop begins by splitting the data into K—folds =5, with
test fraction: 1/K — folds =20% and training fraction
1 —1/K —folds =80%. The K-fold test fraction is set
aside and the remaining K-fold training fraction is fur-
ther partitioned in the third internal loop over I-folds =
1 — K-folds=4. The K-folds training data are partitioned
into 1/I-folds =25% I-fold test data which comprise 20%
of the dataset and 1 — 1/I-folds =75% I-fold training data
which comprise 60% of the dataset. The I-fold training

data are employed to both optimize the hyperparameters,
0, via log maximum likelihood and populate the covari-
ance matrix, simultaneously. The I-fold test data are subse-
quently employed to perform an initial model performance
evaluation via mean squared error:

n

MSE(6) = 3 (5 5(0)° (1)
i=0

Within this relation y; and y; denote observed and pre-
dicted target variables, respectively. This same loop over
I-folds is repeated three additional times such that we obtain
MSE(@;) fori=1, ..., 4 and the parameter set 6, = argmin
MSE(# ;) which minimizes the mean squared error is stored
for this trial kernel. The covariance matrix is subsequently
populated with the K-folds training data, with 6, held fixed.
An outer model performance test is performed employing
Eq. (11), and calculating a similar MSE against the outer
test data, i.e., K-folds test. Given the inner validation error
and the outer test error, the total cross validation score can

be computed as

MSEOutCr (eom) + MSEinner (9

°P‘) 12
3 (12)

CV[MSE] =

The inner validation and outer test dataset have the same
number of samples, n. With K-folds =35, five cross-valida-
tion scores are computed for each superposed kernel com-
bination. The obtained cross-validation means and standard
deviations are shown in Fig. 7 for each kernel tested and
for the hardness, impact, and total datasets. In the interest
of thoroughness, we have also included a constant kernel
[Constant(), not shown in Eq. (8)] in this study.

A benefit of using GPR for predicting mechanical proper-
ties is the straightforward way in which it can account for
noise/variance/spread in the experimental measurements.
Each measurement is described by a Gaussian distribution
with a given mean and variance, where the default assump-
tion is essentially no variance. In Scikit-learn [61] the vari-
ance is passed as a with the default value being 1x 1071°
for example. This parameter can be used to specify the
variance for each individual measurement passed into the
model; however, as only a few of the data sources in report
the variance of their measurements we therefore make an
estimate of the variability based on ASTM standards for
measurement [62, 63]. For hardness, this variability is on
the order of 1-5% of the measurement [62] and 3—-6% for the
impact toughness [63] depending on whether the measure-
ment is on the low or high end of the scale. Assuming the
observations are y; + ; with variance a; (and then rescaled
on a log-scale as defined above for the targets), the hardness
predictions using an a based on the ASTM are compared
with the default value for a (1 X 10719 [61] and shown in

@ Springer



310 Integrating Materials and Manufacturing Innovation (2023) 12:301-320
Hardness [HV] Temper Temperature [K] Temper Time [hr]
1 200 400 600 8001000 400 600 800 1000 0.1 1 10 100
10 E T T T T 3 E 1 T T T 3 E T T T T 3
= 10°F 1 F 1 F E
‘® E E E E o E
@ E i E i E E
TR 1 r 1 F 1
-2 B 7 B 7 I 1
10372 1 0 1 2 3 -3 -2 - 0 1 2 3 2
ormalized In(Hardness [HV]) Normalized Temperature Normalized log,, (Time [s])
Composition [wt%] Composition [wt%] Composition [wt%]
1 0.00 005 011 016 0.21 00 10 20 30 40 000 009 017 026 0.34
10 E T 1 T T 3 E T 1 T T T3 E T T T T 3
F Al ; 1 fCu i 1 S 1
2 10°F | 1k | ERN S 3
(7] - 1 3 - 1 3 F 3
C - 1 1 - 1 n = n
[ af 1 T B 1 N u N
R i 1 F | i F E
- 1 3 - 1 3 F 3
r : 1 ! 1 F l. ]
-2 1 | - 1 1 1 1 1 1 1
10 =2 0 2 7 =2 0 2 4
; 0.000 0.001 0.002 00 05 10 15 20
10°F ' ' 3 E ] F ' ' ' T 3
- B 1 ¢ 1 Si L]
2 10 {1 E i F D3
(7] = = = 3 = 1 3
S E 1 1 F -
81 =
2l ) i L 1 L 1 [ i
10 =2 0 2 4 -2 0 2 4
’ 0.0 0.5 1.0 1.5 8.0 00 05 10 15 20
10°E T T i 3 E E E T T T |
- C i 1k 1 [T ' 1
2 10E i ERN 3 F E
2] - 1 3 - 3 F 3
S E ! 1 1 F ]
& o :
10 E i 3 E E E E
- 1 3 - 3 F 3
E ! 1 E i E I IA
10—2k I ] L 1 L 1 [ I L ]
-2 0 2 4 -2 2 4
| 00 45 90 135 180 0.000 0.011 0.021 0.0 0.5 1.0 15
10°E T T T T g E T T E E ™ T T E
- Co | 1 EN 1 FV i 1
2 10E | ERNS 1 F i 3
(7] - | 3 - 13 F 1 3
c o | 1 o 1 o 1 1
[0 -1 B | 7 B 17 I 1 T
L l i1 F 1 F 2
- | 3 - 13 F 3
E ! 1 1 ]
10-2 1 :_I 1 i 1 1 : 1
-2 0 2 4 -2 0 2 4 -2
; 00 65 130 195 26.0 00 60 120 180 240 :
10°E [ T T 3 E N T T 3 E T T T
- Cr | 1 ENi | 1 EW
2 10E i ERN i 3 F
[%2] F 1 3 = 1 = =
c o 1 ] o ! ] -
)] = 1 T B 1 N u
R = ERS : 3 F
107 [t [ I I L 1 L L
-2 0 2 4 -2 0 2 4 -2 0 2

