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Abstract—Edge servers are frequently used in latency-sensitive
environments, like search-and-rescue missions involving un-
manned aerial vehicles (UAV) that have real-time processing
needs. In this paper, we study system designs that address the
challenges of reducing latency and optimizing the power usage
using Processing-in-Memory (PIM) and Field-Programmable
Gate Array (FPGA). Age of Information (AoI) is a key metric to
measure the data freshness for processing the images captured
in real time. Our experimental results show our architecture
significantly boosts computational speed and energy efficiency.
Through the integration of PIM and FPGA into our edge server,
latency is significantly reduced, achieving a speed-up of 92× for
PIM, and further to just 0.02 ms for FPGA, a sharp decrease
from 43.48 ms on CPUs. Power consumption for inference tasks
on LeNet-5 model is 0.36W with PIM, down from 11.57W
on a CPU, and to 5.22W with FPGA. These results show the
effectiveness of in-memory accelerators and FPGAs in ensuring
that information remains current and actionable. In addition,
our system’s capability to support UAVs notably improves the
real-time IoT application scalability. Specifically, our accelerator
enhanced edge server can manage 1.6× more UAVs for VGG-8
model and up to 71× more for LeNet-5 inference tasks, compared
to CPU-only, demonstrating its robustness in edge computing.

Index Terms—Edge Computing, Accelerators, Deep Neural
Networks, Age of Information, Processing In-Memory

I. INTRODUCTION

Deep Neural Networks (DNNs) are now widely used in
computer vision and natural language processing among var-
ious applications. In particular, Unmanned Aerial Vehicles
(UAVs), commonly known as drones, and self-driving cars
frequently use DNNs for image processing applications. These
domains consider it essential to maintain the freshness of
data, which is measured by Age of Information (AoI) [1],
also referred to as age, defined as the time elapsed since the
generation of the latest delivered update.

The integration of image processing and drone technology
has positive effects on improving real-time IoT applications
such as traffic management for smart cities [2], search and
rescue systems, and surveillance and environmental mod-
eling [3], [4]. These advancements underscore the pivotal
role of DNNs in enhancing the autonomy, efficiency, and
effectiveness of UAV systems. On the other hand, drones
have some limitations in terms of their computational capacity
and energy constraints. The inherent complexity of DNN-
based image processing imposes significant computational
overhead, posing substantial demands on the system resources.

Furthermore, due to the rapidly increasing number of IoT
sensing devices, the corresponding sensor data produced is
growing exponentially [5]. This growth not only has negative
effects on the latency of analytics required by IoT applications
but also raises concerns regarding the freshness of data, a vital
factor in ensuring the relevance of information processed by
these systems.

In the face of these challenges, edge computing has emerged
as a promising paradigm, poised to bridge the gap between
data generation and the need to process them in a timely
manner. As such, processing the sensor data by decentralizing
computational tasks and moving the processing closer to
data sources is essential [6]. This approach not only aligns
with the high computation and low-latency demands intrinsic
to deep learning applications but also brings other benefits,
including enhanced privacy, improved bandwidth efficiency,
and scalability of the system. Moreover, within real-time
systems, the significant volume of data transmitted by sensors
to the edge accentuates the necessity for a robust accelerator
unit to improve the accuracy and satisfy the freshness of data.
These accelerators must combine high performance with low
energy consumption to effectively manage the data.

In this paper, we explore the potential for emerging hard-
ware accelerator designs that can be integrated into edge
servers for improved processing. In our proposed system
architectures, the UAVs/autonomous vehicles act as sen-
sors, capturing and transmitting the data to edge nodes
equipped with diverse processing units—Central Processing
Units (CPUs), Processing-in-Memory (PIM) technologies, and
Field-Programmable Gate Array (FPGA). Each of these pro-
cessing units offers unique advantages in terms of speed
and energy efficiency, making them suitable for different
operational contexts within the UAV-edge system.

