
ReMIX: Regret Minimization for Monotonic Value
Function Factorization in Multiagent Reinforcement

Learning

Yongsheng Mei∗
Department of Electrical and Computer Engineering

The George Washington University
Washington, DC
ysmei@gwu.edu

Hanhan Zhou∗
Department of Electrical and Computer Engineering

The George Washington University
Washington, DC
hanhan@gwu.edu

Tian Lan
Department of Electrical and Computer Engineering

The George Washington University
Washington, DC
tlan@gwu.edu

Abstract

Value function factorization methods have become a dominant approach for co-
operative multiagent reinforcement learning under a centralized training and de-
centralized execution paradigm. By factorizing the optimal joint action-value
function using a monotonic mixing function of agents’ utilities, these algorithms
ensure the consistency between joint and local action selections for decentralized
decision-making. Nevertheless, the use of monotonic mixing functions also induces
representational limitations. Finding the optimal projection of an unrestricted mix-
ing function onto monotonic function classes is still an open problem. To this end,
we propose ReMIX, formulating this optimal projection problem for value function
factorization as a regret minimization over the projection weights of different state-
action values. Such an optimization problem can be relaxed and solved using the
Lagrangian multiplier method to obtain the close-form optimal projection weights.
By minimizing the resulting policy regret, we can narrow the gap between the
optimal and the restricted monotonic mixing functions, thus obtaining an improved
monotonic value function factorization. Our experimental results on Predator-Prey
and StarCraft Multiagent Challenge environments demonstrate the effectiveness
of our method, indicating the better capabilities of handling environments with
non-monotonic value functions.

*Equal Contribution.

ar
X

iv
:2

30
2.

05
59

3v
1

 [c
s.L

G
]

11
 F

eb
 2

02
3

1 Introduction

Reinforcement learning has demonstrated great potential in solving challenging real-world problems,
from autonomous driving [4, 10] to robotics and planning [21, 18, 11]. In many scenarios, these
tasks involve multiple agents within the same environment and thus require multiagent reinforcement
learning (MARL) [32, 12, 1, 34] to coordinate agents and learn desired behaviors from their experi-
ences. Due to practical communication constraints and the need to cope with vast joint action space,
MARL algorithms often leverage fully decentralized policies but learn them in a centralized fashion
with access to additional information during training. Value function factorization methods, e.g.,
QMIX [26], QPLEX [33], Qatten [36], FOP [37], and DOP [35], have been a dominant approach for
such centralized training and decentralized execution (CTDE) MARL [15]. By factorizing the optimal
joint action value function using a monotonic mixing function of per-agent utilities, these algorithms
ensure the consistency between joint and local action selections for decentralized decision-making.
Superior performance has been reported in many MARL tasks, such as the StarCraft Multiagent
Challenge (SMAC) [27].

It is known that value function factorization can be viewed as an operator [6], which first computes the
optimal joint action value functions as targets and then projects them onto the space representable by
monotonic function classes. The projected monotonic mixing functions enable efficient maximization
yet allow decentralized decision-making. However, it also poses representational limitations. For
instance, QMIX leverages a universal approximator for non-linear monotonic mixing functions. It
prevents QMIX from efficiently representing joint action value functions where agents’ orderings
of their action choices depend on each other [20]. Later, the authors in the paper [25] proposed an
improved projection using Weighted QMIX (WQMIX). It assigns higher weights to the values of
optimal joint actions than the suboptimal ones, resulting in a better projection that more accurately
represents these optimal values. However, WQMIX relies purely on a heuristic design – such as
Centrally-Weighted (CW) and Optimistically-Weighted (OW) – where such weight term is a constant.
Finding an optimal projection onto the monotonic function class is still an open problem.

To this end, we propose ReMIX, formulating the optimal projection problem for value function
factorization as a regret minimization over the projection weights of different state-action values.
Specifically, we construct an optimal policy following the optimal joint action-value function and
a restricted policy using its projection onto monotonic mixing functions. A policy regret is then
defined as the difference between the expected discounted reward of the optimal policy and that of
the restricted policy. By minimizing such policy regret through an upper bound, we can narrow the
gap between the optimal and restricted policies and thus force the projected monotonic value function
to approach the optimal one during learning, leading to an optimal monotonic factorization with
minimum regret. We note that while policy regret minimization has been employed to formulate
various optimizations in reinforcement learning, such as optimal prioritized experience replay [19]
and loss function design [13], to the best of our knowledge, this is the first proposal for optimizing
value function factorization in MARL through policy regret minimization.

We show that the proposed regret minimization can be solved via the Lagrangian method [2]
considering an upper bound. By examining a weighted Bellman equation involving monotonic
mixing functions and per-agent critics, we leverage the implicit function theorem [16] and derive
Karush–Kuhn–Tucker (KKT) [7] conditions to find the optimal projection weights in closed form.
Our results highlight the key principles contributing to optimal monotonic value function factorization.
The optimal projection weights can be interpreted to consist of four components: Bellman error, value
underestimates, the gradient of the monotonic mixing function, and the on-policiness of available
transitions. We note that the first two terms relating to Bellman error and value underestimates
are consistent with the weighting heuristics proposed in WQMIX, thus providing a quantitative
justification and recovering WQMIX as a special case. More importantly, our analysis reveals that
an optimal value function factorization should also depend on the gradient of the monotonic mixing
function and the positive impact of more current transitions.

Following the theoretical results, we provide a tractable approximation of the optimal projection
weights and propose a MARL algorithm of ReMIX with regret-minimizing monotonic value function
factorization. We validate the effectiveness of ReMIX in Predator-Prey [3] and SMAC. Compared
with state-of-the-art factorization-based MARL algorithms (e.g., WQMIX, QPlex, FOP, DOP),
ReMIX is shown to better cope with environments with non-monotonic value functions, resulting in
improved convergence and superior empirical performance.

2

The main contributions of our work are as follows:

• We propose a novel method, ReMIX, formulating the optimal value function factorization
as a policy regret minimization and solving the weights of the optimal projection in closed
form.

• The theoretical results and tractable weight approximations of ReMIX enable cooperative
MARL algorithms with improved value function factorization.

• Experiment results of ReMIX in Predator-Prey and SMAC environments demonstrate
superior convergence and empirical performance over state-of-the-art factorization-based
methods. We further perform ablation studies to demonstrate the contribution of each
component in our design.

2 Background

2.1 Partially Observable Markov Decision Process

We describe a fully cooperative multiagent sequential decision-making task as a decentralized
partially observable Markov decision process (Dec-POMDP) [24] consisting of a tuple G =
〈S,U, P,R, Z,O, n, γ〉, where s ∈ S describes the global state of the environment. At each time
step, each agent a ∈ A ≡ {1, . . . , n} selects an action ua ∈ U , and all selected actions are combined
to form a joint action u ∈ U ≡ Un. This process leads to a transition in the environment based
on the state transition function P (s′|s,u) : S ×U× S → [0, 1]. All agents share the same reward
function r(s,u) : S ×U→ R with a discount factor γ ∈ [0, 1).

In the partially observable environment, the agents’ individual observations z ∈ Z are generated
by the observation function O(s, u) : S × A → Z. Each agent has an action-observation history
τa ∈ T ≡ (Z × U)∗. Conditioning on the history, the policy becomes πa(ua|τa) : T × U → [0, 1].
The joint policy π has a joint action-value function: Qπ(st,ut) = Est+1:∞,ut+1:∞ [Rt|st,ut], where t
is the timestep and Rt =

∑∞
i=0 γ

irt+i is the discounted return. In this paper we adopt the centralized
training and decentralized execution paradigm: the learning algorithm has access to all local action-
observation histories τ and global state s during training while each agent can only access its own
action-observation history in execution.

2.2 Policy Regret

The object of MARL is to find a joint policy π that can maximize the expected return: η(π) =
Eπ[
∑∞
i=0 γ

irt+i]. For a fixed policy, the Markov decision process becomes a Markov reward process,
where the discounted stationary state distribution is defined as dπ(s). Considering the partially
observable scenario of MARL, we replace the state in discounted state distribution with agents’
action observation histories*, i.e., dπ(τ). Similarly, the discounted history action distribution is
defined as dπ(τ ,u) = dπ(τ)π(u|τ). Then, we will have the expected return rewritten as η(π) =

1
1−γEdπ(τ ,u)[r(s,u)].

