
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA

978-1-939133-37-3

Open access to the Proceedings of the

32nd USENIX Security Symposium

is sponsored by USENIX.

Remote Direct Memory Introspection
Hongyi Liu, Jiarong Xing, and Yibo Huang, Rice University; Danyang Zhuo,

Duke University; Srinivas Devadas, Massachusetts Institute of Technology;

Ang Chen, Rice University

https://www.usenix.org/conference/usenixsecurity23/presentation/liu-hongyi

Remote Direct Memory Introspection

Hongyi Liu Jiarong Xing Yibo Huang Danyang Zhuo² Srinivas Devadas³ Ang Chen

Rice University ²Duke University ³MIT

Abstract

Hypervisors have played a critical role in cloud security, but

they introduce a large trusted computing base (TCB) and

incur a heavy performance tax. As of late, hypervisor of-

floading has become an emerging trend, where privileged

functions are sunk into specially-designed hardware devices

(e.g., Amazon’s Nitro, AMD’s Pensando) for better security

with closer-to-baremetal performance.

In light of this trend, this project rearchitects a classic se-

curity task that is often relegated to the hypervisor, mem-

ory introspection, while only using widely-available devices.

Remote direct memory introspection (RDMI) couples two

types of commodity programmable devices in a novel defense

platform. It uses RDMA NICs for efficient memory access

and programmable network devices for efficient computa-

tion, both operating at ASIC speeds. RDMI also provides a

declarative language for users to articulate the introspection

task, and its compiler automatically lowers the task to the

hardware substrate for execution. Our evaluation shows that

RDMI can protect baremetal machines without requiring a

hypervisor, introspecting kernel state and detecting rootkits

at high frequency and zero CPU overhead.

1 Introduction

Security and performance are both first-order objectives at

cloud scale, yet today’s hypervisors struggle in both as-

pects. Hypervisor-based virtualization introduces a large TCB

with millions of lines of low-level code, where CVEs (Com-

mon Vulnerabilities and Exposures) are continuously un-

earthed [55, 109]. Meanwhile, they also incur a heavy ªvirtu-

alization tax,º consuming significant CPU cycles, taking away

resources from revenue-generating VMs, and creating perfor-

mance contention with tenant workloads [82]. To achieve bet-

ter security and performance, cloud providers are increasingly

invested in hypervisor offloading, using tailor-made hardware

devices [4, 8, 14, 19, 37, 39] with closed-source designs.

These emerging devices are particularly important in

baremetal-as-a-service (BMaaS) offerings, where entire in-

stallations are provided to a single tenant without a software

hypervisor. BMaaS not only provides ideal performance and

isolation for the tenant, but also increases the provider’s rev-

enue as 100% of CPU cycles are for sale; it has gained a

foothold in all major clouds [2, 7, 9, 10, 16, 33]. Owing to the

absence of the hypervisor, security tasks are often anchored

in these customized devicesÐwith Amazon’s Nitro [8], In-

tel’s IPU [15], AMD’s Pensando [4], and Microsoft’s Fungi-

ble [14] vying for the market. These devices are attached to

host servers as PCIe peripherals, akin to network interface

cards (NICs), but their execution environments are shielded

from host CPUs. They run protection tasks with a higher priv-

ilege than the OS or hypervisor. Since this mode of execution

operates beneath what is traditionally known as Dom0, we

will henceforth call this paradigm ªDom(-1) security.º

Remote direct memory introspection, or RDMI, rethinks a

classic security task in light of the Dom(-1) paradigm. Kernel

memory introspection [61, 64, 65, 89] is an important forensic

technique. It enables the cloud provider to perform security

telemetry and detect signs of malice (e.g., rootkits), while

staying transparent to the tenants by virtue of operating under-

neath their workloads. Traditionally, this is relegated to the

hypervisor, which periodically acquires memory snapshots

from guest VMs for security analysis (e.g., reconstructing

task_struct lists from raw memory). In contrast to this

conventional approach, RDMI sinks memory introspection

tasks into the hardware layer by a whole-stack redesign; more-

over, it only uses COTS (commercial-off-the-shelf) devices

available to everyone instead of closed-source devices. The

key enabler for RDMI is the increasing deployment of com-

modity programmable hardware in the cloud. In particular,

RDMA NICs (RNICs) that enable remote direct memory ac-

cess [50, 58], and P4 programmable switches that can realize

hardware control loops [81, 97], form its Dom(-1) substrate:

• Memory datapaths: RNICs expose host memory to re-

mote clients, providing a telemetry channel to acquire

memory snapshots over a network in a granular man-

ner. The conventional use of RDMA is to accelerate

application-layer cloud workloads [50, 58], whereas we

use it as a vantage point for kernel memory visibility.

RDMA datapaths are simple and fast, and remote ac-

cesses are fully transparent to the introspected host.

• Control loops: Kernel introspection is a complex task

that goes beyond individual memory accessesÐe.g., it

might need to fetch the Linux process linked list starting

at init_task, parse its next pointers, and traverse the

entire list of task_structs. This requires a more ex-

pressive programming model than RDMA. We observe

USENIX Association 32nd USENIX Security Symposium 6043

that introspection control loops are an ideal fit for pro-

grammable switches, which serve as a platform for real-

izing new control protocols at hardware speeds [81, 97].

Combined, RDMI executes in Dom(-1) with hardware-

based memory accesses (using RDMA NICs) and inspec-

tion (using programmable switches) at ASIC speeds. This

operating regime also enables RDMI to introspect baremetal

installations without a hypervisor. It can be deployed to a ToR

(Top-of-Rack) switch that serves a set of baremetal servers

equipped with RNICs, offering security protection with novel

properties not found in hypervisor-based introspection:

• Baremetal: It introspects kernel memory in baremetal

installations, without requiring a hypervisor.

• Remote: The introspection engine is disaggregated from

host CPUs and executes over the network.

• Efficient: Both the datapath (memory operations) and the

control path (introspection logic) are realized in ASICs.

• Commodity: It relies on widely available, COTS hard-

ware technologies without any modification.

• Programmable: Introspection tasks can be programmed

in a declarative language with a few lines of code.

On the last point, RDMI abstracts away the complexities of

the ASICs and the intricacies of kernel introspection from the

user. Instead of directly asking the user to program low-level

RDMA and P4 ASICs, which would be burdensome and error-

prone, RDMI exposes a set of functional operators to specify

a variety of introspection tasks. Users program against a uni-

form ªkernel graphº abstraction, where vertexes are the kernel

data structures and edges are the pointer relations. Supporting

this abstraction are the RDMI compiler and runtime that facili-

tate its Dom(-1) execution. The RDMI compiler maps a query

via an intermediate representation (IR) that manipulates an

abstract introspection machine for kernel traversal, with its in-

struction set instantiated in RDMA and P4 ASICs. The RDMI

runtime provides auxiliary utilities (e.g., driving the introspec-

tion to different kernel locations and fetching kernel memory

with RDMA operations), also shared across tasks. This design

enables runtime programmability [104, 107]Ðqueries can be

reconfigured in a live manner by the compiler generating

different control plane configurations without downtime.

We have developed a RDMI prototype and conducted a

comprehensive evaluation, with the following findings. The

RDMI defense platform is capable of introspection frequen-

cies that are orders-of-magnitude higher than hypervisor so-

lutions, and it effectively performs memory telemetry and

detects rootkits in baremetal machines. Moreover, security

protection does not require any CPU involvement and incurs

minimal performance disturbance to tenant workloads. We

have released our prototype in open source [34].

2 Rethinking Memory Introspection

Memory introspection is an important security task for the

cloud [57, 64, 76, 90, 91, 110]. An abridged view of the long

body of work can be summarized as follows. Since its incep-

tion two decades back [61], researchers have shown that rich

security insight can be gleaned from memory snapshots. This

works through the hypervisor scanning important kernel data

structures in the VMs to detect signs of malice (e.g., rootk-

its). Operating in Dom0, introspection code executes with

higher privilege than tenant VMs, which reside in DomU.

Thus, it has a full view of VM memory and can inspect any

kernel locations. Sinking security protection from VMs into

the hypervisor also means that introspection can be provided

ªas-a-serviceº transparently to the tenants. The only setup

parameters required by the hypervisor are metadata about

the guest kernels (e.g., kernel versions, ASLR offsets), and

from there on, the introspection code navigates the kernel

state by itself. To conquer the ªsemantic gapº [65], intro-

spection programs must ingeniously piece together disparate

data from raw memory bytesÐe.g., it may enumerate Linux’s

task_struct process descriptors from raw memory.

Our project rethinks memory introspection in light of the

trend of hypervisor offloading to Dom(-1) hardware. Isolat-

ing tenants with hypervisor software has been the de-facto

cloud paradigm, but Dom(-1) technologies are chipping away

at this abstraction. This is not only due to the decline of

Moore’s law necessitating better use of CPU cycles, but also

a desire for stronger security due to leaner hardware TCBs.

Historically, the desire for baremetal execution was felt in

various virtualization hardware features (e.g., DPDK [13],

SPDK [35], VT-x [20], MPK [17, 102]), but the recent rise of

baremetal-as-a-service and Dom(-1) hardware devices are a

more significant milestone. Industry vendors have developed

tailor-made devices [1, 4, 8, 14, 19, 39], where virtualization

functions are not only offloaded to hardware but also gated

from host CPUs via an ªairgapº for security. Implementing

security functions in Dom(-1) reduces the TCB, minimizes

interference with the tenants, provides stronger protection

in case of host compromises, and saves operational costs as

more server CPU cycles are made available to tenants. RDMI

rearchitects memory introspection to operate in Dom(-1), but

does so only with COTS devices.

2.1 Remote direct memory introspection

Introspection datapath: The RDMI memory datapaths are

built upon one-sided RDMA ªverbs.º For instance, RDMA

READ operations take memory addresses and sizes as param-

eters, and the requests are encapsulated as Ethernet packets

and sent over the wire. Once the requests arrive at the remote

machine, the Ethernet packets are translated by the NIC hard-

ware into DMA requests over PCIe, eliminating remote CPU

involvement from the datapath and achieving ASIC speeds for

memory accesses. In the context of introspection, the RDMI

READs might fetch a task_struct or several of its fields.

RDMA connections are established using queue pairs (QPs)

with unique identifiers (QPNs, or queue pair numbers) at both

the sender and the receiver sides. By default, RDMA uses vir-

6044 32nd USENIX Security Symposium USENIX Association

(a) RDMA one-sided verbs (b) P4 programmable switches

kgraph (init_task)

.traverse(tasks.next, &init_task.tasks, …)

.values(pid)

RNIC

RDMA Client RDMA Server

DMA

RNIC
read(addr, sz)

L2+L3 QPN, Addr, Op Payload

Switch SW (control plane)

S
ta

g
e

 1

S
ta

g
e

 2

S
ta

g
e

 k

…

ToR switch

Protocol parser

Switch ASIC (data plane)

…

Stateful data plane hardware

BMaaS

Sec 3: Introspection query

Sec 4: AIM instructions

(c) Remote direct memory introspection

Query configs.

Sec 5: Reconfig.

intros. engines

…

Mov

Push

Load

…

Figure 1: The Dom(-1) substrate of RDMI includes (a) RNICs and (b) P4 programmable switches; (c) the RDMI workflow.

tual memory addresses and thus requires address translation

at the NIC hardware, but it is configurable to use physical

addresses directly as well [88, 101]. This is important for

RDMI as it manipulates kernel objects, most of which are

directly (i.e., linearly) mapped to the physical addresses.

Introspection control. While one-sided RDMA is a promis-

ing start, memory introspection goes far beyond individ-

ual memory operations. Introspection tasks require various

types of kernel traversals (e.g., traversing a linked list of

task_structs), which in turn involve pointer arithmetic,

range checks, and complex control flow. One naïve approach

is to implement the control path in software (e.g., on another

server under the same rack). However, many downsides of

driving RDMA operations in software have been noted by

prior work, such as CPU cycle wastage due to polling [46],

and longer latency due to software processing [42]). More

importantly, this offsets our goal of Dom(-1) execution in

hardware ASICs. Our solution is inspired by recent projects

that use P4 programmable switches to implement control

logic that drives RDMA tasks [73, 77, 105]. RDMI executes

the control loop at hardware speeds inside a programmable

switch, driving the memory introspection datapath.

2.2 Overview

Figures 1(a)-(b) depict the Dom(-1) substrate and (c) shows

the key components of RDMI. To the best of our knowledge,

RDMI is the first defense platform that a) exposes a declar-

ative interface for users to articulate introspection tasks; b)

compiles a wide range of such tasks to a reconfigurable set

of hardware engines; c) executes introspection tasks at ASIC

speeds with zero CPU overheads.

