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Abstract

We develop a framework to quantify the vulnerability of mutual funds to fire-sale spillover

losses. We account for the first-mover incentive that results from the mismatch between the

liquidity offered to redeeming investors and the liquidity of assets held by the funds. In our

framework, the negative feedback loop between investors’ redemptions and price impact from

asset sales leads to an aggregate change in funds’ NAV, which is determined as a fixed point

of a nonlinear mapping. We show that a higher concentration of first movers increases the

aggregate vulnerability of the system, as measured by the ratio between endogenous losses due

to fund redemptions and exogenous losses due to initial price shocks only. When calibrated

to U.S. mutual funds, our model shows that, in stressed market scenarios, spillover losses are

significantly amplified through a nonlinear response to initial shocks that results from the first-

mover incentive. Higher spillover losses provide a stronger incentive to redeem early, further

increasing fire-sale losses and the transmission of shocks through overlapping portfolio holdings.

Key words: mutual funds, liquidity mismatch, fire-sale externalities, first-mover incentive, sys-

temic risk.
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1 Introduction

The mutual fund industry has experienced strong growth in the past decade and holds an increas-

ingly large portion of financial assets. As such, the possibility of a threat to financial stability from

the mutual fund sector has become a prominent concern for regulators. In particular, the liquidity

transformation provided by open-end funds has been identified as a potential source of vulnerabil-

ity: investors may redeem their fund shares at the end-of-day net asset value (NAV), even if the

fund holds illiquid assets that can only be liquidated over multiple days and at distressed prices.

Referring to funds that hold less liquid assets, former Bank of England Governor Mark Carney
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famously stated in June 2019 that “these funds are built on a lie, which is that you can have daily

liquidity for assets that fundamentally aren’t liquid.”

Mutual funds have been implicated in the “taper tantrum” of 2013 and in the disruption of bond

markets early in the Covid-19 period. The liquidity mismatch between shareholder claims and fund

holdings has resulted in the collapse of individual funds (prominent examples include the Third

Avenue Focused Credit fund and the Woodford Equity Income Fund), leading to concerns for the

broader impact on financial stability. The mutual fund structure creates a first-mover advantage

among investors, because investors who withdraw early are shielded from the adverse impact of

asset liquidation. This first-mover advantage can produce a run on a fund that amplifies fire-sale

losses to other investors.

The objective of our study is to build a framework to quantify ex ante the vulnerability of mutual

funds to fire sales, accounting for the first-mover incentive created by the liquidity mismatch. Our

model reflects the fact that investors’ redemptions are paid at an NAV that has not yet accounted

for the cost of subsequent asset liquidations incurred to meet redemption requests. Furthermore,

building on Capponi et al. (2020), we posit that some investors redeem fund shares in anticipation

of the impact that their (and other investors’) redemptions have on future fund performance,

instead of responding only to realized shocks. We refer to these investors as first movers, and their

inclusion is the key feature that distinguishes our analysis from prior work on the financial stability

implications of the mutual fund structure. Funds that hold illiquid assets are more sensitive to

the impact of fire sales, and their investors have a stronger incentive to exit the fund early. Early

redemptions in turn increase the cost of remaining invested in the fund, and prompt additional

redemptions. This creates a downward spiral of investor withdrawals, price impact, and investment

losses that can substantially amplify an initial price shock.

We apply the framework to quantify the vulnerability of mutual funds in the United States

to spillover losses. We take institutional investors as a proxy for first movers — the investors

that exploit the liquidity mismatch. This premise, which we explore further in later sections, is in

keeping with the Security and Exchange Commission’s (SEC) regulatory treatment of retail and

institutional money market funds (MMFs)1 and with the empirical findings of Jin et al. (2022).2

We measure the aggregate vulnerability of mutual funds using the Spillover Loss Ratio (SLR),

defined as the ratio between spillover losses and the initial losses due to an exogenous shock. Using

a time series spanning the years 2010 through 2022, we document the growing fragility of the mu-

1As stated in the SEC Release No. IC-34441, “institutional investors frequently scrutinize liquidity levels in money
market funds [...] facilitating rapid redemptions when a fund’s liquidity begins to decline.” Since 2014, institutional
prime and municipal MMFs “are required to use a floating NAV because their investors have historically made the
heaviest redemptions in times of market stress and are more likely to act on the incentive to redeem if a fund’s stable
price per share is higher than its market-based value”. The SEC proposed rule “Money Market Fund Reforms”,
released in December 2021, proposed that these institutional funds be required to adopt swing pricing, a provision
aimed at mitigating the first-mover advantage, because institutional investors are more likely to exploit this advantage.
In its 2023 final rule, the SEC imposed liquidity fees on institutional funds for the same reason.