We assume there exists an optimal joint policy π∗ such that π∗ = arg maxπ η(π). The regret of
the joint policy π is defined as regret(π) = η(π∗)− η(π). The policy regret measures the expected
loss when following the current policy π instead of optimal policy π∗. Since η(π∗) is a constant,
minimizing the regret is consistent with maximizing of expected return η(π). In this paper, we use
regret as an alternative optimization objective for finding the optimal projection in MARL, along with
multiple constraints, e.g., the Bellman equation and the sum of projection weights. By minimizing
the regret, the current policy πk following a monotonic value factorization will approach the optimum
π∗ following an unrestricted value function.

*Decentralized MARL problems inherently follow POMDPs, where history-based functions and distributions
will reflect the impact of partial observability.

3

3 Related Work

3.1 Value Decomposition Approaches

Value decomposition approaches [8, 5, 39, 38] are widely used in value-based MARL. Such methods
integrate each agent’s local action-value functions through a learnable mixing function to generate
global action values. For instance, VDN [31] and QMIX estimate the optimal joint action-value
function Q∗ as Qtot with different formations. VDN aims to learn a joint action-value function Qtot
of the sum of individual utilities for each agent. QMIX calculates Qtot by combining mentioned
utilities via a continuous state-dependent monotonic function, generated by a feed-forward mixing
network with non-negative weights. QTRAN [28] and QPLEX further extend the class of value
functions that can be represented. Besides value-based factorization algorithms, some works extend
the value decomposition method to policy-based actor-critic algorithms. In VDAC [29], a factorized
actor-critic framework compatible with A2C can obtain a reasonable trade-off between training
efficiency and algorithm performance. Recently proposed FOP [37] provides a new way to factorize
the optimal joint policy induced by maximum-entropy MARL into individual policies. DOP [35]
addresses the issue of centralized-decentralized mismatch and credit assignment in both discrete
and continuous action spaces in the multiagent actor-critic framework. In this paper, we recast the
problem of projecting an unrestricted value function onto monotonic function classes as a policy
regret minimization, whose solution allows us to find the optimal projection weights to obtain an
improved value function factorization.

3.2 Weighting Scheme in WQMIX

QMIX restricts the joint action-value function to be a monotonic mixing of agents’ utilities, such
that Qtot(τ ,u) = fs(Q

1(τ1, u1), . . . , Qn(τn, un)) where ∂fs
∂Qa ≥ 0, ∀a ∈ A ≡ 1, . . . , n, preventing

it from projecting non-monotonic joint action representation. WQMIX solved the limitation by
introducing the weights into the projection to retrieve the optimal policy. The WQMIX algorithms
- OW and CW QMIXs - can place more importance on the better Qtot in minimizing the loss:∑b

i=1 w(τ ,u)(Qtot(τ ,u; θ) − ȳi)2, where ȳi = r + γQ̂∗(τ ′, arg maxu′ Qtot(τ
′,u′; θ−)) is the

fixed target, Q̂∗ is the unrestricted joint action-value function, and w is the weighting function*. For
example, in OW, the w is given by:

w(τ ,u) =

{
1 Qtot(τ ,u) < ȳi
α otherwise.

(1)

When a transition is overestimated in the OW paradigm, it will be assigned with a constant weight
α ∈ (0, 1]. Compared to OW, CW has a similar mechanism but assigns weights to a transition whose
joint action u is not the best. We note that while insightful, these methods are based on heuristic
designs of projection weights. Finding optimal projection weights for monotonic value function
factorization is still an open problem. In this paper, we reformulate the problem as a policy regret
minimization and solve the optimal projection weights in closed form by relaxing the objective and
the Lagrangian method.

4 Optimal Projection onto Monotonic Value Functions

4.1 Problem Formulation as Regret Minimization

Let Q∗ be the unrestricted joint action value function and Qtot = fs(Q
1(τ1, u1), . . . , Qn(τn, un))

be its estimation obtained through a monotonic mixing function fs(·) of per-agent utilities Qa(τi, ui)
for a = 1, . . . , n. For simplicity of notations, we use Qk to denote Qtot at step k. Adopting
B∗Q∗k−1 as the target with a Bellman operator B∗, we updateQk in tandem using a weighted Bellman
equation: Qk = arg minQ∈Q Eµ[wk(τ ,u)(Q−B∗Q∗k−1)2(τ ,u)], where wk(τ ,u) are non-negative
projection weights for different transitions that need to be optimized. This projects the unrestricted
value function onto a monotonic function class Q ∈ Q.

*WQMIX defines the weight as w(s,u). Considering Dec-POMDP with the CTDE paradigm, w(s,u) is
equivalent to w(τ ,u).

4

To formulate the policy regret with respect to this projection, we consider a Boltzmann policy πk
following the agent’s individual utilities Qak obtained from such monotonic value factorization,
i.e., πk = [π1

k, ..., π
n
k]T and πak = eQ

a
k(τa,ua)/[

∑
τa,u′a

eQ
a
k(τa,u

′
a)], as well as a similar policy π∗

following the unrestricted value function Q∗ that is defined over joint actions in the Boltzmann
manner. Our objective is to minimize the policy regret η(π∗)− η(π) over non-negative projection
weights under relevant constraints, i.e.,

min
wk

η(π∗)− η(πk)

s.t. Qk = arg min
Q∈Q

Eµ[wk(τ ,u)(Q− B∗Q∗k−1)2(τ ,u)],

Eµ[wk(τ ,u)] = 1, wk(τ ,u) ≥ 0,

Qk(τ ,u) = fs(Q
1(τ1, u1), . . . , Qn(τn, un)),

(2)

where π∗ and πk are policies in the Boltzmann fashion following the unrestricted and monotonic
value functions, respectively. The projection weights must sum up to 1, and µ is the data distribution
that we sample data from the replay buffer. An additional table to summarize and explain the all
given notations is provided in Appendix A.1.

4.2 Solving Optimal Projection Weights

The solution to this optimization problem relies on the monotonic function fs(·) represented by a
mixing network, which takes the state and agent networks’ output Qak as inputs and generates an
estimate of joint value functionQtot. Solving the regret minimization problem through the Lagrangian
method requires analyzing the KKT conditions. Thus, we first find the first-order derivative of the
monotonic mixing network, which will also be leveraged to find an optimal solution. The mixing
network is a universal approximator consisting of a two-layer network of non-negative weight [6].
We compute its first-order derivative in the following lemma.
Lemma 1. Considering a two-layer mixing network of the weight matrix W1,W2, bias b1, b2 and
activation function h(·), the derivative of Qtot over one of the local utilities Qa is:

f ′s,Qa =
∂Qtot
∂Qa

= h′Qa(~QTW1 + b1)
m∑
j=1

w1
ajw

2
j ,

where ~Q = [Q1, . . . , Qn]T. W1,W2 are the n ×m and 1 ×m matrix correspondingly, with the
respective elements w1

ij and w2
j in each matrix. n is the agent number, and m is the width of the

mixing network.

Proof. See Appendix A.2.

Given that the monotonic mixing function is smooth and differentiable, we consider an upper bound of
the regret objective (obtained using a relaxation and Jensen’s inequality) and formulate its Lagrangian
by introducing Lagrangian multipliers with respect to the constraints. It allows us to solve the
proposed regret-minimization problem and obtain optimal projection weights in closed form (albeit
with a normalization factor Z∗).
Theorem 1 (Optimal weighting scheme). Under mild conditions, the optimal weight wk(s,u) to a
relaxation of the regret minimization problem in (2) with discrete action space is given by:

wk(τ ,u) =
1

Z∗
(Ek(τ ,u) + εk(τ ,u)), (3)

where when Qk ≤ B∗Q∗k−1, we have

Ek(τ ,u) =
dπk(τ ,u)

µ(τ ,u)
(B∗Q∗k−1 −Qk) exp(Q∗k−1 −Qk)

 n∑
j=1

1− πj

f ′s,Qj
− 1

 ,

and otherwise (i.e., when Qk > B∗Q∗k−1), we have

Ek(τ ,u) = 0,

where Z∗ is the normalization factor, and εk(τ ,u)) is a negligible term when the probability of
reversing back to the visited state is small, or the number of steps agents take to revisit a previous
state is large.