Threat model. Our threat model is that of a fully untrusted

kernel (e.g., OS compromises due to kernel-level rootkits),

thus the OS may exhibit arbitrary behaviors and is capable of

removing or tainting any software security agent running on

host CPUs (e.g., kernel modules). However, we assume that

the kernel can boot into a known-good state (e.g., by leverag-

ing trusted boot [38] hardware) and compromises only occur

after that during runtime. This trusted setup also initializes

RDMIÐupon boot, we create a number of RDMA connec-

tions between the switch and the introspected machine, and

grant these connections physical access to the host memory.

Operator Description

kgraph(addr) Initialize traversal at kernel addr

traverse(ptr_nxt, ptr_end, type) Traverse ptr_nxt until ptr_end with type

in(ptr) Deference ptr into a different data structure

iterate(array, n, type) Iterate an array of type for n steps

values(f1, .., fn) Acquire values from current address

assert(pred1, .., predn) Assertion on acquired values

Table 1: Introspection operators. Highlighted are new opera-

tors or those that take a different meaning from Gremlin [95].

After the setup, we assume that the Dom(-1) substrate, as

well as the introspection programs that it hosts, are trusted.

Notably, at runtime, the trusted computing base excludes soft-

ware hypervisors, which is a sizable reduction.

Non-goals. There are several worthwhile goals that are

nevertheless beyond the scope of RDMI. Although RDMI

enables expressive policies to be developed, our goal is not

to propose new introspection policies that are more adept at

detecting kernel compromise. Similarly, improving detection

accuracy with new analysis algorithms is also not our focus.

Section 8 also describes a few other limitations in detail.

3 Programming Introspection Queries

RDMI exposes a declarative interface for users to specify in-

trospection tasks, so that they are not burdened with low-level

operations with baremetal RDMA and P4 ASICs. We observe

that a custom programming model is possible because RDMI

tasks are highly specialized, essentially treating the kernel

data structures as a graph and traversing the graph follow-

ing pointers. Thus, we propose a domain-specific language

(DSL) drawing inspiration from a widely-used graph query

language, Gremlin [95]. Table 1 includes the key operators,

and we showcase their expressiveness with concrete tasks.

Q1: Task list traversal [40]. Let us start with a ªhello

worldº example, where the user wishes to query all active pro-

cesses and their IDs. This functionality is akin to the ‘pslist’

volatility toolkit [40] for memory dump analysis. Linux uses

struct task_struct as the data structure for a process,

organized in a linked list with the global kernel symbol

init_task as the entry. Each task_struct contains key pro-

cess attributesÐe.g., process IDs (int pid) and credentials

(struct cred; used in Q2). We depict the data structures

and key variables.

USENIX Association 32nd USENIX Security Symposium 6045

/* init_task.c */

struct task_struct init_task;

/* sched.h */

struct task_struct {

 /* definition in type.h */

 struct list_head {

 struct list_head *next;

 struct list_head *prev;

 } tasks;

 int pid;

 /* definition in cred.h */

 struct cred {

 kuid_t uid;

 kgid_t gid;

 } *creds;

};

task_struct

pid=0

…

cred

uid, gid

tasks.next

task_struct

pid=1

task_struct

pid=5

task_struct

pid=mal_task

tasks.next

tasks.next

(0, 0) means root priv.

init_task

creds

cred

uid, gid

cred

uid, gid

cred

0, 0

creds

creds

creds

RDMI articulates this traversal in three lines of code below.

A useful mental model for a RDMI query is that of a ªcur-

sorº pointing to a specific kernel address, which moves about

across the kernel graph based on the introspection logic:

1 /* Traverse all tasks and acquire pids */

2 kgraph(init_task) // traversal source

3 // traverse init_task.tasks.next until wraparound

4 .traverse(tasks.next, &init_task.tasks, task_struct)

5 .values(pid) // query pid for each task

A query always starts with a kgraph operator (Line 2),

which initializes the cursor to some predefined address, such

as the global symbol init_task whose address is statically

determined upon boot. Line 4 defines the footprint of the

traversal, performing a sequence of pointer chasing opera-

tions with the ptr_nxt field (see Table 1 for operator argu-

ments; in this case the argument is the tasks.next field in

task_struct) until it encounters ptr_end (in this case set to

init_task.tasks). In other words, the traversal halts when

it wraps around and revisits init_task. The type is set to

task_struct, so RDMI understands the data structure type

of each traversed element. Finally, Line 5 uses values(pid)

to acquire the process ID field in each visited element. Query

results are forwarded to a logging server for further analysis.

Q2: Privilege escalation analysis [5]. This query traverses

each task_struct as in Q1, but it takes an excursion from

the linked list to another data structure struct cred, which

stores process credentials (user ID uid, group ID gid). Non-

root processes have uid and gid values larger than 1000; a

rootkit may maliciously modify these values to zero for some

user process (e.g., a Shell) to escalate its privilege to root

access [5]. This query is a four-liner. Line 4 zooms in on

the external data structure struct cred, which hangs off of

the linked list. (Note that cursor movements in Q1 do not re-

quire in, as the visited fields are contained in the current data

structure (i.e., struct task_struct) for traversal.)

1 /* Credential telemetry for all processes */

2 kgraph(init_task)

3 .traverse(tasks.next, &init_task.tasks, task_struct)

4 .in(creds)

5 .values(uid, gid)

Q3: Virtual filesystem hook detection [76]. A rootkit may

modify function pointers to divert execution to its malicious

code. Q3 asserts that VFS function hooks must be within

a known-good range. As depicted below, /proc is a virtual

filesystem providing administrative utilitiesÐe.g., user-level

forensic tools such as ps rely on information from /proc.

Its root inode is represented by the proc_root data struc-

ture. Filesystem operations eventually invoke read, llseek, and

other file operations, which are specified as function pointers

in struct file_operations as contained in proc_root.

/* fs/proc/root.c */
/* root node for /proc */
struct proc_dir_entry proc_root = {
 .low_ino = PROC_ROOT_INO,
 .namelen = 5,
 .proc_fops = &proc_root_operations,
 .name = “/proc”,
 …
};
static const struct file_operations
 proc_root_operations = {

 .read = generic_read_dir_mali,
 .llseek = generic_file_llseek,
 …
};

`ls -l /proc` triggers VFS read

…

dr-xr-xr-x root mysql

dr-xr-xr-x alice httpd

…

0xffffffff9fde0000

0xffffffff9fde1000

malicious code

By modifying the function pointers, a rootkit can manipu-

late the forensic outputs and hide certain processes from

such administrative tools [76]. This RDMI query checks

that the read function pointer must be within a known-

good range (e.g., kernel text from 0xffffffff9fc00000 to

0xffffffffa08031d1). The assertion in Line 4 evaluates a

predicate and triggers notifications upon failure.

1 kgraph(proc_root)

2 .in(proc_fops)

3 .values(read)

4 .assert(KERN_TXT_BEGIN < read < KERN_TXT_END)

Q4: Network filter hijacking detection [25]. Netfil-

ter [26] is a framework within the network stack, allowing

registered callback functions upon packet events. Rootkits

commonly inject adversarial callbacks to intercept network

traffic. For instance, a rootkit may watch for port-knocking

packet sequences as command-and-control signal for trigger-

ing an attack, and then drop these packets immediately [64].

As shown below, netfilter hooks are retrieved at the init_net

symbol where struct netns_nf is stored. Inside struct

netns_nf, hooks holds a two-dimensional array, and each

array element points to a struct nf_hook_entries. This

query requires a two-dimensional, nested traversal.

/* net_namespace.c*/

struct net init_net;

/* net_namespace.h*/

struct net {

 struct netns_nf {

 struct nf_hook_entries

 *hooks[13][8];

 }nf;

};

/* netfilter.h */

struct nf_hook_entries {

 u16 num_hook_entries;

 struct nf_hook_entry hooks[];

};

struct nf_hook_entry {

 nf_hookfn *hook;

 void *priv;

};

net

netns_nf

nf_hook_entries *

…

init_net

nf_hook_entries

…

nf_hook_entry

hook=funcn

nf_hook_entries *

nf_hook_entries *

nf_hook_entries *

nf_hook_entries *

nf_hook_entry

hook=func1

nf_hook_entry

hook=func2

Lines 2+6 denote the nested traversal, where iterate oper-

ates on array elements instead of linked lists. Line 4 derefer-

ences the value contained at the current array element as a

6046 32nd USENIX Security Symposium USENIX Association

pointer, resulting in an excursion to a different data structure

struct nf_hook_entries. This struct contains a second ar-

ray of registered hooks, and num_hook_entries is the num-

ber of entries. Iterating through this dynamically-allocated

array, RDMI checks each of the hook functions.

1 kgraph(init_net)

2 .iterate(nf.nf_hooks, 13 * 8, ptr_t)

3 //NFPROTO_NUMPROTO=13, NF_MAX_HOOKS=8

4 .in(this) // deref current value, see appendix

5 .values(num_hook_entries)

6 .iterate(hooks, num_hook_entries, nf_hook_entry)

7 .values(hook)

8 .assert(KERN_TXT_BEGIN < hook < KERN_TXT_END)

Q5-Q11. RDMI is expressive enough to support a range of

introspection queries, summarized in Table 2. The Appendix

contains the detailed queries and descriptions.

4 Abstract Introspection Machine

We now describe how the RDMI compiler decomposes

operator-level introspection logic into hardware-level imple-

mentations through an intermediate language. We draw inspi-

rations from existing projects that compile functional opera-

tors to P4 programmable switches [63, 72, 108]); however, un-

like existing compilers that directly lower the policy onto the

hardware layer, RDMI introduces an indirection layer, which

is an intermediate language that manipulates an abstract in-

trospection machine (AIM). The key benefit provided by the

AIM layer is to support runtime programmability [107]Ðthat

is, the ability to perform live query reprogramming without

taking down the deployment. Existing work [63, 72, 108]

compiles each security task into a different P4 program, so

deploying a new query requires reflashing the switch with

a different program. This incurs downtime and cannot be

performed in a live manner [104], so the switch is fixed to

specific queries and cannot be reprogrammed with a new task

on demand. In RDMI, the AIM layer exposes a minimalistic

set of five instructions, which are instantiated in hardware and

shared across RDMI operators for runtime programmability.

4.1 Designing the AIM

RDMI achieves runtime programmability by designing a

ªmasterº P4 program that provides several introspection en-

gines in hardware, corresponding to five AIM instructions:

LOAD, MOV, PUSH, POP, JMP. Since all instructions are em-

bedded in the master program, query changes do not require

program modifications. Rather, deploying a new query only re-

quires generating a new stream of AIM instructions, which in

turn produces a different set of control plane configurations to

the master program. Configurations are installed and removed

from the switch control plane software without reflashing

the hardware, so introspection tasks can be reprogrammed

on demand. In addition, the AIM layer also enables resource

sharing across introspection primitivesÐe.g., traverse and

iterate have shared logic for pointer chasing (e.g, MOV) and

memory acquisition (e.g., LOAD), which can be supported by

Policy LoC Policy LoC

P1. Task list traversal 3 P7. Process memory map check 7

P2. Privilege escal. analysis 4 P8. Keyboard sniffer check 5

P3. VFS hook detection 4 P9. Module list traversal 4

P4. Netfilter hijacking detection 7 P10. Afinfo operation check 6

P5. TTY keylogger check 11 P11. Open file list 11

P6. Syscall check 4 - -

Table 2: Example RDMI tasks. Code in Appendix.

the same underlying introspection engines. The five instruc-

tions operate on the AIM (virtual) registers and stack.

AIM registers: Registers store temporary introspection

state (e.g., memory addresses, loop bounds) and enable arith-

metic operations (e.g., pointer arithmetic, bound checking).

We use Ri to denote the i-th register allocated by the compiler.

The LOAD(R, ADDR, SZ) instruction fetches a chunk of mem-

ory that starts at address ADDR with size SZ, and its variant

LOAD(R, $CONST) assigns a compile-time constant to the reg-

ister. Predicates over register values are used to implement

control flow branchesÐthe conditional jump JMP(PRED, L, L′)

checks the predicate PRED (e.g., R < LOOP_MAX) and branches

to the L/L′ labels in the instruction-level program (see §4.2).

We use RB to denote a special AIM register that holds the

current introspection base address, such as the starting ad-

dress of a task_struct under introspection, and RB is used

in conjunction with relative offsets within the data structure to

fetch data. The MOV(ADDR) instruction rebases introspection

to a new address by fetching the pointer stored at ADDR (i.e.,

pointer chasing), and its variant MOV($ADDR) sets the base

to ADDR. All ADDR fields in the LOAD/MOV instructions are

compiled into base addresses and offsets.

