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Abstract

Multi-terabyte large memory systems are often character-
ized by more than two memory tiers with different latency
and bandwidth. Multi-tiered large memory systems call for
rethinking of memory profiling and migration because of the
unique problems unseen in the traditional memory systems
with smaller capacity and fewer tiers. We develop MTM,
an application-transparentMulti-TieredMemory manage-
ment framework, based on three principles: (1) connecting
the control of profiling overhead with the profiling mecha-
nism for high-quality profiling; (2) building a universal page
migration policy on the complex multi-tiered memory for
high performance; and (3) introducing huge page aware-
ness. We evaluate MTM using common big-data applications
with realistic working sets (hundreds of GB to 1 TB). MTM
outperforms seven solutions by up to 42% (17% on average).

CCS Concepts: · Computer systems organization →

Heterogeneous (hybrid) systems; · Software and its

engineering→ Memory management.
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1 Introduction

The memory hierarchy is adding more tiers and becoming
more heterogeneous to cope with performance and capac-
ity demands from applications. Multi-tier memory systems
that started from multi-socket non-uniform memory access
(NUMA) architecture is now a de-facto solution for building
scalable and cost-effective memory systems. For instance,
the Amazon EC2 High Memory Instance has three DRAM-
based memory tiers built upon eight NUMA nodes [27]. The
commercial availability of some memory technologies, such
as high-bandwidth memory (HBM) and compute express
link (CXL) [2], is adding a new dimension to memory sys-
tems. As a result, a multi-tier memory system can easily
exceed two memory tiers. Top tiers feature lower memory
latency or higher bandwidth but smaller capacity, while bot-
tom tiers feature higher capacity but lower bandwidth and
longer latency. When high-density memory is in use, e.g.,
Intel’s Optane DC PM [58], a multi-tier large memory sys-
tem enables high-performance, terabyte-scale graph analy-
sis [14, 20, 49], in-memory database services [7, 10, 55, 56, 64],
and scientific simulations [40, 41, 46, 51, 60ś62], and large
scale machine learning [25, 52ś54, 65] on a single machine
in a cost-effective way.

Most of the page management systems for multi-tier het-
erogeneous memory (HM) [5, 28, 29, 34, 39, 45, 50] consist
of three components ś a profiling mechanism, a migration
policy, and a migration mechanism. A profiling mechanism
is critical for identifying performance-critical data in applica-
tions and is often realized through tracking page accesses. A
migration policy chooses candidate pages to be moved to top
tiers. Finally, the effectiveness of a page management solu-
tion depends on whether its migration mechanism can move
pages across tiers at low overhead. Emerging multi-tiered
large memory systems calls for rethinking of memory pro-
filing and migration to address unique problems unseen in
traditional single- or two-tier systems with smaller capacity.

Problems. The large memory capacity brings challenges
to memory profiling. Linux and existing memory profiling
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mechanisms [29] manipulate specific bits in page table en-
tries (PTEs) to track memory accesses at a per-page granu-
larity. This profiling method has the benefit of application-
transparency, but is not scalable on a large memory system.
Our evaluation shows that tracking millions of pages could
take several seconds ś too slow to respond to time-changing
access patterns, and causes 20% slowdown in TPC-C against
VoltDB [59]. The most recent solution DAMON [47, 48, 57]
dynamically forms memory regions out of the virtual mem-
ory space mostly based on spatial locality, and profiles a
single page per region. The total number of regions is con-
strained, such that the profiling overhead is controlled. DA-
MON has been adopted by Linux [57], and solves the profil-
ing overhead problem faced by the large memory system, but
its profiling quality can be out of control (shown in Sec. 3):
DAMON can miss more than 50% of frequently-accessed
pages and is slow to respond to access pattern variance.

The limitation in profiling quality comes from (1) the rigid
control over profiling overhead and (2) the ad-hoc formation
of memory regions. Memory profiling relies on PTE scans.
Given a large memory system with a certain constraint on
profiling overhead, the PTE scan for memory profiling can
only happen certain times. Deciding the distribution of those
PTE scans in memory regions is critical for effective profiling.
Strictly enforcing one PTE scan per region (to profile one
page), as in DAMON, breaks the functionality of the profiling
mechanism and compromises profiling quality. Furthermore,
the ad-hoc formation of memory regions (such as randomly
selecting memory regions for split) takes a long time to find
pages with similar memory access patterns to form memory
regions for profiling, delaying page migration.

In addition, rich memory heterogeneity brings challenges
to page migration. Existing solutions, e.g., tiered-AutoNUMA
[29] for multi-tiered memory are built upon an abstraction
extended from the traditional NUMA systems, where page
migration occurs between two neighboring tiers with the
awareness of no more than two NUMA distances. However,
such an abstraction limits multi-tiered memory systems, be-
cause migrating pages from the lowest to the top tier, at
tier-by-tier steps, has to make multiple migration decisions
to reach the destination tier, which takes multiple seconds
and fails to timely migrate pages for high performance.

Furthermore, Linux and existing solutions do not consider
the implications of huge pages on memory profiling and mi-
grations. Using huge pages is common in the large memory
systems to improve performance and avoid long traverse of
page tables. The transparent huge page mechanism (THP)
in Linux mixes huge pages and 4KB pages, which brings
complexity to form memory regions for profiling.
Solutions.We argue that the following principles must

be upheld to address the above problems.
• Connecting the control of profiling overhead with the
profiling mechanism to enable high-quality profiling;

• Building a page migration policy on the multi-tiered mem-
ory (four tiers in our study) for high performance;

• Introducing huge page awareness.
In this paper, we contribute a page management system

calledMTM (standing forMulti-TieredMemoryManagement)
that realizes the above principles on large four-tier memory.
MTM decouples the control of profiling overhead from

the number of memory regions, but connects it directly with
the number of PTE scans (the profiling mechanism). Hence,
profiling quality and overhead can be distributed proportion-
ally according to the variation of both spatial and temporal
locality. More PTE scans or page profiling can be enforced
for a memory region where there is large variation hence
demanding more fine-grained profiling. Also, the splitting of
memory regions based on the variation is able to be guided
rather than randomly happened as in DAMON.
MTM breaks the barrier that blocks the construction of

a universal page-migration policy across tiers. This barrier
comes from the limited memory profiling functionality (ei-
ther at the slowest NUMA node [45] or random selection
of hundreds of MB on NUMA nodes [12, 13, 28, 30, 34, 45]).
MTM uses the overhead-controlled, high-quality profiling to
establish a global view of all memory regions in all tiers and
consider all NUMA distances to decide page migration. In
particular, MTM enables a łfast promotion and slow demo-
tionž policy for high performance. Hot (frequently-accessed)
pages identified in all lower tiers are ranked and directly pro-
moted to the top tier, minimizing data movement through
tiers. When a page is migrated out of the top tier to accom-
modate hot pages, the page is moved to the next lower tier
with available space. This policy needs no apriori knowledge
of the number of tiers in a system and makes the best use of
fast tiers.

MTM also features a fast migrationmechanism. Thismech-
anism dynamically chooses between an asynchronous page
copy-based scheme and a synchronous pagemigration scheme,
based on the read/write pattern of the migrated pages, to
minimize migration time. Finally, page migration and profil-
ing in MTM fully supports huge pages and THP, embodied as
page alignment during splitting/merging of memory regions.

