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Abstract—When fine-tuning Deep Neural Networks (DNNs) to
new data, DNNs are prone to overwriting network parameters
required for task-specific functionality on previously learned
tasks, resulting in a loss of performance on those tasks. We
propose using parameter-based uncertainty to determine which
parameters are relevant to a network’s learned function and
regularize training to prevent change in these important pa-
rameters. We approach this regularization in two ways: (1),
we constrain critical parameters from significant changes by
associating more critical parameters with lower learning rates,
thereby limiting alterations in those parameters; (2), important
parameters are restricted from change by imposing a higher
regularization weighting, causing parameters to revert to their
states prior to the learning of subsequent tasks. We leverage
a Bayesian Moment Propagation framework which learns net-
work parameters concurrently with their associated uncertainties
while allowing each parameter to contribute uncertainty to the
network’s predictive distribution, avoiding the pitfalls of existing
sampling-based methods. The proposed approach is evaluated for
common sequential benchmark datasets and compared to existing
published approaches from the Continual Learning community.
Ultimately, we show improved Continual Learning performance
for Average Test Accuracy and Backward Transfer metrics
compared to sampling-based methods and other non-uncertainty-
based approaches.

Index Terms—Continual Learning, Deep Variational Inference,
Parameter Uncertainty, Moment Propagation

I. INTRODUCTION

The term “Narrow AI” is gaining traction for describing
Artificial Intelligence (AI) and Machine Learning (ML) sys-
tems that cannot adapt to information after deployment. In
standard training schemes, Deep Neural Networks (DNNs)
assume the collection of observations a network is trained
on will accurately describe the environment in which it is
deployed. In the real world, DNNs are regularly subject to
out-of-distribution (OOD) data, various types of noise, shifting
distributions of conceptual objectives, and may require adap-
tation to new data after the initial training period [1]. These
characteristics of real-world data undermine assumptions of
data consistency made during training and require DNNs to
have the ability to adapt and expand upon previously learned
data representations.
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Unlike biological learning systems, which can adapt and
consolidate learned information at will, standard machine
learning systems restrict network performance to the most
recently trained task [2], [3]. Fine-tuning networks to new
information generally results in a partial or complete loss
of performance on previously trained tasks, known as Catas-
trophic Forgetting or Catastrophic Interference [4], [5]. This
phenomenon arises from overwriting and replacing network
parameters during the training process for a new task. As a
result, a sub-discipline of machine learning called Continual
Learning (CL), or Lifelong Learning, has emerged, focusing
on mitigating Catastrophic Interference in DNNs over a se-
quence of tasks.

Current approaches to CL can be categorized into four main
categories: Regularization, Dynamic Architectures, Rehearsal,
and Dual Memory Systems [3]. Regularization-based ap-
proaches restrict parameter change when training subsequent
tasks attempting to preserve previous network representations
[2], [6]–[8]. Dynamic Architecture approaches add neural
resources to expand on previous representations [9], [10].
Rehearsal approaches preserve encompassing data samples
that describe most information learned from previous tasks,
supplementing training new tasks with these selected data
samples [11]–[13]. Dual Memory Systems consolidate infor-
mation from short-term, temporary to long-term, permanent
memory to enable rapid adaptation while preserving previously
encountered information [14]–[17].

Methods described in this paper will focus on
regularization-based approaches to avoid undesirable
characteristics of other approaches, such as storing previous
data, adding neural resources for new tasks, or complex
network and optimization structures. At the limit, allowing
for such characteristics would create an ever-growing storage
or computational resource requirement unsuitable for many
real-world applications. Regularization-based approaches
focus on constraining the optimization process when learning
a new task to avoid significant changes to parameters learned
in previous tasks. Most regularization approaches rely on
identifying important parameters within the network and
adjusting regularization according to the relevance of each
parameter to a previous task. This contrasts with applying a
uniform factor across all network parameters.



This paper details two new regularization approaches to
CL by managing changes in network parameters with learned
parameter uncertainty inherent to Bayesian Deep Learning
networks. The learned statistical uncertainty derived from the
approximated posterior distribution serves as the basis for
determining the importance of each network parameter in
the context of a previously learned task. Contrary to existing
Bayesian approaches that rely on Monte Carlo sampling
to estimate network uncertainty, we developed a network-
agnostic framework, called Moment Propagation (MP) [18],
to learn the values of network parameters and their associated
uncertainty in an online manner, without resorting to computa-
tionally expensive sampling techniques. In contrast to previous
approaches to deep Variational Inference (VI) [19], [20], MP
networks approximates the network’s predictive distribution
by propagating the first two moments, mean and covariance,
through the entire network. The first-order Taylor Series
approximation is used to enable propagation of covariance
through non-linearities in the network i.e. non-linear activation
functions such as ReLU. This approach facilitates the direct
maximization of the Evidence Lower Bound Objective without
sampling the network likelihood [18].

We leverage parameter uncertainty learned from a MP
network to govern our CL process in two ways: Learning Rate
Adaptation and Per-parameter Bayesian-based regularization.
Our contributions are as follows:

• We demonstrate the MP framework’s ability to au-
tonomously identify important network parameters rel-
evant to the trained network function.