AIM stack: The stack is manipulated in last-in-first-out

order for traversal loops, and each stack frame contains

a previously used RB. For instance, when traversing the

task_struct linked list, the PUSH instruction pushes the cur-

rent task_struct base to the stack top. This may be further

followed by a MOV to rebase introspection to the next element.

The POP instruction pops the stack top to RB, restoring the pre-

vious introspection base and resuming work from there (e.g.,

returning from an inner traversal to the outer layer). Every

nested traversal produces exactly one stack frame, so stack

depth can be analyzed statically by the compiler.

4.2 Compiling to the AIM

RDMI compiles introspection operators to the AIM instruc-

tions enabled by the master program. kgraph(addr) initial-

izes the introspection by setting RB to the specified addr.

in(ptr) is realized by a MOV instruction that rebases to a

different data structure. values(f) is realized by a LOAD

instruction to fetch the value. assert(pred) further per-

forms predicate checking on the LOADed results. traverse

and iterate are the most complex as they involve loops,

and the loop body could further vary based on the query.

RDMI compiles them into AIM instructions that implement a

loop skeleton, but with loop bodies initialized to placehold-

USENIX Association 32nd USENIX Security Symposium 6047

ers; they are later filled by the compiler when processing

the operators within the traversals. We show the skeleton for

traverse(ptr_nxt, ptr_end, type):

1 Mov($ptr_nxt) //move base to ptr_nxt addr

2 L: //loop skeleton compiled from traversal

3 Push //record base addr before moving away

4 /*

5 loop body placeholder, to be compiled from

6 subsequent operators, e.g., acquiring values

7 from the current element or nested traversals.

8 */

9 Pop //back from inner traversal

10 Mov(ptr_nxt) // move base to visit next entity

11 Jmp(RB!= ptr_end, L, Lend) //loop guard

12 Lend: //traversal completes

Lines 1+10 successively move the cursor across a linked list

of elements. To support nested traversals, Lines 3+9 use PUSH

and POP to maintain base addresses in the stack. Line 11

checks for loop termination conditions. The loop body is left

as a placeholder denoted by Lines 4-8, and it will be generated

by the compiler when processing subsequent introspection

primitives. For instance, the compiler may generate LOAD

instructions if the operator nested in the loop is values(f).

iterate follows a similar compilation strategy with

traverse. The Appendix includes more details for reference.

5 Reconfigurable Introspection Engines

We now describe how the AIM instructions are instantiated in

hardware engines, which can be reconfigured to implement

different AIM instruction streams. At a high level, reconfigu-

ration is achieved by installing control entries generated from

different AIM instructions onto the match/action tables from

the control plane. To explain this design, we first provide

more background information on the Dom(-1) substrate.

P4 programmable switches consist of a sequence of hard-

ware stages in their most popular models (i.e., Intel Tofino).

A P4 program is a pipeline of match/action tables that are

allocated on the stages, which select specific packet headers

using match fields and activate processing actions. The tables

have access to stateful registers, which are persistent memory

that keeps state across packets, as well as ALUs (arithmetic

logical units) that are capable of performing arithmetic op-

erations with registers. A packet can only access each stage

and its resources (e.g., registers, ALUs) once, and each ALU

supports at most two distinct arithmetic operations. The AIM

instructions are instantiated by a set of match/action tables,

and the table entries are generated by the RDMI compiler and

populated by the switch control plane to realize different in-

trospection policies. This is the control path for introspection.

… … … …

…

Unidirectional data flowStateful registers

Match/action tables

ALUs

Table entries

HW stages

Endianness conversion

Program counter

Address translation

AIM instruction engine

RDMA retrieval

Packet in,

queue pair

number

denotes PC

Little-to-big endian translation

for a number of bytes

Control plane entries specify

PC transition behaviors for

each program

Linear and non-linear

address translation

Match on PC, execute different

instructions for each PC

Packet parser

Packet deparser

Edit packet header with

memory address and size

Packet out,

queue pair

number

denotes next PC

Figure 2: Reconfigurable introspection engines in RDMI. Red:

AIM instruction engine; green: the runtime system engines.

RDMA NICs transform Ethernet packets received over the

wire into DMA transactions over the PCIe bus for memory

access, and vice versa. We depict the RoCEv2 [36] format, a

commonly used RDMA protocol, with select fields:

Ether IPv4
UDP

dPort=4791
…

Base

Transport

Header

RDMA

Header

Opcode QPN… … Addr Size

A packet carries a queue pair number (QPN) that uniquely

identifies an RDMA connection. Other header fields include

the memory address to read from, the read size, as well as the

read opcode itself. RDMA packets are encapsulated in UDP,

IP, and Ethernet protocols, and they are recognized by the host

and the switch by their distinct destination port number (i.e.,

4791). This is the datapath for memory introspection.

Introspection engines are depicted in Figure 2. The AIM

instruction engine matches on the program counter (PC) car-

ried in the packet header (§5.2), and executes different instruc-

tion streams based on the match/action entries. These entries

map from PCs to their corresponding AIM instructions. The

compiler generates these entries from the AIM instructions,

and the control plane software installs them into the match/ac-

tion tables to realize different programs. RDMI also has a

runtime system, with four engines for endianness conversion,

program counter, RDMA retrieval, and address translation,

respectively. The lifetime of a typical introspection packet

in RDMI is as follows. When the switch receives an RDMA

packet, it first extracts specific headers (e.g., memory content)

from the packet and performs endianness conversion. Next,

the PC engine advances the program execution based on PC

transition rules, which are also compiled from the AIM in-

structions as match/action entries. As needed, the packet also

triggers address translation and page table walk. The AIM

instruction engine then executes a batch of instructions, and

triggers the RDMA retrieval engine for the next step of intro-

spection. Thus, an introspection task requires several rounds

of RDMA requests, each of which triggers an iteration of

switch execution over the next several instructions.

6048 32nd USENIX Security Symposium USENIX Association

5.1 Reconfigurable AIM instruction engines

We now describe how the introspection engines are instanti-

ated, deferring the runtime system description to §5.2.

Push, Pop, Mov: These instructions operate on the base reg-

ister and the stack: pushing the base register value onto the

stack, popping off the base from the stack, and modifying it,

respectively. The stack is created using an array of stateful

registers in P4, with additional designs to overcome the con-

straints imposed by the sequential hardware stages. As shown

below, PUSH transfers data from the base register onto the

stack, and POP in the other direction, requiring bidirectional

data flow. However, if we allocate the base register at stage n

and the stack at stage n+1, backward access will incur heavy

overhead; reversing their layout raises similar problems.

stack_top_idx base_idx

Stack

…

Unidirectional data flow

Stack

RB

Base

POP

PUSH

RB2

RB1

Base

Bidirectional flow, infeasible

Our design addresses this by observing that the stack depth

can be statically analyzed by the compiler. Thus, we integrate

the stack and base into a single register array, as illustrated

above. Two packet metadata variables, stack_top_idx and

base_idx, record the logical stack top and the base register,

although physically they reside in the same register array.

PUSH increases stack_top_idx by one, subsuming the cur-

rent base without data copy. POP decrements the stack top

index by one and updates the base to the popped value, again

with unidirectional data flow. Further, the RDMI compiler stat-

ically computes the value for stack_top_idx and base_idx

at each point of the program execution (as denoted by the pro-

gram counter/PC; details in §5.2). It produces match/action

entries that match against the PC values and retrieves the cur-

rent indexes for stack and base register operations; different

policies result in different table entries. MOV only produces

unidirectional data flow, modifying the base register to a new

value. When rebasing introspection to a new address, the

RDMA retrieval engine fetches the data from kernel memory.

Load, Jmp: These instructions operate on the AIM registers.

The compiler allocates a stateful register in P4 hardware for

each AIM (virtual) register, with an optimization that stati-

cally analyzes whether a fetched value via LOAD will be used

in subsequent instructions. For instance, a LOAD(R1 ,ADDR,SZ)

instruction in conjunction with a JMP(R1--,L1,L2) will result

in a stateful register allocated for R1. On the other hand, if

a LOADed value is only used in the current round and never

reused again (e.g., if the LOADed data is inspected but does

not trigger additional pointer chasing), the compiler allocates

a P4 metadata variable instead of a stateful register for re-

source savings. (Metadata variables are akin to packet headers,

temporary and discarded after the packet leaves the switch.)

Recall that the LOAD instruction supplies a memory address

and read size; the match/action table modifies the current

packet’s headers to transform them into a proper RDMA read

packet, and emits it from the RDMA retrieval engine. When

the response packet arrives, the P4 switch distinguishes the

response based on the queue pair number, parses its value, and

stores it into the stateful register or metadata variable, and the

LOAD instruction retires. JMP is supported by match/action

tables that use an ALU to check the predicate over the register

value, producing exactly two branches as required by the ALU

constraints. As before, control plane entries are generated by

the compiler to determine the specific checks and branching

locations. If a branch is taken, the PC is modified to reflect

the control flow transfer.

5.2 Reconfigurable introspection runtime

Supporting the instruction engines is the RDMI runtime sys-

tem, with four components depicted in Figure 2.

Endianness conversion. LOAD and MOV instructions fetch

data from host memory. Since host data uses little-endian

encoding, we develop a translation engine to convert the en-

dianness of the RDMA read output. Its match/action tables

are configured with entries that match on the read size (i.e.,

number of bytes) and perform bytewise conversion as actions.

RDMA retrieval. LOAD and MOV instructions supply kernel

addresses to the retrieval engine, which handles interactions

with the kernel memory via RDMA. The match/action tables

for the retrieval engine are reconfigurable to edit the packet

header with the RDMA read opcode, address, size, and the

queue pair number before sending it out to the host.

Program counter. To keep track of instruction execution,

we need a program counter that specifies the next AIM in-

struction to be executed. Execution may either fall through

to the next instruction (for non-JMP instructions) or branch

to a different location (for JMPs). The PC value is encoded

as the queue pair number (QPN), which is an RDMA packet

header. The PC transition logic is realized by match/action

tables that match on the current PC value as the key and com-

pute the next PC as the action. Compared to a naïve design

that uses a P4 stateful register to record the PC, carrying PC

values in packet headers is a judicious design choice as it

enables better support for concurrent queries. As each RDMA

packet comes in, RDMI locates the execution context (i.e.,

the query it belongs to as well as the instruction executed)

based on its QPN without ambiguity. Consider some example

match/action entries that implement the PC transition for a

batch of AIM instructions: First, notice that the PC is not per-

instruction but counts blocks of AIM instructions; each block

ends with either a MOV or a LOAD instruction. This is because

MOV/LOAD sends the packet out and PC (as a packet header)

will disappear from the switch. Eventually, its response packet

comes back asynchronously, and we need to determine where

to resume the execution. This, in turn, requires us to update

the QPNs of outgoing packets with the next PC values, so that

match/action processing will resume based on the incoming

packets’ QPNs. Moreover, we can see that JMP instructions

USENIX Association 32nd USENIX Security Symposium 6049

PC val. Instr.

Push

Jmp 3

…

Mov

Push

…

Load

Pop

Jmp 10

Mov

… …

10 ; // Policy end

CurPC Conditional

predicates
NxtPC

1 Jmp pred true 2

1 Jmp pred false 3

2 unconditional 3

3 Jmp pred false 4

3 Jmp pred true 10

… … …

10 - -

Match/action table

Key: Current PC (QPN field)

Action: Compute next PC

1

2

3

are executed based on a predicate evaluation as part of the

match/action processing (e.g., PC 1 may transition to 2 or

3 depending on the branching condition). Finally, a default

label (e.g., PC 10) represents policy termination.

Address translation. Linear kernel addresses (e.g., direct

mapping area of kernel text) are translated by applying a

fixed offset to obtain the physical address. Non-linear ad-

dresses (e.g., kernel modules) require a page table walk. Thus,

the RDMI address translation engine is configured with two

parametersÐa) the translation offset, which remains fixed for

a single boot, for linear address translation, and b) the global

kernel symbol address for init_top_pgt, which resides in

the linear address space and holds the entry to the kernel page

table. Linear address translation works by extracting the vir-

tual page number from an address and then applying an offset

in the ALU. Non-linear translation requires several steps:

PGD

47 39 30 21 12 063

PUD PMD PTE PFN

PGD PUD PMD PTE PFN

48 38 29 20 11

The figure above depicts a typical four-level page table, where

a memory address is segmented into several components: a)

bits [47..39] as the index to the first-level PGD (page global

directory) table, as located by the global kernel symbol, b) bits

[38..30] for the second-level PUD (page upper directory), c)

bits [29..21] for the third-level PMD (page middle directory),

and d) bits [20..12] for the PTE (page table entry directory).

