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Abstract
A simple Gaussian process regressor (GPR) model is employed to predict steel hardness and toughness response for tempered 
martensitic steels. A dataset of over 2000 hardness values from over 250 distinct alloys was compiled, with the aim of incor-
porating a diverse set of quenched and tempered martensitic steels. The Izod impact toughness was included for over 450 of 
these alloy/temper conditions. The GPR exhibited an increase in accuracy for both the predicted hardness and Izod impact 
toughness over linear regression trained on the same dataset. Shapley additive explanations (SHAP) were used to assess the 
importance of the input features of tempering temperature, tempering time, and 15 elements. Tempering temperature and 
carbon content were the most important input features in all models. The relative importance of the other 14 alloying elements 
varied depending on the target property. The SHAP analysis highlighted the complex relationships between composition and 
mechanical properties that are able to be captured by machine learning approaches.

Keywords  Tempered steel · Izod impact toughness · Shapley additive explanations · Martensitic steel

Introduction

Many empirical relationships have been developed over 
the years to describe processing conditions for steels. Most 
notably, equations for the martensite start (MS) temperature 
[1–5], but also the austenitization temperature [1, 2, 6], tem-
pering parameter [7], as-quenched hardness and hardenabil-
ity [8], some of which are even included in ASTM standards. 
The appeal of traditional empirical models (e.g., additive 
models of single-factor terms such as linear regression) over 
physics-based thermodynamic calculations and data-driven 
complex machine learning (ML) approaches, is their inter-
pretability, reusability, and applicability to small datasets. 
Furthermore, they can be easily extended by adding another 
term, e.g., for elements that were not considered previously 

or cross-correlative terms. More complex models like artifi-
cial neural networks (ANNs) or nonparametric models, such 
as Gaussian process regression, may require considerable 
amounts of data, fitting time, or both and remain largely 
black boxes [9]. On the other hand, very complex relation-
ships can be modeled; handling the tradeoff between accu-
racy and complexity has a long history [10, 11]. A common 
problem of complex models is overfitting to the data, which 
can be mitigated by regularization and cross-validation 
methods [10].

A countervailing limitation of traditional empirical mod-
els is their failure to extrapolate correctly beyond the under-
lying composition ranges for which they are devised. Hence, 
a patchwork of partially overlapping composition ranges has 
been used to fit such models, leading to competing param-
eterizations in regions of overlap. One example is the more 
than twenty equations for the MS temperature [3–5]. None-
theless, confined to interpolation, these empirical equations 
often perform very well on the metric to which they were fit. 
In fact, a comparative study between ML models trained on 
a comprehensive compositional dataset and a simple linear 
regression model fit to the appropriate subsets of the data 
found that the more complex models did not significantly 
reduce the relative error over the simple linear regression, 
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while simple random forest regression (RFR) and adaptive 
boosting showed improvement on both training and test sets 
[12]. The same study showed that traditional empirical mod-
els from the literature performed better with respect to mean 
absolute error on the subsets on which those models were 
trained, although it is not clear how much of the data should 
be considered outside of the training set [12]. In a study pre-
dicting hardness of low alloy steels, ANN and support vector 
regression (SVR) models performed significantly worse than 
a traditional empirical equation developed from the same 
dataset [13]. It is worth noting here that the SVR fit a statis-
tically robust linear model, which is a considerably simpler 
approach than the traditional model. Furthermore, the ANN 
did not incorporate in its final activation that Vickers hard-
ness may not be negative, which inhibits the ANNs ability 
to model the relationship well. On the other hand, RFR and 
k-nearest neighbor (kNN) models made slight improvements 
over the already very accurate traditional model’s predic-
tion [13]. In other cases, ANNs sometimes performed better 
and sometimes worse than linear regression in predicting 
tensile strength of low alloy steels [14]. In general, it may 
be concluded that complex ML models require judicious 
application to be of general use.

As intimated above, more complex models require larger 
datasets to model more complex relationships. These data-
sets must not just be larger, but also representative of the 
modeling domain and its complex relationships. For non-
Bayesian models, the dataset also has to be large enough for 
a meaningful cross-validation and generalization error esti-
mates [10]. A rule of thumb is an order of magnitude more 
samples than input features. Despite the recent proliferation 
of ML studies predicting properties of steel (and other met-
als), many of these models are trained on compositionally 
limited datasets, constraining their applicability in the same 
way as existing traditional empirical models. As an extreme 
example, some ML studies have even limited their dataset to 
a single alloy with multiple processing conditions, employ-
ing an ANN to predict tempered hardness of AISI 1045 with 
only 18 training points [15]. Another example is the applica-
tion of an ANN with 30 parameters to predict hardness in 9 
wt% Cr steel with only 36 training points [16]. Obviously, 
overfitting is a considerable risk with complex, expressive 
models and such limited data. The low diversity of the data-
set also greatly restricts the domain in which these models 
can be expected to give accurate predictions.

On the other hand, large datasets of one particular family 
of steel can provide multiple, high-fidelity property predic-
tions. An example dataset is that of ferritic creep resistant 
(9-12Cr) which has been used extensively: for robust com-
parisons of ML methods, studying the impact of various 
input features including calculated and measured micro-
structures, and prediction of multiple properties including 
creep life [17], yield [18], rupture [19], and hot strength [20]. 

However, since the training data is comprised of only one 
class of steel with a consistent microstructure that produces 
a singular strengthening mechanism, the model is expected 
to falter when extended to other classes of steels. Even in 
a subset of steels with the same strengthening mechanism, 
e.g., low C stainless steels with intermetallic (rather than 
carbide) strengthening phases, training on the subset of the 
data with one dominant phase (R-phase) and then making 
predictions on the subset of data with different dominant 
phases (Ni3Ti and Cu clusters) resulted in a steep decline in 
predictive capability of the support vector regression model. 
This occurred even while including physical metallurgy 
input parameters such as the equilibrium volume fraction 
of the intermetallic phase in addition to the compositions 
in order to describe the mechanism more specifically [21]. 
Even when a dataset is comprehensive compositionally, it 
may have other specific features that limit extensibility. For 
example, in their predictions of tensile strength, Jiang et al. 
[22] included 23 processing parameters including the power 
rate of multiple fans on a production line. Xie et al. also 
used multiple plant and production line inputs in their ML 
prediction of several mechanical properties of hot rolled low 
alloy steel plate [23].