• We leverage the learned parameter uncertainties to regu-
larize the training of new tasks, preventing the occurrence
of catastrophic forgetting of previous tasks.

• We demonstrate catastrophic forgetting mitigation in the
task incremental learning setting with multiple sequential
benchmark datasets.

• We compare the results of our approach with state-of-the-
art approaches and baseline metrics for each network.

II. MOMENT PROPAGATION FRAMEWORK

MP leverages principles from VI to approximate the vari-
ational posterior of a network by imposing an approximating
distribution, also known as variational distribution, qθ(Ω),
over the network parameters. The variational distribution is
then optimized by minimizing the Kullback-Leibler (KL)
divergence between the variational distribution and the true
posterior distribution, p(Ω|D), where D = {X(i),y(i)}ni=1 ,
represents the training data with ith input X(i) and corre-
sponding label y(i). However, given that minimizing the KL
divergence between the variational distribution and the true
posterior is intractable due to the log evidence, an equivalent
form must be considered. The log evidence can be isolated
as it does not depend on the variational distribution nor
will it affect the optimization. A tractable and equivalent
objective called the Evidence Lower Bound (ELBO) can be
maximized in place of the original KL divergence between the

the variational distribution and the true posterior distribution,
shown in Equation (1).

ELBO = Eqθ(Ω)[ln p(D|Ω)]− KLqθ(Ω)[qθ(Ω)||p(Ω)] (1)

When maximizing the ELBO it’s components, the network
log-likelihood, Eqθ(Ω)[ln p(D|Ω)], is maximized and the KL
divergence between the network prior and the variational
distribution, KLqθ(Ω)[qθ(Ω)||p(Ω)], is minimized. Existing
approaches to VI for DNNs [20] rely on approximating the
network’s log-likelihood by creating variations in the predic-
tive distribution through Monte Carlo sampling of the approxi-
mated variational posterior. A distribution is then fit over these
predictions to approximate the predictive distribution, allowing
for the estimation of the network log-likelihood and the
resulting gradient update of the network parameters. However,
this process requires performing inference for each requested
sample, increasing the time and computation requirements as
the number of samples increase producing a trade-off between
network efficacy and efficiency.

This trade-off can be circumvented by allowing parameters
to contribute their learned uncertainty to features as they are
transmitted through the network, thereby accumulating uncer-
tainty in the network’s predictive distribution. We introduced
a framework that propagates the first two moments of the
predictive distribution through the non-linear layers of the
network using a first-order Taylor Series approximation for
variance, called Moment Propagation (MP) [18]. This method
involves learning the mean and variance of network parameters
in an online fashion while enabling these parameters to influ-
ence the predictive mean and covariance. MP facilitates the
propagation of an analytical expression for both the mean and
covariance moments, allowing the predictive distribution to be
determined without the need for sampling. Consequently, the
stochasticity typically associated with the sampling process is
removed from the predictive distribution estimation permitting
the uncertainty in the predictive distribution to be solely based
on uncertainty contributed by the network parameters. The
propagation of uncertainty through this method provides an
effective, deterministic measure for both mean and covariance,
yielding a consistent and repeatable assessment of predictive
uncertainty that is directly differentiable. Overall, MP en-
hances estimates of both posterior and predictive distributions
with unbiased, directly differentiable evaluations of the net-
work log-likelihood.

In the following sections, MP is derived for a convolutional
neural network with L layers. To streamline notation, the
reference to the layer l is excluded from the representation
for the lth layer. The derivations for various network layers
are presented while assuming the following:

• Without loss of generality, the input feature to the net-
work at layer l = 0, convolutional or linear, is treated as
deterministic.

• The jth network parameter wj follows a Normal distri-
bution wj ∼ N (µwj , σ

2
wj

).
• The network parameters are independent of each other

and the input.



1) Propagation through the lth 2D convolutional layer: Let
G = W∗X+b, where, ∗ denotes the convolution operation. For
the lth convolutional layer, let X ∈ Rn1×n2×ch as a random
tensor denoting the layer input, W ∈ Rk1×k2×ch×f as a
random tensor denoting the layer weights, b ∈ Rf as a random
vector of denoting the layer biases, and G ∈ Rout1×out2×f as
random tensor denoting the propagated feature.

We consider the vectorized form of each filter within weight
random tensor W reforming the random tensor to matrix
W ∈ Rk·k·ch×f . Let W = [w1, · · · ,wf ], where wi is
the ith column of W , representing the ith vectorized filter
with the mean and covariance µwi

∈ Rk·k·ch and Σwi
∈

Rk·k·ch×k·k·ch, respectively. Similarly, we consider the vec-
torized form of the image patches under each filter within the
input random tensor X reforming the random tensor to matrix
X ∈ Rk·k·ch×out1·out2 . Let X = [x1, · · · ,x[out1·out2]],where
xo is the oth column of X , representing the oth vectorized
image patch with the mean and covariance µxo

∈ Rk·k·ch

and Σxo
∈ Rk·k·ch×k·k·ch, respectively. It follows that the

resulting random element go,i with mean and covariance ele-
ments, µgo,i and σgo,i , contained within the resulting random
matrix G can be derived for each filter i = 1 · · · f and output
feature pixel o = 1 · · · (out1 · out2) with the matrix-vector
multiplication as shown in Equation (2).