Successive RDMA packets are sent to fetch the respective

translation entries to compute the physical frame number

(PFN). The page offset (i.e., bits [11..0]) is then concatenated

with the PFN to form the actual physical address.

5.3 Reconfiguring queries at runtime

Each of the introspection engines is reconfigurable from the

switch control plane. Thus, adding, removing, or colocating

queries is a seamless operation without downtime. To sup-

port co-existing queries, RDMI simply needs to configure the

execution context (i.e., PC values and their QPNs) and PC-to-

instruction mappings for each of the queries individually.

6 Security analysis

Trusted boot. RDMI relies on a trusted boot process, where

the RDMA NIC is initialized and appropriate QPNs (which

denote the various PCs) are assigned to RDMI so that it can

perform subsequent introspection. This is a practical assump-

tion, as the boot process can be protected by initializing the

system with a known image and relying on hardware support

available in modern CPUs [38].

Runtime TCB reduction. Hypervisor-based introspection

has a large TCBÐthe virtualization layer often exceeds sev-

eral million lines of C code [109]. In RDMI, after the trusted

boot, the software TCB includes the P4 master program and

its control plane entries generated by the compiler, totally

less than 3K lines. Even the RDMI compiler itself can be

excluded from the software TCB, as eventually only its out-

puts are deployed to the switch. If desired, one could even

formally verify the correctness of P4 programs [59, 80] as

a further step for assurance in RDMI. For hypervisor-based

solutions, this is much harder to achieve. Dom(-1) hardware

encloses vendor-provided firmware, which RDMI relies on

for correct execution. The size of device firmware varies, and

an example NIC (Netronome Agilio [29]) contains 52K lines

of code in its firmware.

Runtime tampering. We now consider adversaries that

specifically attempt to tamper with RDMI operations. Since

RDMA bypasses kernel and CPU software, this already pro-

vides a degree of stealth by virtue of executing in Dom(-

1). Nevertheless, a powerful attacker may attempt to guess

RDMA configurations (e.g., queue pair and sequence num-

bers) and launch attacks in the following scenarios.

The adversary can launch (1) a disconnection attack where

she forcibly shuts down RDMI’s queue pairsÐor even the en-

tire RNIC hardware itselfÐso that operations on these queue

pairs will fail. RDMI detects such attacks by constantly mon-

itoring the packet-level behavior for each of its queue pairs,

and by raising alarms when certain queue pairs are unrespon-

sive despite read requests. In addition, the adversary can also

launch (2) an injection attack without shutting down queue

pairs, where she attempts to guess the correct RDMA se-

quence number used for introspection, and inject spoofed data

(e.g., incorrect task_struct addresses) to confound RDMI.

Our defense relies on the fact that the RNIC hardware will

execute RDMI requests and produce responses with identical

sequence numbers as the adversary’s injected packets. (Other-

wise, if the adversary injects packets with incorrect sequence

numbers, they will be rejected.) Therefore, RDMI keeps track

of the correct sequence numbers and raises alarms when it

detects duplicate packets, which is a sign of a spoofing attack.

We have developed both defenses as part of the P4 master

program, and Figure 3 shows the results for two introspection

experiments, where around t=2s and t=3s, respectively, an ad-

versary launches the disconnection and spoof attacks. In both

cases, the P4 switch is able to detect the malicious behaviors

6050 32nd USENIX Security Symposium USENIX Association

Time (sec)

In
tro

sp
ec

tio
n

pa
ck

et
s

k/
se

c

2

3

4

5

6

0 1 2 3 4 5

Disconnectio
n

atta
ck

Spoof

atta
ck

Spoof

alarm

raised

Disconnection

alarm

raised

Figure 3: RDMI successfully detects disconnection and spoof

attacks and raises alarms upon detection.

Policies LoC (vs. libVMI) #instr. #entries

P1 3 (225) 8 109

P2 4 (217) 10 135

P3 4 (145) 8 161

P4 7 (167) 16 135

P5 11 (200) 20 234

P6 4 (135) 8 91

P7 7 (252) 18 195

P8 5 (151) 8 123

P9 4 (104) 8 119

P10 6 (138) 9 173

P11 11 (231) 20 226

Table 3: RDMI is expressive for a range of introspection poli-

cies and is much more concise than LibVMI implementations.

and raise alarms to the operator. The throughput drop also

shows that the effect of disrupting the RNIC operations is

noticeably different from the normal RDMI operations.

7 Evaluation

We present a comprehensive evaluation to answer three re-

search questions: a) how well can RDMI support diverse

introspection policies? b) how effective is RDMI in detecting

rootkits? c) what are the introspection overheads of RDMI?

7.1 Prototype and setup

We have implemented RDMI in 5200 lines of code. The

RDMI compiler (2700 lines of code in C++) ingests an intro-

spection policy in our domain-specific language, and emits

control plane configurations for the master program. The mas-

ter program implements the introspection engines in a P4

program with 2500 lines of code. We deploy RDMI to an

Intel Tofino Wedge 100BF-32X P4 programmable hardware

switch, with 32x100Gbps ports connected to a set of servers.

All servers come with six Intel Xeon E5-2643 Quad-core 3.40

GHz CPUs (24 cores), 128 GB RAM, and run Ubuntu 18.04

as the OS. Each server also has a Mellanox CX-4 RDMA

NIC operating at 25Gbps.

 0

 5

 10

 15

 20

 25

 30

 35

 40

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
P11

C
o
m

p
ila

ti
o
n
 s

p
e
e
d
 (

m
s
)

Figure 4: The RDMI compiler works efficiently.

Our primary baseline defense is LibVMI [22], a state-of-

the-art hypervisor-based introspection engine that obtains and

analyzes guest memory snapshots in software. We use the

KVM/QEMU (v4.2.1) hypervisor, and have manually imple-

mented policies P1-P11 using LibVMI (v0.13.0). A LibVMI

program runs inside the hypervisor and establishes a KVMI

(KVM introspection) socket with a guest VM on the same

physical server, and issues acquisition requests via this chan-

nel. Since LibVMI cannot support remote or baremetal intro-

spection, we have created another defense system by stripping

RDMI of its hardware control loop in the P4 switch. The in-

trospection program runs in a dedicated server to implement

the control loop in software, and the introspected machine is

connected via the same P4 switch that only runs a basic for-

warding program; the memory datapath is still implemented

using RDMA NICs. We call this baseline ªSoftware RDMI,º

as it can be viewed as an intermediate step toward full RDMI

assuming that the top-of-rack switch is not P4 programmable.

We have implemented policies P1-P11 in software, and further

integrated them with RDMA for remote memory acquisition.

7.2 RDMI language and compiler

We start by evaluating the domain-specific language and com-

piler in expressiveness, TCB size, compilation speeds, com-

piled configurations, and switch resource utilization.

Expressiveness. Table 3 shows the lines of code for each of

the 11 policies in RDMI and in LibVMI implementations.

RDMI supports the policies in at most 11 lines of code, where

LibVMI implementations are one or two orders of magnitude

largerÐwith 104-252 lines of code across policies. Further,

LibVMI programs are developed inside the hypervisor, re-

quiring low-level programming skills from the developer. We

also show the number of AIM instructions compiled from the

functional operators, as well as the control plane entry counts

for each policy, which range from 91 to 234. Thus, the RDMI

compiler successfully hides the task complexity and shifts a

substantial amount of work inside itself, while automatically

configuring different introspection tasks.

TCB reduction. The P4 master program has 2500 lines of

code, and the control plane entries generated by the compiler

are less than 210 lines across all policies. Thus, the runtime

USENIX Association 32nd USENIX Security Symposium 6051

Resource ALU (%) Hash unit (%) SRAM (%) TCAM (%)

Endian conversion 0 1.68 0.21 0

Program counter 2.08 3.61 2.6 0

Address translation 8.33 6.61 4.69 3.47

AIM instructions 4.17 4.81 3.12 6.94

RDMA retrieval 4.17 4.09 2.81 1.39

Overall 22.92 26.68 16.15 11.8

Table 4: Switch resource utilization with 11 policies

Time (sec)

iP
er

f t
hr

ou
gh

pu
t (

G
bp

s)

10

12

14

16

18

0 10 20 30 40 50

Adore-ng

detected

Netfilter

rootkit

detected

TTY rootkit

detected

Diamorphine,

Sutekh detected

Spy

detected

P3

inserted

P4

inserted
P5

inserted

P6

Inserted

P7

inserted

Figure 5: RDMI reprograms queries seamlessly.

TCB is smaller than 3K lines of code and configurations, a

significant reduction compared to the size of a hypervisor.

Compilation speed. Next, we measure the turnaround time

for the RDMI compiler to generate the control plane con-

figurations for each policy. Figure 4 shows the turnaround

time: across all policies, RDMI spends 10±38 milliseconds to

produce the compiled configurations, which is very efficient.

Also, the turnaround time is correlated with the number of

AIM instructions and control plane configuration entries that

the compiler needs to generateÐmore complex configura-

tions tend to have higher compilation time (e.g., P11 > P10

> P9). RDMI supports policy composition naturally, as each

policy results in its set of entries that are installed to the same

set of introspection engines in the master program. Compil-

ing multiple policies is equivalent to compiling each of them

one by one, and then installing all the resulting entries to the

switch (not shown, but see Figure 5 for concurrent queries).

Switch resources. Table 4 measures the switch resource uti-

lization of the RDMI master programÐinstalled with all 11

policiesÐand decomposes the usage across several compo-

nents. In RDMI, header operations are performed in ALUs

and hash units, stateful registers are supported in SRAM, and

match/action entries are in SRAM and TCAM. Across all

resource types, the switch has 11.8%-26.68% utilization, leav-

ing plenty of room for other types of switch programs.

7.3 Detecting rootkits, remotely

We now evaluate the effectiveness of RDMI to detect rootkits

in baremetal installations over the network remotely. We

collected four rootkits [23, 24, 27, 28] that are commonly

used in kernel security evaluation, and added two more by

implementing attack mechanisms in existing projects [25, 64,

87]. RDMI is configured with all 11 policies in the switch.

Adore-ng [23] is a rootkit that has been evaluated in sev-

eral existing detectors [64, 67, 76, 91, 94]. It hooks itself to

function pointers in the kernel virtual file system, such as

the inode lookup and file iterate operations. After hooks are

installed, the rootkit will collect parameters passed from the

inode lookup function and match them against predefined se-

crets for triggering privilege escalation of a requested process.

Further, this rootkit covers its tracks by hiding information

from administrative toolsÐthe file iterate function hides

data about malicious files, and its hook on tcp_seq_afinfo

pointers hides network connections from netstat. RDMI

successfully detected this rootkit from three policies. P2 de-

tected a userland process whose privilege has been escalated;

P3 and P10 detected function pointer values in the virtual file

system and TCP stack that are outside the regular kernel text.

sutekh [28] is a rootkit that hooks into the execve and umask

functions in the system call table (i.e., sys_call_table,

which is an array of syscall pointers) [69]. Invoking hooked

syscalls will result in modification to the credential data struc-

tures for specified userland processes. RDMI detected this

rootkit using P2 (which detects escalation) and P6 (which

detects system call table tampering).

Diamorphine [24] is a rootkit that also targets system call

hooks, and it manipulates kill, getdent and getdent64 [67,

74, 84, 92]. For instance, the kill syscall is repurposed as a

communication mechanism between the rootkit and a user-

land processÐe.g., kill -sig -para sends signals from the

userland to the rootkit, and the signal numbers further trig-

ger information hiding or privilege escalation capabilities of

the rootkit. on behalf of certain userland processes. RDMI

detected this rootkit with policies P2 and P6.

Spy [27] is a keyboard logging rootkit, which manipulates

register_keyboard_notifier in the kernel to add itself to

a set of consoles (i.e., keyboard_notifier_blocks) that re-

ceive notifications upon keystrokes [92]. The rootkit then con-

verts the keystrokes into a buffer maintained by the debugfs

virtual filesystem. Our system detected this rootkit using pol-

icy P8, which checks keyboard logging functions.

TTY rootkit is a rootkit that we have implemented using the

techniques proposed in a related project [87]. It targets Linux

tty units and manipulates the receive_buf function, which is

a function called by tty_driver for sending characters to the

tty line discipline. By doing this, it can hijack and eavesdrop

on any data typed in a terminal. RDMI detected this rootkit

with policy P5, which monitors the TTY activities.