Evaluation.We rigorously evaluated MTM against seven
solutions on a four-tier memory system, including two state-
of-the-art solutions (AutoTiering [34] and HeMem [50]),
an existing solution in Linux (tiered-AutoNUMA [12]), a
hardware-based solution (Optane Memory Mode), and first-
touch NUMA. MTM is also compared against two kernel-
based page migration solutions (the ones in Linux and Nim-
ble [63]). MTMoutperformsMemoryMode, first-touchNUMA,
tiered-AutoNUMA, AutoTiering, AutoNUMA and HeMem
by 20%, 22%, 24%, 25% and 24%. MTM outperforms the Linux
and Nimble migration approaches by 40% and 36% for read-
intensiveworkloads, and performs similarly forwrite-intensive
ones.
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2 Background and Related Work

In a multi-tiered large memory system, each processor has
its local memory as a fast memory tier, and has memory
expansion or other processor’s local memory as a tier of
slow memory. The memory expansion may use CXL inter-
connect and appear as CPU-less memory nodes. The Intel
Optane-based system is an example with two sockets and
four memory components (each socket has one DRAM and
one PM). Two PM components appear as CPU-less memory
nodes in Linux. Each processor has its local DRAM as a fast
tier, and other components as slow tiers.

2.1 Large Memory Systems

Software support for page management. Recent work
manages large memory systems based on an existing NUMA
balancing solution [39] in Linux. Tiered-AutoNUMA [29],
for example, balances memory access between CPU-attached
memory nodes, and then balance memory accesses between
CPU-attached memory node and CPU-less memory node
based on page hotness. As a result, a hot page takes a long
time to migrate to the fastest memory for high performance.
AutoTiering [34] is a state-of-the-art solution based onNUMA
balancing. It introduces flexible page migration across mem-
ory tiers. However, it does not have a systematic migration
strategy guided by page hotness. HeMem [50] is a recent
solution for two-tiered HM. HeMem only uses perf-counters
for mem-profiling and fails to explore more than two tiers.

Hardware-managedmemory caching. Some largemem-
ory systems use fast memory as a hardware-managed cache
to slowmemory. For example, DRAMcanwork as a hardware-
managed cache to Optane. However, this solution results in
data duplication, wasting fast memory capacity. It also causes
write amplification when there are memory cache misses [8].

2.2 Two-Tiered Heterogeneous Memory

Existing application-transparent solutionsmeasure data reuse
and migrate data for performance [5, 15ś18, 21, 26, 32, 33, 36,
42, 50, 63]. However, they can cause uncontrolled profiling
overhead or low profiling quality, and are not designed for
more than two memory-tiers. Pond [38] does not migrate
data but only works for two tiers. The recent industry so-
lutions TPP [45] and TMTS [19] only work for two tiers.
The above solutions cannot work for more than two tiers,
because they cannot decide which tier is the page-migration
target when more than one tier are the potential target.

3 Motivation

An accurate, low-overhead profiling mechanism is critical for
managing multi-tiered large memory. We study the profiling
methods in state-of-the-art works (Thermostat [5], AutoTier-
ing [34] and Linux’s DAMON [48, 57]) and summarize their
overhead and accuracy tradeoff as follows. AutoTiering ran-
domly chooses 256MB pages for profiling to detect hot pages.
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Figure 1.Comparison of differentmemory profilingmethods
in terms of their effectiveness of identifying hot pages. GUPS
selects 20% of its memory footprint as hot pages according
to the number of memory accesses.

Both Thermostats and DAMONmaintain a list of memory re-
gions and randomly choose one page per region for profiling.
Thermostats keeps all memory regions in a fixed size while
DAMON dynamically splits and merges memory regions to
improve profiling quality ś they control profiling overhead
by changing the number of memory regions.

We compare the profiling methods by running GUPS [22]
with a 512GB working set on the four-tier Opatane memory
system. We know a priori page hotness in each profiling
interval during execution the page hotness of GUPS follows
a Gaussian distribution). Figure 1 reports profiling 𝑟𝑒𝑐𝑎𝑙𝑙 (i.e.,
the ratio of the number of correctly detected hot pages to
the number of hot pages identified by priori knowledge) and
profiling 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (i.e., the ratio of the number of correctly
detected hot pages to the number of total detected hot pages
including incorrect ones).
Under the same profiling overhead (5%), Thermostat and

AutoTiering take long time to reach high recall (i.e., slower to
identify hot pages in Figure 1.a), because their randomness in
page sampling and the formation of memory regions cause
uncontrolled profiling quality. DAMON takes shorter time,
but about 50% of hot pages detected by DAMON are not
hot (see Figure 1.b), because of its ad-hoc design of forming
regions and slow response to the variance of memory access
patterns. Note that the profiling accuracy 50% is for the
detection of hot pages, indicating that only half of the pages
DAMON labels as hot are actually hot pages. In contrast, for
the identification of cold pages, DAMON demonstrates high-
precision: all pages designated as cold by DAMON are cold
pages. Due to low profiling quality, DAMON, Thermostat,
and AutoTiering perform 15% worse than MTM.

Memory profiling support for multi-tiered large memory
in MTM significantly extends the latest Linux support (i.e.,
DAMON). DAMON splits a process’s virtual memory space
into memory regions. In each profiling interval, it randomly
profiles one 4KB page per region to capture spatial locality.
The control of profiling overhead is achieved through a user-
defined maximum number of regions for profiling. DAMON
merges two neighbor memory regions if they have similar
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Figure 2. The overview of MTM.

profiling results, and splits each region into two randomly-
sized regions to improve profiling quality if fewer than half
of the maximum number of regions exist.
We identify multiple limitations in Linux (DAMON).

1. The control of profiling overhead is not directly connected
with the profiling mechanism (i.e., scanning PTEs), but
connected with the number of memory regions and only
one random page per region is profiled. This constraint
compromises profiling quality.

2. Splitting regions is ad-hoc. Splitting each region into two
can lead to useless profiling when the new regions after
splitting have the similar memory access patterns.

3. The process of forming memory regions is slow to cap-
ture access patterns, because of the time constraint in the
profiling intervals. This is problematic in large memory
systems with many memory regions to split and merge.

4. Temporal locality is not considered well.
5. Lack of support for profiling huge pages because of un-

awareness of huge pages.

4 Overview

Figure 2 overviews MTM.name is designed to control the
profiling overhead by considering total number of PTE scans
in all memory regions (Sec. 5.3). Like DAMON in Linux,
MTM partitions the virtual address space of a process into
memory regions for profiling and dynamically merges and
splits them. However, MTM has the freedom to perform
PTE scan multiple times for a page or multiple pages in
a memory region in a profiling interval (Sec. 5.2). Having
such flexibility provides opportunities to re-distribute page-
sampling quotas between regions under a fixed profiling
overhead to improve profiling quality, addressing Limitations
1 and 2. Also, MTM uses performance counter-assisted PTE
scan to quickly detect changes in access patterns and address
Limitation 3.
MTM decides page migration between tiers based on a

łglobal viewž of all memory regions (Sec. 6). By calculating
the exponential moving average of page hotness collected
from all profiling intervals, MTM learns the distribution of
hot regions in all memory tiers, addressing Limitation 4.

Guided by the new profiling techniques, MTM introduces
the łfast promotion and slow demotionž policy (Sec. 6.2).