µgo,i = µT
wi

µxo
+ µbi

σ2
go,i = tr(Σxo

Σwi
)+µT

xo
Σwi

µxo
+ µT

wi
Σxo

µwi
+ σ2

bi

(2)

2) Propagation through the kth linear layer: Let z =
W Tx + b, where, for the kth layer, W ∈ Rn×m is a
random matrix of weights, b ∈ Rm is a random vector of
biases, and z ∈ Rm is the resulting random vector. Let
W = [w1, · · · ,wm], where wi is the ith column of W , with
the mean and covariance of wi represented as µwi

∈ Rn

and Σwi
∈ Rn×n. The random input vector is represented

by x ∈ Rn with mean and variance value vectors µx ∈ Rn

and Σx ∈ Rn×n, respectively. It follows that the mean and
variance elements, µzi and σ2

zi , contained within the resulting
random vector z can be derived for elements i = 1 · · ·m, with
the matrix-vector multiplication as shown in Equation (3).

µzi = µT
wi
µx + µbi

σ2
zi = tr (ΣxΣwi

) + µT
xΣwi

µx + µT
wi
Σxµwi

+ σ2
bi

(3)

3) Propagation through pth Batch Normalization: Let F =
γ ⊙ X̂ + β, where X̂ is the normalized input X according
to Equation 4. Let input X = [x1, · · · ,xB ] and xb is the
bth batched random vector of X . Each random input vector
is represented by xb ∈ Rn with mean and variance value
vectors µxb

∈ Rn and Σxb
∈ Rn×n, respectively. Each

input vector is normalized according to Equation 4, where
µN ∈ Rn and σ2

N ∈ Rn represent the feature-wise (channel-
wise in the case of 2D batch normalization) mean and variance
over all µxb

. The normalized moment vectors of mean and
variance are represented by µx̂b

and Σx̂b
, correspond to xb

in X̂ = [x1, · · · ,xB ]. A small value, ϵ is added to the
denominators for numerical stability.

µx̂b
=

µxb − µN√
σ2
N + ϵ

Σx̂b
=

Σxb

σ2
N + ϵ

(4)

4) Propagation through a non-linear activation: Let Z =
Ψ(G) represent some non-linear activation function (e.g.
ReLU, Hyperbolic Tangent, Softmax) of a random vector
input G ∈ Rm×m×ch with mean µz and covariance Σz . The
mean and covariance for the resulting random vector g can be
approximated using the first-order Taylor series approximation
[18] in Equation (5) where ⊙ is the element-wise product of
the incoming covariance matrix, Σz , and the squared gradient,
∇, of non-linear function with respect to the incoming mean,
µz .

µg ≈ Ψ(µz)

Σg ≈ Σz ⊙∇Ψ(µz)∇Ψ(µz)
T

(5)

For the Softmax classification layer at the output of the
network, let µŷ and σ2

ŷ denote the mean and variance,
respectively, that will be used to infer the ELBO objective
function.

A. Closed Form ELBO

Using the propagated values µŷ and σ2
ŷ , the ELBO, Equa-

tion (1), can be written in closed form, as shown in Equation
(6). The weighting variable τ is added to control the level
of explicit regularization toward the prior induced by the KL
divergence term. The KL divergence is computed on a per-
parameter basis and then summed, where |Ω| denotes the
cardinality of the set Ω, i.e., the number of weight parameters,
and N denotes the number of classes or output nodes of the
final layer.

B. Training Moment Propagation

Contrary to other traditional probabilistic problems where
VI can be applied, estimating a prior for a DNN is difficult
before any training has occurred. Given the dual objective of
the ELBO, reverting to a prior far from the parameterization
of the true posterior would be detrimental to the learning
process. Instead, sparsity-inducing priors, such as the standard
normal, p(Ωi) = N

(
µpi

= 0, σ2
pi

= 1
)
, can be used to remove

parameters that are not required to maximize the model
likelihood by reverting their mean and variance, to that of
the sparsity inducing prior.

Thus, the maximum variance of a parameter present
in the network will be σ2

ωi
= 1. The incorporation

of a sparsity-inducing prior in the ELBO objective
aligns with the Minimum Description Length principle.
This is achieved by inherently reducing the complexity
of a DNN, specifically by systematically eliminating
parameters that are not necessary for a given task [21], [22].

ELBO = −N

2
ln (2π)− 1

2
ln (|Σŷ|)−

1

2

(
(y − µŷ)

TΣŷ
−1(y − µŷ)

)
− τ

2

|Ω|∑
i=1

(
−1 +

(µqωi
− µpi)

2

σ2
qωi

+ ln

(
σ2
pi

σ2
qωi

)
+

σ2
qωi

σ2
pi

)
(6)



III. WEIGHT UNCERTAINTY

After training, parameters essential for a task are ex-
pected to exhibit reduced uncertainty. Conversely, parameters
unessential for the task are expected to gravitate towards
the sparsity-inducing prior, resulting in increased uncertainty.
To measure a parameter’s relative importance to a DNN’s
function, two forms of uncertainty are considered: the vari-
ance of each parameter, σ2

ωi
, and the Signal-to-Noise Ratio

(SNR) of each parameter, SNRωi
= |µωi

|/σ2
ωi

. Parameter
importance is inversely proportional to a parameter’s variance
and proportional to a parameter’s SNR. MP’s ability to self-
determine important parameters is demonstrated by observing
a cumulative distribution function (CDF) of both parameter
SNR and variance from a trained two 800-node hidden layer
fully connected network. The CDFs for parameter uncertainty
are then correlated to the network’s ability to prune parameters
based on each parameter’s learned uncertainty.