5

Proof. We give a sketch of the proof below and provide the complete proof in Appendix A.3. The
derivation of optimal weights consists of the following major steps: (i) Use a relaxation and Jensen’s
inequality to obtain a more tractable upper bound of the regret objective for minimization. (ii)
Formulate the Lagrangian for the new optimization problem and analyze its KKT conditions. (iii)
Compute various terms in the KKT condition and, in particular, analyze the gradient of Qk with
respect to weights pk (defined through the weighted Bellman equation) by leveraging the implicit
function theorem (IFT). (iv) Derive the optimal projection weights in closed form by setting the
Lagrangian gradient to zero and applying KKT and its slackness conditions.

Step 1: Relaxing the objective and adopting Jensen’s inequality. To begin with, we replace the original
optimization objective function, the policy regret, with a relaxed upper bound. This replacement
can be achieved through the following inequality since both sides of the equation have the same
minimum:

η(π∗)− η(πk) ≤ Edπk (τ)[(Q
∗
k−1 −Qk)(τ ,u∗)] + Edπk (τ ,u)[(Qk −Q∗k−1)(τ ,u)]. (4)

The proof of this result is given in Appendix. The key idea is to rewrite the regret using the expectation
of the action-value functions with respect to discounted distribution dπk . After that, we adopt Jensen’s
inequality [22] to continue relaxing the intermediate objective function based on a convex function
g(x) = exp(−x). Thus, a new optimization objective generated from (4) becomes:

min
wk

− logEdπk (τ)[exp(Qk −Q∗k−1)(τ ,u∗)]− logEdπk (τ ,u)[exp(Q∗k−1 −Qk)(τ ,u)], (5)

where the constraints still hold for the new optimization objective.

Step 2: Computing the Lagrangian. In this step, we leverage the Lagrangian multiplier method to
solve the new optimization problem in (5). For simplicity, we use pk that absorbs the data distribution
µ into wk. The constructed Lagrangian is:

L(pk;λ, ν) =− logEdπk (τ)[exp(Qk −Q∗k−1)(τ ,u∗)]

− logEdπk (τ ,u)[exp(Q∗k−1 −Qk)(τ ,u)]

+ λ(
∑
τ ,u

pk − 1)− νTpk,

where pk is the weight wk multiplied by the data distribution µ, and λ, ν are the Lagrange multipliers.

Step 3: Computing the Gradients Required in the Lagrangian. According to the first constraint in (2),
the gradient ∂Qk∂pk

can be computed via IFT given by:

∂Qk
∂pk

= −[diag(pk)]−1[diag(Qk − B∗Q∗k−1)].

We also derive the gradient ∂d
πk (τ ,u)
∂pk

for solving the Lagrangian. The derivation details are given in
the Appendix.

Step 4: Deriving the Optimal Weight. After having the equation for two gradients and an expression
of the Lagrangian, we can compute the optimal pk via an application of the KKT conditions, which
needs to set the partial derivative of the Lagrangian equaling to zero, as ∂L(pk;λ,ν)

∂pk
= 0, where the

optimal weight wk can be acquired from the pk.

The theoretical results shed light on the key factors determining an optimal projection onto monotonic
mixing functions. Specifically, the optimal projection weights consist of four components relating
to Bellman error, value underestimation, the gradient of the monotonic mixing function, and the
on-policiness of available transitions. We will interpret these four components next and develop a
deep MARL algorithm through approximations of the optimal projection weights.

Bellman error B∗Q∗k−1 −Qk: Qk is the estimation of the action-value function after the Bellman
update. This term measures the distance between the estimation and the Bellman target. A large
difference in this term means higher hindsight Bellman error. Due to the KKT slackness condition, our

6

analysis indicates that the optimal projection weight is zero whenQk > B∗Q∗k−1 is an overestimate of
the target value, and otherwise, a higher weight should be assigned when Qk is more underestimated.

Value underestimation exp(Q∗k−1−Qk): If Qtot after the Bellman update at current step k is smaller
than optimal Q∗k−1, it results in an underestimate. In this case, we will assign a higher weight (always
larger than 1) to this transition, which is proportional to the exponential of this underestimation
gap. In contrast, when overestimating (with a negative gap), the assigned weight becomes lower and
always smaller than 1. This is important because an underestimate of function approximation may
lead to a sub-optimal Qk estimation and thus non-optimal action selections.

Gradient of the mixing network
∑n
j=1

1−πj
f ′
s,Qj
− 1: It turns out that the optimal projection weights

also depend on the inverse of the gradient of the monotonic mixing function fs(·), which is a new
result. Intuitively, the optimal projection weights would become higher when the monotonic mixing
function is insensitive to underlying per-agent utility values (i.e., having a small, positive gradient).
We view this result as a form of normalization with respect to different shapes of monotonic mixing
function fs(·). In practical algorithms, we often use the two-layer mixing network with non-negative
weights to approximate the monotonic function fs(·) to produce Qk. The parameters of the mixing
network are updated every step, and the gradient value can be readily computed from these parameters.
We have provided an instance regarding calculating the gradient of a two-layer mixing network in
Lemma 1. It is worth noting that similar gradients can also be obtained for other value function
factorization methods.

Measurement of on-policy transitions d
πk (τ ,u)
µ(τ ,u) : The efficient update of the joint action value function

can be achieved by focusing on transitions that are more possibly to be visited by the current policy,
i.e., with a higher dπk(τ ,u). Adding this term can speed up the search for the optimal Qk close to
Q∗k−1.

4.3 Proposed Algorithm

Our analytical results in Theorem 1 identify four key factors determining the optimal projection
weights. Interestingly, the first two terms, relating to Bellman error and value underestimation, recover
the heuristic designs in WQMIX. Specifically, when the Bellman error of a particular transition is
high, which indicates a wide gap between Qk and Q∗k−1, we may consider assigning a larger weight
to this transition. Similarly, value underestimation works as a correction term for incoming transitions:
based on the difference of current Qk and ideal Q∗k−1, it will compensate the underestimated Qk with
larger importance while penalizing overestimated Qk with a smaller weighting modifier, consistent
with OW scheme in (1).

Additionally, our analysis identifies two new terms: the gradient of the monotonic mixing function
and measurement of on-policy transitions, which are crucial in obtaining an optimal projection onto
monotonic value function factorization. As discussed, we interpret the gradient term in optimal
weights as a form of normalization – by increasing the weights for transitions, where the monotonic
mixing function is less sensitive to the underlying per-agent utility, and decreasing the weights
otherwise. The measurement of on-policy transitions in the weighting expression emphasizes the
useful information carried by more current, on-policy transitions.

Following these theoretical results, we provide a tractable approximation of the optimal projection
weights and propose a MARL algorithm, ReMIX, with regret-minimizing projections onto monotonic
value function factorizations. The procedure of ReMIX can be found in Algorithm 1. We consider a
new loss function with respect to the optimal projection weights wk applied to the Bellman equation
of Qk (considering Qtot at step k), i.e.,

LReMIX =
b∑
i=1

[
wi(τ ,u)(Qk − yi)2(τ ,u)

]
, (6)

where b is the batch size, and yi = B∗Q∗k−1 is a fixed target using an unrestricted joint action-value
function that can be approximated using a separate network similar to WQMIX.

To compute the projection weights for Bellman error and value underestimation terms, we again
leverage the unrestricted joint action-value function Q∗ to compute them quantitatively. We note that
the Bellman error term also works as the condition in Theorem 1 for deciding whether the weight

7

Algorithm 1 ReMIX

1: Initialize step, the parameters of mixing network, agent networks, and hyper-network.
2: Set the learning rate α and replay buffer D
3: let θ− = θ
4: for step = 1 : stepmax do
5: k = 0, s0 = initial state
6: while sk 6= terminal and k < episode limit do
7: for each agent a do
8: τak = τak−1 ∪ (ok, uk−1)

9: uak =

{
arg maxuak Q(τak , u

a
k) with probability 1− ε

randint(1, |U |) with probability ε
10: end for
11: Obtain the reward rk and next state sk+1

12: Store the current trajectory into replay buffer D = D ∪ (sk,uk, rk, sk+1)
13: k = k + 1, step = step + 1
14: end while
15: Collect b samples from the replay buffer D following uniform distribution µ.
16: for each timestep k in each episode in batch b do
17: Evaluate Qk, Q∗ and target values
18: Obtain the utilities Qa from agents’ local networks, and compute the individual policy πak
19: Compute the weight:

wk ∝

(B∗Q∗k−1 −Qk) exp(Q∗k−1 −Qk)

(∑n
j=1

1−πj
f ′
s,Qj
− 1

)
when Qk ≤ B∗Q∗k−1

0 when Qk > B∗Q∗k−1

20: end for
21: Minimize the Bellman error for Qk weighted by wk, update the network parameter θ:

θ = θ − α(∇θ 1
b

∑b
i wk(Qk − yi)2).