2They find (p.35) that, “in times of market stress, institutional investors sell more when the fund uses the
traditional pricing. This indicates that, in such funds, retail investors are systematically disadvantaged. After the
fund switches to swing pricing, institutional investors are more likely to alter their behavior and stay with the funds
in times of stress.” Thus, institutional investors act like the first movers that swing pricing is intended to target.
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tual fund system over time and the increasing contribution of the first-mover incentive to spillover

losses. Our empirical analysis indicates that, for flow-to-performance sensitivities within the range

estimated by Goldstein et al. (2017)—specifically, between about 40% and 80%— without ac-

counting for the first-mover incentive systemic risk would be underestimated by 20% to 60% over

the time frame of our study.

We show that the first-mover incentive creates a nonlinear dependence of spillover losses on

exogenous asset shocks, and this nonlinear relation has a compounding effect on losses. In more

detail, we construct a systemicness matrix to quantify the relation between an exogenous shock and

the drop in value of fund shares due to ensuing redemptions. If the spectral radius of this matrix is

well below unity, then the first-mover incentive is immaterial; as the spectral radius approaches one,

the first-mover incentive becomes stronger, and spillover losses become increasingly large compared

to a system with no first movers.

The nonlinearity stemming from the first-mover advantage has implications for financial stabil-

ity. First, a concentration of first movers in fewer funds increases the system’s vulnerability. As

a consequence, fund liquidity management measures that unintentionally alter the distribution of

first movers across funds, e.g., by prompting them to migrate and concentrate into fewer funds,

might increase the fragility of the system. For example, patchy adoption of swing pricing (a tool to

remove the first-mover incentive) may inadvertently reduce the system’s ability to withstand shocks,

instead of strengthening it. Second, because spillover losses do not scale linearly with model in-

puts, small changes in asset liquidity or investor base can substantially alter the vulnerability of

the financial system. This implies that historical evidence on mutual fund resilience may severely

underestimate or fail to predict future fragility. The same asset shock may cause spillover losses of

different magnitudes in different market environments. Third, the nonlinearity reinforces fire-sale

contagion across mutual funds and asset classes. Forced liquidations can spread losses across funds

and assets through overlapping portfolios. As the prospects of widespread contagion increase, so

does the incentive to redeem early.

Our work provides a new framework to design macroprudential stress tests and measure vulner-

ability. Prior studies have analyzed the mechanism that renders mutual funds vulnerable to runs

(Allen et al. (2009) and Gennaioli et al. (2013)), and provided empirical evidence for this fragility

(Chen et al. (2010), Goldstein et al. (2017), Jiang et al. (2022)). The empirical study of John-

son (2004) shows that short-term fund shareholders pay for less liquidity than they demand, and

thus impose liquidity costs on the long-term shareholders because of the liquidity mismatch. Our

work differs from most prior studies, because we focus on measuring the impact of the first-mover

incentive created by the mutual fund institutional structure.

Our paper is related to models of fire sales caused by propagation of shocks across balance sheets

of constrained banks (see Greenwood et al. (2015), Duarte and Eisenbach (2021), and Capponi and

Larsson (2015)). In these models, banks liquidate part of their holdings in response to an exogenous

shock to satisfy leverage requirements. The spillover losses due to deviation of market prices from

fundamentals are a measure of the banking sector’s vulnerability to fire sales.
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The studies of Fricke and Fricke (2021) and Cetorelli et al. (2016) adapt the banking fire-

sales model of Greenwood et al. (2015) to mutual funds. They conclude that vulnerability to

spillover losses is significantly lower for mutual funds. These studies recognize that poor fund

performance leads to forced sales and depressed prices, but do not account for the amplifying

effect of funds’ liquidity mismatch — the mismatch between the liquidity promised to the funds’

investors and the liquidity of the funds’ assets. This liquidity mismatch can create greater fire-sale

losses through mutual fund ownership than would be incurred if investors held the funds’ assets

directly. From the perspective of financial stability, it is the key feature that differentiates mutual

fund investing from direct ownership of the fund’s assets. Hence, macroprudential frameworks that

do not incorporate the first-mover advantage, such as those discussed above, may underestimate

mutual fund vulnerability.