Netfilter rootkit implements techniques utilized by two

projects [25, 64] that target Linux Netfilter. It registers a Net-

filter handler nf_register_net_hook, specifically at the lo-

cation NF_IP_LOCAL_IN. It thus obtains control when receiv-

ing network packets, and can take arbitrary actions including

monitoring port-knocking traffic [32] for activation and then

dropping such traffic to avoid suspicion. RDMI detected this

6052 32nd USENIX Security Symposium USENIX Association

 1

 2

 4

 8

 16

 32

 64

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

Q
u
e
ry

 T
im

e
 S

lo
w

d
o
w

n
RDMI

2
.6

7
5
 m

s

4
.4

7
7
 m

s

0
.0

1
5
5
 m

s

0
.2

9
9
 m

s

0
.3

0
4
 m

s

0
.9

3
4
 m

s

1
5
0
.0

9
3
 m

s

0
.0

4
9
 m

s

1
.7

9
 m

s

0
.0

1
7
 m

s

8
5
.9

4
 m

s

Software RDMI
LibVMI

Figure 6: Introspection turnaround times of varying security policies with RDMI, Software RDMI and LibVMI. We normalize

all systems based on the RDMI speed, and also include the RDMI turnaround times on top of the RDMI bars.

rootkit with policy P4 that checks the Netfilter system.

Dynamic, concurrent queries. To demonstrate RDMI’s flex-

ibility to deploy new queries at runtime, we start with the

master program with an empty configuration, and the grad-

ually add five policies to detect the above rootkits that are

installed inside a server. Figure 5 shows the throughput of an

iperf client during the reconfiguration, and labels the respec-

tive policies and the detected rootkits. We can see that query

reprogramming does not disrupt the network transfer or im-

pact service availability. In all cases, the added policies were

able to detect the respective rootkits effectively. Without this

capability, deploying new policies would require reflashing

the switch and taking down the cluster for reconfiguration.

7.4 Benefits of baremetal security

Next, we showcase the benefits of baremetal security, as en-

abled by RDMI. As discussed, LibVMI only supports virtu-

alized environments, and ªSoftware RDMIº is an approxi-

mation of RDMI that relegates introspection logic to remote

server software (but still uses RDMA to fetch kernel memory).

Introspection time. Figure 6 shows the time it takes to

complete an introspection policy across the three defensesÐ

RDMI executes 9-58 times faster than the state-of-the-art

LibVMI solution. ªSoftware RDMI,º as an approximation,

is also much faster than LibVMI but it still falls behind the

full RDMI, which outperforms the former by roughly two

times. This is not only because ªSoftware RDMIº still in-

volves remote CPU overheads, but also that the introspec-

tion and introspected machines are necessarily located farther

away from each other, connected by an intermediate switch.

RDMI, on the other hand, is a switch-resident defense and has

an immediate reach to all servers under the same rack. The

introspection time also varies across policiesÐe.g., P3 is the

fastest (15.5µs) and P7 is the slowest (150.1ms) for RDMI.

We further measure the capture rates across the three de-

fenses by introducing a ªcat-and-mouseº game, where a ker-

nel rootkit rapidly modifies the credential data structures of

specific processes and then modifies them back. By setting

the attacker to different modification frequencies, we com-

pare how well the defenses can capture the modifications by

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500
C

a
p
tu

re
 r

a
te

 (
%

)
Modifications per second

RDMI
Software RDMI

LibVMI

Figure 7: Capture rates of the three defenses.

 0

 1

 2

 3

 4

 5

 6

 7

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
P11

C
P

U
 u

ti
liz

a
ti
o
n
 (

#
 o

f
c
o
re

s
)

Figure 8: CPU overheads for security policies with software

RDMI under the same introspection throughput as LibVMI.

measuring their capture rates. Figure 7 shows the results for

up to 500 modifications per second, with RDMI consistently

achieving the highest capture rates. When the attack goes

beyond 50 modifications per second, LibVMI drops to about

20% capture rate; when it increases to 200 modifications per

second, even Software RDMI drops to 57%Ðbut at both fre-

quencies RDMI stays at 100% and it only drops for much

faster attacks.

Introspection CPU overheads. As motivated before, hy-

pervisor offloading aims to reduce software CPU overheads

from the servers. RDMI achieves introspection entirely in

programmable hardware, without CPU software overheads.

Thus, we measure the CPU overhead for the other defenses

to understand the cost for security. We configure LibVMI to

introspect varying numbers of VMs with each of the policies,

and measure the number of CPU cores that are required for

the introspection tasks. Each KVMI introspection socket is

USENIX Association 32nd USENIX Security Symposium 6053

 0

 5

 10

 15

 20

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

#
 o

f
C

P
U

 C
o
re

s
2 VMs 4 VMs 8 VMs 16 VMs 32 VMs

4
8
5
 q

p
s

2
7
7
 q

p
s

9
4
K

 q
p
s

7
.9

K
 q

p
s

4
.9

K
 q

p
s

2
.6

K
 q

p
s

1
3
.2

 q
p
s

6
8
K

 q
p
s

1
.1

K
 q

p
s

8
3
K

q
p
s

6
.3

4
 q

p
s

Figure 9: CPU costs (# of cores) of LibVMI introspection for different policies with varying numbers of VMs. The query speeds

(i.e., introspection queries per second) for 32 VMs are labeled on the top of the bars.

 0

10

20

30

40

50

60

Set
G
et

R
ange

Push

m
Set

T
p

u
t

R
e

d
u

c
ti
o

n
 (

%
)

LibVMI RDMI

(a) Simple introspection task (P3; Redis)

 0

10

20

30

40

50

60

Set
G
et

R
ange

Push

m
Set

T
p

u
t

R
e

d
u

c
ti
o

n
 (

%
)

LibVMI RDMI

(b) Medium introspection task (P1; Redis)

 0

10

20

30

40

50

60

Set
G
et

R
ange

Push

m
Set

T
p

u
t

R
e

d
u

c
ti
o

n
 (

%
)

LibVMI RDMI

(c) Complex introspection task (P11; Redis)

 0

10

20

30

40

50

512KB

1M
B

2M
B

4M
B

8M
B

16M
B

T
p

u
t

R
e

d
u

c
ti
o

n
 (

%
)

LibVMI RDMI

(d) Simple introspection task (P3; Nginx)

 0

10

20

30

40

50

512KB

1M
B

2M
B

4M
B

8M
B

16M
B

T
p

u
t

R
e

d
u

c
ti
o

n
 (

%
)

LibVMI RDMI

(e) Medium introspection task (P1; Nginx)

 0

10

20

30

40

50

512KB

1M
B

2M
B

4M
B

8M
B

16M
B

T
p

u
t

R
e

d
u

c
ti
o

n
 (

%
)

LibVMI RDMI

(f) Complex introspection task (P11; Nginx)

Figure 10: Throughput reduction of local Redis and Nginx with LibVMI and RDMI, normalized to their respective baselines.

attached to a single introspection program, which is dedicated

to a policy and executes it repeatedly. As shown in Figure 9,

for 32 VMs, LibVMI requires 10-14 CPU cores (out of 24

cores) just for the introspection tasks. This is a significant cost,

as the resulting CPU overheads take away valuable cycles that

are no longer provisioned for the tenants. Next, we configure

Software RDMI to execute at the same query speeds that are

achievable by LibVMI with 32 VMs, and measure the CPU

costs of the introspection machine. As Figure 8 shows, the

CPU cost is significantly lowerÐroughly on par with what

would be needed to introspect 4-8 VMs with the LibVMI

solution. Nevertheless, Software RDMI still requires 1.3-6.2

CPU cores to drive the introspection task, whereas RDMI

removes the CPU overhead entirely by executing in Dom(-1).

Summary. Concretely, the performance gain of RDMI comes

from two factors. First, RDMI executes entirely in pro-

grammable ASICs at hardware speeds both for memory re-

trieval and for introspection computation, whereas the hy-

pervisor solutions execute on CPU software with high CPU

overhead. Moreover, LibVMI requires the presence of a hy-

pervisor, and as shown in §7.5, this by itself incurs a large

footprint and takes away resources from any colocated tasks.

In contrast, RDMI executes in a baremetal setting off the host,

so introspection tasks and tenant workloads cause minimal

interference to each other. In addition, our ªcat-and-mouseº

experiment shows that this performance gain translates to

concrete security benefits in capture rates.

7.5 Introspection interference

We have seen that introspection is a heavyweight task with

high CPU overheads. Next, we quantify the introspection

interference to tenant workloads. For LibVMI, we use the 32-

VM setting where one of the VMs is executing tenant services,

and measure the performance overhead to these workloads

6054 32nd USENIX Security Symposium USENIX Association

 0

10

20

30

40

50

60

70

80

Set
G
et

R
ange

Push

m
Set

T
p

u
t

R
e

d
u

c
ti
o

n
 (

%
)

LibVMI RDMI

(a) Simple introspection task (P3; Redis)

 0

10

20

30

40

50

60

70

80

Set
G
et

R
ange

Push

m
Set

T
p

u
t

R
e

d
u

c
ti
o

n
 (

%
)

LibVMI RDMI

(b) Medium introspection task (P1; Redis)

 0

10

20

30

40

50

60

70

80

Set
G
et

R
ange

Push

m
Set

T
p

u
t

R
e

d
u

c
ti
o

n
 (

%
)

LibVMI RDMI

(c) Complex introspection task (P11; Redis)

 0

10

20

30

40

50

512KB

1M
B

2M
B

4M
B

8M
B

16M
B

T
p

u
t

R
e

d
u

c
ti
o

n
 (

%
)

LibVMI RDMI

(d) Simple introspection task (P3; Nginx)

 0

10

20

30

40

50

512KB

1M
B

2M
B

4M
B

8M
B

16M
B

T
p

u
t

R
e

d
u

c
ti
o

n
 (

%
)

LibVMI RDMI

(e) Medium introspection task (P1; Nginx)

 0

10

20

30

40

50

512KB

1M
B

2M
B

4M
B

8M
B

16M
B

T
p

u
t

R
e

d
u

c
ti
o

n
 (

%
)

LibVMI RDMI

(f) Complex introspection task (P11; Nginx)

Figure 11: Throughput reduction of remote Redis and Nginx with LibVMI and RDMI.

with hypervisor introspection. For RDMI, we measure the

same workloads on a baremetal machine and quantify the per-

formance downgrade of the introspected machine. We omit

Software RDMI from this measurement, as its overhead on

the introspected machine is the same with RDMIÐthe down-

side of Software RDMI comes from overheads of the remote

introspection machine, which is dedicated to introspection

tasks and does not run tenant workloads. We use two common

workloadsÐkey/value operations (Redis) and web transfers

(Nginx)Ðand test them both locally and via the network.

Redis key/value workloads (local). Figure 10 shows the

throughput reduction of key/value workloads, with the Re-

dis client and server colocated on the same machine, and

using varying key/value operations common for Redis bench-

marking (i.e., Set, Get, Range-100, Push, mSet). For fairness

of comparison, we normalize the LibVMI-enabled through-

put against the Redis throughput without LibVMI (both in

VMs), and RDMI-enabled throughput against the case with-

out RDMI (both in baremetal servers). Further, we choose

three representative introspection policies based on their com-

plexity in the LibVMI implementations (simple: P3, medium:

P1, complex: P11). We can see that RDMI incurs 0.1%-4%

throughput overhead across all key/value workloads, whereas

LibVMI is 11-486 times higher with reductions ranging from

22%-56%. This is because LibVMI introspection incurs high

CPU overheads, and creates severe contention. RDMI, on the

other hand, does not involve the remote CPUs. Its overhead

comes from the RDMA reads that are converted to memory

accesses, which incur a small amount of memory contention.

Web server workloads (local). Using a similar methodology,

we have measured the introspection interference of LibVMI

 0

 0.5

 1

 1.5

 2

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
P11

N
e
tw

o
rk

 b
a
n
d
w

id
th

 u
s
a
g
e
/G

b
p
s

Figure 12: Bandwidth consumption for RDMI.

and RDMI with Apache web server workloads. In this ex-

periment, we generate HTTP requests to download files of

varying sizes from the web server, and measure the through-

put of requests served per second. As Figure 10 shows, RDMI

only introduces 0.4%-5.1% throughput overheads across all

workloads, whereas LibVMI incurs an overhead ranging from

25%-51%, which is 7-711 times higher.

Remote workloads. Next, we measure the same workloads

when the requests are coming through the network. Whereas

the local experiments are designed to measure CPU and mem-

ory overheads due to introspection interference, this setup

additionally accounts for the impact of network traffic as gen-

erated by RDMI. LibVMI only performs local operations,

so it does not incur any network IO. Figure 11 measures the

Redis and Nginx throughputs over the network, respectively.