22: if update-interval steps have passed then
23: θ− = θ
24: end if
25: end for

should be zero. The gradient of the monotonic mixing network can be directly computed using
Lemma 1. Ideally, we would also want to include measurement of on-policy transitions term in the
calculation, but it is not readily available since distribution dπk(τ ,u) in the numerator is difficult to
acquire. Thus, we take an approach similar to existing work [17] and show that the other terms in the
derived optimal weights are enough to provide a good estimate and lead to performance improvements.
To account for the unknown normalization factor Z∗ and improve the stability of the training process,
we map the projection weights to a given range, which is modeled as a hyperparameter of our
algorithm. We provide numerical results adjusting it in the experiment section.

5 Experiment

In this section, we present our experimental results on Predator-Prey and SMAC and demonstrate
the effectiveness of ReMIX by comparing the results with several state-of-the-art MARL baselines.
Besides, we visualize the optimal weight pattern in heat maps to show the step-wise weight assignment
for each transition. Additionally, we conduct the ablation experiments by disabling each term in
Theorem 1, and deliver the sensitivity experiments regarding the normalization factor. More details
about the environment and hyper-parameter setting are provided in Appendix A.4. The code of this
work is available on GitHub (see supplementary files during the review period).

5.1 Predator-Prey

To start with, we consider a complex partially-observable multi-agent cooperative environment,
Predator-Prey, that involves 8 agents in cooperation as predators to catch 8 prey on a 10×10 grid.
In this task, a successful capture with the positive reward of 1 must include two or more predator

8

0 20 40 60 80 100
T…(10k)

0

10

20

30

40

M
ea
n…

R
ew

ar
d

DOP
FOP
VDAC
WQMIX
QPLEX
QMIX
ReMIX

(a) No punishment

0 20 40 60 80 100
T…(10k)

100

75

50

25

0

25

M
ea
n…

R
ew

ar
d

DOP
FOP
VDAC
WQMIX
QPLEX
QMIX
ReMIX

(b) Punishment = −0.5

0 20 40 60 80 100
T…(10k)

100

75

50

25

0

25

M
ea
n…

R
ew

ar
d

DOP
FOP
VDAC
WQMIX
QPLEX
QMIX
ReMIX

(c) Punishment = −1.5

0 20 40 60 80 100
T…(10k)

200

150

100

50

0

50

M
ea
n…

R
ew

ar
d

DOP
FOP
VDAC
WQMIX
QPLEX
QMIX
ReMIX

(d) Punishment = −2

Figure 1: Average reward per episode on the Predator-Prey tasks for ReMIX and other baseline
algorithms of 4 settings.

agents surrounding and catching the same prey simultaneously, requiring a high level of cooperation.
A failed coordination between agents to capture the prey, which happens when only one predator
catches the prey, will receive a negative punishment reward. The greater punishment determines the
degree of monotonicity. Algorithms that suffer from relative overgeneralization issues or make poor
trade-offs in joint action-value function projection will fail to solve this task.

We select multiple state-of-the-art MARL approaches as baseline algorithms for comparison, which
include value-based factorization algorithm (i.e., QMIX, WQMIX, and QPLEX), decomposed policy
gradient method (i.e., VDAC), and decomposed actor-critic approaches (i.e., FOP and DOP). All
mentioned baseline algorithms have shown strength in handling MARL tasks in existing works.

Figure 1 shows the performance of seven algorithms with different punishments, where all results
demonstrate the superiority of ReMIX over others. Besides, regarding efficiency, we can spot that
ReMIX has the fastest convergence speed in seeking the best policy. In Figure 1c and 1d, ReMIX
significantly outperforms other state-of-the-art algorithms in a hard setting requiring a higher level of
coordination among agents as learning the best policy with improved joint action representation is
required in this setting. Most algorithms, such as QMIX, FOP, and DOP, end up learning a sub-optimal
policy where agents learn to work together with limited coordination. Although ReMIX and WQMIX
acquired good results eventually, compared to the latter, ReMIX achieves better performance and
converges to the optimal policy profoundly faster than WQMIX, demonstrating that our optimal
weighting approach can generate a better joint action-value projection.

5.2 SMAC

Next, we evaluate ReMIX on the SMAC benchmark. We report the experiments on six maps
consisting of one easy map, two hard maps, and three super-hard maps. The selected state-of-the-art
baseline algorithms for this experiment are consistent with those in the Predator-Prey environment.
The empirical results are provided in Figure 2, demonstrating that ReMIX can effectively generate
optimal weight projection for joint actions on SMAC for achieving a higher win rate, especially when
the environment becomes substantially complicated and harder, such as MMM2. We can see that
several state-of-the-art policy-based factorization algorithms are brittle when significant exploration
is undergone since joint action representations generated by them are sub-optimal.

Specifically, ReMIX performs well on an easy map 1c3s5z in Figure 2a, albeit holding the comparable
performance among algorithms. On hard maps, such as 3s_vs_5z, the best policy found by our optimal
weighting approach significantly outperforms the remaining baseline algorithms regarding winning
rate. For super-hard map 6h_vs_8z, MMM2, and corridor, ReMIX, along with QMIX, WQMIX,
and QPLEX, can learn a better policy than VDAC, DOP, and FOP. We achieve the highest winning

9

0 25 50 75 100 125 150 175 200
T…(10k)

0.0

0.2

0.4

0.6

0.8

1.0

te
st
…
w
in
…
ra
te
…
%

ReMIX
QMIX
QPLEX
WQMIX
VDAC
FOP
DOP

(a) 1c3s5z (easy)

0 50 100 150 200 250 300
T…(10k)

0.0

0.2

0.4

0.6

0.8

te
st
…
w
in
…
ra
te
…
%

ReMIX
QMIX
QPLEX
WQMIX
VDAC
FOP
DOP

(b) 3s_vs_5z (hard)

0 50 100 150 200 250 300 350 400
T…(10k)

0.0

0.2

0.4

0.6

0.8

te
st
…
w
in
…
ra
te
…
%

ReMIX
QMIX
QPLEX
WQMIX
VDAC
FOP
DOP

(c) 5m_vs_6m (hard)

0 100 200 300 400 500
T…(10k)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

te
st
…
w
in
…
ra
te
…
%

ReMIX
QMIX
QPLEX
WQMIX
VDAC
FOP
DOP

(d) 6h_vs_8z (super hard)

0 25 50 75 100 125 150 175 200
T…(10k)

0.0

0.2

0.4

0.6

0.8

te
st
…
w
in
…
ra
te
…
%

ReMIX
QMIX
QPLEX
WQMIX
VDAC
FOP
DOP

(e) MMM2 (super hard)

0 100 200 300 400 500
T…(10k)

0.0

0.2

0.4

0.6

0.8

1.0

te
st
…
w
in
…
ra
te
…
%

ReMIX
QMIX
QPLEX
WQMIX
VDAC
FOP
DOP

(f) corridor (super hard)

Figure 2: Results of 6 maps (from easy to super hard) on the SMAC benchmark.

rate by adopting our algorithm on 6h_vs_8z and MMM2. Compared to our method, QMIX and
WQMIX suffer from this map as their joint action representations are oblivious to some latent factors,
such as the shape of the monotonic mixing network, and therefore fail to generate an accurate joint
action representation. On corridor, ReMIX manages to learn the model with better performance
than WQMIX, QPLEX, and other policy-based algorithms, though standard QMIX has the fastest
convergence rate among all baseline algorithms.

5.3 Optimal Weight Pattern

Figure 3: Heatmap pattern of generated optimal weights (left) and WQMIX weights (right) used in the
Predator-Prey environment. The training episodes range from 0 to 1M.