In summary, the key contributions of our paper are:
• We design and demonstrate an edge server architecture

augmented with PIM and FPGA as accelerator units to
efficiently perform the computations and lower energy
consumption correspondingly. Our system model con-
siders AoI as a constraint in order to check the data
freshness for real-time applications.

• We implement and evaluate our accelerator designs on
a combination of real system Xilinx FPGA, and a sim-
ulation tool named MNSIM 2.0 to show the augmented
acceleration capabilities of our system architecture. Ad-



ditionally, we present a custom hardware design of a
DNN using a hardware description language, optimized
for performance and energy.

• We conduct experiments and analysis for our proposed
design to show the effectiveness of our system by reduc-
ing the computation time and power consumption using
hardware accelerators. Our results demonstrate better
scalability—in the case of PIM, the edge server’s ability
to interface with UAVs has increased by at least 3× for
VGG-8-based inference and up to approximately 92×
for LeNet-5—enhancing the server’s capacity to handle
a higher number of drones, each of which can send their
data back to the server.

II. BACKGROUND AND RELATED WORKS

A. Age of Information

The concept of AoI plays a pivotal role within the domain
of real-time systems, particularly those reliant on timely data
transmission and processing. AoI is defined as a metric that
evaluates the freshness of information, providing a measure
of the time elapsed since the generation of the latest received
update packet at a destination node. This metric is particu-
larly crucial in scenarios where the relevance and utility of
information are directly tied to its timeliness [7].

Prior research [8] in this domain has predominantly con-
centrated on examining the effects of data transmission and
queuing on AoI. However, in applications such as autonomous
driving systems and UAVs, the scenario is markedly different.
Here, updates, which may frequently comprise images, neces-
sitate not only transmission to a controller but also thorough
processing before the extraction of valuable information. This
necessity introduces significant delays, attributable to the
limited computational capabilities of local processors, thus
affecting the AoI [9].

The AoI has been applied to different network models
as a performance metric for various communication systems
that timeliness of data is critical, e.g., trust-aware resource
allocation schemes [10], scheduling in networks [11], and
UAV-assisted communication systems [12], [13].

B. Accelerators

In the age of artificial intelligence (AI), Convolutional
Neural Networks (CNNs) have shown remarkable effective-
ness in many fields, such as object detection, and image
classification [14]. In addition to the high computing accuracy,
the amount of data and model size increase dramatically as
the CNN models become more and more complex. In tradi-
tional von-Neumann architectures (e.g., CPU and GPU), the
CNN computations cause massive data movements between
memory and computing units, which consume more than 80%
of the overall system energy and execution time, thereby
exacerbating this problem [15]. In order to tackle the “memory
wall”, researchers have proposed novel PIM architectures that
perform computations inside memory [16], [17].

FPGAs usually consist of a large array of programmable
logic blocks interconnected by an array of programmable

data paths to implement custom hardware that is ideally
matched to specific computational problems. FPGA chips
find utility across a diverse range of applications, encom-
passing data-centric operations like image processing [18], as
well as computation-centric tasks within parallel computing
architectures [19]. This widespread adoption is attributable
to the chips’ exceptional programmability, which enables
them to execute calculations rapidly and with minimal energy
expenditure.

III. DESIGN OVERVIEW

Most modern computing systems are predominantly opti-
mized for computing performance and suffer from memory
bottlenecks. These design choices go directly against at least
three issues that cause performance, scalability, and energy
bottlenecks: (1) data accesses in memory-intensive applica-
tions can violate latency constraints, (2) energy consumption
is a key constraint in embedded computing platforms, such
as UAVs and autonomous vehicles, (3) data movement, espe-
cially off-chip to on-chip, is very expensive and bandwidth
limitations can present challenges.