Choi et al. (2020) study the impact of fire sales caused by fund flows in the corporate bond

market. They conclude that the impact of fire sales is low because corporate bond funds maintain

significant liquidity buffers to manage redemptions. The bond liquidity measure of Chernenko and

Sunderam (2020) is also based on the observation that cash buffers can counterbalance low market

liquidity. Cash buffers can help mitigate costly liquidations, but funds still sell non-negligible

amounts of illiquid assets — for every 1% of outflows, corporate bond holdings decrease by 0.84%3

— and cash buffers are eventually depleted. As argued above, we cannot extrapolate from the

historically low impact of fire sales triggered by fund flows because the first-mover advantage is

highly nonlinear in periods of market stress and low liquidity.

Ma et al. (2022a) demonstrate the growing significance of mutual funds as intermediaries in

providing liquidity to investors. To evaluate this liquidity provision across various institutional

structures, they develop the Liquidity Provision Index (LPI). This index measures liquidity trans-

formation by comparing the contractual value of an investor’s claim to the liquidation value of the

fund’s portfolio. A key finding of their study is that funds implementing swing pricing offer en-

hanced liquidity. This improvement is attributed to reduced early redemption by investors, enabling

funds to maintain smaller cash reserves and hold more illiquid assets. Consequently, this lowers

the portfolio’s liquidation value and elevates the LPI. Our study complements theirs by examin-

ing the systemic effects of such liquidity transformation, proposing a novel systemic risk measure.

We highlight the distinct advantages of swing pricing in improving the resilience of mutual funds

against market shocks.

To analyze these dynamics, we extend the analytical framework of Capponi et al. (2020), which

examines the feedback loop between asset illiquidity, mutual fund performance, and redemption

flows. We expand this model to incorporate multiple assets and funds, and analyze the distributional

effect of first movers across funds. Furthermore, we complement the empirical findings of Jin

3Li et al. (2023) conduct a similar investigation to Choi et al. (2020), but on municipal bonds. They conclude
that fire sales due to fund outflows have a significant impact on prices. During the Covid-19 period, bonds held by
municipal funds fell more than bonds held primarily by retail investors. Yield spreads between the two types of bonds
persisted even after market conditions reverted to normal, suggesting the presence of a fire-sale premium for bonds
held by mutual funds.
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Figure 2.1: Aggregate daily flows (left panel) and average daily return (right panel) for institutional
and retail fund share classes in U.S. open-end municipal bond funds during Q1 2020. We source
data from the Morningstar database. Municipal bond funds posted positive returns after the
Fed announced that the Money Market Mutual Fund Liquidity Facility would accept certain U.S.
municipal bonds as eligible collateral on March 20, 2020.

et al. (2022), who investigate the role of swing pricing in mitigating vulnerabilities within mutual

funds. We contribute to this discourse by demonstrating potential risks associated with the uneven

adoption of swing pricing. Specifically, we illustrate how such uneven implementation could lead

to an excessive concentration of first-mover investors in a limited number of funds, potentially

undermining the financial stability of the wider mutual fund system.

The rest of the paper is organized as follows. In Section 2, we use municipal bond fund data

to motivate our use of institutional investors as a proxy for first movers. In Section 3, we develop

our framework and specify our measure of mutual fund vulnerability. In Section 4, we apply the

model to a dataset of mutual fund portfolio holdings. In Section 5, we consider variations of our

baseline framework. In Section 6, we use our framework to quantify the effectiveness of policies

aiming for mutual fund stability. Section 7 connects our approach with the theoretical literature.

We conclude in Section 8. Proofs of technical results and robustness checks are relegated to the

Appendix.

2 Evidence from Municipal Bond Funds

As motivation for our framework, we use municipal bond funds data to test the hypothesis that

institutional investors react faster to a drop in bond prices than retail investors. Municipal bonds

are less liquid than many other assets held by funds, and therefore the effect of funds’ liquidity

transformation is stronger. This evidence lends support to our choice of using institutional investors

as a proxy for first-mover investors.