In this part, we draw heat maps of the projecting weight probability distributions of ReMIX and
WQMIX as the training proceeds to better visualize and compare the weight evolution pattern of
transitions sampled as in a minibatch, shown in Figure 3. Adopted weights are generated from the
Predator-Prey task with a punishment of -2. We re-scale the absolute value of the transition number
to logarithmic probability for scale normalization. As shown in the figure, the probability value of a
certain weight is represented by colors, decreasing from 0 in light yellow to -10 in black. The vertical
axis represents the training steps, and the horizontal axis represents the normalized weight value,
where ours ranges from 0.1 to 1 and WQMIX is either 0.1 or 1.

The heat map effectively shows the general trend of the weight evolution pattern at different steps.
For WQMIX on the Figure 3 right, with the training of the algorithm, the transitions with the smaller
weight (0.1) will become more, and those with the larger weight (1) will become fewer. Evolution like
this happens since the transitions will approach optimal as the training goes on, while the algorithm

10

0 20 40 60 80 100
T…(10k)

300

200

100

0

M
ea
n…

R
ew

ar
d

ReMIX_w=0.1
ReMIX_w=0.5
ReMIX_w=0.8

Figure 4: Sensitivity of normalizing the minimum weight to 0.1, 0.5, and 0.8.

will still take all transitions as potential overestimations and assign smaller weights to them as
adjustments. A similar evolution pattern can be found in our weight pattern. On the left of Figure 3,
during the training, the transitions with higher weights become less, and most transitions will migrate
to the bottom right with lower weights, which empirically recovers the heuristic in WQMIX.

Moreover, as an optimal weight projection is used in ReMIX, we will assign different weights to
transitions based on evaluating every one of them. We notice that some transitions are assigned with
medium weight during the training, given by the light yellow spots on the left of Figure 3. Such a
phenomenon demonstrates that the binary-weighted projections in WQMIX are not always accurate.
Hence, ReMIX considers all transitions by applying optimal weights to their projections, leading
to better results, which also illustrates the performance gap with other algorithms like WQMIX in
previous experiments.

5.4 Sensitivity Experiment regarding Normalization

We run the experiment in the Predator-Prey environment with a punishment of -1.5 to report the
sensitivity with respect to the different normalization of weight ranges. We keep the maximum
normalized weight as 1 but test the effects of using different minimums, which are 0.1, 0.5, and 0.8.

As shown in Figure 4, the experiment results are sensitive to the range of the normalized weight. When
we map the weight to a minimum of 0.5, the agents in this task can only find a sub-optimal solution.
It may be because there exist many overestimations in this task. The joint action representation
generated at the is not accurate. Higher minimum weight normalization damages the capability
of ReMIX to adjust the projection to retrieve a precise representation rapidly. Therefore, ReMIX
performs well under 0.1 to 1 normalization of the weight in this scenario. Note in WQMIX weight is
used as α = 0.1 for Predator-Prey and α = 0.5 for SMAC according to their experiment settings.

0 25 50 75 100 125 150 175 200
T…(10k)

0.0

0.2

0.4

0.6

0.8

te
st
…
w
in
…
ra
te
…
%

ReMIX
no…mixing…net…gradient
no…value…underestimation
no…Bellman…error

Figure 5: Ablation by disabling one term each for ReMIX on MMM2 (super hard)

11

5.5 Ablation Experiment

For ablations, we conduct experiments by disabling one single term (mentioned in Theorem 1) each
at a time to investigate their contribution to finding optimal projection weights, respectively. The
ablation results are given in Figure 5. The terms considered in these experiments are Bellman error,
value underestimation, and gradient of the mixing network. Figure 4 shows the results on MMM2.
Compared to the original result, missing any of the terms will be detrimental to the performance,
and the tests without Bellman error have the lowest final winning rate, which is less than 10%.
Furthermore, when we turn off the gradient of the mixing network term, the result is only around
60%. Such a phenomenon demonstrates that providing a quantitative weight factorization for the
value projection is the critical factor in value-factorization-based MARL tasks. The designing of an
optimal weighting scheme without taking the influence of the mixing network into account will be
less capable of achieving the ideal final results.

6 Conclusion

In this paper, we formulate the optimal value function factorization as a policy regret minimization and
solve the optimal projection weights for the cooperative multiagent reinforcement learning problems
in closed form. The theoretical results shed light on key factors for an optimal projection. Therefore,
we propose ReMIX as a tractable weight approximation approach to enable MARL algorithms with
improved value function factorization. Our experiment results in multiple MARL environments show
the effectiveness of ReMIX by demonstrating superior convergence and empirical performance over
state-of-the-art factorization-based methods.

References
[1] Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob McGrew,

and Igor Mordatch. Emergent tool use from multi-agent autocurricula. arXiv preprint
arXiv:1909.07528, 2019.

[2] Dimitri P Bertsekas. Constrained optimization and Lagrange multiplier methods. Academic
press, 2014.

[3] Wendelin Böhmer, Vitaly Kurin, and Shimon Whiteson. Deep coordination graphs. In Interna-
tional Conference on Machine Learning, pages 980–991. PMLR, 2020.

[4] Yongcan Cao, Wenwu Yu, Wei Ren, and Guanrong Chen. An overview of recent progress in
the study of distributed multi-agent coordination. IEEE Transactions on Industrial informatics,
9(1):427–438, 2012.

[5] Jacopo Castellini, Frans A Oliehoek, Rahul Savani, and Shimon Whiteson. The representational
capacity of action-value networks for multi-agent reinforcement learning. arXiv preprint
arXiv:1902.07497, 2019.

[6] Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, and René Garcia. Incorporat-
ing functional knowledge in neural networks. Journal of Machine Learning Research, 10(6),
2009.

[7] Benyamin Ghojogh, Ali Ghodsi, Fakhri Karray, and Mark Crowley. Kkt conditions, first-order
and second-order optimization, and distributed optimization: Tutorial and survey. arXiv preprint
arXiv:2110.01858, 2021.

[8] Carlos Guestrin, Michail Lagoudakis, and Ronald Parr. Coordinated reinforcement learning. In
ICML, volume 2, pages 227–234. Citeseer, 2002.

[9] Jian Hu, Siyang Jiang, Seth Austin Harding, Haibin Wu, and Shih-wei Liao. Riit: Rethinking
the importance of implementation tricks in multi-agent reinforcement learning. arXiv preprint
arXiv:2102.03479, 2021.

[10] Yeping Hu, Alireza Nakhaei, Masayoshi Tomizuka, and Kikuo Fujimura. Interaction-aware deci-
sion making with adaptive strategies under merging scenarios. In 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 151–158. IEEE, 2019.

[11] Maximilian Hüttenrauch, Adrian Šošić, and Gerhard Neumann. Guided deep reinforcement
learning for swarm systems. arXiv preprint arXiv:1709.06011, 2017.

12

[12] Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro Ortega,
DJ Strouse, Joel Z Leibo, and Nando De Freitas. Social influence as intrinsic motivation
for multi-agent deep reinforcement learning. In International conference on machine learning,
pages 3040–3049. PMLR, 2019.

[13] Peter Jin, Kurt Keutzer, and Sergey Levine. Regret minimization for partially observable deep
reinforcement learning. In International conference on machine learning, pages 2342–2351.
PMLR, 2018.

[14] Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning.
In In Proc. 19th International Conference on Machine Learning. Citeseer, 2002.

[15] Landon Kraemer and Bikramjit Banerjee. Multi-agent reinforcement learning as a rehearsal for
decentralized planning. Neurocomputing, 190:82–94, 2016.

[16] Steven George Krantz and Harold R Parks. The implicit function theorem: history, theory, and
applications. Springer Science & Business Media, 2002.

[17] Aviral Kumar, Abhishek Gupta, and Sergey Levine. Discor: Corrective feedback in reinforce-
ment learning via distribution correction. Advances in Neural Information Processing Systems,
33:18560–18572, 2020.

[18] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

[19] Xu-Hui Liu, Zhenghai Xue, Jingcheng Pang, Shengyi Jiang, Feng Xu, and Yang Yu. Regret
minimization experience replay in off-policy reinforcement learning. Advances in Neural
Information Processing Systems, 34:17604–17615, 2021.

[20] Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson. Maven: Multi-agent
variational exploration. arXiv preprint arXiv:1910.07483, 2019.