Also, when migrating pages, MTM uses an asynchronous
page-copy mechanism that overlaps page copying with ap-
plication execution. This mechanism reduces the overhead
of page copy, but come with the time cost of extra page copy,
because when a page is updated during copying, the page has
to be copied again. The traditional, synchronous page-copy
mechanism does not need extra page copy, but completely
exposes the overhead of page copy into the critical path.
Hence, MTM uses a hybrid approach that takes advantage
of both mechanisms, and selects one based on whether page
modification happens during migration (Sec. 7).
To support huge pages, MTM enables page profiling at

huge page level instead of 4KB-page level using page table
information; memory merging and splitting are carefully
managed to be aligned with huge page size, such that huge
page semantics is not broken (Sec. 5.4).
In summary, MTM has (1) an adaptive profiling mecha-

nism with high profiling quality and constrained overhead;
(2) a page-migration strategy using a global view to make
informed decisions; and (3) a page-migration mechanism
adapting data copy schemes based on page access patterns.

5 Adaptive Memory Profiling

MTM tracks page accesses using a PTE reserved bit (the 11st
bit) and PTE scan without flushing TLB to reduce overhead
as in [5, 48, 57]). Each PTE maintains an access bit, indicat-
ing its access status. The access bit is initially set to 0, but
changed to 1 by the memory management unit (MMU) when
the corresponding page is accessed. By repeatedly scanning
PTE to check the value of the access bit and resetting the
access bit, page accesses can be monitored. This mechanism
is commonly used in Linux [26, 48].

Scanning all PTEs to track memory accesses to each page
is prohibitively expensive for large memory. For example,
scanning a five-level page table for 1.5 TB memory in 2MB
pages on an Optane-based platform (hardware details in
Table 1) with helper threads takes more than one second ś
infeasible to capture workload behaviors online. Thus, page
sampling is often used to avoid such high overhead. However,
large memory systems have large numbers of pages and the
profiling quality with unguided, random sampling [5, 28, 30,
34, 48] could lead to poor performance. MTM systematically
forms memory regions to address this problem.

5.1 Formation of Memory Regions

A memory region is a contiguous address space mapped
by a last-level page directory entry (PDE) by default. This
indicates that in a typical five-level page table, the memory
region has a default size of 2MB. During program execution,
whenever a last-level PDE is set as valid by the OS, the
corresponding memory region is subject to profiling.

Multiple scans of PTEs. In a profiling interval, the access
bit of the PTE corresponding to a sampled page is scanned
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multiple times. The total number of scans per PTE per pro-
filing interval is subject to a constant, 𝑛𝑢𝑚_𝑠𝑐𝑎𝑛𝑠 .
We use the multi-scan, instead of single-scan to reduce

skewness of profiling results. In a profiling interval, a single-
scan can only detect whether a page is accessed, but cannot
accurately capture the number of accesses. Although aggre-
gating memory accesses across intervals alleviates this prob-
lem, the skewness of profiling results can be accumulated
over time (see Sec. 6.1), leading to sub-optimal migration
decisions. Using the multi-scan avoids this problem.
At the end of a profiling interval, the average number of

accesses to all sampled pages in a memory region is used
to indicate the hotness of that region. Based on the results,
MTM may merge or split regions. Note that the formation of
regions through merging and splitting is based on łlogicalž
regions and there is no change to PTE during the formation.

Merge memory regions. MTM actively looks for oppor-
tunities to merge adjacent memory regions at the end of a
profiling interval. If the disparity in hotness between two
contiguous regions in the most recent profiling interval is
below a threshold 𝜏𝑚 , these regions are merged together.

Split a memory region.MTM performs a check to deter-
mine whether a memory region should be split in order to
ensure that pages within the region exhibit similar hotness. If
the maximum difference in the number of accesses between
all sampled pages within a region surpasses a threshold 𝜏𝑠 ,
the region is then split into two equally-sized regions.
Selection of 𝜏𝑚 and 𝜏𝑠 . 𝜏𝑚 and 𝜏𝑠 define the minimum

and maximum discrepancies in the number of memory ac-
cesses between sampled pages within a region. They, falling
within the range of [0, 𝑛𝑢𝑚_𝑠𝑐𝑎𝑛𝑠], play a crucial role in
avoiding frequent merging/splitting and balancing between
them. To strike a balance, 𝜏𝑚 = 1/3 ∗ 𝑛𝑢𝑚_𝑠𝑐𝑎𝑛𝑠 and 𝜏𝑠 =

2/3∗𝑛𝑢𝑚_𝑠𝑐𝑎𝑛𝑠 by default. Also, 𝜏𝑚 can be dynamically fine-
tuned to enforce profiling overhead constraint (see Sec. 5.3).

5.2 Adaptive Page Sampling

MTM can adapt the number of sampled pages in a region to
improve profiling quality, because the profiling overhead is
decoupled from the number of regions and relies on counting
PTE scans. Since each sampled page has the same number
of PTE scans per profiling interval, the control of PTE scans
is implemented by the control of page samples (see Sec. 5.3).
Initial page sampling.MTM differentiates the slowest

tier from other tiers in each profiling interval. The slowest
memory tier relies on performance counters to identify mem-
ory regions with memory accesses, which are then subjected
to PTE scan-based profiling. In this tier, each memory region
has only one page profiled, specifically the page captured
by the performance counters. In all other memory tiers, ev-
ery memory region is profiled, with each region initially
assigned a random page for profiling.
After merging two memory regions, the combined

total of page samples from both regions is halved, under the

constraint that the new region has at least one sample. This
reduction reduces the profiling overhead for the two merged
regions, enabling other memory regions to have additional
samples without exceeding the overhead constraint.

The page samples saved through the merging process are
redistributed to other memory regions. MTM distributes the
sample quota to the memory regions exhibiting the largest
variance in hotness indication across the last two profiling
intervals among all memory regions. A large variance in
hotness indication within these intervals suggests a change
inmemory access pattern. In such cases, allocating additional
profiling samples enhances profiling quality.
To efficiently identify memory regions with the highest

variance in hotness indication among all regions, MTMmain-
tains a record of the top-five largest variances along with
the corresponding regions during the analysis of profiling
results. We choose łfivež empirically to make it lightweight.
Whenever a new profiling result for a region is available,
MTM checks the top-five records and updates them accord-
ingly. Following the merging process, the saved page-sample
quota is redistributed to these top-five regions.

After splitting a memory region into two new regions,
the page sample quota in the original region is evenly dis-
tributed to the two regions. Hence, splitting does not change
the number of total PTE scans. Splitting memory regions
brings two benefits. First, the hotness indication, which is the
average number of accesses to all sampled pages in a mem-
ory region, provides better indication of memory accesses
to the new, smaller memory regions, hence providing bet-
ter guidance on page migration. Second, migration is more
effective, because using the smaller memory region avoids
unnecessary data movement coming with the larger region.

5.3 Profiling Overhead Control

MTM allows the user to define a profiling overhead con-
straint. MTM respects this constraint while maximizing pro-
filing quality, by dynamically changing the number of mem-
ory regions and distributing page-sample quotas between the
regions. The overhead constraint is a percentage of program
execution time without profiling and migration. For exam-
ple, in our evaluation, this constraint is 5%. Given the profil-
ing interval (𝑡𝑚𝑖 ), profiling overhead constraint, overhead of
scanning one PTE (𝑜𝑛𝑒_𝑠𝑐𝑎𝑛_𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑), and the number of
scans per PTE (𝑛𝑢𝑚_𝑠𝑐𝑎𝑛𝑠), the total number of page samples
in all memory regions to be profiled in a profiling interval,
denoted as 𝑛𝑢𝑚_𝑝𝑠 , is calculated in Equation 1.