As the Covid-19 shock hit financial markets in March 2020, municipal bond funds experienced a

spike in outflows. While average returns for institutional and retail fund share classes were virtually

indistinguishable, institutional investors were significantly more likely to run for the exit (see Figure

2.1). Institutional investors are arguably more active in monitoring market conditions and have
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the technical skills to anticipate how selling pressure exacerbates the impact of a market shock on

prices. As a result, we expect them to be more likely to withdraw funds early.

We run the following panel regression using daily data on U.S. open-end municipal bond funds

from the Morningstar database for Q1 2020, a period that covers the Covid-19 market shock:

Flowi,t = α+ β1Returni,t−1 + β2Returni,t−1 × I{Returni,t−1<0}

+ β3I{Returni,t−1<0} + γControlsi,t + εi,t.

Here, Flowi,t is the flow for fund share class i on day t, as reported in the Morningstar database.

The Controlsi,t variables are the lagged flow (the flow over day t − 1), Log(TNA) (the logarithm

of total net assets held by the fund on day t) and IlliqFund (an indicator variable equal to one if

the fund invests in long-term bonds and zero if it invests in short-term or medium-term bonds).4

The above specification has been adapted from the linear model of Goldstein et al. (2017). The

primary distinction in our approach is the utilization of raw returns, instead of returns exceeding

a sector benchmark as in Goldstein et al. (2017). Our choice to use raw returns is driven by our

focus on the systemic implications of mutual fund flows, particularly the impact of sector-wide

outflows, rather than isolating the effects of outflows from funds that underperform relative to a

sector benchmark. This approach is especially pertinent in light of the Covid-19 pandemic, during

which we observed significant outflows from most funds, not solely those with negative returns

compared to their sector benchmarks.

We run the regression separately for institutional and retail share classes. The regression find-

ings presented in Table 2.1 reveal that a 1% rise in negative returns correlates with a more than

50% larger increase in outflows for institutional investors, compared to retail fund share classes

(evidenced by a comparison of 0.094 = -0.033 + 0.127 for institutional share classes against 0.060

= -0.014 + 0.074 for retail share classes). Conversely, the component of outflows independent of

negative return size remains almost the same between institutional and retail investors (illustrated

by -0.036 = 0.044 - 0.080 for institutional share classes versus -0.037 = 0.014 - 0.051 for retail

share classes). These findings support our hypothesis that institutional investors are more reactive

to negative market shocks. In Appendix A, we show that our results are robust to the observa-

tion frequency, i.e., they remain qualitatively the same if we use quarterly data from the CRSP

database.5 Our results are also consistent with prior studies, including Schmidt et al. (2016), who

compare flow patterns in money market mutual funds around the collapse of Lehman Brothers in

September 2008. They provide evidence that large and more sophisticated institutional investors

have a stronger reaction to negative shocks than retail investors.

4Results are nearly identical if IlliqFund is defined to include long-term and medium-term bond funds.
5Unlike Morningstar, the CRSP database does not include daily mutual fund flow data.
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Table 2.1: Results from regressing flows on previous day returns for municipal bond funds. Returns are
computed after accounting for paid fees. Both flows and returns are measured in percent. We use daily data
from Morningstar for institutional fund share classes (left column) and for retail fund share classes (right
column) during Q1 2020. The dependent variable is the proportional flow of fund share classes on day t.
The return variable is the daily return on day t− 1. Lagged Flow is the flow on day t− 1. Log(TNA) is the
natural logarithm of total net assets on day t− 1. Flows are winsorized at the 1st and 99th percentiles.

Institutional Retail

Constant 0.044*** 0.014***
(0.01) (0.00)

Return -0.033** -0.014***
(0.01) (0.00)

Return×I{Return<0} 0.127*** 0.074***

(0.01) (0.01)
I{ Return<0} -0.080*** -0.051***

(0.01) (0.01)
Lagged Flow 0.190*** 0.150***

(0.01) (0.01)
Log(TNA) -0.001*** -0.001

(0.00) (0.00)
IlliqFund 0.040*** 0.013***

(0.01) (0.00)

N 19,960 37,379
Adj. R2 0.078 0.042

***p < 0.01, **p < 0.05, *p < 0.1
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3 Framework

We begin with the design of a reference model that does not account for the first-mover incentive.