Normalized Composition

Normalized Composition

Normalized Composition
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RBF() + WhiteKernel()
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Fig. 7 Kernel comparison for predictions of hardness and Izod. Com-
parison of noise dependence for hardness prediction is included. A
constant @=1 x 1071 is compared to an observation dependent «

Table 4 Optimized kernels

Target value 0, IrpE Inoise
Hardness 1.88 1.76 0.05
Low alloy hardness 2.02 3.13 0.05
Izod 1.59 1.89 0.05

Fig. 7. In this case, the effect of a on the average CV for
each kernel was found to be negligible, while the spread in
the CV has slightly increased with increasing o.

Based on the results shown in Fig. 7, RBF() + WhiteK-
ernel() is selected; this three parameter model provides the
best compromise between minimal CV score and minimal
model complexity. The optimized hyperparameters are
shown in Table 4 for the hardness and Izod predictions. As

Full Hardness

Low Alloy Hardness

shown in Table 4, the fundamental kernel prefactors (i.e.,
0, and [ly,;.) remain relatively constant over each of the
four sets of target variables studied. Moreover, 6,> > Iyice
suggesting that the WhiteKernel() does not contribute as
significantly to the predictions.

Results of GPR

Using the optimized kernels of Table 4, the hardness and
Izod impact toughness are predicted based on the com-
position and temper inputs. The predicted hardness and
predicted Izod results for the test sets are shown in Fig. 8.
The predicted hardness of the test sets has an R* value
of 0.898 +0.023 and the predicted Izod test sets an R? of
0.919+0.01. Both are significant improvements over the
linear regressions trained on the same data and with the
same input features (R* of 0.796 and 0.843, respectively).
Further, the percent of predictions that are off by greater
than + 50 HV are reduced by the ML model to 10.9% down
from 38.4% for the hardness prediction and those off by
greater than + 10 J are 31.2% down from 46.3% for the
Izod prediction. In addition, the MAE is 25.7 HV down
from 49.5 HV and 8.05 J down from 12.3 J for Izod. The
RMSE for the Izod prediction is 11.1 J, which compares
favorably to another ML model study (GA-NN and others)
for low-alloy steels using Charpy impact data which had
testing RMSE of between ~ 18 and 20 J [36]. We also train
a GPR using only the low alloy subset of the hardness data;
the R? for this prediction using just the low alloy subset is
0.939+0.01, better than both the full dataset prediction
and the empirical predictions using just low alloys. Fur-
ther, only 8.1% of the predictions are greater than SOHV
from the expected value and the MAE is 19.2HV.