In real-time system domains, particularly those that utilize
drones as sensors for image processing applications, the
limited computational capabilities of drones necessitate the
offloading of tasks to a more powerful edge server. Addition-
ally, a significant volume of data is transmitted from drones to
the server, aimed at enhancing accuracy. Within such systems,
there usually exist stringent deadlines for data processing and
decision-making. Consequently, it is imperative to expedite
calculations and data processing to avoid reliance on outdated
information, a decidedly undesirable outcome. As a result,
having the data on the monitor as fresh as possible is crucial.

In addressing the challenges in edge computing systems,
especially those associated with real-time image processing
applications using drones, our approach begins with a com-
prehensive evaluation of trade-offs within the edge server
environment. These trade-offs encompass latency, power con-
sumption, and bandwidth, all while upholding data freshness
as an essential system constraint while calculating the AoI. In
response to these needs, we propose and study the system de-
signs that augment the edge server’s capabilities. This involves
the integration of PIM and FPGA alongside traditional CPU.
We augment with one accelerator at a time to identify the
most effective configuration for executing image processing
tasks with high precision, minimal latency, and reduced power
consumption, thereby ensuring the utmost data freshness.

By systematically evaluating the impact of incorporating
each processing unit individually, we seek to understand the
best hardware accelerator designs to alleviate the performance
bottlenecks, scalability, and energy efficiency, presenting a
tailored solution to the challenges prevalent in processing
environments with drones embedded in them.

Processing In-Memory: PIM architectures are particularly
beneficial for data-intensive applications because they can
perform computations directly within or very near the mem-
ory. This significantly reduces the need for data movement



between the processor and memory. For image processing
tasks, where data throughput and efficiency are critical, PIM
can offer lower latency with higher bandwidth. Moreover, by
minimizing the data movement, PIM also helps in reducing
overall energy consumption, which is crucial for edge devices
where power availability might be limited. By considering the
critical importance of data freshness for real-time UAV-based
applications in edge computing, it is necessary to perform
computations for each task as fast as possible to avoid missing
deadlines. The design of a server augmented with PIM is
shown in Figure 1.
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Fig. 1. Edge Server Augmented with PIM: The illustration shows the edge
server’s task flow, with ’G1’ to ’G3’ as task generation time and ’P1’ to ’P3’
as the corresponding tasks queued for PIM processing.

The edge server augmented with PIM is designed with
multiple levels of Resistive Random-Access Memory (RRAM)
banks, where each bank houses a network of Non-volatile
Memory (NVM) tiles that resemble a Network-on-Chip
(NOC) structure for optimized control and data flow. Individ-
ual tiles are tasked with processing separate layers of CNN
computations, enabling efficient data handling, and when
needed, larger layers are divided and processed across multiple
tiles in parallel. A data forwarding unit (blue boxes) associated
with each tile manages the integration of data from multiple
sources, performing necessary computations like merging. The
tiles, configurable for different CNN layers, are equipped with
processing elements (PEs) to fulfill the computational needs
of each layer, facilitating a flexible, streamlined processing
environment within the PIM framework.

Utilizing PIM architectures in edge computing effectively
addresses the challenge of ensuring data freshness in real-
time applications. PIM’s ability to perform computations

close to memory significantly reduces latency and increases
bandwidth, crucial for tasks like image processing. This
architecture minimizes unnecessary data movement, speeding
up processing times to meet critical deadlines while also
conserving energy. The reduction in energy consumption is
particularly valuable for edge devices with limited power
resources.

To evaluate the integration of PIM with edge servers and
study how it enhances the computational performance, we
used MNSIM 2.0 [20], which is a behavior-level modeling
tool for memristor-based neuromorphic computing systems.
It can simulate the hardware performance and neural network
computing accuracy of different PIM architectures.