The sequence of events is as follows: (1) Asset prices are subject to an exogenous initial shock;

(2) investors redeem shares in response to funds’ (negative) returns; (3) funds liquidate assets to

repay redeeming investors; (4) forced sales drive down market prices; (5) further fund redemptions

and asset sales are triggered, i.e., steps (2)–(4) are repeated. This reference framework is related

to that proposed by Cetorelli et al. (2016) and Fricke and Fricke (2021) for mutual funds based on

the banking model of Greenwood et al. (2015). Our reference model differs primarily in accounting

for multiple rounds of share redemptions and asset sales.

We then extend the reference model to the full model, which accounts for the liquidity mismatch

in the mutual fund structure. The full model differs from the reference model in two crucial aspects:

some investors are fast and redeem before the fund liquidates assets, and thus get repaid at an NAV

that does not yet account for liquidation costs; and those investors respond not only to realized

returns but also to anticipated liquidation costs that will result from further redemptions by other

investors.

We assume that a fund liquidates assets in proportion to its holdings. This is the most commonly

adopted liquidation strategy in the fire sales literature (e.g., Greenwood et al. (2015), Duarte and

Eisenbach (2021)), and the one implicitly assumed by the SEC in its proposed rule “Money Market

Fund Reforms”.6 Jiang et al. (2021) also find that funds tend to liquidate proportionally in stressed

scenarios, in order to prevent the liquidity level of their portfolio from deteriorating excessively.

Furthermore, funds often have mandates that restrict them from deviating widely from a target

mix of assets. We consider alternative liquidation rules in Section 6.2 and Appendix C.

We use lowercase letters to denote quantities for individual funds or assets, and uppercase letters

to denote vectors or matrices that summarize quantities for multiple funds or assets. The system

consists of N mutual funds, indexed by i ∈ {1, . . . , N}, and K assets, indexed by k ∈ {1, . . . ,K}.
We use ai to denote the dollar value of fund i’s asset holdings, and A to denote the N ×N diagonal

matrix with entries Aii = ai. The weight of asset k in fund i’s portfolio, mik, is the ratio of the

dollar value of fund i’s holdings in asset k to ai, and M is the N ×K matrix of portfolio weights.

The asset holdings of each fund i are divided into q0i identical portfolio units. One portfolio unit

comprises a pro rata amount of each security, i.e., a portfolio unit of fund i consists of mik shares of

each asset k. We normalize the initial price of a share of each asset to $1. Hence, by construction,

the initial value p0i of a unit of fund i’s portfolio is equal to $1. For each fund i, there are n0
i

outstanding shares. The initial value of a share of fund i, s0i , is also normalized to $1. Therefore,

ai = n0
i = q0i .

6The swing factor in the proposed rule was to be computed as the cost of liquidating a pro rata amount of each
security in the fund’s portfolio. The same procedure applies to the liquidity fee in the final rule.
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3.1 Reference Model without First Movers

We outline the sequence of events and actions in the reference model of mutual funds where no first

mover is present. Throughout the paper, we use ⊤ to denote the transpose of a matrix.

1. Exogenous shock and investors’ redemptions. The assets are hit by negative shocks ∆F 0 :=

(∆f0
1 , . . . ,∆f0

K)⊤. The magnitude of shock ∆f0
k is smaller than the price of asset k, so asset prices

remain positive. The value of a portfolio unit of fund i decreases by

∆p0i =
K∑
k=1

mik∆f0
k . (1)

Therefore, the change in value of each fund’s portfolio is given by the vector ∆P 0 = M∆F 0. The

change in value of a share of fund i is

∆s0i =
q0i
n0
i

∆p0i = ∆p0i . (2)

Let U be the N ×N diagonal matrix with Uii =
q0i
n0
i
. In vector form, the change in fund share value

is ∆S0 = U∆P 0 = UM∆F 0. Because n0
i = q0i , U is the identity matrix.7

We assume a linear relation between fund performance and net fund flow. Let bi be the flow-

to-performance sensitivity of fund i, i.e., following a change in fund i’s share value ∆s0i , investors

redeem

∆w0
i := −ai · bi ·∆s0i (3)

shares of the fund. B is the N×N diagonal matrix with Bii = bi. In vector form, ∆W 0 = −AB∆S0

is the number of redeemed shares per fund.

2. Asset liquidation. Funds liquidate assets to raise cash to repay redeeming investors. We

assume that funds sell their holdings proportionately to their portfolio weights. In other words,

each fund sells some number of its portfolio units. This pro rata liquidation strategy is the most

commonly adopted assumption in the fire-sale literature;8 it posits that funds aim to hold the same

portfolio mix before and after asset liquidation.