Measured Hardness [HV]

i~ Test Set Test Set
2 1000 T — 1000 T o 200 <
L 75 o - 4T
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Fig.8 Predicted versus measured hardness with full dataset hardness with low alloy subset Izod for an example test set using optimized kernels

from Table 4
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Feature Analysis

To describe some of the differences between the linear
regression and GPR and interpret the trends in properties,
we quantify the significance of the various input features.
Feature importance is assessed using Shapley values cal-
culated using the SHAP (SHapley Additive exPlanations)
module in python [37]. Shapley values are representa-
tive of the significance of each feature on the predicted
property and can be calculated for both the linear regres-
sion and GPR. The SHAP values plotted in Fig. 9 show
the increase or decrease to a baseline property prediction
value where each point represents the value of the feature
for a given alloy and temper input. For the GPR kernel

and test set presented in Fig. 9, the baseline hardness is
376 HV for example, and a point at a SHAP value of + 50
for Cr would indicate the input value of Cr for that alloy
added 50HV to the baseline hardness. General trends can
be observed, such as higher contents of most elements
tending to increase the hardness; however, it is clear that
these are not straightforward relationships between com-
position and hardness increase from the variation in colors
representing the input feature value. Ni and V, for example,
have some high compositions that decrease the hardness.

The input features are ordered by importance, which is
calculated by mean(ISHAPI). Different kernels or test train
partitions on the same data will end up with different rank-
ings of feature importance. Here, since we have optimized
the kernel, we quantify the feature importance variability by

Fig.9 Shapley plot for hardness T K]
prediction from GPR using the

optimized kernel. Points are (o] .
colored by the input feature
value Crp-
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varying the test and train split. Ten different random seeds
for a 67%/33% test/train split are used with the optimized
kernel, and the average Shapley values tabulated in Fig. 10.
These results are compared to the mean(ISHAPI) values for
the linear regression equations. While there is agreement for
the relative importance of the first three input features for
both predictions, the ranking of elements fluctuates thereaf-
ter. Several of the elements have essentially no importance
according to the linear regression, but relatively high impor-
tance in the GPR, e.g., Cr. Details will be discussed in the
following section.

Hardness

The temper temperature is by far the most important feature,
regardless of test and train split. Carbon is unsurprisingly
the most important of the alloying elements for predict-
ing both hardness and toughness. For hardness, the next
most important elements are Mo and Cr, with almost equal
impact. Interestingly, the linear regression equation found Cr
to have essentially no impact on the hardness. We illustrate
the differences between the feature importance of the GPR
and the empirical equation by directly comparing the SHAP
values in Fig. 11. The SHAP values for the linear regression,

Eq. (5), are indicated by the teal lines, and compared to the
points representing the SHAP values for the GPR (points
colored by temper temperature). The SHAP values for the
GPR for Cr show approximately a parabolic trend, where
the importance of Cr increases up to around 5 wt%, and
then decreases at higher compositions. Further, at the lean-
est compositions, e.g., <1 wt% Cr, Cr tends to decrease the
hardness from baseline, whereas at all other compositions it
provides some amount of increase. Another element where
the GPR and linear regression particularly diverge is Co.
Empirically, Co has not been found to have a large positive
or negative effect on the predicted hardness of the steel, but
it can be seen here to have a strong positive effect in certain
high composition regions. There are many high Co steels
that are typically tempered at or above 673 K as Co has been
noted to reduce the activity of C [64] and promote formation
of refractory carbides; this appears as an increased hardness
at high temperatures.

For Co and Cr, it is clear that the linear regression can-
not capture the complex relationship between the element
and its effect on hardness. In many other cases, the overall
trend between the two models is in general agreement,
e.g., an increase in V content increases the hardness, but
the details can differ significantly. However, in the case

Fig. 10 Mean SHAP values for 100
the hardness and Izod predictions H ar dn ess
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Fig. 11 Some SHAP value comparisons for the elements, colored by temper temperature

of Ti, the linear regression predicts that increasing Ti
will decrease the hardness, whereas the majority of the
GPR SHAP values show an increase. There are several
elements for which the average SHAP value is low, but
many individual SHAP values are quite high, in particular
for W and Co. This is likely due to a large number of zero
composition points. W has some very high importance
values at high temperature tempers, which is likely cor-
related to its implementation in W-bearing tool steels for
machining operations as well as for high temperature tool

@ Springer

steels in which hardness at high operating temperatures
are required.