𝑛𝑢𝑚_𝑝𝑠 =
𝑡𝑚𝑖 × 𝑝𝑟𝑜 𝑓 𝑖𝑙𝑖𝑛𝑔_𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡

𝑜𝑛𝑒_𝑠𝑐𝑎𝑛_𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 × 𝑛𝑢𝑚_𝑠𝑐𝑎𝑛𝑠
(1)

𝑡𝑚𝑖 can be set by the user, as in works [5, 26, 48]. ł𝑜𝑛𝑒_𝑠𝑐𝑎𝑛
_𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑ž is measured offline. As MTM merges or splits
memory regions, the total number of page samples in all
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regions remains equal to 𝑛𝑢𝑚_𝑝𝑠 to respect the overhead
constraint.
The total number of regions needs to be smaller than

𝑛𝑢𝑚_𝑝𝑠 so that each region has at least one page sample.
When the total number of regions is too large, MTM tem-
porarily increases 𝜏𝑚 (and keeps 𝜏𝑠 > 𝜏𝑚) to merge regions
more aggressively. 𝜏𝑚 is gradually increased across profil-
ing intervals, until the number of regions is no larger than
𝑛𝑢𝑚_𝑝𝑠 , and then 𝜏𝑚 is reset to the original value.

Another approach to enforce the profiling overhead con-
straint is to change the number of scans per page sample
(i.e., 𝑛𝑢𝑚_𝑠𝑐𝑎𝑛𝑠). However, we do not use this approach, be-
cause of its significant impact on profiling quality. Changing
𝑛𝑢𝑚_𝑠𝑐𝑎𝑛𝑠 leads to a change of profiling results in all mem-
ory regions. For example, in our evaluation, when changing
𝑛𝑢𝑚_𝑠𝑐𝑎𝑛𝑠 from 2 to 3, MTM changes the migration decision
for at least 20% of memory regions. We set 𝑛𝑢𝑚_𝑠𝑐𝑎𝑛𝑠 as a
constant ł3ž. Our empirical study shows that using a value
larger than 3 leads to no obvious change (less than 5%) in
the migration decision, compared to using 3.

Memory consumption overhead. For each region,MTM
stores its current hotness (𝐻𝐼𝑖 ) and𝑊𝐻𝐼𝑖−1 as two floating-
point numbers to build the histogram.We also store memory-
region info (i.e., the beginning address and offset within a
VMA) per region. Given a TB-scale memory, this yields an
overhead of hundreds of MBs, which is small. In general, the
memory overhead is less than 0.01%.

5.4 Support of Huge Pages

When MTM selects a page for profiling, the selection process
is huge page-aware. Specifically, at the beginning of the
profiling interval, MTM examines the PTE of the selected
page to determine if it is a huge page. If it is, any access to that
page is captured by scanning its PTE. This approach differs
from the existing huge page-aware solution (Thermostat).
Thermostat randomly selects a 4KB page from the huge page
to estimate the number of memory accesses, resulting in
a loss of profiling quality. Furthermore, if the huge page
is mprotected, Thermostat’s 4KB-based profiling cannot
happen, because that violates mprotect semantics [5].

Formingmemory regions inMTM is also huge page-aware.
When a region is split, MTM checks if the split occurs in the
middle of a huge page. If so, the split is slightly adjusted to
align with the huge-page boundary. Without such handling,
a huge page is profiled in two regions after splitting, which
may lead to a conflicting migration decision. Furthermore,
the two regions after the adjustment may not be equally-
sized, increasing the risk of memory fragmentation after
migration. However, in practice, considering the large size
of the region (at the scale of MBs), the difference in size
between the adjusted regions is often less than 10KB, which
does not significantly contribute to memory fragmentation.

5.5 Performance Counter-Assisted PTE Scan

After the initial page sampling (Sec. 5.2), the slowest tier
uses performance counters to assist PTE scan. This addresses
a problem in memory systems with multi-terabyte capac-
ity: forming memory regions can be slow to capture ac-
cess patterns when there are many regions to split and
merge.Specifically, at the beginning of each profiling interval,
the performance counters are briefly activated (for 10% of the
profiling interval) to collect memory accesses and identify
regions where memory accesses happen. Such regions are
subject to high-quality profiling (PTE scan). Compared with
DAMON, using performance counters can save multiple pro-
filing intervals to identify hot pages. DAMON relies on a
time-interval-based approach to opportunistically capture
hot pages, while MTM is event-driven: once a region is ac-
cessed, it is immediately subject to high-quality profiling to
confirm its hotness. Using perf-counters alone is not enough
to provide high-quality profiling (see Sec. 9.6 with HeMem)
because the counters’ randomness misses hot pages.

6 Page Migration Strategy

6.1 Which Memory Region to Migrate?

At the end of a profiling interval, MTM promotes some re-
gions to the fastest tier, and the total size of migrated regions
is a constant 𝑁 (N=200MB in our evaluation). This is similar
to the existing works [30, 34, 44] and industry practice [28]
that periodically migrates a fixed number of pages. If there
is no enough free space in the fastest tier, some pages in the
fastest tier are demoted first to the slower tiers (see Sec. 6.2).
Select regions for promotion. The promotion places

recent frequently accessed pages into faster tiers. MTM’s
migration decision is holistic ś considering all regions to-
gether regardless of which tiers those regions are currently
in. MTM uses time-consecutive profiling results based on the
exponential moving average (EMA) [35]of hotness indica-
tion collected from all profiling intervals. Given a sequence
of data points, EMA places a greater weight and significance
on the most recent data points. MTM using EMA consid-
ers temporal locality in migration decision and avoids page
migration due to the bursty access pattern in a profiling
interval.

We define EMA of hotness indication as follows. Assume
that 𝐻𝐼𝑖 is the hotness indication collected at the profiling
interval 𝑖 for a region, and the EMA of hotness indication for
that region at 𝑖 , denoted as𝑊𝐻𝐼𝑖 , is defined in Equation 2.
This equation is a recursive formulation including𝑊𝐻𝐼𝑖 and
𝑊𝐻𝐼𝑖−1 from the prior interval 𝑖 − 1.

𝑊𝐻𝐼𝑖 = 𝛼 × 𝐻𝐼 + (1 − 𝛼) ×𝑊𝐻𝐼𝑖−1 (2)

𝛼 indicates the importance of historical information in
decision making. In practice, we set 𝛼 as 0.5. There are two
benefits of using EMA. First, the memory consumption is
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small. There is no need to store all prior profiling results.
Second, the computation of EMA is lightweight.
Using the EMA of hotness indication in all memory re-

gions, MTMbuilds a histogram to get the distribution of EMA
of all regions. The histogram segments the range of EMA
values into buckets, and tracks how many and what regions
fall into each bucket. When determining which memory re-
gions to migrate to the fastest memory, MTM selects regions
that fall into the highest buckets of the histogram. Building
and maintaining the histogram has low overhead: whenever
the EMA of hotness indication of a region is available, the
histogram only needs to be slightly updated accordingly.

6.2 Where to Migrate Memory Regions?

Promotion.As regions are promoted to the fastest tier using
the histogram, it is likely that after a profiling interval, there
is no region to promote because those regions falling into the
highest buckets of the histogram are already in the fastest
tier. In that case, the regions in the 2nd highest bucket (or
even lower when no promotion) are selected to promote to
the 2nd-fastest mem tier. The accumulated size of regions to
migrate is always 𝑁 . In general, MTM makes the best efforts
to promote frequently accessed regions to faster tiers.