Field Programmable Gate Arrays: FPGAs are applicable
to accelerate many different workloads at the edge. Since the
FPGA designs are highly optimized for specific applications,
their performance and power can be well suited to the con-
straints of edge computing. In fact, FPGAs are more useful for
compute-intensive applications in which there is a lot of com-
putation that can be run using FPGA resources simultaneously.
On the other hand, in the case of data-intensive applications
such as performing inference with CNN, employing FPGAs
for large models becomes impractical due to the complexity
of implementation and the overhead associated with reading
data from off-chip memory. Although, in simple DNNs like
LeNet-5 [21], where all parameters can be stored within on-
chip memory, including Block RAMs (BRAMs) and Look-
Up Tables (LUTs), utilizing FPGAs becomes viable. This
approach enables rapid computation with reduced energy
consumption by eliminating the necessity for accessing off-
chip memory.

Taking these factors into account, by efficiently executing
image processing computations with minimal energy con-
sumption, we can also fulfill the requirement of data freshness.
This ensures that tasks received by the edge server are
completed before the target’s deadline, thereby maintaining
the real-time characteristics of the system. The design of the
augmented server with FPGA is in Figure 2.

To facilitate the implementation of the LeNet-5 model for
image processing on FPGA, we utilized the Xilinx FPGA
board. This involved coding the model in the hardware de-
scription language (VHDL), allowing for precise control over
the hardware architecture. Through the synthesis and imple-
mentation processes, we were able to tailor the FPGA con-
figuration specifically for the LeNet-5 architecture, enabling
optimized performance for image processing tasks. FPGA
provided the necessary framework to execute these operations,
offering a platform where the computational efficiency and
flexibility of FPGA could be harnessed effectively for deep
learning applications. This approach underscores its capability
to enhance processing speed and efficiency in real-time image
analysis.

We note that it is possible to leverage the complementary
strengths of PIMs and FPGAs, where the system can dynami-
cally allocate processing tasks in a manner that optimizes both
time and energy, all while satisfying the stringent requirements
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Fig. 2. Edge Server Augmented with FPGA: The illustration shows the edge
server’s task flow, with ’G1’ to ’G3’ as task generation time and ’P1’ to ’P3’
as the corresponding tasks queued for FPGA processing.

imposed by AoI. This adaptive approach not only enhances
the operational efficiency of UAVs in real-time applications
but also heralds a new era of sustainability in DNN-powered
systems. Thus, the integration of edge computing into DNN-
based UAV systems represents a forward-looking strategy
to navigate the complex interplay between computational
demands, energy constraints, and the imperatives of data fresh-
ness, paving the way for more agile, efficient, and responsive
aerial intelligence platforms.

Age of Information: Data freshness is often identified
as a key constraint for real-time systems and is measured
by the AoI. We defined AoI as the elapsed time from the
generation of status information in the task queue to its
processing completion at the edge server. Equation (1) shows
the formulation of AoI. Figure 3 shows the AoI graph of the
augmented edge server.

∆(t) = t− u(t) (1)

In this equation, t is the current time and u(t) represents
raw (pre-processor) sensor input data generation time.

As shown in Fig. 3, initially, the AoI starts at a baseline
level, denoted as ∆0 or G1, symbolizing the freshness of
the first task’s information. The AoI continues to increase
until time t1, when the first task completes its computation,
signified by a sharp decrease or update in the AoI as fresh
information becomes available. The subsequent rise in AoI
after t1 marks the aging of the second task’s information,
starting from its generation time G2, and the process repeats
for subsequent tasks.
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Fig. 3. AoI for Augmented Edge Server

Critical to our real-time image processing system is the
concept of peak AoI, which we set as the maximum acceptable
timeframe for processing tasks within the system to maintain
data freshness. This peak AoI effectively acts as a deadline,
ensuring that all tasks are processed within this timeframe to
preserve the relevance and utility of the data for decision-
making and operational actions. Should the processing extend
beyond this peak AoI, the data risks becoming outdated, thus
diminishing its value and adversely affecting the system’s real-
time performance and accuracy.