In this work, we employ the simplest possible inputs and 
perform a direct comparison between traditional empirical 
modeling (i.e., linear regression) and an ML model trained 
on the same dataset. The dataset is comprised of numerous 
classes of quenched and tempered martensitic steels, from 
simple Fe–C to high-C tool steels, including both stand-
ard AISI grades and experimental alloys, and low strength 
through ultra-high strength steels (UHSS). We also publish 
our dataset for reference in future studies involving more 
sophisticated ML models.

In quenched and tempered martensitic steels, the steel 
is first heated above the austenite transformation tempera-
ture where 100% austenite phase is achieved; second, it is 
quenched rapidly, forming martensite when it reaches the 
martensite start (MS) temperature on cooling. The austen-
ite to martensite transformation proceeds until reaching 
the martensite finish (Mf) temperature possibly resulting in 
incomplete martensite transformation, and retained austen-
ite, if the Mf is below room temperature. Third, the temper-
ing process is applied to generate the final microstructure of 
tempered martensite that is generally toughened by finely 
dispersed phases. For low alloy quenched and tempered steel 
systems, strength is understood to be primarily derived from 
supersaturated carbon in the as-quenched condition. Carbon 
super-saturation within the martensite lattice octahedral sites 
causes a significant hydrostatic stress and leads to tremen-
dous increases in strength. The decrease in strength during 
tempering is associated with the formation of transition car-
bides that reduce the degree of C super-saturation and is also 
accompanied by an increase in toughness.
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There are a few existing relationships to describe the 
hardness of low alloy steels in their as-quenched [8] and 
tempered [7, 24, 25] state as a function of composition. 
The as-quenched hardness prediction, for example, is based 
solely on the carbon content with an upper bound of 0.61 
wt% C after which the hardness is assumed to saturate [8]:

The limit placed at 0.61 wt% C is due to the severe 
depression of the Ms and Mf temperature from further 
additions of C leading to an incomplete transformation of 
austenite to martensite. The amount of retained austenite 
increases nearly linearly as the transformation temperatures 
are lowered and has been shown to be directly correlated to 
the carbon content [26].

Elements other than C, such as Mo and V, can provide 
solid solution strengthening in low temperature tempering 
regimes; however, at higher tempering temperatures they 
contribute to particular carbide formations that can either 
decrease or increase hardness depending on their size and 
location [27, 28]. Compositional variations can be utilized 
to form advantageous carbides, or slow the formation of 
deleterious carbides, as in the case of Si which inhibits 
the formation of cementite by changing the activity for C 
[27]. Alloying strategies also include mitigating detrimental 
effects of residual impurity elements. For example, Ti and Al 
are utilized to reduce the effects of O and N by forming fine 
particles that are then used as grain pinning particles. The 
effects of S are commonly addressed by the addition of Mn 
to form a ductile second phase, MnS, that can be relatively 
innocuous to the steel due to its ability to be deformed dur-
ing hot working of the steel. Residual Cu can hinder a steels 
ability to be hot-rolled due to the phenomenon known as 
hot shortness [29]. On the other hand, Cu is purposefully 
added to form fine precipitates in some UHSS alloys where 
they provide the primary strengthening mechanism in con-
trast to the supersaturation of carbon compared to the low 
alloy steels. From this brief discussion, it can be seen that 
the role of individual elements can be multifaceted which 
provides a good example for comparing the application of 
traditional empirical (e.g., linear regression) to machine 
learning approaches.

Further, mechanisms that contribute positively to one 
mechanical property may negatively impact another. As 
an example, consider the tempered strength and toughness 
for AISI 4130 in Fig. 1 where the strength monotonically 
decreases with increasing tempering temperature, but impact 
energy has a complicated trend. As a consequence, empirical 
relationships for hardness and impact toughness do not have 
a simple inverse relationship due to their different physi-
cal mechanisms. While there are several existing empirical 
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relationships for tempered hardness [7, 24, 25], the authors 
are unaware of any similar relationships for impact tough-
ness due to its complexity. Several ML studies have explored 
toughness in a limited way, either with a small number of 
alloys [30, 31], or by only investigating a single class of 
steel [32, 33]. An ML study of Charpy impact toughness 
with a comprehensive compositional dataset resulted in 
good predictions only if additional mechanical test meas-
urements were used as inputs in addition to the composi-
tion [34]. However, these additional inputs were the tensile 
strength and reduction of area, which leads to large mate-
rial consumption to obtain representative test results. When 
using an existing dataset where tension tests were already 
performed for the material of interest this is a reasonable 
approach, but for a new alloy/temper not in the dataset, it 
would require less time and material to just perform the 
Charpy impact testing. In studies where multiple mechani-
cal properties were predicted, impact toughness was by far 
the poorest prediction of the targets [23, 35]. A study with 
large amounts of industrial data was able to make fairly good 
predictions [36].

The existing empirical relationships for the hardness of 
the tempered state are discussed in more detail in a later 
section; however, they all have a similar functional form 
in that they predict hardness as a function of alloy content, 
time, and temperature. They all have generally good fits 
within the compositional ranges of the alloys used for the 
regression analysis but are not likely to be valid beyond 
this low alloy range. For example Kang [7] used steels 
with the elements C, Mn, Si, Ni, Cr, and Mo only, omit-
ting many important alloying contributions for UHSS and 
other steels such as Co and V. Mukherjee [24] had the 
most comprehensive dataset from an elemental perspec-
tive, but most alloys had a maximum concentration of ~ 2 
wt% for most elements; they also had some severe outliers 
with predictions using their low tempering temperature 

Fig. 1   Ultimate tensile strength (UTS) as a function of tempering 
temperature in AISI 4130 steel compared to Charpy (CVN) impact 
toughness. Points are colored by temper temperature. The UTS has a 
straightforward trend with respect to processing condition compared 
to the CVN. Data from [28]
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(< 573 K) data. The model of Athavale [25] is somewhat 
limited in that it utilizes the incremental hardness increase 
of multiple alloying elements, but only uses data from one 
hour tempers (other temper times are predicted by integrat-
ing the Jaffe-Holloman tempering parameter).