The CDFs for the uncertainty measurements are presented
in Figure 1. Parameter importance based on SNR and Vari-
ance demonstrates that 95% of the fully connected network
parameters are uncertain and, thus, are considered unimpor-
tant. Similarly, the CDF of the variance of the parameters
demonstrates that 95% of the parameters have been optimized
to be equivalent to the prior and are thus uncertain.

Although parameters aligning with the prior may appear
equivalent, it doesn’t necessarily imply insignificance to the
network’s functional approximation. To demonstrate parameter
importance to a learned network function, parameters are
ordered and pruned according to their SNR and variance
at various percentages of the total network parameters. The
subsequent impact on network performance is then assessed.

During pruning, all network parameters are ordered based
on importance, regardless of layer, as there is no guarantee
that important parameters will be evenly distributed across
all layers. This approach allows for more efficient pruning
without compromising performance. The performance of the
pruned network, considering SNR and variance-based pruning,
is compared against random pruning (the lower performance
bound) and pruning based on the smallest absolute value. Ad-

ditionally, the performance of the MP framework is compared
to Bayes-by-Backprop (BBB) and standard deterministic net-
works, both featuring the same two hidden layer architecture.
For MP and BBB frameworks, smallest absolute value-based
pruning is performed on parameters using the mean of the
parameter’s approximating distribution.

Figure 2 shows that the MP network maintained more
performance, even with a higher percentage of the network
pruned compared to the BBB and deterministic frameworks.
Although variance-based pruning exhibited a greater overall
loss in performance compared to SNR-based pruning for MP,
both approaches began to experience performance degradation
at 95% of the network being pruned, as reflected in the CDFs
for variance and SNR. Additionally, in the BBB network,
variance-based pruning performed significantly worse than
SNR-based pruning, indicating that variance may not be as
reliable as a parameter importance measure in the BBB
framework.

Based on the pruning performance of the MP framework,
trained MP networks can accurately discern important parame-
ters via learned parameter uncertainty. This inherent ability for
self-determination of relevant parameters is a crucial tool for
CL. Important parameters can be appropriately regularized to
avoid changes and prevent catastrophic interference, ensuring
the retention of knowledge from previous tasks. In contrast,
unimportant parameters, which have demonstrated minimal
contribution to network predictions, can be used for learning
subsequent information, making MP beneficial in Continual
Learning scenarios.

IV. BAYESIAN CONTINUAL LEARNING

Continual Learning (CL) can be divided into three sub-
categories: Task Incremental Learning, Domain Incremental
Learning, and Class Incremental Learning, where the premise
of learning and retaining information over multiple training
periods remains the same, but how context is provided changes
in each scenario [23]. Methods described in this paper will
focus on Task Incremental Learning, in which the context C for
the input X changes over time and is provided during training
and inference periods. The output space y is separated for

Fig. 1. Analysis of parameter uncertainty from a two 800-node hidden layer fully connected network (A) Cumulative Distribution Function plot of the
Signal-to-Noise Ratio (SNR) demonstrating 95% of the parameters are approximately -400dB SNR. (B) Cumulative Distribution Function plot of the Variance
demonstrating 95% of the parameters have a variance of 1 or greater.



Fig. 2. Loss in performance from the original validation accuracy as a result of various pruning methods. Moment Propagation performance is presented in
warm colors, Bayes-by-Backprop (BBB) performance in cool colors, and deterministic performance in grey and black.

each input context, producing the mapping f : X × C → y
[23]. This additional task context is only leveraged for the
multi-headed network architecture in which task information
is required to choose the appropriate output head and is not
used to select which network parameters are active.

A. Learning Rate Adaptation
Initially explored by Ebrahimi et al. [24], Learning Rate

Adaptation (LRA) leverages learned parameter uncertainty to
adapt the learning rates of individual parameters according
to their relevance to the network’s functional approximation.
Lower learning rates for important network parameters ide-
ally prevents catastrophic interference in these parameters by
restricting change while allowing unimportant parameters to
learn new information freely. Our approach to Learning Rate
Adaption replaces the Bayes-by-Backprop (BBB) framework
with the Moment Propagation framework. Instead of using
a BBB parameter’s latent sampling distribution to determine
parameter importance, parameter importance is determined by
a random variable that directly contributes to the network’s
predictive distribution.