Even accounting for network overheads, RDMI only incurs a

throughput degradation between 0.1%-5.6%. In comparison,

when LibVMI is handling remote client requests, the degra-

dation ranges from 20%-60% across the workloads, which is

USENIX Association 32nd USENIX Security Symposium 6055

5-864 times higher. Therefore, these results show that, with

requests coming through the network, RDMI is still able to

perform security tasks with minimal performance interfer-

ence, unlike state-of-the-art hypervisor solutions.

Figure 12 further shows the amount of network bandwidth

overhead under different introspection policies. We set RDMI

to introspect the baremetal machine at the same speed (in

terms of queries per second) as what LibVMI can achieve at

its peak throughput with 32 VMs locally. Across all queries,

the network bandwidths due to remote introspection range

from 0.3±1.91Gbps; over a 100Gbps link, this translates to

0.3%-1.91% network overheads.

8 Discussions

Cost of deploying RDMI. Since RDMA NICs and pro-

grammable switches have been in use at major cloud

providers [44, 47, 60, 78], we believe that the barrier to de-

ploying RDMI is reasonably low. Nevertheless, for a cloud

provider that does not already use RDMA NICs and pro-

grammable switches, there will be an extra cost for upgrad-

ing these devices. We provide some data points for under-

standing the CapEx and OpEx cost based on available prices.

Our programmable switch costs $10,060 [41], and a non-

programmable switch operating at the same port speeds

(32x100Gbps) costs $9,399 [11]. Our RDMA NIC costs

$488 [30], and a non-RDMA NIC at the same speed costs

$355 [18]. The extra cost for upgrading a single switch and a

single RDMA NIC is therefore $794. As we have shown in

§7.4, hypervisor-based introspection requires 11.2±14 CPU

cores on average with 32 VMs across policies P1-P11. These

core counts are similar to what is provisioned in Amazon’s

m5zn.3xlarge EC2 instances, sold at $0.991/hour [3, 6]; hence,

RDMI would be more cost-effective after 33.4 days of oper-

ation. Although device and VM costs change over time and

across vendors, we believe that this back-of-the-envelope cal-

culation paints a representative picture. Also, we note again

that cloud providers that already invest in these devices would

not incur additional capital cost.

Attacks to RDMA and P4 systems. RDMI NICs and P4

programmable switches are part of our TCB, and they are

assumed to be trustworthy. However, existing work has iden-

tified security issues with both types of devices [71, 96]. As

some examples, adversaries could launch side channel [100],

exfiltration, injection, and denial-of-service attacks [96] to

RDMA deployments. P4 programmable devices may also

exhibit corner-case behaviors under carefully crafted traffic

patterns by the attacker [71]. However, these generic attacks

are not specific to RDMI, and known defenses exist [105].

Cache coherence, consistency, registers. RDMI performs

introspection in an out-of-band (OOB) manner, and OOB in-

trospection [90] has several limitations shared with RDMI.

(i) Cache coherence: RDMA memory accesses are not cache

coherent with host CPUs unless more advanced interconnects

(e.g., CXL [12]) become available. Thus, when RDMI ac-

quires a data structure from the main memory, it is not guar-

anteed to be the latest version as modified data may exist

in the CPU cache. (ii) Consistency: Kernel state is in con-

stant flux, and this leads to another degree of asynchrony

between RDMI’s view and the true system state. For instance,

while RDMI traverses the task_struct linked list, processes

could be added to or removed from the data structure and

these changes may not be reflected in RDMI’s view. In fact,

even for hypervisor-based solutions, inconsistent views could

arise unless guest VMs are paused during introspection, but

this would lead to significant overheads. (iii) Registers: OOB

solutions cannot introspect CPU state such as register val-

ues [76, 90, 98]. Previous work [66] has shown that advanced

attackers could manipulate the CR3 register so that the actual

page tables used by the OS are different from those seen by

OOB introspection. Despite these limitations, OOB solutions

have been shown to be effective in existing work [90], and

RDMI corroborates these findings. Importantly, in baremetal

settings, the host machine does not have a hypervisor to per-

form in-band introspection, so OOB solutions like RDMI are

necessary in order to protect baremetal kernels.

Introspection capability. Our current RDMI experiments

disable the IOMMU, but when it is enabled, DMA requests

from PCIe devices may be further translated by the IOMMU.

In this case, an attacker could create incorrect IOMMU map-

pings to confound security mechanisms like RDMI [45, 98].

As a potential mitigation, PCIe devices that implement the

ATS (Address Translation Service) feature can tag DMA re-

quests so that they are not further translated by the IOMMU,

thus ensuring trusted memory acquisition [45]. Recent RNICs

have been built with ATS features [31]. In terms of intro-

spection tasks, RDMI supports tasks that traverse the kernel

graph in a well-defined footprint to detect attacks. However,

not all memory forensic tasks fall into this categoryÐe.g.,

performing a cryptographic hash over kernel text to ensure

integrity [90, 91], or regular expression matches over memory

content [51, 56, 99], would go beyond RDMI’s current DSL

and hardware capabilities. With an imperative language (e.g.,

C programs that use LibVMI), one could also write introspec-

tion tasks that walk kernel pointers in arbitrary patterns; such

tasks also create challenges for the current DSL. Nevertheless,

we have demonstrated that RDMI is sufficiently expressive

for a range of tasks and can detect real-world rootkits.

9 Related work

Memory introspection. The art of introspecting memory

snapshots to detect malice dates back to two decades ago [61].

Since then, many techniques have been developed to im-

prove the accuracy of kernel memory analysis [21, 48, 49,

52, 54, 57, 79, 91, 93, 98, 103] and narrow the semantic

gap [43, 53, 62, 86]. Hypervisor-based systems, such as

ImEE [110] and livewire [61], use software solutions to intro-

spect guest VMs. Our project is, in particular, related to out-of-

band (OOB) introspection techniques that leverage hardware

6056 32nd USENIX Security Symposium USENIX Association

assistance. In this space, KI-Mon [76] and Vigilare [85] add

a special security module that snoops the memory bus and

detects kernel object modifications. Copilot [90] contributes

a system prototype for an Intel StrongARM EBSA-285 evalu-

ation board that can acquire memory over PCIe. In contrast

to existing OOB platforms, RDMI a) only uses COTS de-

vices for baremetal introspection; b) it contributes a domain-

specific language, compiler, and runtime for introspection

tasks, which c) can be executed efficiently in programmable

hardware without CPU involvement.

P4 and RDMA. P4 and RDMA programmable devices have

been used for performance acceleration in cloud systemsÐ

separately [68, 70] and in conjunction [73, 75]. The secu-

rity community has developed a line of work using P4 pro-

grammable switches for network protection [83, 106], includ-

ing for RDMA vulnerabilities [105]. RDMI demonstrates

their use in a novel setting for kernel security.

10 Conclusion

Hypervisor offloading has gained popularity in datacenters.

We rearchitect a classic security task that is usually rele-

gated to the hypervisorÐmemory introspectionÐto enable

introspection of baremetal servers entirely in programmable

ASICs. RDMI leverages recent hardware advances in RDMA

NICs and P4 programmable switches, and designs a domain-

specific language, compiler, and runtime system. RDMI in-

curs no CPU overheads in introspection tasks, outperforming

state-of-the-art hypervisor-based solutions, and detects a vari-

ety of rootkits even in baremetal installations.

Acknowledgments: We thank our anonymous reviewers and

shepherd for their insightful feedback. We also thank Yim-

ing Qiu, Kuo-Feng Hsu, and Haggai Eran for their valuable

comments on earlier drafts. This work was supported in part

by NSF grants CNS-1942219, CNS-1955270, CNS-2106751,

CNS-2106388, CNS-2115587, CNS-2214272, a Google PhD

Fellowship, and a VMware Early Career Faculty Grant.

References

[1] Alibaba cloud X-Dragon NIC. https://www.alibabacloud.com

/blog/introducing-the-sixth-generation-of-alibaba-cl

ouds-elastic-compute-service_595716.

[2] Alibaba ESC baremetal instance. https://www.alibabacloud.c

om/product/ebm.

[3] Amazon EC2 On-Demand Pricing. https://aws.amazon.com/ec2

/pricing/on-demand/.

[4] AMD Pensando Infrastructure Accelerators. https://www.amd.co

m/en/accelerators/pensando.

[5] Average Coder Rootkit. https://volatility-labs.blogspot.c

om/2012/09/movp-14-average-coder-rootkit-bash.html.

[6] AWS EC2 m5zn.3xlarge instance information. https://instance

s.vantage.sh/aws/ec2/m5zn.3xlarge.

[7] AWS new baremetal cloud service. https://aws.amazon.com/a

bout-aws/whats-new/2021/02/introducing-amazon-ec2-m5

n-m5dn-r5n-and-r5dn-bare-metal-instances/.

[8] AWS Nitro card. https://aws.amazon.com/ec2/nitro/.

[9] Azure dedicated host. https://azure.microsoft.com/en-us/se

rvices/virtual-machines/dedicated-host/.

[10] Bare Metal Solution for Oracle. https://cloud.google.com/bar

e-metal.

[11] Broadcom N8560-32C, 32-Port Ethernet switch. https://www.fs

.com/products/110480.html.

[12] Compute Express Link. https://www.computeexpresslink.org.

[13] DPDK Project. https://www.dpdk.org.

[14] Fungible DPU. https://www.fungible.com.

[15] Google C3 machine series. https://cloud.google.com/blog/

products/compute/introducing-c3-machines-with-google

s-custom-intel-ipu.

[16] IBM baremetal cloud service. https://www.ibm.com/uk-en/clou

d/bare-metal-servers.

[17] Intel Corporation. Intel(R) 64 and IA-32 Architectures Software De-

veloper’s Manual. https://www.intel.com/content/www/us/e

n/developer/articles/technical/intel-sdm.html.

[18] Intel Ethernet Network Adapter XXV710-DA2. https:

//www.intel.com/content/www/us/en/products/sku/973

03/intel-ethernet-network-adapter-xxv710da2-for-ocp/

specifications.html.

[19] Intel IPU Based Cloud Infrastructure White Paper . https://www.

intel.com/content/www/us/en/products/docs/programmab

le/ipu-based-cloud-infrastructure-white-paper.html.

[20] Intel virtualization technology. https://www.intel.com/conten

t/www/us/en/virtualization/virtualization-technology

/intel-virtualization-technology.html.

[21] KNTLIST tool. http://old.dfrws.org/2005/challenge/kntli

st.shtml.

[22] libVMI. https://libvmi.com.

[23] Linux Adore-ng rootkit. https://github.com/yaoyumeng/adore

-ng.

[24] Linux Diamorphine rootkit. https://github.com/m0nad/Diamo

rphine.

[25] Linux kernel backdoors and their detection. https:

//slidetodoc.com/linux-kernel-backdoors-and-their-

detection-joanna-rutkowska/.

[26] Linux netfilter project. https://www.netfilter.org.

[27] Linux Spy rootkit. https://github.com/jarun/spy.

[28] Linux Sutekh rootkit. https://github.com/PinkP4nther/Sutek

h.

[29] Netronome Agilio SmartNICs firmware. https://github.com/Net

ronome/nic-firmware/.

[30] Nvidia ConnectX-4 adapter card. https://store.nvidia.com/e

n-us/networking/store/?page=1&limit=9&locale=en-us&c

ategory=ADAPTER_CARDS&gpu=ConnectX-4LxEN.

[31] Nvidia ConnectX-6 ATS feature. https://docs.nvidia.com/ai

-enterprise/deployment-guide-multi-node/0.1.0/gettin

g-started.html#enable-ats-on-the-nvidia-connectx-6-d

x-nic.

[32] Port knocking. https://en.wikipedia.org/wiki/Port_knock

ing.

[33] Pure storage Baremetal-as-a-service. https://www.purestorage.

com/products/staas/baremetal-as-a-service.html.

[34] RDMI code repository. https://github.com/aladinggit/RDMI.

[35] SPDK Project. https://spdk.io.

[36] Supplement to InfiniBand Architecture Specification Volume 1 Re-

lease 1.2.1. https://cw.infinibandta.org/document/dl/7781.

[37] The Security Design of the AWS Nitro System. https:

//docs.aws.amazon.com/whitepapers/latest/security-

design-of-aws-nitro-system/security-design-of-aws-ni

tro-system.html.

[38] Trusted computing boot. https://www.amd.com/system/files/2

017-06/Trusting-in-the-CPU.pdf.

[39] VMware Monterey project. https://blogs.vmware.com/vsphe

re/2020/09/announcing-project-monterey-redefining-hy

brid-cloud-architecture.html.