The paper is organized as follows. First, we collect a 
comprehensive dataset of tempered martensitic steels of 
many classes that includes both low and high alloy steels. 
Second, we evaluate the effectiveness of a traditional 
empirical linear regression approach as a baseline. Third 
we apply a machine learning approach to the tempering 
dataset. Since the traditional empirical models exhibit 
clear contributions based on alloying content, i.e., in the 
form of the coefficients, we use an ML modeling approach 
where the impact of the input features can be quantified. 
The feature importance is discussed using Shapley values 
[37] which can be calculated for both linear regression 
and Gaussian process regressor (GPR). The bulk of the 
dataset and analysis is using the target property of hard-
ness, but the approach to also extended to a smaller dataset 
of a more complex mechanical property, here Izod impact 
toughness.

Data Summary

The intent of this dataset is to incorporate the breadth of 
quenched and tempered martensitic steels, and as such, 
encompass a large composition space. Fifteen alloying ele-
ments are tracked to describe the composition. The target 
property of this dataset is the hardness. The secondary target 
property of Izod impact toughness was also collected from 
handbook data where it existed.

We attempt to incorporate the data used and cited in pre-
vious empirical [7, 24, 25] and other modeling (e.g., [21]) 
works to facilitate comparisons; however, most did not pub-
lish their datasets. In some cases, these previous modeling 
papers also included propriety industry data. Further, some 
of the literature data used in the previous datasets was dis-
carded during our data assessment step described in a fol-
lowing section. A full description of the dataset is in the 
online supplementary material. The data in this dataset was 
collected from literature and handbook sources [25, 38–55] 
and is available on Materials Commons [56].

The handbook and literature data collected were assessed 
for compatibility with the desired model bounds. First, to 
limit this model to martensitic quench and tempered steels, 
mixed microstructure (e.g., microstructures of austen-
ite + ferrite, martensite + austenite, bainite, etc.) effects were 
removed. Second, the remaining dataset was divided into 
two classes, low and high alloy steels, based on their alloy-
ing content.

Data Processing and Assessment

To rule out the effects of mixed microstructure on the 
mechanical properties, we assess the collected data (~ 3000 
alloy, temper, time combinations) for adherence to marten-
sitic structure. The original data source is checked for data 
on microstructural features. If the retained austenite frac-
tion is reported in the original source, a threshold of ≥ 3% 
retained austenite is considered to be a mixed microstruc-
ture. This threshold is based on an observable fraction 
via X-ray diffraction (XRD). For example, it is noted in 
Grange et al. [53] that their high carbon (0.5, 0.72, 0.98 
wt% C) steels had measurable amounts of retained aus-
tenite (3, 7, 13% RA, respectively); these datapoints are 
therefore dropped from the final dataset. Some of the data 
used in the Mukherjee empirical fit [24] was found to be 
mixed microstructure including reported mixtures of lath 
martensite and bainitic ferrite [38] or reported retained 
austenite fractions as high as 17% [57], so these were not 
included in our dataset despite being used in previous 
models.

Even if the microstructure is not directly reported, the 
likelihood of mixed microstructure being present can be 
estimated via the hardenability of the steel and the dimen-
sions of the heat-treated part from which mechanical test 
coupons were extracted. For example, in the Modern Steels 
handbook [52] the mechanical property data is reported for 
various round diameters of steel bar, where the properties 
were reported as being measured from the center of the bar. 
Alloys with low hardenability and slow cooling rates (e.g., 
thick sections) will not form 100% martensite throughout the 
component, leading to a mixed microstructure in the sample 
incompatible with this model. To assess the probability of 
mixed microstructure in such parts, we consider the dimen-
sion of the component relative to the ideal diameter (DI) 
for the steel. The DI is calculated using the methodology of 
ASTM 255 [8]. If the dimension of the part is larger than 
the calculated DI, it is likely that the center of the part where 
samples are obtained is not 100% martensite and is discarded 
from the dataset. Data reported from Jominy end quench 
tests, e.g., [25], will also vary in microstructure along the 
length of the test coupon and the measured properties as a 
function of the cooling rate; therefore only the J1 position 
is utilized due to it being the highest cooling rate position.

The data were all converted to the same units: degrees 
Kelvin for the tempering temperature, seconds for the tem-
pering time, Joules for the Izod impact toughness, and Vick-
ers hardness (HV). The hardness values were all converted 
to Vickers using the methods from ASTM E140-12b [58]. 
In the cases that the data does not have an explicit temper 
time (e.g., some handbook data), we assume a time of 1 h, 
which is consistent with the median value of the data that 
has a reported time and is congruent with typical industrial 
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practice [59]. Data with assumed times are annotated in the 
dataset if other users would prefer to discard the time data.

Low Versus High Alloy

In processing the data, we partition the dataset into ‘low 
alloy’ and ‘high alloy’ steels, with the intent of thresholding 
between the steels that most empirical relationships have 
likely been fit to, and the more diverse range of steels which 
our dataset encompasses. The strengthening mechanisms for 
the low alloy steels will be similar to each other, in that they 
have a more limited number of possible carbide formers; 
in contrast, the high alloy steels could have any range of 
carbides, other non-carbide precipitates (e.g., Cu clusters 
etc.), etc. each of which influence the strength. As there is 
not a universally accepted definition for high alloy steels, we 
develop a quantitative threshold based on hardenability for 
whether a steel is considered low or high alloy to segment 
the dataset. There are two relevant empirical equations for 
hardenability in the ASTM A255 “Standard Test Methods 
for Determining Hardenability of Steel” [8] which we use 
to determine the low alloy threshold. The three criteria that 
must be met to be considered a “low alloy steel” in the data-
set are:

1.	 The carbon content must be below 0.61 wt%; this cri-
terion is based on the saturation of the hardness of as-
quenched 100% martensite microstructure in ASTM 
A255 Table 7 [8]. Above 0.61 wt% C the as-quenched 
hardness was no longer reported to increase as a function 
of carbon content as noted previously.

2.	 The composition must be within the range defined in 
Table 1, based on DI calculation limits from ASTM 
A255 with other allowables for elements not originally 
included in the standard: W, Co, Ti, and Al. The hard-
enability calculator was designed for a subset of com-
mercial steels that did not include these now common 
additions in low alloy steels. Ti and Al are added in 
small amounts (< 0.03 wt%), termed “micro-alloying 
additions” to remove N in solution by forming TiN and 
AlN to act as pinning particles for fine grain practice 
[29]. Co and W are found as residuals from the scrap 
melting process and are removed to < 0.1 wt% during 
melt refining; these low levels are innocuous to the 
steel’s performance. An allowance for Sulphur was also 
made as it can be purposefully added to alloys, e.g., the 
AISI 1100 series steels, to improve machinability with-
out significantly affecting hardness.