Each fund i sells ∆q0i units of its portfolio to meet ∆w0
i redemptions, with ∆q0i determined by

∆q0i · (p0i +∆p0i ) = ∆w0
i · (s0i +∆s0i );

the expression on the left is the cash raised through the sale, and the expression on the right is

the cash required. Because p0i = s0i and ∆p0i = ∆s0i , it follows that ∆q0i = ∆w0
i . Since fund i

7In the full model, the number of portfolio units and that of fund shares may instead deviate, and it is therefore
more convenient to express quantities using the matrix U .

8For example, Greenwood et al. (2015), Duarte and Eisenbach (2021), Fricke and Fricke (2021) make this assump-
tion.
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sells mik∆q0i shares of asset k, the total number of shares of asset k liquidated across funds is∑N
j=1mjk∆q0j . In vector form, ∆Q0 is the number of sold portfolio units per fund, and M⊤∆Q0 is

the number of sold shares per asset across all funds.

3. Price impact. Asset liquidation has a linear impact on asset prices. After a sale of ∆h shares

of asset k, the price of asset k declines by lk ·∆h. L is the K×K diagonal matrix with price impact

coefficients Lkk = lk.

The number of shares of asset k sold by all funds is
∑N

j=1mjk∆q0j , so the price of asset k declines

by lk
∑N

j=1mjk∆q0j . The change in value of a portfolio unit of fund i due to liquidation costs is

then

∆p1i = −
K∑
k=1

miklk

N∑
j=1

mjk∆q0j .

In vector form, ∆P 1 = −MLM⊤∆Q0. Hence, the change in value of fund i’s share due to liquida-

tion costs is

∆s1i =
(q0i −∆q0i )(p

0
i +∆p0i +∆p1i )

n0
i −∆w0

i

− s0i −∆s0i .

Since p0i = s0i , ∆p0i = ∆s0i , q
0
i = n0

i and ∆q0i = ∆w0
i , we obtain that ∆s1i =

q0i
n0
i
∆p1i .

9 Hence, in

vector form, ∆S1 = UMLM⊤UAB∆S0.

4. Further rounds of redemptions and asset liquidation. The change in funds’ share values

due to the price impact of fire sales triggers further redemptions. Investors redeem an amount

∆W 1 = −AB∆S1 of additional fund shares, funds liquidate ∆Q1 = −UAB∆S1 portfolio units,

which in turn drives down the value of each portfolio unit by ∆P 2 = MLM⊤UAB∆S1, and

results in the fund share change in value ∆S2 = UMLM⊤UAB∆S1. The total fund share value

change due to both fire sales and the initial exogenous shock is ∆S∞ :=
∑∞

n=0∆Sn, where ∆Sn =

(UMLM⊤UAB)n∆S0 is the change in value after the n-th round of redemptions. (Recall that in

the reference model, U is the identity matrix. We have included it here in preparation for the full

model.)

3.2 Full Model

In this section, we describe the steps and actions in the full model, which accounts for the presence

of first movers in the funds. We refer to all other investors as second movers. Recall that B is the

N ×N diagonal matrix with Bii = bi, where bi is fund i’s flow-to-performance sensitivity, and L is

the K ×K diagonal matrix with price impact coefficients Lkk = lk.

1. First movers’ redemptions. Following the initial negative shock ∆F 0 = (∆f0
1 , . . . ,∆f0

K)⊤ to

asset prices, the value of fund i’s portfolio unit declines by ∆p0i in (1), and the fund’s NAV also

9In the reference model,
q0i
n0
i
= 1. We include this coefficient for notational consistency with the full model.
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declines by ∆s0i in (2). We write ∆s∞i for the total change in fund i’s NAV due both to the initial

exogenous shock and subsequent fire sales. We do not yet know ∆s∞i ; it will be determined as a

fixed point as we iteratively update the funds’ NAVs through subsequent rounds of redemptions

and liquidations. We write ∆s∗i for an initial guess of the total NAV change ∆s∞i .