[40] Volatility±Process list walking. https://github.com/volatilit

yfoundation/volatility/blob/master/volatility/plugin

s/linux/pslist.py.

USENIX Association 32nd USENIX Security Symposium 6057

[41] Wedge 100BF-32X Tofino programmable switch. https:

//developer.amd.com/wordpress/media/2012/10/NPT-WP-1

%201-final-TM.pdf.

[42] E. Amaro, Z. Luo, A. Ousterhout, A. Krishnamurthy, A. Panda, S. Rat-

nasamy, and S. Shenker. Remote memory calls. In Proc. HotNets,

2020.

[43] N. Amit and M. Wei. The design and implementation of hyperupcalls.

In Proc. ATC, 2018.

[44] M. Arumugam, D. Bansal, N. Bhatia, J. Boerner, S. Capper, C. Kim,

S. McClure, N. Motwani, R. Narasimhan, U. Panchal, et al. Bluebird:

High-performance SDN for bare-metal cloud services. In Proc. NSDI,

2022.

[45] A. Atamli, G. Petracca, and J. Crowcroft. IO-Trust: an out-of-band

trusted memory acquisition for intrusion detection and forensics in-

vestigations in cloud IOMMU based systems. In Proc. ARES, 2019.

[46] J. Bae, L. Liu, Y. Wu, G. Su, and A. Iyengar. Rdmabox: Optimizing

rdma for memory intensive workload. In Proc. IEEE CIC, 2021.

[47] W. Bai, S. S. Abdeen, A. Agrawal, K. K. Attre, P. Bahl, A. Bhagat,

G. Bhaskara, T. Brokhman, L. Cao, A. Cheema, et al. Empowering

Azure storage with RDMA. In Proc. NSDI, 2023.

[48] A. Baliga, V. Ganapathy, and L. Iftode. Automatic inference and

enforcement of kernel data structure invariants. In Proc. IEEE ACSAC,

2008.

[49] E. Bauman, G. Ayoade, and Z. Lin. A survey on hypervisor-based

monitoring: approaches, applications, and evolutions. ACM Comput-

ing Surveys (CSUR), 2015.

[50] S. L. Blond, D. Choffnes, W. Caldwell, P. Druschel, and N. Merritt.

Herd: A scalable, traffic analysis resistant anonymity network for voip

systems. In Proc. SIGCOMM, 2014.

[51] M. Botacin, F. B. Moreira, P. O. Navaux, A. Grégio, and M. A. Alves.

Terminator: A secure coprocessor to accelerate real-time antiviruses

using inspection breakpoints. ACM Transactions on Privacy and

Security, 2022.

[52] C. Bugcheck. Grepexec: Grepping executive objects from pool mem-

ory. In Proc. Digital Forensic Research Workshop, 2006.

[53] M. Carbone, M. Conover, B. Montague, and W. Lee. Secure and robust

monitoring of virtual machines through guest-assisted introspection.

In Proc. RAID, 2012.

[54] M. Carbone, W. Cui, L. Lu, W. Lee, M. Peinado, and X. Jiang. Map-

ping kernel objects to enable systematic integrity checking. In Proc.

CCS, 2009.

[55] J. Chen, D. Li, Z. Mi, Y. Liu, B. Zang, H. Guan, and H. Chen. Duvisor:

a user-level hypervisor through delegated virtualization. 2022. arXiv

preprint arXiv:2201.09652.

[56] A. Costin and J. Zaddach. IoT malware: Comprehensive survey,

analysis framework and case studies. BlackHat USA, 1(1):1±9, 2018.

[57] W. Cui, M. Peinado, Z. Xu, and E. Chan. Tracking rootkit footprints

with a practical memory analysis system. In Proc. USENIX Security,

2012.

[58] A. DragojeviÂc, D. Narayanan, M. Castro, and O. Hodson. FaRM: Fast

remote memory. In Proc. NSDI, 2014.

[59] D. Dumitrescu, R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu.

Dataplane equivalence and its applications. In Proc. NSDI, 2019.

[60] Y. Gao, Q. Li, L. Tang, Y. Xi, P. Zhang, W. Peng, B. Li, Y. Wu, S. Liu,

L. Yan, et al. When cloud storage meets rdma. In NSDI, 2021.

[61] T. Garfinkel, M. Rosenblum, et al. A virtual machine introspection

based architecture for intrusion detection. In NDSS, 2003.

[62] Z. Gu, Z. Deng, D. Xu, and X. Jiang. Process implanting: A new

active introspection framework for virtualization. In Proc. IEEE

SRDS, 2011.

[63] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and

W. Willinger. Sonata: Query-driven streaming network telemetry.

In Proc. SIGCOMM, 2018.

[64] O. Hofmann, A. Dunn, S. Kim, I. Roy, and E. Witchel. Ensuring

operating system kernel integrity with OSck. In Proc. ASPLOS, 2011.

[65] B. Jain, M. B. Baig, D. Zhang, D. E. Porter, and R. Sion. SoK:

Introspections on trust and the semantic gap. In IEEE Symposium on

Security and Privacy, 2014.

[66] D. Jang, H. Lee, M. Kim, D. Kim, D. Kim, and B. B. Kang. Atra:

Address translation redirection attack against hardware-based external

monitors. In Proc. CCS, 2014.

[67] X. Jiang, M. Lora, and S. Chattopadhyay. Efficient and trusted detec-

tion of rootkit in IoT devices via offline profiling and online monitor-

ing. In Proc. VLSI, 2020.

[68] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and

I. Stoica. NetCache: Balancing key-value stores with fast in-network

caching. In Proc. SOSP, 2017.

[69] J. Junnila. Effectiveness of linux rootkit detection tools. 2020.

[70] A. Kalia, M. Kaminsky, and D. Andersen. Datacenter RPCs can be

general and fast. In Proc. NSDI, 2019.

[71] Q. Kang, J. Xing, Y. Qiu, and A. Chen. Probabilistic profiling of

stateful data planes for adversarial testing. In Proc. ASPLOS, 2021.

[72] Q. Kang, L. Xue, A. Morrison, Y. Tang, A. Chen, and X. Luo. Pro-

grammable in-network security for context-aware BYOD policies. In

Proc. USENIX Security, 2020.

[73] D. Kim, Z. Liu, Y. Zhu, C. Kim, J. Lee, V. Sekar, and S. Seshan.

TEA: Enabling state-intensive network functions on programmable

switches. In Proc. SIGCOMM, 2020.

[74] P. Krishnamurthy, H. Salehghaffari, S. Duraisamy, R. Karri, and

F. Khorrami. Stealthy rootkits in smart grid controllers. In Proc.

IEEE ICCD, 2019.

[75] J. Langlet, R. B. Basat, S. Ramanathan, G. Oliaro, M. Mitzenmacher,

M. Yu, and G. Antichi. Zero-CPU collection with direct telemetry

access. In Proc. HotNets, 2021.

[76] H. Lee, H. Moon, D. Jang, K. Kim, J. Lee, Y. Paek, and B. B. Kang.

KI-Mon: A hardware-assisted event-triggered monitoring platform

for mutable kernel object. In Proc. USENIX Security, 2013.

[77] S.-s. Lee, Y. Yu, Y. Tang, A. Khandelwal, L. Zhong, and A. Bhat-

tacharjee. MIND: In-network memory management for disaggregated

data centers. In Proc. SOSP, 2021.

[78] Y. Li, J. Gao, E. Zhai, M. Liu, K. Liu, and H. H. Liu. Cetus: Releasing

P4 programmers from the chore of trial and error compiling. In Proc.

NSDI, 2022.

[79] Z. Lin, J. Rhee, X. Zhang, D. Xu, and X. Jiang. Siggraph: Brute

force scanning of kernel data structure instances using graph-based

signatures. In NDSS, 2011.

[80] J. Liu, W. Hallahan, C. Schlesinger, M. Sharif, J. Lee, C. C.

Robert Soulé, Han Wang, N. McKeown, and N. Foster. p4v: Practical

verification for programmable data planes. In Proc. SIGCOMM, 2018.

[81] D. Loehr and D. Walker. Safe, modular packet pipeline programming.

In Proc. POPL, 2022.

[82] A. Maricq, D. Duplyakin, I. Jimenez, C. Maltzahn, R. Stutsman, and

R. Ricci. Taming performance variability. In Proc. OSDI, 2018.

[83] R. Meier, P. Tsankov, V. Lenders, L. Vanbever, and M. Vechev.

NetHide: Secure and practical network topology obfuscation. In

Proc. USENIX Security, 2018.

[84] P. Mishra, I. Verma, S. Gupta, V. S. Rana, and K. Kadarla. vproval:

Introspection based process validation for detecting malware in KVM-

based cloud environment. In Proc. FMEC, 2019.

[85] H. Moon, H. Lee, J. Lee, K. Kim, Y. Paek, and B. B. Kang. Vigilare:

toward snoop-based kernel integrity monitor. In Proc. CCS, 2012.

[86] A. More and S. Tapaswi. Virtual machine introspection: towards

bridging the semantic gap. Journal of Cloud Computing, 2014.

[87] J. Navarro, E. Naudon, and D. Oliveira. Bridging the semantic gap

to mitigate kernel-level keyloggers. In 2012 IEEE Symposium on

Security and Privacy Workshops, 2012.

[88] S. Novakovic, Y. Shan, A. Kolli, M. Cui, Y. Zhang, H. Eran, B. Pis-

menny, L. Liss, M. Wei, D. Tsafrir, et al. Storm: a fast transactional

dataplane for remote data structures. In Proc. SYSTOR, 2019.

[89] F. Pagani and D. Balzarotti. Back to the whiteboard: A principled ap-

proach for the assessment and design of memory forensic techniques.

In Proc. USENIX Security, 2019.

[90] N. L. Petroni Jr, T. Fraser, J. Molina, and W. A. Arbaugh. Copilot: A

coprocessor-based kernel runtime integrity monitor. In Proc. USENIX

Security, 2004.

[91] N. L. Petroni Jr and M. Hicks. Automated detection of persistent

6058 32nd USENIX Security Symposium USENIX Association

kernel control-flow attacks. In Proc. CCS, 2007.

[92] D.-P. Pham, D. Marion, and A. Heuser. ULTRA: Ultimate rootkit

detection over the air. In Proc. RAID, 2022.

[93] J. Rhee, R. Riley, D. Xu, and X. Jiang. LiveDM: kernel malware

analysis with un-tampered and temporal views of dynamic kernel

memory. In Proc. Annual Information Security Symposium, 2011.

[94] R. Riley, X. Jiang, and D. Xu. Multi-aspect profiling of kernel rootkit

behavior. In Proc. EuroSys, 2009.

[95] M. A. Rodriguez. The Gremlin Graph Traversal Machine and Lan-

guage. In Proc. DBPL, 2015.

[96] B. Rothenberger, K. Taranov, A. Perrig, and T. Hoefler. ReDMArk:

Bypassing rdma security mechanisms. In Proc. USENIX Security,

2021.

[97] J. Sonchack, D. Loehr, J. Rexford, and D. Walker. Lucid: A language

for control in the data plane. In Proc. SIGCOMM, 2021.

[98] C. Spensky, H. Hu, and K. Leach. LO-PHI: Low-observable physical

host instrumentation for malware analysis. In Proc. NDSS, 2016.

[99] F. Tchakounté, R. C. N. Ngassi, V. C. Kamla, and K. P. Udagepola.

LimonDroid: a system coupling three signature-based schemes for

profiling android malware. Iran Journal of Computer Science, 2021.

[100] S.-Y. Tsai, M. Payer, and Y. Zhang. Pythia: Remote oracles for the

masses. In USENIX Security Symposium, 2019.

[101] S.-Y. Tsai and Y. Zhang. LITE kernel RDMA support for datacenter

applications. In Proc. SOSP, 2017.

[102] A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte, M. Sammler,

P. Druschel, and D. Garg. ERIM: Secure, efficient in-process isolation

with protection keys (MPK). In Proc. USENIX Security, 2019.

[103] Z. Wang, X. Jiang, W. Cui, and P. Ning. Countering kernel rootkits

with lightweight hook protection. In Proc. CCS, 2009.

[104] J. Xing, K.-F. Hsu, M. Kadosh, A. Lo, Y. Piasetzky, A. Krishnamurthy,

and A. Chen. Runtime programmable switches. In Proc. NSDI, 2022.

[105] J. Xing, K.-F. Hsu, Y. Qiu, Z. Yang, H. Liu, and A. Chen. Bedrock:

Programmable network support for secure RDMA systems. In Proc.