Demotion. When a memory tier is a destination of mem-
ory promotion but does not have enough space to accom-
modate memory promotion, some regions in that memory
tier may need to be demoted to the next lower memory tier
with enough memory capacity. Memory regions for demo-
tion are selected based on the histogram ś regions that are
in the lowest buckets of the histogram are demoted to the
next lower tier. We use the above slow-demotion strategy to
avoid performance loss caused by migrating pages that are
still likely to be accessed in near future.
Handling multi-view of tiered memory. The applica-

tion managed by MTM can run multiple threads. Depending
on which memory node a thread is close to, different threads
can have different views on whether a memory node is fast
or slow. For example, a thread on processor 0 thinks local
DRAM is a fast memory, while a thread on processor 1 thinks
that particular DRAM is a slow memory. We call this, the
multi-view of tiered memory. The multi-view does not impact
profiling results because the page hotness is only related to
the number of page accesses, no matter where accesses come
from. However, it impacts migration destination.
In MTM, the migration destination of a page is decided

using the view of the thread that has the most accesses to
that page, because enabling high performance for the most
memory accesses gives the best overall performance. To sup-
port this design, during the memory profiling, MTM checks
where memory accesses come from. This is implemented by
leveraging the hint-fault mechanism in Linux [12]. A hint-
fault takes 12× longer time than a PTE scan. To amortize
this cost, every 12 PTE scans, MTM turns on the hint-fault

Figure 3. Breakdown for migration mechanisms.

mechanism to capture one memory access, and includes the
amortized cost into 𝑜𝑛𝑒_𝑠𝑐𝑎𝑛_𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 in Equation 1.

7 Adaptive Migration Mechanism

7.1 Performance Analysis

Linux provides an API,move_pages(), for a privileged process
to move a group of 4KB pages from a source memory node
(or tier) to a target memory node (or tier). move_pages() has
four steps, and they are performed sequentially: (1) allocate
new pages in the target node; (2) unmap pages to migrate
(including invalidating PTE); (3) copy pages from source to
target node; (4) map new pages (including updating PTE).

Figure 3 shows the performance of migrating a 2MB mem-
ory region from the fastest tier to the slowest tier on the
Optane-based platform. Copying pages is the most time-
consuming step, taking 40% of total time. One reason for the
high overhead is that move_pages() moves 4KB-sized pages
sequentially. Even with multi-threaded page copy enabled by
recent work [63] to maximize memory bandwidth, it remains
a bottleneck, particularly for large memory region transfers.

7.2 Adaptive Page Migration Schemes

Asynchronous page copy. We introduce an asynchronous
page copy mechanism to reduce page copy overhead. In the
asynchronous page copy, the thread that triggers migration
(named main thread) launches one or more helper threads
to run the steps (1) and (3); the main thread runs the steps
(2) and (4), and then waits for the helper thread(s) to join.
With the asynchronous page copy, it is possible that copying
a page happens before invalidating its PTE but the page is
modified in the source memory tier after copying the page. In
such cases, the page must be copied again to update its copy
in the target tier, which is costly. We introduce an adaptive
page-migration mechanism to address this limitation.

Adaptive page migration. For read-intensive pages, the
asynchronous page copy brings performance benefit. How-
ever, for write-intensive pages, due to repeated data copy, it is
likely that the asynchronous page copy performs worse than
the synchronous. Hence, MTM chooses suitable migration
mechanism based on write intensity of pages. In particu-
lar, MTM uses the asynchronous page copy by default. But
whenever any page in the region for migration is written
after the asynchronous page copy starts, MTM switches to
the synchronous page copy immediately. To track page write,
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MTM utilizes PTE access bits and page faults, and flushes
TLB for once. After detecting the first write, tracking turns
off. Such tracking overhead (including setting the access bit
in PTE) is small, compared with page migration itself.
We implement the above mechanism and introduce a

new API called move_memory_regions(). In this implemen-
tation, tracking page write, performing page map/unmap,
and migrating PTEs are still on the critical path, but the
time-consuming page copying could be performed off the
critical path. Figure 3 presents move_memory_regions() mi-
grating 2MB memory region using the same setting as for
move_pages(), and excludes the overhead of page copying
(and page allocation in the step (1), using asynchronous
page allocation).move_memory_regions() is 4.37× faster than
move_pages() in this case. Sec. 9.5 shows more results.
The asynchronous migration is conducted by multiple

kernel threads, similar to the recent Linux patch Nimble [63].
These threads are assigned with the lowest possible nice-
value (a high priority) to ensure timeliness of migration
under the management of thread scheduling.

8 Implementation

We implement the adaptive profiling as a kernel module that
periodically scans PTEs based on adaptive page sampling
and uses performance counters to guide profiling. The kernel
module takes a process ID as input. Profiling results are saved
in a shared memory space, and stored as a table.
We implement the page management as a daemon ser-

vice at the user space (not the kernel space), which mini-
mizes kernel changes and provides flexibility to change the
page migration strategy. The daemon service executes with
the application and calls the kernel module for profiling
at the beginning of each profiling interval. At the end of
each profiling interval, the service reads collected profil-
ing results from the shared memory space. With overhead
control, the kernel module ensures that profiling always fin-
ishes within a profiling interval. The daemon service then
makes the migration decision and performs migration us-
ing move_memory_regions(). move_memory_regions() takes
the same input as Linux move_pages(), but implements the
adaptive migration mechanism. It detects page dirtiness
during the migration by setting a reserved bit in PTE to
trigger a write protection fault when there is write to the
memory region. Leveraging a user-space page fault handler,
move_memory_regions() tracks writes, and decides whether
to stop the async page copy and switch to the sync.
To use performance counters, MTM uses Intel processor

event-based sampling mode (PEBS) to collect memory ac-
cesses into a preallocated buffer, and uses a register inter-
rupt handler to indicate when the buffer is full. Specifically,
MTM uses two hardware events to capture memory accesses,
MEM_LOAD_RETIRED.LOCAL_PMM and MEM_LOAD_RETIRED

.REMOTE_PMM. The sampling frequency is 200, as in produc-
tion environment [45] (ł200ž means taking one sample out of

Table 1. Hardware overview of experimental system.

Optane-based Multi-tiered Memory System

Fast Mem Local Access (1st tier) latency: 90ns bw: 95 GB/s

Fast Mem Remote Access (2nd tier) latency: 145ns bw: 35 GB/s

Slow Mem Local Access (3rd tier) latency: 275ns bw: 35 GB/s

Slow Mem Remote Access (4th tier) latency: 340ns bw: 1 GB/s

Table 2. Workloads for evaluation.

Workloads Descriptions Mem R/W
GUPS [22] A measurement of how frequently a computer

can issue updates to randomly generated mem-
ory locations.

512GB 1:1

VoltDB [59] A commercial in-memory database with TPC-
C [37] using 5K warehouse.

300GB
/1.2TB

1:1

Cassandra [9] A highly-scalable partitioned row store with
YCSB [11] (using update-heavy benchmark A).

400GB 1:1

BFS [49] A parallel implementation of graph traversing
and searching on a graph with 0.9B nodes and
14B edges.

525GB read-
only

SSSP [49] A parallel implementation of finding the
shorted path between two vertices on a graph
with 0.9B nodes and 14B edges.