We established the peak AoI based on the data transmission
bit rate to the server’s queue. In scenarios that involve process-
ing high-resolution data streams to enhance system accuracy,
the bit rate is set at 30 frames per second [22], [23]. This
rate crucially determines the speed at which data is generated
and subsequently needs processing to ensure data freshness.
30 frames per second has a duration of 33.33 ms, indicating
that, in this scenario, the peak AoI is 33.33 ms. By integrating
an augmented edge server equipped with PIM and FPGA, we
are well-positioned to effectively meet this constraint.

Moreover, when we take into account the data rate for inputs
to the queue (arrival rate) and the outputs from the queue to
PIM or FPGA for computation (service rate), the augmented
edge server’s low latency in performing computations enables
the maintenance of the arrival rate while processing more
tasks simultaneously. This approach opens up opportunities
to enhance the system’s scalability by increasing the number
of drones sending data to the server, thereby expanding the
system’s capacity to handle larger volumes of data efficiently.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

We study various accelerators to enhance the edge server,
including PIM and FPGA, and analyze their impact on the
system’s performance. Our experiments are designed to eval-
uate the efficacy of these accelerators in reducing latency
and power consumption while maintaining the AoI within
acceptable limits for real-time processing. In the following,
we describe the details of the DNN, the dataset, and our
evaluation testbeds.



• Convolutional Neural Network: We employed a range
of CNNs, from the relatively simple LeNet-5 to more
complex neural networks such as AlexNet [24] and VGG-
8, for image processing tasks. Initially, the models were
trained to obtain the pre-trained models and the necessary
parameters for inference. Subsequently, we applied post-
training quantization to these models and parameters,
preparing them for deployment on PIM systems and
FPGA.

• Dataset: The CIFAR-10 dataset [25] has been used for
evaluating the trade-offs associated with augmenting the
edge server with PIM and FPGA technologies. This
dataset, widely recognized in machine learning and com-
puter vision research, comprises 60,000 color images
with a resolution of 32x32 pixels, distributed across 10
distinct classes, each class containing 6,000 images.

• Experimentation Platform: Our computational exper-
iments on the CPU were conducted using an Intel®
Core™ i7-1065G7 Processor with a 2.6GHz clock speed
and 16 GB of RAM. For assessing the latency and
power consumption of inference on PIM, we utilized
the MNSIM 2.0 simulator [20]. Additionally, XCVU440-
FLGA2892-2-i, which belongs to the Virtex® Ultra-
Scale™ was used to implement the LeNet-5 model
using VHDL, which facilitated the exploration of various
acceleration options on the edge server.

B. Experimental Results and Analysis

In this section, we present the experimental results demon-
strating our system’s effectiveness in reducing computation
time and power consumption through the utilization of hard-
ware accelerators.

Initially, we compare the latency and power consumption
results of an edge server equipped with a CPU to those
of an edge server augmented with PIM, using LeNet-5,
AlexNet, and VGG-8 as CNN models. Subsequently, we
evaluate an edge server augmented with FPGA for latency
and power consumption using LeNet-5. This allows for a
comparison between the edge server equipped with a CPU,
its augmented version with PIM, and the performance of the
FPGA-augmented edge server.

Table I presents a comparative analysis of the latency
and efficiency of different hardware configurations within an
edge computing server. The results are quantified in terms
of latency, measured in milliseconds, and the speed-up factor,
highlighting the efficiency with which PIM outperforms CPU-
based computations.

This acceleration is substantiated by the MNSIM 2.0 sim-
ulation tool’s features. MNSIM’s hierarchical PIM modeling
structure significantly reduces latency by optimizing the di-
rect execution of neural network algorithms within memory,
thereby mitigating data movement delays. Furthermore, the
tool’s dedicated support for algorithm-level optimizations,
such as quantization for PIM, helps to take advantage of
the unique efficiencies of PIM architectures. Additionally,
MNSIM’s capability to emulate both analog and digital

PIM architectures through its unified memory array model
provides a versatile evaluation platform that underlines the
full spectrum of PIM technology benefits. These elements
collectively drive the pronounced performance enhancements
observed with PIM, showcasing the transformative potential
of PIM technologies in elevating computational speed in edge
computing servers.