Learning rates for each parameter are determined by map-
ping parameter importance from all network parameters to
a user-defined range of learning rates. First, parameter im-
portance is determined according to the parameter’s variance,
1/σ2

ωi
, or SNR, |µωi

|/σ2
ωi

. The resulting importance values
are remapped across the whole network, excluding the clas-
sification head, instead of across each layer given there is no
guarantee that parameter importance will be even distributed
across all layers. The remapping function is shown in Equation
(7), where αt+1 represents the vector of all parameter learning
rates for the next task, ιt represents the vector of all parameter
importance values from task, t. The min and max user-defined
range of learning rate values are defined as αmin and αmin.
Learning rates for each parameter’s mean and variance are
updated synchronously because the approximating distribution
for each parameter is treated as a single parameter. Ultimately,
the mean and variance of the most important parameters will
receive the lowest user-defined learning rate, restricting any
change in the parameter. The mean and variance of the most

uncertain parameters will receive the highest, allowing these
parameters to learn freely.

αt+1 ←
((ιt −min(ιt))(αmax − αmin)

max(ιt)−min(ιt)
+ αmin (7)

B. Per-Parameter Bayesian Inference

Our second approach, Per-Parameter Bayesian Inference
(PPBI), leverages the same concept of leveraging parameter
uncertainty but instead changes the weighting of the KL reg-
ularization term within the ELBO. Drawing inspiration from
Ebrahimi et al. [24], Ahn et al. [25], and Nguyen et al. [26],
this framework performs approximate Bayesian Inference on a
per-parameter basis guided by parameter uncertainty without
any changes to the regularization term. PPBI applies a similar
methodology to Learning Rate Adaption; however, for each
new task, a KL regularization term weighting value is applied
according to each parameter’s importance. Before training a
task the network prior is replaced with the previous tasks
learned posterior. To control the explicit regularization of every
parameter, regularization weights are adjusted based on each
parameter’s importance by mapping parameter importance
values to a user-defined range of regularization weighting
values. For this technique, the most important parameters will
map to the highest user-defined weighting, heavily restricting
change from the previous tasks posterior (the prior), while
the least important parameters will map to the lowest user-
defined weighting, allowing those parameters to change easily
to maximize the network log-likelihood for the current task.
For PPBI, the remapping function is shown in Equation (8).

τ t+1 ←
((ιt −min(ιt))(τmin − τmax)

max(ιt)−min(ιt)
+ τmax (8)

The algorithm for MP-based CL for both LRA and PPBI is
presented in Algorithm 1.

C. Experimental Setup

1) Datasets and Networks: Our CL methodologies are eval-
uated for eight different CL benchmark datasets of increasing
difficulty: Two Split MNIST, Five Split MNIST, Permuted



Algorithm 1 Moment Propagation Continual Learning
Require: {Dt}t∈T ; Dt = (Xt,yt)

qθ0
(Ω0) ∼

∏|Ω0|
j=1 N (µ

w
(j)
0
, σ2

w
(j)
0

)

p0(Ω0) ∼
∏|Ω0|

j=1 N (0, 1)

τ 0 = (τ
(j)
0 · · · τ

(j)
0 )

α0 = (α
(j)
0 · · ·α

(j)
0 )

1: for all tasks, t, do
2: repeat
3: for all examples in Dt do
4: LLL ← Eqθt (Ωt)[ln p(ŷ|Xt,Ωt)]

5: LKL ←
∑|Ωt|

j=1 τ
(j)
t KL

qθt (Ω
(j)
t )

[qθt
(Ω

(j)
t )||pt(Ω(j)

t )]

6: LVDP ← LLL − LKL
7: for each network parameter, Ω(j)

t , do
8: Ω

(j)
t ← Ω

(j)
t −α

(j)
t

∂LVDP

∂Ω
(j)
t

9: end for
10: end for
11: until validation accuracy plateaus
12: for each network parameter, Ω(j)

t , do
13: ι

(j)
t ← 1/σ2

wj
or µwj/σ

2
wj

14: end for
15: if Learning Rate Adaptation then
16: αt+1 ← ((ιt−min(ιt))(αmax−αmin)

max(ιt)−min(ιt)
+ αmin

17: τ t+1 ← τ t

18: end if
19: if Per-Parameter Bayesian Inference then
20: τ t+1 ← ((ιt−min(ιt))(τmin−τmax)

max(ιt)−min(ιt)
+ τmax

21: pt+1(Ωt+1)← qθt
(Ωt)

22: αt+1 ← αt

23: end if
24: end for

MNIST, Two Split CIFAR10, Five Split CIFAR10, Mixed
CIFAR10-CIFAR100, and a sequence of eight datasets. Split
MNIST and CIFAR10 datasets consist of each base dataset
separated into two tasks of five classes and five tasks of 2
classes, for two split and five split, respectively. The Permuted
MNIST dataset consists of ten different pixel level permu-
tations applied to the entire base MNIST dataset, resulting
in ten tasks of ten classes each. Mixed CIFAR10-CIFAR100
combines the base CIFAR10 and CIFAR100 benchmark
datasets and alternates between tasks of two classes from
CIFAR10 and twenty classes from CIFAR100, for ten tasks.
Finally, a sequence of eight datasets is evaluated, consisting
of MNIST, CIFAR10, CIFAR100, NotMNIST, SVHN, Traffic
Signs, FaceScrub, and FashionMNIST where each task is a
new dataset.