3.	 The calculated DI must be less than or equal to 7″, the 
maximum dimension for which dividing factors have 
been tabulated in ASTM A255.

Final Dataset Description

After processing, the dataset is comprised of 2004 meas-
ured hardness values of quenched and tempered martensi-
tic steel comprised of 61% low alloy steels and 39% high 
alloy steels. Within this dataset there are 269 distinct alloy 
compositions that have between 1 and 70 different tempered 
conditions associated with the alloy. The tempered process-
ing conditions are described by temperature and time, and 
the composition of the alloy is tracked for 15 elements. A 
detailed summary of the dataset feature ranges is provided in 
the online supplementary material, Tables S1–S3. The com-
positional values are indicated in Fig. 2, with distinctions 
between high and low alloy subsets. The maximum ranges 

Table 1   Composition limits 
for low alloy steels, modified 
from ASTM A255 multiplying 
factors

*These elements are not in 
ASTM A255

Element Maximum (wt%)

Mn 1.95
Si 2.0
Ni 3.5
Cr 2.5
Mo 0.55
Cu 0.55
V 0.2
C 0.9
W* 0.1
Ti* 0.03
Co* 0.1
Al* 0.03
B* 0.003
N* 0.02
S* 0.6

Fig. 2   Full dataset compositions ranges. The alloy content (in wt%) 
of each element contained in each sample is denoted with a ▵(high 
alloy) or an X (low alloy) with points colored by element for read-
ability. The composition space examined within any of the previous 
traditional models [7, 24, 25] is highlighted in green
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for each element that have been included in one of the three 
existing empirical models (online supplementary Table S-4) 
are shown in Fig. 2 as shaded regions.

Empirical Models/Linear Regression

Existing Empirical Models

The foundational work of Grange et al. [53] established 
incremental changes to the hardness based on composi-
tion at several tempering temperatures. They proposed to 
predict the tempered hardness by a linear combination of 
these incremental alloy relationships. These relationships 
were only described for a tempering time of one hour and 
at discrete tempering temperatures. Athavale [25] incorpo-
rated the theories of Crafts and Lamont [60] and the Jaffe-
Holloman tempering parameter [50] in order to extend the 
applicability of Grange et al.’s work. The tempering param-
eter, TP, is:

where T is the temperature in Kelvin, t is the time in sec-
onds, and C is a constant that is dependent on the composi-
tion. In Athavale’s empirical model, C is described only as a 
function of the carbon content [25]. The model of Kang [7] 
also uses the tempering parameter, but fit the composition 
dependence of C to a linear relationship of the alloying ele-
ments within the overall expression for the tempered hard-
ness, TH, in units of Vickers:

Mukherjee [24] did not use the tempering parameter 
but did use the form of log(t) for their time inputs. They 
explored 16 different regression equation forms, with the 
selected equation being:

where At and AT are the coefficients for time and tempera-
ture, respectively, and Ai are the coefficients for each alloy-
ing contribution for element i. Their model had a high corre-
lation coefficient (R2 = 0.924) for the predicted and measured 
hardness for their training dataset but had notable extreme 
outliers at low tempering temperatures (< 573 K) and lower 
correlation for their test dataset (R2 = 0.796).

The maximum ranges of the datasets used for these three 
empirical models are shown graphically in Fig. 2 as shaded 
regions with details provided in the online supplementary 

(2)TP = T
(
log10 (t) + C

)

(3)

TH[HV] =

(
1542.97 −

25.31

XC

)
exp

(
−1.23 × 10−4 ∗ TP

)

(4)ln (TH) = A0 + At ln (t) + ATT +

i=n∑
i

AiXi

Table S-4. The notable differences between the coverage of 
the existing empirical equations and the dataset in this work 
are the complete absence of cobalt and the very low limits 
for W, V, Cr, Ti, Ni, and Mo. These elements are important 
components of martensitic stainless steels, UHSS with high 
fracture toughness K1C, as well as high temperature tool 
steels needed for extreme environments, in which refrac-
tory alloy carbides are required to retain strength at elevated 
temperatures.

These three existing equations have been applied to our 
dataset, with the results shown in Fig. 3. First, we segment 
our dataset by the limits for each equation so as not to exceed 
the original bounds. This results in reasonable predictions, 
quantified in Table 2; Mukherjee’s work had reported R2 of 
0.924 for their training set and 0.796 for their test set, while 
Kang reported a training set R2 of 0.941 and did not use a 
test/validation set. Therefore, despite limiting our dataset to 
the original compositional limits of the empirical equations, 
there is a decrease in predictive capability compared to the 
original training set.

These empirical predictions break down, as expected, 
when used to predict the tempered hardness for the full 
dataset including high alloyed steels. For Athavale, the high 
alloys are generally underpredicted as the model does not 
have terms for several elements, resulting in zero contribu-
tion; however, the predictions are still within the realm of 
observable measurements. Conversely, for Mukherjee and 
Kang there are many unphysical predictions (resulting in 
extremely low R2 below 0.03) such as hardness values in 
excess of 100,000 HV and negative hardness values. This is 
perhaps not unsurprising, due to the extreme extrapolation 
occurring for some of the elements in the empirical equa-
tions. We therefore fit a new empirical equation to our larger, 
more comprehensive dataset. This will also be used to com-
pare directly to the GPR model trained on the same dataset.

New Linear Regression Models

The full dataset was split into training (80%) and test (20%) 
sets, with the empirical equation fit on the training set. A few 
different forms were considered for the empirical equation, 
in the manner of [24] with the best fit being of the following 
form with the coefficients shown in Table 3:

The predicted hardness from the traditional empirical 
Eq. (5) is shown versus the measured hardness in Fig. 4. 
Assessing the coefficients in Table 3, it is reassuring that 
the time and tempering temperature have a negative effect 
on strength that is obvious to the standard heat treatment of 
quenched steels. The strong positive effect of C on hardness 

(5)TH[HV] = Po +

i=n∑
i

XiCi + XTT + Xt log10 t
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is also an obvious result. We defer discussion of the impacts 
of different inputs from the linear regression model with 
the GPR model to the Feature Analysis section. In terms 
of statistics (Table 2), this equation is an obvious improve-
ment over prior models, but it still has quite a large MAE 
and RMSE.