Mo is considered a strong strengthener by both our lin-
ear regression and GPR models, with a positive impact on
the hardness for a large range of composition. Mo and V
are both known to provide solid solution strengthening dur-
ing low temperature tempering (<473 K) and a secondary
hardening affect from carbide formation (e.g., M,C, MC)
at higher temperature tempers (> 773 K) [27, 59]. For low
concentrations of Mo, i.e., where there is likely enough Mo
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present to contribute to solid solution strengthening but not
necessarily enough to form carbides, a temperature effect
can be seen on the SHAP values, shown in Fig. 12 where
the higher temperature points have a negative influence on
the hardness and the lower temperature points are neutral to
increasing hardness. At concentrations greater than ~0.25
wt%, Mo is unambiguously providing an increase to the
hardness. Similarly, V generally provides an increase to the
hardness other than at very low compositions and the high-
est compositions. It is interesting to note that the Mukherjee
empirical model had negative coefficients for both these ele-
ments, in opposite relationship to both the linear regression
and GPR models here. The Mukherjee model also performed
poorly for low temperature predictions, which likely pre-
cludes describing the solid solution strengthening effect of
these elements; further, they may have not had enough points
at higher compositions of Mo and V (while their maximum
values were 4 and 2.2 for Mo and V, respectively, their aver-
age values were only 0.15 and 0.04 wt%). Interestingly, for
a GPR trained only on the low alloy dataset, the temperature
trend does not appear (Fig. 12).

The influence of S is generally negative, which is not sur-
prising due to its affinity to bond to effective strengthening
agents at high temperatures, e.g., formation of MnS consum-
ing Mn that could be used elsewhere. Mn itself has a variety
of significant SHAP values making it one of the more impor-
tant features but has no consistent positive or negative corre-
lation with temperature or composition. A distinctive feature
of the SHAP values for Mn is that there is a large spread at
0 wt%; other than at the lowest temperatures, the absence of
Mn from the alloy is generally considered a negative impact
on the hardness. Mn is present in most commercial steels to
some degree, with many purposes, including: a desulfurizing
agent, for its ability to promote cementite formation, and as
a lower cost hardenability agent to replace Ni. Si is interest-
ing, in that, like Mn there is a lot of individual variability,
but no consistent positive or negative impact. Si is another
intrinsic alloying element included in most steels and is used
as a secondary deoxidizer. At high alloying concentrations

Si has been shown to inhibit the formation of cementite at
lath boundaries and reduce its embrittling effect.

Ni and Cu effects are not pronounced, which could be due
to the lack of Ni or Cu containing carbides. Alloys contain-
ing high Cu are typically precipitation strengthened through
the formation of Cu particles on the martensitic matrix. In
maraging steels with high Ni concentrations, the formation
of intermetallic Ni;Ti particles is used as a strengthening
phase rather than a carbide. These high Ni or Cu steels that
are non-carbide precipitation strengthened also tend to have
very low C content, as can be seen in Fig. 13, with the SHAP
value data points colored by C content rather than temper
temperature.

A full SHAP plot for the low alloy dataset can be found in
online supplementary Figure S-4. In terms of feature ranking
(online supplementary Fig. S-5 and Fig. 15), the temperature
and carbon are still the most significant, but the importance
of time has increased considerably relative to other input fea-
tures; the importance of several elements has also decreased
considerably (not including W and Co which are not in any
alloys of the low alloy steel subset). Mo is far less important,
for example, as the low alloy data subset does not include
the composition range where it was a consistently positive
contributor to the hardness. An ANN model with a dataset
consisting of low alloy steels found Cr to be the next most
important element after C in predicting hardness [13]. In
fact, the importance of Cr increased in the low alloy subset
over the full hardness dataset in our model as well, shown
in Fig. 10. Similarly, they found Si, Mn, and Mo to have
about the same impact, and Ni to have almost no impact;
however, they also limited their alloys to only these six ele-
ments. It can be seen from Fig. 13 that most of the influence
of Ni derives from the low-carbon high alloys. Overall, the
SHAP values for the GPR trained on the low alloy dataset,
shown in Fig. 14, exhibit simpler trends, which make them
more likely to align with that of the linear regression. This
is also reflected in the improvement in the statistics for the
low alloy dataset prediction from the linear regression model
in Table 2.