525GB read-
only

Spark [66] A spark program running the TeraSort bench-
mark [23].

350GB 1:1

200 memory accesses), which is sufficient to distinguish hot
and cold pages [50]. Except architecture-dependent events
in hardware performance counter, MTM is a general design
working for other architecture, and as long as there are mem-
ory access-related events for slow and fast memories, MTM is
able to work. For example, AMD processors provide accesses
to performance counter similar to PEBS, such as Instruction
Based Sampling (IBS)[1] and Lightweight Profiling (LWP)[6],
which can be used to profile memory accesses at different
memory tiers.

9 Evaluation

Testbed. We evaluate MTM on a two-socket machine. Each
socket has Intel Xeon Gold 6252 CPU (24 cores), 756GB Intel
Optane DC PM and 96GB DRAM. Table 1 shows the details
for the platforms. By default, we use THP by using madvise
and use 2MB as huge page size, which is typical in large
memory systems. We set the profiling overhead constraint
to 5% and the profiling interval to 10 seconds. This setting is
similar to existing works and production environments [5,
26, 45, 48]. We used Linux v6.6-rc1.

Workloads. We use large-memory workloads in Table 2.
Those workloads range from in-memory database, graph
analysis, to data sorting, representing the most common
memory-consuming applications. They are commonly used
to evaluate big memory systems [34, 43, 50]. Their memory
footprints are larger than the fastest two tiers, enabling ef-
fectively evaluation on all tiers. Unless indicated otherwise,
we use eight application threads per workload.

Baselines.We use eight solutions as baselines.
• Hardware-managed memory caching (HMC) uses the fast
memories as hardware-managed cache for slow memories.
We use Memory Mode in Optane.
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Figure 4. Overall performance (normalized to first-touch
NUMA’s) using existing solutions and MTM on multi-tired
memory system.

• First-touch NUMA is a common allocation policy. It allo-
cates pages in a memory tier close to the running task that
first touches the pages. It does not migrate pages.

• Tiered-AutoNUMA [29] in Linux (named as vanilla tiered-
AutoNUMA). There are two recent patches for memory
tiering to improve tiered-AutoNUMA: advanced hot page
selection [4] based on PTE scan and automatic hot thresh-
old adjustment [3]. The maximum promoting/demoting
throughput is set to the same value as in MTM, which is
200MB per migration interval. We add the two patches
and name it as patched tiered-AutoNUMA. In the rest of the

paper, we use the patched tiered-AutoNUMA by default.

• AutoTiering [34].
• HeMem [50] is for two-tiered systems. HeMem leverages
performance counters alone to find hot pages.

• Thermostat [5] is for two-tiered systems. It allocates all
pages in the fast tier and selectively moves them to the
slow tier. It cannot support applications with footprint
larger than the fast tier.

• DAMON [48, 57] is a Linux profiling tool at the memory
region granularity. We use it to evaluate profiling quality.

• Nimble [63] is a pagemigrationmechanism using bi-direction
page copy and parallel page copy. MTM includes the tech-
niques in Nimble but adds adaptive migration. We use
Nimble to evaluate our page migration mechanism.

9.1 Overall Performance

Figure 4 shows that MTM outperforms all baselines. We have
four observations.

(1) MTM outperforms HMC by up to 40% (avg. 19%). HMC
incurs write amplification when cache misses occur [24],
causing unnecessary data movement and low performance.
(2) MTM outperforms first-touch NUMA by up to 24%

(avg. 17%). Without page migration, first-touch NUMA out-
performs HMC on VoltDB and BFS, and outperforms tiered-
AutoNUMA on Cassandra and BFS, indicating that page
migration is not always helpful. tiered-AutoNUMA performs
worse because of ineffectiveness in identifying hot pages.

(3) MTM outperforms the vanilla tiered-AutoNUMA and
(patched) tiered-AutoNUMA by up to 37% and 35% (on aver-
age 23% and 20%) respectively. Specifically, tiered-AutoNUMA
implements the Most Frequently Used (MFU) algorithm to
precisely identify hot pages [4]. This algorithm is coupled
with an automatic adjustment of the hot threshold to pro-
mote hot pages timely [3]. This strategy enables effective
memory management by dynamically adapting to varying
usage of memory.

To better understand the performance difference between
vanilla tiered-AutoNUMA, (patched) tiered-AutoNUMA, and
MTM, we examine the volume of hot pages identified and
the number of accesses to the fast memory tier (i.e., the local
DRAM) every 60s for the three solutions. Specifically, we
configure the promotion rate of tiered-AutoNUMA andMTM
to be the same, at 200MB per migration interval. Table 3
shows the results. We observe that tiered-AutoNUMA and
MTM identifymore hot pages than vanilla tiered-AutoNUMA
by 8.2× and 7.2×, respectively, indicating that both are more
effective in identifying hot pages. Meanwhile, MTM achieves
15% and 12% more fast-tier accesses on average than vanilla
tiered-AutoNUMA and tiered-AutoNUMA, respectively. The
same trend is observed in overall performance in Figure 4.
This is because tiered-AutoNUMA uses the traditional page
migration strategy, which prioritizes page swapping within a
single NUMA socket. Consequently, tiered-AutoNUMA may
lag in promoting pages across sockets, and promoting hot
pages does not necessarily increase fast-tier accesses ś in
some cases, it can even be detrimental (shown in VoltDB,
Cassandra, and Spark).

(4) MTM outperforms AutoTiering by up to 42% (avg. 17%).
AutoTiering uses random sampling and opportunistic demo-
tion, failing to effectively identify pages for migration.

Performance breakdown.We show the breakdown into
application execution time, migration time, and profiling
time in Figure 5. The migration time is the overhead exposed
on critical path. Specifically, we first measure the computa-
tion time by disabling asynchronous migration. Then, we
calculate the migration time by subtracting the profiling
overhead and computation time from the total end-to-end
execution time. We only compare tiered-AutoNUMA, Au-
toTiering and MTM because they are the only solutions that
leverage four memory tiers for migration. We add first-touch
NUMA as a baseline because the evaluated solutions use it
for memory allocation. In all cases, the profiling overhead
falls within the overhead constraint.
With tiered-AutoNUMA, the time reduction is lower or

equal to the overhead of profiling and migration (see VoltDB
and Cassandra). Hence, they perform worse than first-touch
NUMA. Compared to tiered-AutoNUMA, MTM spends simi-
lar time in profiling but 3.5× faster in migration, reducing
the execution time by 21% on average. Compared to Au-
toTiering, MTM spends similar time in profiling but 25%
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Table 3. Average volume of hot pages identified and num-
ber of accesses to fast memory tiers across vanilla tiered-
AutoNUMA, tiered-AutoNUMA and MTM.

Workload
volume of hot

pages identified

# of fast tier

accesses

GUPS

vanilla-AutoNUMA 5GB 140M

tiered-AutoNUMA 60GB 165M

MTM 60GB 175M

VoltDB

vanilla-AutoNUMA 5GB 260M

tiered-AutoNUMA 40GB 220M

MTM 20GB 295M

Cassandra

vanilla-AutoNUMA 5GB 140M

tiered-AutoNUMA 20GB 130M

MTM 40GB 185M

BFS

vanilla-AutoNUMA 5GB 160M

tiered-AutoNUMA 20GB 180M

MTM 20GB 205M

SSSP

vanilla-AutoNUMA 5GB 180M

tiered-AutoNUMA 20GB 150M

MTM 20GB 190M

Spark

vanilla-AutoNUMA 5GB 330M

tiered-AutoNUMA 45GB 300M

MTM 20GB 370M

Table 4. GUPS time with different initial page placements.