For all sequential approaches, 15% of the training set for
each task is reserved for validation, while the test set is
exclusively used for testing after task training is complete. The
order of each dataset is randomized for each epoch, including
for joint training. All datasets are normalized to the mean and
the standard deviation of the full dataset before splitting. For
split CIFAR10 and mixed CIFAR10/CIFAR100, a random crop

with a padding of 4 pixels and a random horizontal flip are
added to assist with generalization. These transforms are added
to existing approaches for a fair comparison. Transform was
not applied to the sequence of eight datasets, as it adversely
affected performance, but datasets are padded to a image size
of 32x32 pixel, and input data consisting of one channel are
replicated across two additional channels for a consistent input
image size of 32x32x3.

A two 800-node hidden layer fully connected network
architecture is used across all approaches to compare con-
tinual learning performance for two-split, five-split, and per-
muted MNIST datasets. An AlexNet Convolutional Neural
Network architecture is used for two-split and five-split CI-
FAR10, mixed CIFAR10-CIFAR100, and the sequence of
eight datasets. We recollect all results for these architectures
and datasets, slightly improving on some previously reported
results due to differences in architectures used.

2) Hyperparameters: A grid search is performed for hy-
perparameters to maximize the performance across all tasks.
Given that the variance of each parameter directly contributes
to the predictive distribution, the initialization of these val-
ues has a significant impact on overall performance. Thus,
parameter variance initialization is searched between σ2

π ←
[−10,−18].

Regularization toward the prior also has a significant impact
on performance. The initial KL weighting is searched between
τ0 ← [1e-3, 1e-8] and is initially applied to all parameters
regardless of approach. Values higher than 1e-3 typically
cause too much regularization toward the prior, resulting in
poor performance due to the network’s inability to learn a
sufficiently complex representation for the task. For LRA,
the maximum learning rate for the mapping to the user-
defined range is searched between αmax ← [1e-3, 1e-5]. For
KL Weight Adaptation, the maximum KL weighting for the
mapping to the user-defined range is searched between τmax ←
[1e-2, 1e-7]. The minimum learning rate and KL weighting are
both set to 1e-12 and are not tuned. The number of epochs
and batch size were fixed at 250 and 500, respectively. A large
batch size was chosen because more performance was retained
in deterministic baseline tests with Fine Tuning and enabled
more efficient use of computational resources.

D. Performance Measurement

Performance is gauged through the Average Test Classifica-
tion Accuracy (ACC) and Backward Transfer (BWT). Average
Test Classification Accuracy is an average of all test accuracies
on individual tasks after training all tasks. Backward Transfer
indicates how much learning new information has affected
performance on previous tasks. Backward Transfer values less
than zero indicate catastrophic forgetting, while values greater
than zero indicate improved performance on previous tasks
after training on new information [24]. These metrics are
shown in Equation 14.
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V. RESULTS AND DISCUSSION

Our CL methodologies are compared to parameter
uncertainty-based methods: Uncertainty-Based Continual
Learning (UCL) [25] and Uncertainty-Guided Continual
Learning (UCB) [24]. We also compare our methods to
long-standing standards for continual learning: Elastic Weight
Consolidation (EWC) [2], Memory Aware Synapses (MAS)
[7], Synaptic Intelligence (SI) [6], and Hard Attention to Task
(HAT) [8]. These approaches to catastrophic interference mit-
igation are compared to baselines using Moment Propagation
Framework: Fine Tuning (FT), where no efforts are made
to mitigate catastrophic interference, Feature Freezing (FF),
where all but the classification head is frozen after training
the first task, and Joint Training (JT), where tasks are trained
sequentially, but jointly with previous tasks. Fine Tuning repre-
sents the lower bound on performance, indicating performance
was not gained over sequential training, while Joint Training
represents the theoretical upper bound on performance. The
performance results for all listed methods are presented in
Table I, where the maximum ACC and maximum BWT values
for each dataset are shown in bold.

Our MP-based LRA and PPBI methodologies outperform
their sampling-based predecessors, UCB and UCL, respec-
tively. This performance improvement can be attributed to
better measures of parameter uncertainty resulting from the
MP framework. In UCB, performance improved as the num-
ber of samples of the predictive distribution increases [24].
Approximating the predictive distribution via the propagated
moments improves measures of the network log-likelihood.
The directly differentiable network log-likelihood then im-
proves gradient updates of the network parameter, improving
the measure of parameter uncertainty and, thus, parameter

importance. Similarly, UCL only leverages one sample of the
predictive distribution to estimate the network likelihood [25]
but outperforms UCB on more complex benchmark datasets
by heavily relying on changes made to the KL regularization
term in the ELBO to further restrict parameter change. Ad-
ditionally, our methods perform on par with HAT’s Average
Test Accuracy despite not having a propagation mask to select
which features are used for which tasks. This masks helps HAT
maintain a BWT of near zero by not only freeze important
parameters to restrict parameter change, but also masking out
all other unimportant parameters to prevent interference on a
feature level.