USENIX Security, 2022.

[106] J. Xing, Q. Kang, and A. Chen. Netwarden: Mitigating network covert

channels while preserving performance. In Proc. USENIX Security,

2020.

[107] J. Xing, Y. Qiu, K.-F. Hsu, H. Liu, M. Kadosh, A. Lo, A. Akella,

T. Anderson, A. Krishnamurthy, T. S. E. Ng, and A. Chen. A vision

for runtime programmable networks. In Proc. HotNets, 2021.

[108] J. Xing, W. Wu, and A. Chen. Ripple: A programmable, decentralized

link-flooding defense against adaptive adversaries. In Proc. USENIX

Security, 2021.

[109] F. Zhang, J. Chen, H. Chen, and B. Zang. CloudVisor: Retrofitting

protection of virtual machines in multi-tenant cloud with nested virtu-

alization. In Proc. SOSP, 2011.

[110] S. Zhao, X. Ding, W. Xu, and D. Gu. Seeing through the same lens:

introspecting guest address space at native speed. In Proc. USENIX

Security, 2017.

11 Appendix

11.1 Compiling the iterate operator

We include the AIM instructions and placeholders that are

compiled from an iterate operator:

1 Load(R1, $n) // initialize loop bound w/ counter.

2 Mov($array_addr) //move base to first elem.

3 L:

4 Push //for potential nested loops

5 /*

6 Loop body placeholder, compiled from

7 inner operators, same as in 'traverse'

8 */

9 Pop //returning from inner loop

10 Mov($nxt_entry) //Move to next array element

11 Jmp(R1--, L, Lend) // loop guard

12 Lend: //Iterate completes

11.2 RDMI policies

In the main paper, we have already presented four RDMI tasks

in detail. Here, we include the RDMI code for the remaining

seven policies and describe their introspection goals.

P5: TTY keylogger checks [87]. Keyloggers are a class

of malware that secretly records user keystrokes, usually by

hooking themselves onto the input handlers of tty devices.

The Linux kernel maintains a struct tty_driver linked

list, each of which represents a specific device driver. Further,

each struct tty_driver can be attached with a set of de-

vices, so an array of pointers at struct tty_struct *ttys

maintains this information. When a device is opened, a new

struct tty_struct * element will be added in this array.

For each attached device, its struct tty_struct contains a

pointer to the external ªline disciplineº ldisc data structure,

which serves as the glue between device drivers and high-

level interface calls (e.g., read, write). It further contains a

receive_buffer function pointer, which is a common hook

point for keyloggers [87]. The type annotation ‘@’ is used for

handling generic list_head structs where they can be embed-

ded in a range of kernel data structuresÐfollowing existing

work that proposed similar annotation methods [91]. The key-

word ‘this’ refers to the current introspection address.

1 kgraph(tty_drivers)

2 // type annotation @ for 'in' to handle list_head

3 .in(next, @struct tty_driver, @tty_drivers)

4 .traverse(tty_drivers.next, &tty_drivers.next,

5 tty_driver)

6 .values(num)

7 .in(ttys)

8 // iterate tty_struct pointer array

9 .iterate(this, num, ptr_t)

10 .in(this).in(ldisc).in(ops).values(receive_buf)

11 .assert(KERN_TXT_BEGIN < receive_buf < KERN_TXT_END)

P6: System call checks. This policy starts with the global

kernel symbol sys_call_table and iterates through all ex-

ported system calls, where SYSCALL_NR denotes the num-

ber of entries. Further, it asserts that these system call pointers

USENIX Association 32nd USENIX Security Symposium 6059

must lie within a well-defined range. The keyword this is

implicitly filled in by the compiler using the current introspec-

tion address at that point of the traversal.

1 kgraph(sys_call_table)

2 .iterate(this, SYSCALL_NR, ptr_t)

3 .values(this)

4 .assert(KERN_TXT_BEGIN < this < KERN_TXT_END)

P7: Process memory map check. This query checks the vir-

tual memory area information of each process. It performs

a nested traversal over two linked lists at Lines 2+8. Simi-

lar to P1 and P2, this query begins with an outer traversal

that visits the linked list located at init_task. For each

task_struct, the policy zooms in on the mm and mmap data

structures that hang off of the main linked list. It then further

performs an inner linked list traversal which goes through

each vm_area_struct, where further details such as VMA

addresses and access permissions are stored.

1 kgraph(init_task)

2 .traverse(tasks.next, &init_task.tasks, task_struct)

3 .values(pid)

4 .in(mm)

5 .in(mmap)

6 // Traverse the VMA linked list utill a NULL pointer

7 .traverse(vm_next, NULL, vm_area_struct)

8 .values(vm_start, vm_end, vm_page_prot)

P8: Keyboard sniffer checks [87]. Keyboard sniffers

eavesdrop on keystrokes from user keyboards, similar to

P6 but hooked into the system at different locations.

This query examines the notifier_block registered for

keyboard_notifier_list linked list. It traverses the linked

list until the next pointer is null. For each element in the traver-

sal, RDMI checks if the notifier_call pointer is within

a known-good range to detect malicious sniffing behaviors.

1 kgraph(keyboard_notifier_list)

2 .in(head)

3 .traverse(next, NULL, notifier_block)

4 .values(notifier_call)

5 .assert(KERN_TXT_BEGIN < notifier_call < KERN_TXT_END)

P9: Module list traversal. This query starts with the global

kernel symbol modules and further traverses the module list

and analyzes the loaded kernel modules. Similar to global

symbol tty_drivers in P6, modules is a list_head data

structure requiring type annotation. Then, by following the

next pointer inside each struct module, the module list can

be traversed until the starting point has been reached again.

1 kgraph(modules)

2 .in(next, @struct module, @list)

3 .traverse(list.next, &modules.next, module)

4 .values(name)

P10: Afinfo operation checks. tcp_seq_afinfo operations

are important for administrative utilities such as netstats that

list socket activities. By hijacking such operations, rootk-

its can hide open ports and connections from malicious

processes. This query first checks the seq_ops inside the

tcp4_seq_afinfo for integrity validation. Then, it zooms

in on the file_operations data structure and checks the

open operation contained within this data structure.

1 kgraph(tcp4_seq_afinfo)

2 .values(seq_ops.show)

3 .assert(KERN_TEXT_BEGIN < show < KERN_TEXT_END)

4 .in(seq_fops)

5 .values(open)

6 .assert(KERN_TEXT_BEGIN < open < KERN_TEXT_END)

P11: Open file list. This query aims to check all files opened

by each process. Similar to previous process related introspec-

tion tasks, this query starts with a task_struct traversal in

the outer loop. It then zooms in by several layers eventually

reaching the file descriptor table (struct fdtable) related

data structure, where it fetches the number of entries inside

dynamically allocated fd array and iterates each entry inside

the array. Each entry is a pointer that points to a struct file

data structure. Line 10 further fetches the f_path.dentry

pointer and Line 11 acquires the file names.

1 kgraph(init_task)

2 .traverse(tasks.next, &init_task.tasks, task_struct)

3 .values(pid)

4 .in(files)

5 .in(fdt)

6 .values(max_fds)

7 .in(fd)

8 .iterate(this, max_fds, ptr_t)

9 .in(this)

10 .in(f_path.dentry)

11 .values(d_iname)

Kernel variables to offsets. To parse kernel variables (e.g.,

int pid) into their offsets from the starting address of their

containing data structure (e.g., struct task_struct), we

rely on an automated translation process inside the compiler

that is integrated with .json database that RDMI has curated

for a kernel version. This curating process is hidden within

the RDMI compiler as well, shielded from RDMI users. Our

current database supports the kernel variables in Linux v4.15,

and adding support for more kernel versions is a mechanical

process and is easily achievable with more engineering efforts.

6060 32nd USENIX Security Symposium USENIX Association

USENIX’23 Artifact Appendix: Remote direct memory introspection

Hongyi Liu Jiarong Xing Yibo Huang Danyang Zhuo² Srinivas Devadas³ Ang Chen

Rice University ²Duke University ³MIT

A Artifact Appendix

A.1 Abstract

This artifact appendix describes the workflow to setup and

run RDMI. It includes an artifact check-list, description of

hardware/software dependencies to install RDMI as well as

setup instructions and experiment workflows. Please refer to

the GitHub repository for further installation and execution

details.

A.2 Description & Requirements

We provide a check-list for meta-information here.

• Compilation: GCC v7.5.0, Tofino SDE v8.4.0.

• Binary: Source code included to generate binaries

• Run-time environment: End host codes are tested on x86

servers with Ubuntu18.04 OS.

• Hardware: Intel/Barefoot Wedge 100BF-32X Tofino switch

×1, x86 server with Mellanox ConnectX-4 RNICs ×2.

• Metrics: Throughput, latency, CPU utilization, defense effec-

tiveness.

• Output: The compiler will output configuration files used for

configuring the programmable switch to enforce policies. La-

tency and traffic volume can be measure by tools like tcpdump

or using in-switch telemetry. CPU utilization can be measure-

ment by tools like top.

• Experiments: DSL compilation, connection establishment,

switch reconfiguration and policy execution.

• How much disk space required (approximately)?: 1GB

(dependencies not included)

• How much time is needed to prepare workflow (approxi-

mately)?: Compiling all programs needs about 1 hour (instal-

lation of software dependencies and hardware is not included)

• How much time is needed to complete experiments (approx-

imately)?: About 2 hours to see the effect of all defenses.

• Publicly available?: Yes, code is available on GitHub.

• Code licenses: MIT license

A.2.1 Security, privacy, and ethical concerns

There is no security, privacy, and ethical concerns.

A.2.2 How to access

Our artifact and guidelines for installing and evaluating RDMI

are publicly available at the following GitHub repository:

commit: 7b8b15cf9a.

A.2.3 Hardware dependencies

To run RDMI, it requires two x86 servers connected by an

Intel/Barefoot Tofino switch through Mellanox ConnectX-4

RNICs.

A.2.4 Software dependencies

Our experiments are performed on x86 servers running 64-

bit Ubuntu 18.04, but similar Linux distributions should also

work. To enable RDMA, Mellanox MLNX_OFED driver

must be installed on the servers. RDMI’s P4 code is compiled

by proprietary toolchains provided by the switch vendors.

A.2.5 Benchmarks

None.

A.3 Set-up

To run RDMI, user needs to install all the dependency listed

in check-list as well as install the NIC driver. We provide

more details in the GitHub repository.

A.3.1 Installation

We list the main steps to install RDMI here. More details can

be found in our GitHub repository.

• Install RNIC drivers to enable RDMA on end hosts.

• Install and setup the programmable switch following the

vendor instructions.

A.3.2 Basic Test

To test compiler, run make & python parse.py & ./RDMI

1000 100 1 inside compiler directory. It should result in a

generated cmd file used for configuring the switch. To test the

connections, run sudo ./rdmatry_server -a SERVER_IP

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 363

-n 10 -m 1 -M 1000000000 -d 0 in the introspected ma-

chine side and ./rdmatry_client -a SERVER_IP -n 10

-M 1000000000 -r 10000000 -c 1 -t 99999999999

-p 1 in the remote side inside switch directory, and follow the

instructions to establish the connections. The program should

print out connection success information if the connection is

setup correctly. To test the switch, run ./run_switchd.sh

-p master on the corresponding Tofino SDE environment.

The load success information will be printed if the switch

environment and program is correct. Then the user can follow

the vendor provided instructions to configure the switch with

the generated configuration files.

A.4 Evaluation workflow

We listed detailed workflows to conduct the experiments of

the system in the GitHub repo. Here we provide three key

steps below for the evaluation workflow. Please refer to our

GitHub repository for further details:

• Establish the RDMA connections.

• Compile the policy and generate the corresponding con-

figuration files.

• Configure the switch and run the program.

A.5 Version

Based on the LaTeX template for Artifact Evaluation

V20220926. Submission, reviewing and badging methodol-

ogy followed for the evaluation of this artifact can be found at

https://secartifacts.github.io/usenixsec2023/.

364 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

	Introduction
	Rethinking Memory Introspection
	Remote direct memory introspection
	Overview

	Programming Introspection Queries
	Abstract Introspection Machine
	Designing the AIM
	Compiling to the AIM

	Reconfigurable Introspection Engines
	Reconfigurable AIM instruction engines
	Reconfigurable introspection runtime
	Reconfiguring queries at runtime

	Security analysis
	Evaluation
	Prototype and setup
	RDMI language and compiler
	Detecting rootkits, remotely
	Benefits of baremetal security
	Introspection interference

	Discussions
	Related work
	Conclusion
	Appendix
	Compiling the iterate operator
	RDMI policies