Giga-Updates 1000 2000 3000 4000 5000

Slow tier first 170s 215s 276s 364s 450s

First-touch NUMA 162s 220s 276s 364s 450s

faster in migration, and reduces the execution time by 19%
on average.
Impact of initial page placement. MTM initially al-

locates pages in a local slow memory tier, while existing
solutions leveraging first-touch NUMA allocates pages in a
local fast memory tier. With MTM, we study the impact of
these two solutions for initial page placement. Table 4 shows
the results for GUPS whose memory footprint is larger than
memory capacity of the first two tiers. Near the beginning of
the execution (1000 Giga-updates), there is 4.9% performance
difference between the two placements. Such a difference
becomes ignorable as GUPS makes more progress because
MTM effectively uses pages in all tiers.
Performance contribution of adaptive profiling. We com-

pare MTM with the patched tiered-AutoNUMA and Thermo-
stat (using periodical PTE scan without adaptive memory
regions for profiling), and all the three use async page migra-
tion. Figure 7 shows the results. With the adaptive profiling
method, MTM outperforms the patched tiered-AutoNUMA
by 14% and 17%, respectively. Since DAMON is a profiling
tool and not integrated with any HM management system,
we compare our profiling method with DAMON in Sec-
tion 9.3.

Table 5. Extra memory used in MTM for memory manage-
ment.

GUPS VoltDB Cassandra BFS SSSP Spark

memory

overhead
240MB 120MB 100MB 250MB 250MB 180MB

workload

memory
512GB 300GB 400GB 525GB 525GB 350GB

Table 6. Quantifying mem accesses using VoltDB.

# of memory

accesses
Tiered-AutoNUMA AutoTiering MTM

tier 1 270M 258M 293M

tier 2 5M 34M 220K

tier 3 25M 30M 10M

tier 4 90K 2.5M 205K

Performance contribution of async page migration.We ex-

plore the performance ofMTMwith the traditional sync page
migration and our async page migration using the same
adaptive profiling method. Figure 7 (see łw/o asyn migra-
tionž) shows the result. The async page migration reduces
migration overhead by 60%, and leads to 12% performance
improvement.
Memory overhead with using MTM. Table 5 shows

the memory overhead caused by MTM and the total memory
consumption for each workload. Specifically, MTM records
memory region ID and the address range for all memory
regions. The number of memory regions is determined by the
profiling overhead control (see Equation 1). MTM tracks both
the current and historical hotness of each memory region.
Additionally, it utilizes a hash map for efficient indexing
of address ranges of memory regions. Overall, the memory
overhead incurred by MTM is less than 0.01%

9.2 Profiling Statistics

Number of memory accesses. We count the number of
memory accesses in each memory tier when running VoltDB.
We only report the results for tiered-AutoNUMA, AutoTier-
ing, and MTM because only they can leverage all four mem-
ory tiers for migration. We use Intel Processor Counter Mon-
itor [31] to count the number of memory accesses and ex-

clude memory accesses caused by page migration. This count-
ing method allows us to evaluate the number of memory
accesses from the application (not from page migration). Ta-
ble 6 shows the results where there are eight VoltDB clients
residing in one processor, and the view of tiered memory
is defined from their view. Table 6 shows that with MTM,
the number of memory accesses in the fastest memory tier
(tier 1) is 12% and 14% more than with tiered-AutoNUMA
and AutoTiering. This indicates that MTM effectively mi-
grates frequently accessed pages to the fast tier for high
performance because of the new profiling method.

Statistics of memory regions. On average, the number
of memory regions merged and split in a profiling interval is

812



Fir
st-

tou
ch 

NUMA

Tie
red

-Auto
NUMA

Auto
Tie

rin
g
MTM

0

500

1000

Ex
ec

ut
io

n 
tim

e 
(s

) GUPS

Fir
st-

tou
ch 

NUMA

Tie
red

-Auto
NUMA

Auto
Tie

rin
g
MTM

0

1000

2000

3000

VoltDB

Fir
st-

tou
ch 

NUMA

Tie
red

-Auto
NUMA

Auto
Tie

rin
g
MTM

0

600

1200

1800 Cassandra

Fir
st-

tou
ch 

NUMA

Tie
red

-Auto
NUMA

Auto
Tie

rin
g
MTM

0

800

1600

2400 BFS

Fir
st-

tou
ch 

NUMA

Tie
red

-Auto
NUMA

Auto
Tie

rin
g
MTM

0

100

200 SSSP

Fir
st-

tou
ch 

NUMA

Tie
red

-Auto
NUMA

Auto
Tie

rin
g
MTM

0

2100

4200
Spark

Application execution Profiling Migration

Figure 5. Breakdown of application execution time.

Table 7. Statistics of forming regions using MTM. łMRž and
łPIž stand for memory regions and profiling interval.

# of PI
avg # of MR

merged in a PI

avg # of MR

splited in a PI

avg # of MR

in a PI

GUPS 1000 26.5 20.4 2410

VoltDB 800 53.2 50.6 1274

Cassandra 1600 42.5 63.2 1073

BFS 120 16.7 17.3 2574

SSSP 360 21.3 18.2 2492

Spark 800 35.9 32.5 1852

3.4% of all memory regions, as reported in Table 7. Compared
with DAMON, MTM has less merging/splitting because of
performance counter guidance and effective formation of
memory regions. For example, GUPS with MTM has 12% less
merging and 32% less splitting than with DAMON.

9.3 Effectiveness of Adaptive Profiling

Comparison with tiered-AutoNUMA and Thermostat.

We study profiling quality and overhead, and compare MTM
with two sampling-based profiling methods: one used in
tiered-AutoNUMA and AutoTiering, and the other used in
Thermostat. We use tiered-AutoNUMA and Thermostat, and
replace their migration with MTM’s, which excludes the
impact of their migration on performance, and is fair.

Tiered-AutoNUMA randomly profiles a 256MB virtual ad-
dress space in each profiling interval, and then manipulates
the present bit in each PTE in the chosen address space. This
method tracks page accesses by counting page faults. The
profiling method in Thermostat randomly chooses a 4KB
page out of each 2MB memory region for profiling. This
method manipulates page protection bits in PTE and lever-
ages protection faults to count accesses.

Figure 7 shows that MTM outperforms tiered-AutoNUMA
and Thermostat by 17% and 7%, respectively. The profil-
ing overhead in Thermostat is 6× higher than in tiered-
AutoNUMA, since the number of sampled pages in Thermo-
stat profiling is much larger than that in tiered-AutoNUMA.
The profiling overhead in Thermostat is 2.5× higher than in

A

GUPS with DAMON GUPS with MTM

(a) (b)

A

B

C

Figure 6. Heatmap of memory accesses in GUPS using (a)
DAMON and (b) MTM under the same profiling overhead
(5%).

MTM, because manipulating reserved bits in PTE and count-
ing protection faults in Thermostat is more expensive than
scanning PTEs in tiered-AutoNUMA and MTM. With tiered-
AutoNUMA, the application run time is longer than with
MTM by 22%. This indicates that random sampling-based
profiling is not as effective as our adaptive profiling.