Despite improved performance over previous approaches,
results for LRA and PPBI only show a marginal performance
improvement over hyperparameter tuning the FF method. This
implies that freezing a MP DNN after training the first task and
learning a new classification layer can provide reasonable Task
Incremental Learning performance. This trend differed slightly
for the mixed CIFAR10 CIFAR100 dataset, where the ACC
for FF was lower than uncertainty-based methods, indicating
the network did not gain enough information from the training
of the first task, two classes of CIFAR10, to sufficiently adapt
to CIFAR100 based tasks with only learning the classification
layer.

A. Split and Permuted MNIST

PPBI slightly outperforms LRA for split and permuted
MNIST benchmark sets. For two-split MNIST, PPBI achieves
an Average Test Accuracy of 99.40% and a Backward Transfer
of −0.05% with a Variance-based uncertainty metric. For
five-split MNIST, PPBI achieves an Average Test Accuracy
of 99.84% and a Backward Transfer of −0.04% with an
SNR-based uncertainty metric. For permuted MNIST with ten
tasks, PPBI achieves an Average Test Accuracy of 98.19%
and a Backward Transfer of −0.25% with a variance-based
uncertainty metric. The restrictive nature of Bayesian Infer-
ence minimizing the KL divergence between the variational
posterior and prior may have helped in this scenario, given
that all tasks are distributed. Thus, restricting change from one

TABLE I
TASK INCREMENTAL LEARNING RESULTS

Approach 2-Split MNIST 5-Split MNIST Permuted MNIST 2-Split CIFAR10 5-Split CIFAR10 CIFAR10/100 Sequence
ACC BWT ACC BWT ACC BWT ACC BWT ACC BWT ACC BWT ACC BWT

EWC 98.12% -1.03% 99.18% -0.57% 96.19% -0.46% 82.78% -0.48% 86.01% -3.17% 69.28% -4.20% 70.81% -3.05%
SI 98.85% -0.08% 99.47% -0.24% 93.88% -0.06% 86.19% -1.49% 86.85% -5.74% 70.39% -9.04% 61.91% -16.04%

MAS 98.82% -0.13% 99.57% -0.01% 95.46% -0.21% 99.46% -2.28% 85.98% -7.00% 70.70% -8.56% 60.62% -13.84%
UCL 98.66% -0.41% 99.21% -0.56% 94.97% -2.58% 82.02% -2.46% 84.26% -6.78% 71.68% -4.16% 69.81% -2.10%
UCB 99.18% +0.01% 99.63% 0.00% 97.42% 0.00% 73.76% -5.10% 76.67% -7.56% 60.64% -15.02% 48.37% -24.90%

LRA (Var.) 99.32% -0.04% 99.85% +0.02% 97.40% -0.81% 90.83% -0.30% 92.17% -0.28% 77.16% -1.43% 77.40% -0.64%
LRA (SNR) 99.29% -0.02% 99.80% -0.03% 97.65% -0.44% 89.61% -0.96% 91.69% -0.91% 76.58% -4.22% 76.94% -1.15%
PPBI (Var.) 99.40% -0.05% 99.81% -0.06% 98.19% -0.25% 89.29% -0.60% 89.78% +0.04% 75.12% -1.31% 77.04% -0.10%
PPBI (SNR) 99.37% -0.06% 99.84% -0.04% 98.18% -0.27% 89.46% -1.02% 89.99% -0.06% 75.02% -0.29% 77.15% -0.61%

HAT 98.79% 0.00% 99.75% 0.00% 97.34% 0.00% 86.91% 0.01% 92.09% 0.00% 77.84% -0.03% 83.13% -0.03%
MP-FT 98.98% -0.20% 98.32% -1.46% 95.91% -2.47% 85.72% -6.30% 79.41% -15.46% 57.80% -19.55% 62.98% -20.44%
MP-FF 98.91% 0.00% 99.40% 0.00% 96.72% 0.00% 88.72% 0.00% 89.54% 0.00% 69.27% -0.25% 76.70% -0.01%
MP-JT 99.39% 0.00% 99.73% -0.08% 98.15% -0.17% 91.51% +1.14% 94.64% +0.79% 87.46% +1.23% 78.27% -1.08%



task to the next may have had less impact than more advanced
tasks.

B. Split CIFAR10 and Mixed CIFAR10/100

Conversely, for Split CIFAR10 and Mixed
CIFAR10/CIFAR100, LRA sightly outperforms PPBI. For
two-split CIFAR10, LRA achieves an Average Test Accuracy
of 90.83% and a Backward Transfer of −0.30% with a
Variance-based uncertainty metric. For five-split CIFAR10,
LRA achieves an Average Test Accuracy of 92.17% and
a Backward Transfer of −0.28% with a Variance-based
uncertainty metric. For mixed CIFAR10 CIFAR100, LRA
achieves an Average Test Accuracy of 77.16% and a
Backward Transfer of −0.29% with a Variance-based
uncertainty metric. We attribute these results to the same
characteristics of Per-parameter Bayesian Inference, which
benefited Split and Permuted MNIST tasks. However, in
the case of CIFAR10 and CIFAR100 datasets separating
classes into tasks may require parameters to diverge from the
previous tasks posterior. Thus, PPBI may cause unwanted
regularization to the network prior. Learning Rate Adaptation
avoids this problem by restricting all changes in important
parameters while allowing unimportant parameters to move
away from the network posterior to the previous task.