[21] Laëtitia Matignon, Laurent Jeanpierre, and Abdel-Illah Mouaddib. Coordinated multi-robot
exploration under communication constraints using decentralized markov decision processes.
In Twenty-sixth AAAI conference on artificial intelligence, 2012.

[22] Edward James McShane. Jensen’s inequality. Bulletin of the American Mathematical Society,
43(8):521–527, 1937.

[23] Yongsheng Mei, Tian Lan, Mahdi Imani, and Suresh Subramaniam. A bayesian optimiza-
tion framework for finding local optima in expensive multi-modal functions. arXiv preprint
arXiv:2210.06635, 2022.

[24] Frans A Oliehoek and Christopher Amato. A concise introduction to decentralized POMDPs.
Springer, 2016.

[25] Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. Weighted qmix: Expanding
monotonic value function factorisation for deep multi-agent reinforcement learning, 2020.

[26] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent
reinforcement learning. In International Conference on Machine Learning, pages 4295–4304.
PMLR, 2018.

[27] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nan-
tas Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon
Whiteson. The starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019.

[28] Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran:
Learning to factorize with transformation for cooperative multi-agent reinforcement learning.
In International Conference on Machine Learning, pages 5887–5896. PMLR, 2019.

[29] Jianyu Su, Stephen Adams, and Peter Beling. Value-decomposition multi-agent actor-critics. In
Proceedings of the AAAI Conference on Artificial Intelligence, pages 11352–11360, 2021.

[30] Kefan Su and Zongqing Lu. Divergence-regularized multi-agent actor-critic. In International
Conference on Machine Learning, pages 20580–20603. PMLR, 2022.

[31] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi,
Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-
decomposition networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296,
2017.

13

[32] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Jun-
young Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

[33] Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
multi-agent q-learning. arXiv preprint arXiv:2008.01062, 2020.

[34] Tonghan Wang, Heng Dong, Victor Lesser, and Chongjie Zhang. Roma: Multi-agent reinforce-
ment learning with emergent roles. arXiv preprint arXiv:2003.08039, 2020.

[35] Yihan Wang, Beining Han, Tonghan Wang, Heng Dong, and Chongjie Zhang. Dop: Off-
policy multi-agent decomposed policy gradients. In International Conference on Learning
Representations, 2020.

[36] Yaodong Yang, Jianye Hao, Ben Liao, Kun Shao, Guangyong Chen, Wulong Liu, and Hongyao
Tang. Qatten: A general framework for cooperative multiagent reinforcement learning. arXiv
preprint arXiv:2002.03939, 2020.

[37] Tianhao Zhang, Yueheng Li, Chen Wang, Guangming Xie, and Zongqing Lu. Fop: Factorizing
optimal joint policy of maximum-entropy multi-agent reinforcement learning. In International
Conference on Machine Learning, pages 12491–12500. PMLR, 2021.

[38] Hanhan Zhou, Tian Lan, and Vaneet Aggarwal. Pac: Assisted value factorisation with counter-
factual predictions in multi-agent reinforcement learning. arXiv preprint arXiv:2206.11420,
2022.

[39] Hanhan Zhou, Tian Lan, and Vaneet Aggarwal. Value functions factorization with la-
tent state information sharing in decentralized multi-agent policy gradients. arXiv preprint
arXiv:2201.01247, 2022.

14

Table 1: Definitions of notations.
Notation Definition
s State of the environment
a Agent
u Agents’ joint action
r Reward
γ Discount factor
τ Joint action-observation history
π Joint policy
π∗ Expected optimal joint policy
Q(·) Action value function
Qtot(·) Monotonic mixing of per-agent action value function
Q∗(·) Unrestricted joint action value function
V (·) Value function
A(·) Advantage function
fs(·) Monotonic function with input state s
η(π) Expected return under the joint policy π
B∗ Bellman operator, where B∗Q(τ ,u)

def
= r(s,u) + γ arg maxu′ Eτ ′Q(τ ′,u′)

w Projection weights of transitions

A Appendix

A.1 Nomenclature

We use Table 1 to summarize the often-used notations in this paper. More detailed introduction of
these notations can be seen in Sections 2, 3, and 4.

A.2 Proof of Lemma 1

Considering a two-layer mixing network of the non-negative weight matrix W1,W2, bias b1, b2 and
activation function h(·). The input ~Q is the vector of all the agents’ utilities. Assume there are n
agents, ~Q is:

~Q = [Q1, . . . , Qn]T

We assume the mixing network has the width of m, based on the input/output dimension, W1 should
be a n×m matrix as:

W1 =

w
1
11 . . . w1

1m
...

. . .
...

w1
n1 . . . w1

nm

 ,
and W2 is a m-dimension vector given by:

W2 = [w2
1, . . . , w

2
m]T.

Therefore, Qtot calculated from the utility vector ~Q becomes:

fs(~Q) = h(~QTW1 + b1)WT
2 + b2. (7)

Considering one of the utilities Qa, as long as the derivative of activation h(·) exists (h(·) is smooth
and differentiable), based on (7), the result is:

f ′s,Qa =
∂Qtot
∂Qa

= h′Qa(~QTW1 + b1)
m∑
j=1

w1
ajw

2
j . (8)

This concludes the proof.

15

A.3 Proof of Theorem 1

We have provided the outline of the proof including four key steps. In this section, we present the
detailed proof of the theorem. The optimization problem needed solving is:

min
wk

η(π∗)− η(πk)

s.t. Qk = arg min
Q∈Q

Eµ[wk(τ ,u)(Q− B∗Q∗k−1)2(τ ,u)],

Eµ[wk(τ ,u)] = 1, wk(τ ,u) ≥ 0,

Qk(τ ,u) = fs(Q
1(τ1, u1), . . . , Qn(τn, un)),

This problem is equivalent to:

min
pk

η(π∗)− η(πk)

s.t. Qk = arg min
Q∈Q

Epk [(Q− B∗Q∗k−1)2(τ ,u)],∑
τ ,u

pk(τ ,u) = 1, pk(τ ,u) ≥ 0,

Qk(τ ,u) = fs(Q
1(τ1, u1), . . . , Qn(τn, un)),

(9)

where pk = wk(τ ,u)µ(τ ,u) is the solution to problem (9).

To solve the optimization problem in (9), we needed to provide some definitions, which are total
variation distance, Wasserstein metric, the diameter of a set, and universal approximator.
Definition 1 (Total variation distance). The total variation distance of the distribution P and Q is
defined as D(P,Q) = 1

2‖P −Q‖.
Definition 2 (Wasserstein metric). For F,G two cumulative distribution functions over the reals, the
Wasserstein metric is defined as dp(F,G)

def
= infU,V ‖U − V ‖p, where the infimum is taken over all

pairs of random variables (U,V) with cumulative distributions F and G, respectively.

Definition 3 (Diameter of a set). The diameter of a set A is defined as diam(A) = supx,y∈Am(x, y),
where m is the metric on A.

Definition 4 (Universal approximator). A class of function F̂ from Rn to R is a universal approxi-
mator for a class of functions F from Rn to R if for any f ∈ F , any compact domain D ⊂ Rn, and
any positive ε, one can find a f̂ ∈ F̂ with supx∈D |f(x)− f̂(x)| ≤ ε.

Though we will leverage trajectories τ in further derivation, we propose several assumptions using
state s for simplicity and consistency with a general definition like the existing practice in [30]. The
mild assumptions are given as follows:
Assumption 1. The state space S, action space U , and observation space Z are compact metric
spaces.

Assumption 2. The action-value and observation functions are continuous on S × U and Z, respec-
tively.

Assumption 3. The transition function T is continuous with respect to S × U in the sense of
Wasserstein metric, which is lim(s,u)→(s0,u0) dp(T (·|s,u), T (·|s0,u0)).

Assumption 4. The joint policy π is the product of each agent’s individual policy πa(ua|τa).

Assumption 5. The monotonic mixing function fs(·) regarding per-agent action-value function Qa
for ∀a ∈ A is smooth and differentiable.

These assumptions are not strict and can be satisfied in most MARL environments.