TABLE I
CPU-PIM LATENCY

Model Latency (ms) Speed-up

CPU PIM (CPU/PIM)

LeNet-5 43.48 0.47 92
AlexNet 54.53 2.40 23
VGG-8 60.84 20.31 3

Our results in Table I contrast the performance metrics of an
edge server using a conventional CPU against the same server
augmented with PIM technology. We used a suite of CNN
models for this assessment—specifically LeNet-5, AlexNet,
and VGG-8.

Table II provides a detailed comparison of power con-
sumption between CPU and PIM across various CNN models
utilized within an edge computing framework.

TABLE II
CPU-PIM POWER CONSUMPTION

Model Power (W)

CPU PIM

LeNet-5 11.57 0.36
AlexNet 15.84 8.12
VGG-8 35.62 24.20

As a second step, we implemented the LeNet-5 at the
Register Transfer Level (RTL) using the VHDL language.
This step was undertaken to scrutinize the capabilities of
FPGA technology concerning both execution time and power
consumption. The pertinent findings regarding latency and
power metrics for the LeNet-5 are shown in Table III.

TABLE III
COMPARISON OF LENET MODEL LATENCY AND POWER

Model Latency (ms) Power (W)

LeNet-CPU 43.48 11.57
LeNet-FPGA 0.02 5.22

As shown in the table, the latency and power consump-
tion metrics illustrate a marked improvement on the FPGA
platform. The decision to implement LeNet-5, rather than
more complex CNN models, stems from two considerations.
First, the LeNet-5 model can be fully accommodated within
the on-chip memory resources of the FPGA, which is not
typically feasible for larger models. Second, the complexity
of implementing DNNs into a hardware description language
for FPGA realization, such as VHDL, increases substantially
with the model size. Consequently, the FPGA implementation
of LeNet-5 demonstrates the potential of FPGAs for efficient



DNN inference, leading to faster and more energy-efficient
edge computing.

Table IV shows the FPGA resource utilization after the
implementation of the LeNet-5.

TABLE IV
FPGA RESOURCE UTILIZATION

Resources LUT FF DSP BRAM I/O

Available 2532960 5065920 2880 2520 2892
Utilized 311115 310179 50 0 96

Utilization (%) 12.28 6.12 1.73 0 3.31

Our findings indicate that with the original CPU-only setup,
our edge server could interface with a finite number of
drones—roughly one every 33.33 ms. With our accelerator-
based enhancements reducing the processing latency signifi-
cantly, our results show that server’s computational capacity
could be enhanced. Quantitatively, we observe that the system
can now accommodate at least 1.6× more drones with VGG-
8 and up to 71× more with LeNet-5, indicative of improved
scalability as determined by our experiments. This remarkable
increase in drone support—without extending the temporal
constraints—suggests an inherent elevation in system accu-
racy. This signifies the benefits of our approach to real-time
edge computing, demonstrating the profound impact of PIM
and FPGA integration on system performance.

V. CONCLUSION

In conclusion, our studies successfully demonstrate the
potential of PIM and FPGA technologies to significantly
augment edge servers, catering to the demands of latency-
sensitive and power-aware real-time applications. The integra-
tion of these accelerators into our edge computing framework
has shown a notable reduction in computation time—latency
improvements of up to 92× for PIM. By using AoI as a metric
for data freshness, we have assured the timely processing of
UAV-sourced data, which in turn has significantly enhanced
system scalability. Compared to a CPU-only system, the edge
server, equipped with PIM, is now capable of supporting 1.6×
to 71× more UAVs for VGG-8 and LeNet-5 models respec-
tively. This enhancement not only paves the way for more
dynamic and responsive UAV operations but also opens new
avenues for better sustainability when performing latency-
sensitive DNN inference tasks in edge computing.
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