The linear regression for the impact data is performed for 
the following form, where the Izod value is scaled by the 
natural log to maintain a positive prediction:

The coefficients for Eq. (6) are in Table 3; several are zero 
because the Izod dataset does not contain alloys with these 
elements, but they are left in for consistency with the full data-
set and the other tables in the paper. It is immediately appar-
ent that the relationships between many of the input features 
have opposite impacts for predicting hardness versus tough-
ness. The coefficients for temper temperature and carbon have 

(6)ln (IZOD[J]) = P0 +

i=n∑
i

XiCi + XTT

opposite signs from the coefficients for the hardness predic-
tion, as expected, i.e., increased carbon content is known to 
increase strength but decrease toughness while increased tem-
per temperature decreases strength while increasing toughness.

While the hardness prediction from Eq. (5) is obviously 
a vast improvement over existing empirical equations, par-
ticularly for high-alloy steels, it still has relatively high error. 
Further, the Izod prediction (Fig. 5), while also not an unrea-
sonable R2 value, has almost half of the predicted points 
outside of ± 10 J from the measured value (with a MAE of 
12.3 and RMSE of 16.5). Therefore, we move on to perform-
ing Gaussian Process Regression on the dataset in order to 
improve the predictions of both hardness and Izod.

Gaussian Process Regression

The input features are comprised of tempering time, temper-
ature, and alloy compositions in wt%. The target variables 
are hardness and Izod impact toughness. Since all of these 

Fig. 3   Predicted vs measured hardness using existing empirical models for (top) the limits stipulated by the original model and (bottom) the full 
dataset colored by low-/high-alloy split. The metrics for the predictions are in Table 2

Table 2   Statistics for linear 
regression equations

Model Original equation limit Low alloys subset Full dataset

R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE

Mukherjee 0.796 42.8 63.1 0.728 44.2 72.6 0.024 1278.0 11,562.7
Kang 0.826 37.1 59.5 0.814 39.7 62.4 0.001 1577.9 7279.8
Athavale 0.784 41.45 67.5 0.798 37.5 57.6 0.245 86.3 147.9
This work 0.835 40.2 53.9 0.796 49.5 67.7
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variables describe a physical quantity with an associated 
length scale, we apply the following rescaling procedures to 
preprocess our data. First, since both target variables must 
be positive, we apply a logarithm scaling. Specifically, we 
rescale each target y as x = ln(y). In addition, we rescale time 
as x = ln10(y) similar to convention in the literature [41] and 
consistent with Eq. (2). In [33], normalizing the time via 
logscale was necessary in order to enable their ANN to make 
predictions. Second, for all variables, for which we denote 
a sample by x, we apply a Z-score normalization such that 
the scaled distribution of a variable has a mean of zero and 
standard deviation of unity, i.e.,

where μ and σ represent the mean and standard deviation 
of all samples for each variable, respectively. The scaled 
distributions for each of the input features and hardness are 
shown in Fig. 6; the distributions for the Izod impact dataset 
are shown in online supplementary Figure S-2.

With the rescaled data, we employ a Gaussian process 
regressor (GPR) to compute probabilistic predictions of 
targets given the input features. The GPR requires a prede-
fined kernel function specifying the covariance matrix. We 

(7)Z(x) =
x − �

�

Table 3   Coefficients for empirical Eqs. (5) and (6)

Prediction HARDNESS IZOD

Coefficient HV ln (IZOD[J])

P0 776.91 1.891
XT [K]  − 0.61 0.00444
Xt [s]  − 18.41 0
Xi [wt%]
C 193.29  − 3.239
Mn 8.53 0.004
Si 63.73  − 0.488
Cr 0.18  − 0.019
V 46.84  − 0.198
W 16.18 0
Mo 35.97 0.685
Ni 9.96 0.008
Co 1.31 0
Al 71.63 0
Cu 19.05 0
Ti  − 18.11 0
N  − 338.72 0
B 1991.27 0
S  − 129.00  − 0.943

Fig. 4   Predicted vs measured 
hardness using Eq. (5) for the 
training (R2 = 0.795) and test 
(R2 = 0.796) set split of the full 
dataset

Fig. 5   Predicted vs measured 
Izod values from linear regres-
sion fit, Eq. (6). The R2 value 
is 0.822 for the training set and 
0.843 for the test set
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employ a general kernel form comprised of three fundamen-
tal kernels and five hyperparameters:

where  the  hyper parameters  a re  denoted  by 
� ≡

[
�1, lRBF, �2, �0, lNoise

]
 . Each of the three kernels may be 

expressed as:

In Eqs. (9), ||·|| denotes the Euclidean distance, · denotes 
the dot product, and δ denotes the Kronecker delta which is 
unity when both arguments are equal, and zero otherwise. 
For training the GPR, fitting the covariance matrix to data 
via log maximum likelihood, and finally making predictions, 
we employ the python module Scikit learn [61].

Cross‑Validation

The objective in optimizing Eq. (8) is twofold. First, the ker-
nel hyperparameters, θ, must optimize the prediction quality 
of our model. Simultaneously, we must provide an accu-
rate assessment of the performance of the optimized kernel 
against data which has been excluded from the optimization 
process. To accomplish these two tasks, we employ a nested 
cross-validation scheme comprised of an inner hyperparam-
eter optimization step and a separate outer validation step 
with fixed hyperparameters.

The nested K-I cross-validation algorithm is com-
prised of three computational loops. The outer most 
loop cycles over all combinations of trial kernel func-
tions, specifically initializing �1, �2, lNoise ∈ {0, 1} . For 
each superposed kernel function, the second internal 
loop begins by splitting the data into K—folds = 5, with 
test fraction: 1/K − folds = 20% and training fraction 
1 − 1/K − folds = 80%. The K-fold test fraction is set 
aside and the remaining K-fold training fraction is fur-
ther partitioned in the third internal loop over I-folds ≡ 
1 − K-folds = 4. The K-folds training data are partitioned 
into 1/I-folds = 25% I-fold test data which comprise 20% 
of the dataset and 1 – 1/I-folds = 75% I-fold training data 
which comprise 60% of the dataset. The I-fold training 

(8)

K
(

xi, xj;�
)

=�1RBF
(

xi, xj;lRBF
)

+ �2Dot Product
(

xi, xj;�0
)

+WhiteNoise
(

xi, xj;lNoise
)