Fig. 12 Comparison of the T
SHAP values at low composi- 40}
tions of Mo for the GPR trained
on the full dataset vs only the
low alloy subset to predict
hardness
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Fig. 13 SHAP values as a
function of Ni and Cu content
colored by carbon content for
the GPR (points) and linear
regression (line) trained on the
full dataset to predict hardness
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Fig. 14 Some SHAP values for the GPR trained on the low alloy dataset only. Points are colored by tempering temperature. Lines are the SHAP
values for the linear regression

Izod Predictions

As expected, temperature and carbon are still the most
important features for the prediction of Izod impact tough-
ness (Fig. 15). They also have the anticipated inverse rela-
tionship, i.e., increasing carbon content increases hardness
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but decreases toughness, as can be seen in a comparison of
the SHAP values. This general trend has been well estab-

lished experimentally where prioritizing strength (by either
low temperature tempering or increasing carbon) comes at
the cost of toughness. It is also captured by the empirical
equation, with fairly good alignment between the SHAP
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values of the GPR and linear regression for the temperature
and carbon content (Fig. 16). The Izod dataset is primarily
comprised of low alloy steels (88% low alloy, compared to
61% for the hardness dataset), so the feature importance is
compared to the low alloy subset as well as the full dataset
(Fig. 15). The mean SHAP values are scaled by the highest
SHAP value in the prediction (both hardness and Izod) to
enable easier comparison between the hardness and 1zod
predictions.

Cementite formation and morphology are understood
to be the leading cause of tempered martensite embrittle-
ment (TME) [26], which is most commonly expressed as
low impact toughness, e.g., low Izod values. Therefore, the
SHAP values for the Izod predictions in Fig. 16 are colored
by carbon content (a strong correlative factor to cementite
formation) to look for cross-correlations. Aside from carbon,
the empirical equation to predict Izod impact toughness,
Eq. (6), had very small coefficients for most of the elements,
as is reflected in the SHAP values for the empirical equa-
tion in Fig. 16 (red lines). Silicon is known to be effective
at altering the activity for carbon and retarding cementite
formation during tempering; however, other than a deleteri-
ous effect at high concentrations, there is actually very little
influence on the Izod. The few high Si content points skew
the average importance of this element, when comparing the
average SHAP values.

Cr, Mn, and Mo are the next most important features, but
have no evident trend as a function of composition. Man-
ganese is typically noted as having a complicated effect on
the toughness of steels. At low carbon levels (<0.3 wt%

C) the addition of Mn can be beneficial to the toughness of
the steel, whereas for higher carbon steels (>0.5 wt% C) it
was found that increasing the Mn concentration produced a
drop in toughness [65]. This dichotomy can be observed in
the SHAP values for the large cluster of Mn concentrations
less than 1 wt% in Fig. 16 where low values of C (purple
to blue points) have a slight positive influence on the Izod
whereas higher C values (blue to green points) have a slight
negative influence, and the highest carbon content having
the most negative influence. In a GA-NN model predicting
Charpy impact toughness [36], there was a clear trend of
decreasing impact energy with increasing carbon content,
as also seen with our GPR model. They also observed an
increase in impact toughness with an increase in Cr content
with some confidence between the Cr compositions of ~ 1-2
wt%; however, below 1 wt%, the range present in our dataset,
their confidence interval was too large to confirm any trend.

Trends in the influence of composition on Izod are far
more difficult to discern that for hardness, despite the com-
paratively constrained compositional ranges. The elements
all have varied positive and negative SHAP values and very
little cross-correlation with carbon content, as might have
been expected from known TME mechanisms. Historically
hardness has been predicted with some degree of accuracy
in low alloy steels; however, a unified model incorporat-
ing both low and high alloy steels have not been success-
ful using standard empirical relationships. This is seen in
the complicated effect of the input features via the SHAP
values. Toughness has eluded even limited empirical rela-
tionships in literature because of the complicated nature of
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Fig. 16 SHAP values for Izod prediction from GPR (points) and linear regression (line). Points are colored by carbon content

steel fracture; while there exists qualitative assessments of
individual elements on toughness an overarching model has
not yet been identified. From these modeling frameworks
we have shown that the effect of processing (tempering time
and temperature) as well as composition have complicated
nonlinear effects on the resultant toughness.

Conclusion

We have presented a framework for Bayesian Gaussian
process regression modeling to predict the hardness and
Izod impact toughness of low and high alloys quenched
and tempered steels given alloy composition and process-
ing history. This approach more accurately captures com-
plex alloying behavior far beyond the range of previous
regression models. Shapley feature analysis on the input
parameters for both GPR and linear regression showed
that there are complicated interactions between the ele-
ments and the target properties, particularly for the Izod

@ Springer

impact toughness. The most important input features for
both target properties are tempering temperature and car-
bon content, as expected. The dataset gathered here also
provides a starting point for future, more complex, ML
models and analysis.
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