Let dπ
a

(s) denote the discounted state distribution of agent a, and dπ
a

i (s) denote the distribution
where the state is visited by the agent for the i-th time. Thus, we have:

dπ
a

(s) =
∞∑
i=1

dπ
a

i (s), (10)

16

where each dπ
a

i (s) is given by:

dπ
a

i (s) = (1− γ)
∞∑
ti=0

γti Pr(sti = s, stk = s, ∀k = 1, ..., i− 1), (11)

where the Pr(sti = s, stk = s, ∀k = 1, ..., i− 1) in this equation contains the probability of visiting
state s for the i-th time at ti and a sequence of times tk, for k = 1, ..., i, such that state s is visited at
each tk. Thus, state s will be visited for i times at time ti in total.

The following lemmas are proposed by [19], where Lemma 2 support the derivation of the Lemma 3,

and the latter demonstrates that
∣∣∣∂dπa (s)
∂πa(s)

∣∣∣ is a small quantity.

Lemma 2. Let f be an Lebesgue integrable function. P and Q are two probability distributions,
f ≤ C, then:

|EP (x)f(x)− EQ(x)f(x)| ≤ C ·D(P,Q). (12)

Lemma 3. Let ρ be the probabilityof the agent a starting from (s, ua) and coming back to s
at time step t under policy πa, i.e. Pr(s0 = s, ua0 = ua, st = s, s1:t−1 6= s;πa), and ε =
sups,ua

∑∞
t=1 γ

tρπ
a

(s, ua, t). We have:∣∣∣∣∂dπa(s)

∂πa(s)

∣∣∣∣ ≤ εdπa1 (s), (13)

where dπ
a

1 (s) = (1− γ)
∑∞
t1=0 γ

t1 Pr(st1 = s) and ε ≤ 1.

In the multiagent scenario, each agent only has access to its own trajectory, i.e., the environment is
partially observable. Therefore, we replace the state s with agents’ observation histories τ and use
the joint action u with joint policy π. The conclusions will hold in the mentioned lemmas.

Besides, we have the following additional lemma:

Lemma 4. Given two policy π and π̄, where π = exp(Q(τ ,u))∑
u′ exp(Q(τ ,u′)) is defined by Boltzmann policy,

we have:
Eu∼π̄[Q(τ ,u)]− Eu∼π[Q(τ ,u)] ≤ 1. (14)

Proof. Suppose there are two joint actions u and ū. Let Q(τ ,u) = s, Q(τ , ū) = t and let s ≤ t.

Eu∼π̄[Q(τ ,u)]− Eu∼π[Q(τ ,u)] ≤ t− ses + tet

es + et

= t− s+ tet−s

1 + et−s

= t− s− (t− s)et−s

1 + et−s
.

Let f(z) = z − zez

1+ez , the maximum point z0 satisfies f ′(z) = 0, from which we further have
1 + ez0 = z0e

z0 where z0 ∈ (1, 2). Therefore, we have

Eu∼π̄[Q(τ ,u)]− Eu∼π[Q(τ ,u)] ≤ f(t− s) ≤ z0 − 1 ≤ 1.

It is worth noting that the derived inequality can also be applied to the situation where we have joint
action more than two or we consider the situation regarding per-agent action.

The following lemma is introduced by [14]. It was originally proposed for the finite MDP, while it
will also hold for the continuous scenario that is given by Assumption 1 and 2.
Lemma 5. For any policy π and π̃, we have

η(π̃)− η(π) =
1

1− γ
Edπ̃(τ ,u)[A

π(τ ,u)], (15)

where Aπ(τ ,u) is the advantage function given by Aπ(τ ,u) = Qπ(τ ,u)− V π(τ).

17

Lemma 6. Let επk = supτ ,u

∑∞
t=1 γ

tρπ(τ ,u, t), the optimal solution pk to a relaxation of opti-
mization problem in (9) satisfies relationship as follows:

pk(τ ,u) =
1

Z∗
(Dk(τ ,u) + εk(τ ,u)), (16)

where when Qk ≤ B∗Q∗k−1, we have Dk(τ ,u) = dπk(τ ,u)(B∗Q∗k−1 − Qk) exp(Q∗k−1 −
Qk)(

∑n
j=1

1−πj
f ′
s,Qj
− 1), and when Qk > B∗Q∗k−1, we have Dk(τ ,u) = 0. Z∗ is the normalization

constant.

Proof. Suppose u∗ ∼ π∗. Let π = π∗ and π̃ = πk in Lemma 5, we have

η(π∗)− η(πk)

= − 1

1− γ
Edπk (τ ,u)[A

π∗(τ ,u)]

=
1

1− γ
Edπk (τ ,u)[V

∗(τ)−Q∗(τ ,u)]

=
1

1− γ
Edπk (τ ,u)[V

∗(τ)−Qk(τ ,u∗) +Qk(τ ,u∗)−Qk(τ ,u) +Qk(τ ,u)−Q∗(τ ,u)]

(a)

≤ 1

1− γ
[
Edπk (τ)(Q

∗(τ ,u∗)−Qk(τ ,u∗)) + Edπk (τ ,u)(Qk(τ ,u)−Q∗(τ ,u)) + 1
]
,

(17)

where (a) uses Lemma 4.

Since the original optimization is non-tractable, we consider this upper bound to obtain a closed-form
solution. Therefore, we replace the objective in (9) with the upper bound in (17) and solve the relaxed
optimization problem, given by

min
pk

Edπk (τ)[(Q
∗
k−1 −Qk)(τ ,u∗)] + Edπk (τ ,u)[(Qk −Q∗k−1)(τ ,u)]

s.t. Qk = arg min
Q∈Q

Epk [(Q− B∗Q∗k−1)2(τ ,u)],∑
τ ,u

pk(τ ,u) = 1, pk(τ ,u) ≥ 0,

Qk(τ ,u) = fs(Q
1(τ1, u1), . . . , Qn(τn, un)),

(18)

The derived objective in (18) can be further relaxed with Jensen’s inequality, given by:

E[g(X)] ≥ g(E[X]), (19)

when g(x) is a convex function on real space R.

According to (19), we select the convex function g(x) = exp(−x), and the objective can be further
relaxed as:

min
pk

− logEdπk (τ)[exp(Qk −Q∗k−1)(τ ,u∗)]− logEdπk (τ ,u)[exp(Q∗k−1 −Qk)(τ ,u)]

s.t. Qk = arg min
Q∈Q

Epk [(Q− B∗Q∗k−1)2(τ ,u)],∑
τ ,u

pk(τ ,u) = 1, pk(τ ,u) ≥ 0,

Qk(τ ,u) = fs(Q
1(τ1, u1), . . . , Qn(τn, un)),

(20)

In order to handle the optimization problem in (20), we follow the standard procedures of Lagrangian
multiplier method, which is:

L(pk;λ, ν) = − logEdπk (τ)[exp(Qk−Q∗k−1)(τ ,u∗)]−logEdπk (τ ,u)[exp(Q∗k−1−Qk)(τ ,u)]+λ(
∑
τ ,u

pk−1)−νTpk,

(21)

18

After constructing the Lagrangian, we further compute some gradients that will be used in calculating
the optimal solution. We first calculate the ∂Qk

∂pk
according to the implicit function theorem (IFT).

Based on the first constraint in (20), we aim to find the minimum Qk to satisfy the arg min(·), and
therefore we need to ensure the derivative of the term inside arg min(·) (we use f(pk, Qk) to denote
this term) to be zero, which is:

f ′Qk = 2
∑
τ ,u

pk(Qk − B∗Qk−1) = 0 (22)

We can notice that F (pk, Qk) : f ′Qk = 0 is an implicit function regarding Qk and pk. Hence, we
apply the IFT on the F (pk, Qk) considering the Hessian matrices of pk and Qk in f(pk, Qk) as
follows:

∂Qk
∂pk

= −
F ′pk
F ′Qk

= − [diag(pk)]
−1 [

diag(Qk − B∗Q∗k−1)
]
. (23)

Next, we derive the expression for ∂d
πk (τ ,u)
∂pk

in the following equation:

∂dπk(τ ,u)

∂pk
=
∂dπk(τ ,u)

∂πk

∂πk
∂Qa

∂Qa

∂Qk

∂Qk
∂pk

= diag(dπk(τ) + ε0(τ))
∂πk
∂Qa

∂Qa

∂Qk

∂Qk
∂pk

(b)
= diag(dπk(τ) + ε0(τ))diag(πk(1− πk))

∂Qa

∂Qk

∂Qk
∂pk

(c)
= dπk(τ ,u)(1− πk)

1

f ′s,Qk

∂Qk
∂pk

+ ε0(τ)πk(1− πk)
1

f ′s,Qk

∂Qk
∂pk

,

(24)

where ε0(τ) = ∂dπk (τ ,u)
∂πk(τ) is a small quantity provided by Lemma 3. Besides, (b) is based on the the

definition of the Boltzmann policy and Assumption 4, and (c) is based on Assumption 5 the gradient
of the monotonic mixing function in Lemma 1.