,

(9a)RBF
�
xi, xj;lRBF

�
= exp

⎛
⎜⎜⎜⎝
−

���xi − xj
���
2

2l2
RBF

⎞
⎟⎟⎟⎠

(9b)Dot Product
(
xi, xj;�0

)
= �0 + xi ⋅ xj

(9c)White Noise
(
xi, xj;lNoise

)
= lNoise�

(
xi, xj

)

data are employed to both optimize the hyperparameters, 
θ, via log maximum likelihood and populate the covari-
ance matrix, simultaneously. The I-fold test data are subse-
quently employed to perform an initial model performance 
evaluation via mean squared error:

Within this relation yi and yi denote observed and pre-
dicted target variables, respectively. This same loop over 
I-folds is repeated three additional times such that we obtain 
MSE(� i) for i = 1, …, 4 and the parameter set θopt ≡ argmin 
MSE(� i) which minimizes the mean squared error is stored 
for this trial kernel. The covariance matrix is subsequently 
populated with the K-folds training data, with θopt held fixed. 
An outer model performance test is performed employing 
Eq. (11), and calculating a similar MSE against the outer 
test data, i.e., K-folds test. Given the inner validation error 
and the outer test error, the total cross validation score can 
be computed as

The inner validation and outer test dataset have the same 
number of samples, n. With K-folds = 5, five cross-valida-
tion scores are computed for each superposed kernel com-
bination. The obtained cross-validation means and standard 
deviations are shown in Fig. 7 for each kernel tested and 
for the hardness, impact, and total datasets. In the interest 
of thoroughness, we have also included a constant kernel 
[Constant(), not shown in Eq. (8)] in this study.

A benefit of using GPR for predicting mechanical proper-
ties is the straightforward way in which it can account for 
noise/variance/spread in the experimental measurements. 
Each measurement is described by a Gaussian distribution 
with a given mean and variance, where the default assump-
tion is essentially no variance. In Scikit-learn [61] the vari-
ance is passed as α with the default value being 1 × 10–10 
for example. This parameter can be used to specify the 
variance for each individual measurement passed into the 
model; however, as only a few of the data sources in report 
the variance of their measurements we therefore make an 
estimate of the variability based on ASTM standards for 
measurement [62, 63]. For hardness, this variability is on 
the order of 1–5% of the measurement [62] and 3–6% for the 
impact toughness [63] depending on whether the measure-
ment is on the low or high end of the scale. Assuming the 
observations are yi ± �i with variance �i (and then rescaled 
on a log-scale as defined above for the targets), the hardness 
predictions using an α based on the ASTM are compared 
with the default value for α (1 × 10–10) [61] and shown in 

(11)MSE
(
�i
)
=

1

n

n∑
i=0

(
yi − y

(
�i
))2

(12)CV[MSE] =
MSEouter

(
�opt

)
+MSEinner

(
�opt

)
2
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Fig. 6   Normalized distributions of input features and hardness. The elemental thresholds of Table 1 are indicated by grey dashed lines for refer-
ence. Normalized compositions greater than five standard deviations from the mean are excluded from the figure
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Fig. 7. In this case, the effect of α on the average CV for 
each kernel was found to be negligible, while the spread in 
the CV has slightly increased with increasing α.

Based on the results shown in Fig. 7, RBF() + WhiteK-
ernel() is selected; this three parameter model provides the 
best compromise between minimal CV score and minimal 
model complexity. The optimized hyperparameters are 
shown in Table 4 for the hardness and Izod predictions. As 

shown in Table 4, the fundamental kernel prefactors (i.e., 
�1 and lNoise) remain relatively constant over each of the 
four sets of target variables studied. Moreover, �1 >  > lNoise, 
suggesting that the WhiteKernel() does not contribute as 
significantly to the predictions.

Results of GPR

Using the optimized kernels of Table 4, the hardness and 
Izod impact toughness are predicted based on the com-
position and temper inputs. The predicted hardness and 
predicted Izod results for the test sets are shown in Fig. 8. 
The predicted hardness of the test sets has an R2 value 
of 0.898 ± 0.023 and the predicted Izod test sets an R2 of 
0.919 ± 0.01. Both are significant improvements over the 
linear regressions trained on the same data and with the 
same input features (R2 of 0.796 and 0.843, respectively). 
Further, the percent of predictions that are off by greater 
than ± 50 HV are reduced by the ML model to 10.9% down 
from 38.4% for the hardness prediction and those off by 
greater than ± 10 J are 31.2% down from 46.3% for the 
Izod prediction. In addition, the MAE is 25.7 HV down 
from 49.5 HV and 8.05 J down from 12.3 J for Izod. The 
RMSE for the Izod prediction is 11.1 J, which compares 
favorably to another ML model study (GA-NN and others) 
for low-alloy steels using Charpy impact data which had 
testing RMSE of between ~ 18 and 20 J [36]. We also train 
a GPR using only the low alloy subset of the hardness data; 
the R2 for this prediction using just the low alloy subset is 
0.939 ± 0.01, better than both the full dataset prediction 
and the empirical predictions using just low alloys. Fur-
ther, only 8.1% of the predictions are greater than 50HV 
from the expected value and the MAE is 19.2HV.

Fig. 7   Kernel comparison for predictions of hardness and Izod. Com-
parison of noise dependence for hardness prediction is included. A 
constant � = 1 × 10−10 is compared to an observation dependent �

Table 4   Optimized kernels

Target value θ1 lRBF lNoise

Hardness 1.88 1.76 0.05
Low alloy hardness 2.02 3.13 0.05
Izod 1.59 1.89 0.05

Fig. 8   Predicted versus measured hardness with full dataset hardness with low alloy subset Izod for an example test set using optimized kernels 
from Table 4
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Feature Analysis

To describe some of the differences between the linear 
regression and GPR and interpret the trends in properties, 
we quantify the significance of the various input features. 
Feature importance is assessed using Shapley values cal-
culated using the SHAP (SHapley Additive exPlanations) 
module in python [37]. Shapley values are representa-
tive of the significance of each feature on the predicted 
property and can be calculated for both the linear regres-
sion and GPR. The SHAP values plotted in Fig. 9 show 
the increase or decrease to a baseline property prediction 
value where each point represents the value of the feature 
for a given alloy and temper input. For the GPR kernel 

and test set presented in Fig. 9, the baseline hardness is 
376 HV for example, and a point at a SHAP value of + 50 
for Cr would indicate the input value of Cr for that alloy 
added 50HV to the baseline hardness. General trends can 
be observed, such as higher contents of most elements 
tending to increase the hardness; however, it is clear that 
these are not straightforward relationships between com-
position and hardness increase from the variation in colors 
representing the input feature value. Ni and V, for example, 
have some high compositions that decrease the hardness.