C. Sequence of Eight Datasets

For the Sequence of Eight Datasets PPBI and LRA, perform
similarly. LRA provides the maximum Average Test Accuracy
at 77.40% with a Backward Transfer of −0.64% with a
variance-based uncertainty metric. PPBI and LRA significantly
outperform all other methods apart from HAT.

VI. CONCLUSION

In this work, two Continual Learning methodologies are
presented that leverage learned parameter uncertainty derived
from a Moment Propagation framework to regularize train-
ing of new tasks to prevent Catastrophic Forgetting. These
methods are detailed by deriving the custom layers for a
basic Convolutional Neural Network from the principles of
Variational Inference. The concept of parameter importance
through learned uncertainty from the Moment Propagation
framework’s is demonstrated and applied to Continual Learn-
ing through two methodologies to Learning Rate Adaptation
and Per-parameter Bayesian Inference. While these approaches
leverage learned parameter importance in different ways,
both mitigate catastrophic forgetting through regulariz the
learning of network parameters. These methods were evalu-
ated on multiple sequential benchmark datasets, and perfor-
mance was compared to other similar previously published
approaches. Ultimately, Learning Rate Adaptation and Per-
parameter Bayesian Inference outperform or yield comparable
results to existing approaches through improved measures of
parameter uncertainty.
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[8] J. Serrà, D. Surı́s, M. Miron, and A. Karatzoglou, “Overcoming catas-
trophic forgetting with hard attention to the task.”

[9] J. Yoon, E. Yang, J. Lee, and S. J. Hwang, “Lifelong Learning with
Dynamically Expandable Networks,” June 2018. arXiv:1708.01547 [cs].

[10] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,
K. Kavukcuoglu, R. Pascanu, and R. Hadsell, “Progressive Neural
Networks,” Oct. 2022. arXiv:1606.04671 [cs].

[11] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “iCaRL:
Incremental Classifier and Representation Learning,” Apr. 2017.
arXiv:1611.07725 [cs, stat].

[12] J. Hurtado, A. Raymond-Saez, V. Araujo, V. Lomonaco, A. Soto, and
D. Bacciu, “Memory Population in Continual Learning via Outlier
Elimination,” Oct. 2023. arXiv:2207.01145 [cs].

[13] E. Belouadah and A. Popescu, “IL2M: Class Incremental Learning
With Dual Memory,” in 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 583–592, Oct. 2019. ISSN: 2380-7504.

[14] R. Kemker and C. Kanan, “FearNet: Brain-Inspired Model for Incre-
mental Learning,” Feb. 2018. arXiv:1711.10563 [cs].

[15] A. Chaudhry, M. Ranzato, M. Rohrbach, and M. Elhoseiny, “Efficient
Lifelong Learning with A-GEM,” Jan. 2019. arXiv:1812.00420 [cs, stat].

[16] D. Lopez-Paz and M. Ranzato, “Gradient Episodic Memory for Contin-
ual Learning,” Sept. 2022. arXiv:1706.08840 [cs].

[17] H. Shin, J. K. Lee, J. Kim, and J. Kim, “Continual Learning with Deep
Generative Replay,” Dec. 2017. arXiv:1705.08690 [cs].

[18] D. Dera, N. C. Bouaynaya, G. Rasool, R. Shterenberg, and H. M.
Fathallah-Shaykh, “PremiUm-CNN: Propagating uncertainty towards ro-
bust convolutional neural networks,” vol. 69, pp. 4669–4684. Conference
Name: IEEE Transactions on Signal Processing.

[19] D. P. Kingma and M. Welling, “Auto-encoding variational bayes.”
[20] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight

uncertainty in neural network,” in Proceedings of the 32nd International
Conference on Machine Learning, pp. 1613–1622, PMLR. ISSN: 1938-
7228.

[21] G. E. Hinton and D. van Camp, “Keeping the neural networks simple
by minimizing the description length of the weights,” in Proceedings of
the sixth annual conference on Computational learning theory, COLT
’93, pp. 5–13, Association for Computing Machinery.

[22] X. He and M. Lin, “Continual Learning from the Perspective of
Compression,” arXiv e-prints, p. arXiv:2006.15078, June 2020. doi:
10.48550/arXiv.2006.15078.

[23] G. M. van de Ven, T. Tuytelaars, and A. S. Tolias, “Three types of
incremental learning,” vol. 4, no. 12, pp. 1185–1197. Number: 12
Publisher: Nature Publishing Group.

[24] S. Ebrahimi, M. Elhoseiny, T. Darrell, and M. Rohrbach, “Uncertainty-
guided continual learning with bayesian neural networks.”

[25] H. Ahn, S. Cha, D. Lee, and T. Moon, “Uncertainty-based continual
learning with adaptive regularization,” in Advances in Neural Informa-
tion Processing Systems, vol. 32, Curran Associates, Inc.

[26] C. V. Nguyen, Y. Li, T. D. Bui, and R. E. Turner, “Variational continual
learning.”