ComparisonwithDAMON.Weuse GUPS that randomly
accesses 512GB memory with 24 threads. Specifically, 20% of
GUPS’ memory footprint is randomly selected as the hotset.
Each thread randomly updates the memory 1M times, and
80% of them happens in the hotset. 1M-updates repetitively
happens, so that there is variance on hot pages. Using knowl-
edge on GUPS, we know there are three hot data objects:
the indexes to access the hotset (labeled as łAž), the hotset
information (labeled as łBž), and the hotset (labeled as łCž).
Figure 6 shows results. (1) MTM finds C, while DAMON

cannot because of its slow response. (2) MTM finds B, but
DAMON cannot because its memory regions are initially
set based on the virtual memory area tree, which is too
coarse-grained to capture B even after splitting regions. (3)
DAMON and MTM find A, but the scope of A found by MTM
is correctly narrowed down, which reduces unnecessary
migration.

Effectiveness of adaptive memory regions.We disable
adaptive memory regions but respect the profiling overhead

813



Thermostat

Tiered-AutoNUMA MTM
w/o AMR

w/o PEBS
w/o APS w/o OC

w/o asyn-migration
0

1000

2000

3000

Ex
ec

ut
io

n 
tim

e 
(s

)

app execution
profiling
migration

Figure 7. Evaluation of the effectiveness of adaptive memory
regions (łAMRž), adaptive page sampling (łAPSž), profiling
overhead control (łOCž), and async migration using VoltDB.

2769 2679 2829 2594 2759

0

700

1400

2100

2800

3500

1% 2% 3% 5% 10%

Application execution Migration Profiling

T
im
e
(S
)

Profiling overhead target

Figure 8. Execution time with various profiling overhead
targets. We evaluate voltDB with MTM.

constraint. Figure 7 shows application execution time is 22%
longer, although the constraint is met.
Effectiveness of adaptive page sampling. This tech-

nique distributes PTE scans between regions by using time-
consecutive profiling, which includes information on tempo-
ral locality. We disable it and randomly distribute PTE scans
between regions, and observe 21% performance loss.

Evaluation of profiling overhead control.We set 𝜏𝑚 =

𝜏𝑠 = 0 (i.e., no merging/splitting memory regions) and ob-
serve that the profiling time is increased by 3× in Figure 7.

Evaluation of performance-counter assistance.MTM-
w/o-PEBS in Figure 7 does not use performance counters to
guide profiling. It performs worse than MTM because of lack
of PEBS guidance. For VoltDB, it performs 4% worse. The
overhead of PEBS is less than 1%. For all benchmarks, the
performance improvement is 10.6% on average.

9.4 Sensitivity Study

Impacts of profiling overhead. We study the relationship
between the profiling overhead and quality. Figure 8 shows
the results. We set profiling interval as 5s, and test a set of
profiling overhead targets. As the overhead increases from
1% to 10%, application execution time is reduced by 12%. Such
performance improvement comes from the improvement of
profiling quality when trading profiling overhead (by taking
more samples) for quality. However, taking more samples
(or using a larger overhead target) does not necessarily lead
to better performance. As shown in Figure 8, application
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Figure 10. Performance when changing 𝛼 . The performance
is normalized by that of the default setting 𝛼 = 1/2.

execution time increases by 7% as the profiling overhead
increases from 5% to 10%. We use 5% as the overhead target,
which universally works well for all applications in our study.

Impacts of profiling thresholds 𝜏𝑚 and 𝜏𝑠 .We study the
relationship between memory region merging/split thresh-
olds (𝜏𝑚 and 𝜏𝑠 ) and profiling quality. Increasing 𝜏𝑚 leads to
aggressive merging of memory regions, and decreasing 𝜏𝑠
leads to aggressive split of regions. We change 𝜏𝑚 and 𝜏𝑠 and
measure performance. Figure 9 shows the results.
With 𝑛𝑢𝑚_𝑠𝑐𝑎𝑛𝑠 set as 3, 𝜏𝑚 = 1 and 𝜏𝑠 = 2 lead to the

best performance, outperforming other configurations of 𝜏𝑚
and 𝜏𝑠 by at least 7%. The execution time of voltDB increases
as 𝜏𝑚 increases. We observe that more aggressive merging
of memory region leads to inaccurate profiling results: In
the extreme case, when 𝜏𝑚 = 𝑛𝑢𝑚_𝑠𝑐𝑎𝑛𝑠 , there is only one
region. The inaccurate profiling leads to bad application
performance. Both profiling overhead and execution time
increase when 𝜏𝑠 decreases. With aggressive split of regions,
MTM uses a long time to capture memory access patterns,
which increases profiling overhead and loses profiling quality.
We observe the same trend when 𝑛𝑢𝑚_𝑠𝑐𝑎𝑛𝑠 is set as 6.

Impact of memory promotion threshold 𝛼 . 𝛼 is used
in Equation 2 to balance the contributions of the historical
profiling results and current profiling results. When 𝛼 = 0,
MTM makes migration decisions only based on the historic
result. When 𝛼 = 1, MTM ignores historic information. We
set 𝛼 with various values. Figure 10 demonstrates that differ-
ent applications have different sensitivity to 𝛼 . Using both
profiling results are generally helpful for most of applications
(e.g., GUPS, voltDB, Cassandra, BFS and SSSP).

9.5 Migration Mechanism in MTM

Effectiveness of migration mechanism We use three mi-
crobenchmarks to evaluate the migration mechanisms in
MTM, Nimble [63], and move_pages() in Linux: sequential
read-only (shown as R), 50% read (i.e., a sequential read fol-
lowed by an update on an array element, shown as R/W),
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and 100% sequential write (shown as W) on a 1GB array. The
array is allocated and touched in a tier, and then migrated
to another.

Figure 11 shows the performance breakdown of three mi-
gration scenarios. For read-intensive pages, MTM brings
large benefit because of async page copy. On average, MTM
outperforms move_pages() and Nimble by 40% and 23% on
average for different cases. For write-intensive pages, MTM
tracks page dirtiness. When write is detected on migrated
page, MTM switches async page copy to the sync. In this
case, MTM performs similar to move_pages(). We measure
its overhead by repeatedly triggering faults. On average, it
takes about 40𝜇𝑠 to handle a page fault. This overhead is
small, because it is paid only once when moving a region
and moving a region (at least 2 MB) takes at least multiple
milliseconds, much longer than 40𝜇𝑠 . Migrating pages be-
tween the tiers 1 and 2, MTM’s mechanism performs 40%,
23%, and -0.5% better than move_pages(), and performs 26%
4% and -6% better than Nimble, for the three benchmarks
respectively. We see the same trend in other tiers.

9.6 Evaluation with Two-Tiered HM

We use a single socket with two tiers (DRAM and Optane) on
the Optane platform as a two-tiered HM. We use GUPS [22]
as inHeMem [50] (a solution for two-tieredHM). Figure 12 re-
ports the performance of using 16 and 24 application threads.
The results show that when the working set size fits into the
fast memory tier (i.e., the ratio in the x axis is smaller than
1.0), MTM performs similarly to HeMem at 16 threads but
better at 24 threads. Once the working set size exceeds fast
memory, HeMem fails to sustain performance at 24 threads
while MTM still sustains higher performance at 24 threads
than at 16 threads. MTM performs better because its profiling
method can quickly adapt to changes in memory accesses
and identify more hot pages.

10 Conclusions

Emerging multi-tiered large memory systems calls for re-
thinking memory profiling and migration for high perfor-
mance. We present MTM, a page management system cus-
tomized for large memory systems.
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