The input features are ordered by importance, which is 
calculated by mean(|SHAP|). Different kernels or test train 
partitions on the same data will end up with different rank-
ings of feature importance. Here, since we have optimized 
the kernel, we quantify the feature importance variability by 

Fig. 9   Shapley plot for hardness 
prediction from GPR using the 
optimized kernel. Points are 
colored by the input feature 
value
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varying the test and train split. Ten different random seeds 
for a 67%/33% test/train split are used with the optimized 
kernel, and the average Shapley values tabulated in Fig. 10. 
These results are compared to the mean(|SHAP|) values for 
the linear regression equations. While there is agreement for 
the relative importance of the first three input features for 
both predictions, the ranking of elements fluctuates thereaf-
ter. Several of the elements have essentially no importance 
according to the linear regression, but relatively high impor-
tance in the GPR, e.g., Cr. Details will be discussed in the 
following section.

Hardness

The temper temperature is by far the most important feature, 
regardless of test and train split. Carbon is unsurprisingly 
the most important of the alloying elements for predict-
ing both hardness and toughness. For hardness, the next 
most important elements are Mo and Cr, with almost equal 
impact. Interestingly, the linear regression equation found Cr 
to have essentially no impact on the hardness. We illustrate 
the differences between the feature importance of the GPR 
and the empirical equation by directly comparing the SHAP 
values in Fig. 11. The SHAP values for the linear regression, 

Eq. (5), are indicated by the teal lines, and compared to the 
points representing the SHAP values for the GPR (points 
colored by temper temperature). The SHAP values for the 
GPR for Cr show approximately a parabolic trend, where 
the importance of Cr increases up to around 5 wt%, and 
then decreases at higher compositions. Further, at the lean-
est compositions, e.g., < 1 wt% Cr, Cr tends to decrease the 
hardness from baseline, whereas at all other compositions it 
provides some amount of increase. Another element where 
the GPR and linear regression particularly diverge is Co. 
Empirically, Co has not been found to have a large positive 
or negative effect on the predicted hardness of the steel, but 
it can be seen here to have a strong positive effect in certain 
high composition regions. There are many high Co steels 
that are typically tempered at or above 673 K as Co has been 
noted to reduce the activity of C [64] and promote formation 
of refractory carbides; this appears as an increased hardness 
at high temperatures.

For Co and Cr, it is clear that the linear regression can-
not capture the complex relationship between the element 
and its effect on hardness. In many other cases, the overall 
trend between the two models is in general agreement, 
e.g., an increase in V content increases the hardness, but 
the details can differ significantly. However, in the case 

Fig. 10   Mean SHAP values for  
the hardness and Izod predictions
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of Ti, the linear regression predicts that increasing Ti 
will decrease the hardness, whereas the majority of the 
GPR SHAP values show an increase. There are several 
elements for which the average SHAP value is low, but 
many individual SHAP values are quite high, in particular 
for W and Co. This is likely due to a large number of zero 
composition points. W has some very high importance 
values at high temperature tempers, which is likely cor-
related to its implementation in W-bearing tool steels for 
machining operations as well as for high temperature tool 

steels in which hardness at high operating temperatures 
are required.

Mo is considered a strong strengthener by both our lin-
ear regression and GPR models, with a positive impact on 
the hardness for a large range of composition. Mo and V 
are both known to provide solid solution strengthening dur-
ing low temperature tempering (≤ 473 K) and a secondary 
hardening affect from carbide formation (e.g., M2C, MC) 
at higher temperature tempers (> 773 K) [27, 59]. For low 
concentrations of Mo, i.e., where there is likely enough Mo 

Fig. 11   Some SHAP value comparisons for the elements, colored by temper temperature
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present to contribute to solid solution strengthening but not 
necessarily enough to form carbides, a temperature effect 
can be seen on the SHAP values, shown in Fig. 12 where 
the higher temperature points have a negative influence on 
the hardness and the lower temperature points are neutral to 
increasing hardness. At concentrations greater than ~ 0.25 
wt%, Mo is unambiguously providing an increase to the 
hardness. Similarly, V generally provides an increase to the 
hardness other than at very low compositions and the high-
est compositions. It is interesting to note that the Mukherjee 
empirical model had negative coefficients for both these ele-
ments, in opposite relationship to both the linear regression 
and GPR models here. The Mukherjee model also performed 
poorly for low temperature predictions, which likely pre-
cludes describing the solid solution strengthening effect of 
these elements; further, they may have not had enough points 
at higher compositions of Mo and V (while their maximum 
values were 4 and 2.2 for Mo and V, respectively, their aver-
age values were only 0.15 and 0.04 wt%). Interestingly, for 
a GPR trained only on the low alloy dataset, the temperature 
trend does not appear (Fig. 12).

The influence of S is generally negative, which is not sur-
prising due to its affinity to bond to effective strengthening 
agents at high temperatures, e.g., formation of MnS consum-
ing Mn that could be used elsewhere. Mn itself has a variety 
of significant SHAP values making it one of the more impor-
tant features but has no consistent positive or negative corre-
lation with temperature or composition. A distinctive feature 
of the SHAP values for Mn is that there is a large spread at 
0 wt%; other than at the lowest temperatures, the absence of 
Mn from the alloy is generally considered a negative impact 
on the hardness. Mn is present in most commercial steels to 
some degree, with many purposes, including: a desulfurizing 
agent, for its ability to promote cementite formation, and as 
a lower cost hardenability agent to replace Ni. Si is interest-
ing, in that, like Mn there is a lot of individual variability, 
but no consistent positive or negative impact. Si is another 
intrinsic alloying element included in most steels and is used 
as a secondary deoxidizer. At high alloying concentrations 

Si has been shown to inhibit the formation of cementite at 
lath boundaries and reduce its embrittling effect.

Ni and Cu effects are not pronounced, which could be due 
to the lack of Ni or Cu containing carbides. Alloys contain-
ing high Cu are typically precipitation strengthened through 
the formation of Cu particles on the martensitic matrix. In 
maraging steels with high Ni concentrations, the formation 
of intermetallic Ni3Ti particles is used as a strengthening 
phase rather than a carbide. These high Ni or Cu steels that 
are non-carbide precipitation strengthened also tend to have 
very low C content, as can be seen in Fig. 13, with the SHAP 
value data points colored by C content rather than temper 
temperature.