Since we have all the preparations ready, we now compute the Lagrangian by applying the
Karush–Kuhn–Tucker (KKT) condition. We let the Lagrangian gradient to be zero, i.e.,

∂L(pk;λ, ν)

∂pk
= 0 (25)

Besides, the partial derivative of the Lagrangian can be computed as:

∂L(pk;λ, ν)

∂pk
= −

∂ logEdπk (τ)[exp(Qk −Q∗k−1)(τ ,u∗)]

∂pk
−
∂ logEdπk (τ ,u)[exp(Q∗k−1 −Qk)(τ ,u)]

∂pk
+ λ− ντ ,u

= − 1

Z
exp(Q∗k−1 −Qk)

(
∂dπk(τ ,u)

∂pk
− dπk(τ ,u)

∂Qk
∂pk

)
+ λ− ντ ,u,

(26)
where Z = Eτ ′,u′∼dπk (τ ,u) exp(Q∗ −Qk)(τ ′,u′).

Based on (25) and (26), and substituting the expression of ∂Qk∂pk
and ∂dπk (τ ,a)

∂pk
with the derived results

in (23) and (24), we obtain:

pk(τ ,u) =
1

Z(ν∗τ ,u − λ∗)

dπk(τ ,u)(Qk − B∗Q∗k−1) exp(Q∗k−1 −Qk)

 n∑
j=1

1− πj

f ′s,Qj
− 1


+ε0πk(Qk − B∗Q∗k−1) exp(Q∗k−1 −Qk)

n∑
j=1

1− πj

f ′s,Qj

 ,
(27)

According to Lemma 3, the value of ε0 is smaller than dπk(τ) so the second term will not influence
the sign of the equation, and (27) will always be larger or equal to zero. By KKT condition, when the

19

Qk − B∗Q∗k−1 < 0, we have ν∗τ ,u = 0. When (27) equal to zero, we let ν∗τ ,u = 0 because the value
of ν∗τ ,u will not affect pk. In the contrast, when the Qk − B∗Q∗k−1 > 0, the pk should equal to zero.
Therefore, by introducing a normalization factor Z∗, (27) can be simplify as follows:

pk(τ ,u) =
1

Z∗
(Dk(τ ,u) + εk(τ ,u)), (28)

where when Qk ≤ B∗Q∗k−1, we have

Dk(τ ,u) = dπk(τ ,u)(B∗Q∗k−1 −Qk) exp(Q∗k−1 −Qk)

 n∑
j=1

1− πj

f ′s,Qj
− 1


εk = ε0πk(Qk − B∗Q∗k−1) exp(Q∗k−1 −Qk)

n∑
j=1

1− πj

f ′s,Qj

(29)

and when Qk > B∗Q∗k−1, we have
Dk(τ ,u) = 0

εk = 0
(30)

This concludes the proof.

A.4 Environment Details

We use more recent baselines (i.e., FOP and DOP) that are known to outperform QTRAN [28] and
QPLEX [33] in the evaluation. In general, we tend to choose baselines that are more closely related to
our work and most recent. This motivated the choice of QMIX (baseline for value-based factorization
methods), WQMIX (close to our work that uses weighted projections so better joint actions can be
emphasized), VDAC [29], FOP [37], DOP [35] (SOTA actor-critic based methods). We acquired
the results of QMIX, WQMIX based on their hyper-parameter tuned versions from pymarl2[9] and
implemented our algorithm based on it.

A.4.1 Predator-Prey

A partially observable environment on a grid-world predator-prey task is used to model relative
overgeneralization problem [3] where 8 agents have to catch 8 prey in a 10 × 10 grid. Each agent
can either move in one of the 4 compass directions, remain still, or try to catch any adjacent prey.
Impossible actions, i.e., moving into an occupied target position or catching when there is no adjacent
prey, are treated as unavailable. If two adjacent agents execute the catch action, a prey is caught
and both the prey and the catching agents are removed from the grid. An agent’s observation is a 5
× 5 sub-grid centered around it, with one channel showing agents and another indicating prey. An
episode ends if all agents have been removed or after 200 steps. Capturing a prey is rewarded with r
= 10, but unsuccessful attempts by single agents are punished by a negative reward p. In this paper,
we consider two sets of experiments with p = (0, -0.5, -1.5, -2). The task is similar to the matrix
game proposed by [28] but significantly more complex, both in terms of the optimal policy and in the
number of agents.

A.4.2 SMAC

For the experiments on StarCraft II micromanagement, we follow the setup of SMAC [27] with
open-source implementation including QMIX [26], WQMIX [25], QPLEX [33], FOP [37], DOP [35]
and VDAC [29]. We consider combat scenarios where the enemy units are controlled by the StarCraft
II built-in AI and the friendly units are controlled by the algorithm-trained agent. The possible options
for built-in AI difficulties are Very Easy, Easy, Medium, Hard, Very Hard, and Insane, ranging from 0
to 7. We carry out the experiments with ally units controlled by a learning agent while built-in AI
controls the enemy units with difficulty = 7 (Insane). Depending on the specific scenarios(maps),
the units of the enemy and friendly can be symmetric or asymmetric. At each time step each agent
chooses one action from discrete action space, including noop, move[direction], attack[enemy_id],
and stop. Dead units can only choose noop action. Killing an enemy unit will result in a reward
of 10 while winning by eliminating all enemy units will result in a reward of 200. The global state
information is only available in the centralized critic. Each baseline algorithm is trained with 4

20

Table 2: Hyperparameter value settings.
Hyperparameter Value
Batch size 128
Replay buffer size 10000
Target network update interval Every 200 episodes
Learning rate 0.001
TD-lambda 0.6

random seeds and evaluated every 10k training steps with 32 testing episodes for main results, and
with 3 random seeds for ablation results and additional results.

A.4.3 Implementation details and Hyperparameters

In this section, we introduce the implementation details and hyperparameters we used in the ex-
periment. We carried out the experiments on NVIDIA 2080Ti with fixed hyperparameter settings.
Recently [9] demonstrated that MARL algorithms are significantly influenced by code-level op-
timization and other tricks, e.g. using TD-lambda, Adam optimizer, and grid-searched/Bayesian
optimized [23] hyperparameters (where many state-of-the-art are already adopted), and proposed
fine-tuned QMIX and WQMIX, which is demonstrated with significant improvements from their
original implementation. We implemented our algorithm based on its open-sourced codebase and
acquired the results of QMIX and WQMIX from it.

We use one set of hyperparameters for each environment, i.e., no tuned hyperparameters for individual
maps. We use epsilon greedy for action selection with annealing from ε = 0.995 decreasing to ε =
0.05 in 100000 training steps in a linear way. The performance for each algorithm is evaluated for 32
episodes every 1000 training steps. More hyperparameter values are given in Table 2.

21

	1 Introduction
	2 Background
	2.1 Partially Observable Markov Decision Process
	2.2 Policy Regret

	3 Related Work
	3.1 Value Decomposition Approaches
	3.2 Weighting Scheme in WQMIX

	4 Optimal Projection onto Monotonic Value Functions
	4.1 Problem Formulation as Regret Minimization
	4.2 Solving Optimal Projection Weights
	4.3 Proposed Algorithm

	5 Experiment
	5.1 Predator-Prey
	5.2 SMAC
	5.3 Optimal Weight Pattern
	5.4 Sensitivity Experiment regarding Normalization
	5.5 Ablation Experiment

	6 Conclusion
	A Appendix
	A.1 Nomenclature
	A.2 Proof of Lemma 1
	A.3 Proof of Theorem 1
	A.4 Environment Details
	A.4.1 Predator-Prey
	A.4.2 SMAC
	A.4.3 Implementation details and Hyperparameters