A full SHAP plot for the low alloy dataset can be found in 
online supplementary Figure S-4. In terms of feature ranking 
(online supplementary Fig. S-5 and Fig. 15), the temperature 
and carbon are still the most significant, but the importance 
of time has increased considerably relative to other input fea-
tures; the importance of several elements has also decreased 
considerably (not including W and Co which are not in any 
alloys of the low alloy steel subset). Mo is far less important, 
for example, as the low alloy data subset does not include 
the composition range where it was a consistently positive 
contributor to the hardness. An ANN model with a dataset 
consisting of low alloy steels found Cr to be the next most 
important element after C in predicting hardness [13]. In 
fact, the importance of Cr increased in the low alloy subset 
over the full hardness dataset in our model as well, shown 
in Fig. 10. Similarly, they found Si, Mn, and Mo to have 
about the same impact, and Ni to have almost no impact; 
however, they also limited their alloys to only these six ele-
ments. It can be seen from Fig. 13 that most of the influence 
of Ni derives from the low-carbon high alloys. Overall, the 
SHAP values for the GPR trained on the low alloy dataset, 
shown in Fig. 14, exhibit simpler trends, which make them 
more likely to align with that of the linear regression. This 
is also reflected in the improvement in the statistics for the 
low alloy dataset prediction from the linear regression model 
in Table 2.

Fig. 12   Comparison of the 
SHAP values at low composi-
tions of Mo for the GPR trained 
on the full dataset vs only the 
low alloy subset to predict 
hardness
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Izod Predictions

As expected, temperature and carbon are still the most 
important features for the prediction of Izod impact tough-
ness (Fig. 15). They also have the anticipated inverse rela-
tionship, i.e., increasing carbon content increases hardness 

but decreases toughness, as can be seen in a comparison of 
the SHAP values. This general trend has been well estab-
lished experimentally where prioritizing strength (by either 
low temperature tempering or increasing carbon) comes at 
the cost of toughness. It is also captured by the empirical 
equation, with fairly good alignment between the SHAP 

Fig. 13   SHAP values as a 
function of Ni and Cu content 
colored by carbon content for 
the GPR (points) and linear 
regression (line) trained on the 
full dataset to predict hardness

Fig. 14   Some SHAP values for the GPR trained on the low alloy dataset only. Points are colored by tempering temperature. Lines are the SHAP 
values for the linear regression
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values of the GPR and linear regression for the temperature 
and carbon content (Fig. 16). The Izod dataset is primarily 
comprised of low alloy steels (88% low alloy, compared to 
61% for the hardness dataset), so the feature importance is 
compared to the low alloy subset as well as the full dataset 
(Fig. 15). The mean SHAP values are scaled by the highest 
SHAP value in the prediction (both hardness and Izod) to 
enable easier comparison between the hardness and Izod 
predictions.

Cementite formation and morphology are understood 
to be the leading cause of tempered martensite embrittle-
ment (TME) [26], which is most commonly expressed as 
low impact toughness, e.g., low Izod values. Therefore, the 
SHAP values for the Izod predictions in Fig. 16 are colored 
by carbon content (a strong correlative factor to cementite 
formation) to look for cross-correlations. Aside from carbon, 
the empirical equation to predict Izod impact toughness, 
Eq. (6), had very small coefficients for most of the elements, 
as is reflected in the SHAP values for the empirical equa-
tion in Fig. 16 (red lines). Silicon is known to be effective 
at altering the activity for carbon and retarding cementite 
formation during tempering; however, other than a deleteri-
ous effect at high concentrations, there is actually very little 
influence on the Izod. The few high Si content points skew 
the average importance of this element, when comparing the 
average SHAP values.

Cr, Mn, and Mo are the next most important features, but 
have no evident trend as a function of composition. Man-
ganese is typically noted as having a complicated effect on 
the toughness of steels. At low carbon levels (≤ 0.3 wt% 

C) the addition of Mn can be beneficial to the toughness of 
the steel, whereas for higher carbon steels (> 0.5 wt% C) it 
was found that increasing the Mn concentration produced a 
drop in toughness [65]. This dichotomy can be observed in 
the SHAP values for the large cluster of Mn concentrations 
less than 1 wt% in Fig. 16 where low values of C (purple 
to blue points) have a slight positive influence on the Izod 
whereas higher C values (blue to green points) have a slight 
negative influence, and the highest carbon content having 
the most negative influence. In a GA-NN model predicting 
Charpy impact toughness [36], there was a clear trend of 
decreasing impact energy with increasing carbon content, 
as also seen with our GPR model. They also observed an 
increase in impact toughness with an increase in Cr content 
with some confidence between the Cr compositions of ~ 1–2 
wt%; however, below 1 wt%, the range present in our dataset, 
their confidence interval was too large to confirm any trend.

Trends in the influence of composition on Izod are far 
more difficult to discern that for hardness, despite the com-
paratively constrained compositional ranges. The elements 
all have varied positive and negative SHAP values and very 
little cross-correlation with carbon content, as might have 
been expected from known TME mechanisms. Historically 
hardness has been predicted with some degree of accuracy 
in low alloy steels; however, a unified model incorporat-
ing both low and high alloy steels have not been success-
ful using standard empirical relationships. This is seen in 
the complicated effect of the input features via the SHAP 
values. Toughness has eluded even limited empirical rela-
tionships in literature because of the complicated nature of 

Fig. 15   SHAP values for Izod prediction, and feature importance compared to hardness predictions. Feature importance is scaled by max SHAP 
value for ease of comparison
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steel fracture; while there exists qualitative assessments of 
individual elements on toughness an overarching model has 
not yet been identified. From these modeling frameworks 
we have shown that the effect of processing (tempering time 
and temperature) as well as composition have complicated 
nonlinear effects on the resultant toughness.

Conclusion

We have presented a framework for Bayesian Gaussian 
process regression modeling to predict the hardness and 
Izod impact toughness of low and high alloys quenched 
and tempered steels given alloy composition and process-
ing history. This approach more accurately captures com-
plex alloying behavior far beyond the range of previous 
regression models. Shapley feature analysis on the input 
parameters for both GPR and linear regression showed 
that there are complicated interactions between the ele-
ments and the target properties, particularly for the Izod 

impact toughness. The most important input features for 
both target properties are tempering temperature and car-
bon content, as expected. The dataset gathered here also 
provides a starting point for future, more complex, ML 
models and analysis.
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