The proportion of first movers among fund i’s investors is πi, and Π is the N×N diagonal matrix

with Πii = πi. Fund i’s first movers withdraw their investments in response to the anticipated (as

yet unrealized) NAV change ∆s∗i and redeem

∆wfm
i := −ai · πi · bi ·∆s∗i (4)

fund shares. In vector form, ∆W fm = −AΠB∆S∗ represents the quantity of shares redeemed

by first movers, and ∆S∗ is the vector of anticipated NAV changes, ∆s∗i , per fund. Equation (4)

captures the key feature of first movers: they anticipate that liquidation costs will drive down the

fund’s NAV, and they redeem shares in anticipation of this decline. In contrast, the redemption

orders in (3) respond only to the realized decline ∆s0i .

2. Asset liquidation to repay first movers. When mutual fund investors redeem shares, they

receive a price per share equal to the NAV at the end of the day that they submitted their redemp-

tion orders. As the fund sells assets to meet these redemptions, it incurs liquidation costs that are

borne by investors who remain in the fund. In particular, first movers do not bear the liquidation

costs they impose on the fund. Each share of fund i redeemed by first movers is repaid at the price

s0i +∆s0i , and fund i sells ∆qfmi units of its portfolio to meet first movers’ redemptions. Since funds

sell assets in proportion to their initial allocations, the total amount of shares of asset k liquidated

across all funds is
∑N

j=1mjk∆qfmj , and the price of a share of asset k declines by lk
∑N

j=1mjk∆qfmj .

The cash raised by each fund i from asset sales is ∆qfmi · (p0i +∆pfmi ), where

∆pfmi = ∆p0i −
K∑
k=1

miklk

N∑
j=1

mjk∆qfmj (5)

is the change in value of fund i’s portfolio unit due to both the exogenous shock (reflected in ∆p0i )

and asset liquidation (reflected in the double sum in (5)). In vector form, ∆Qfm is the number of

portfolio units sold to repay first movers, and ∆P fm = ∆P 0 −MLM⊤∆Qfm is the resulting price

change. In order to meet first movers’ redemptions, the number of portfolio units ∆qfmi sold by

fund i must satisfy

∆qfmi · (p0i +∆pfmi ) = ∆wfm
i · (s0i +∆s0i ). (6)

The expression on the left is the cash raised through the sale, and the expression on the right is the

cash required to redeem ∆wfm
i fund shares. Hence, the vector ∆Qfm is the solution to the system

Diag[∆Qfm](P 0 +∆P fm) = Diag[∆W fm](S0 +∆S0), (7)
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where Diag[x] is the diagonal matrix whose j-diagonal entry is xj . Recall that ∆W fm and, as a

consequence, ∆Qfm and ∆P fm are functions of the (as yet unknown) total NAV change ∆S∗.10

3. NAV change due to first movers’ redemptions. The share price s0i + ∆s0i received by first

movers does not incorporate the liquidation costs they generate because s0i + ∆s0i = p0i + ∆p0i >

p0i +∆pfmi , and therefore ∆qfmi > ∆wfm
i in (6). As a result,

nfm
i := n0

i −∆wfm
i ≥ q0i −∆qfmi =: qfmi . (8)

Here, nfm
i is the number of fund shares remaining after the first-mover redemptions, and qfmi is the

number of portfolio units remaining after the asset sales used to meet these redemptions. Fund i’s

NAV after first movers’ redemptions is sfmi =
qfmi

nfm
i

(p0i +∆pfmi ), which is the ratio of the fund’s assets

to the number of fund shares outstanding. The change in NAV observed by remaining investors is

∆sfmi = sfmi − s0i . Let U
fm be the N ×N diagonal matrix with diagonal entries

Ufm
i =

qfmi

nfm
i

. (9)

The NAV change due to both the exogenous shock and first movers’ redemptions is

∆Sfm = Ufm(P 0 +∆P fm)− S0, (10)

where the vectors P 0 and S0 are, respectively, the initial value of a portfolio unit and of a fund

share. The NAV change ∆Sfm is a function of ∆S∗.

4. Second movers’ redemptions. The remaining iterations mirror the reference model. Fund

i’s second movers observe the NAV change ∆sfmi and redeem ∆w0,sm
i = −ai(1 − πi)bi∆sfmi fund

shares, which parallels (3). In vector form, ∆W 0,sm = −A(1−Π)B∆Sfm. Following the same steps

as in the reference model, redemptions force funds to sell assets, further depressing asset prices and

fund NAVs. More precisely, the impact of second movers’ redemptions on each fund’s NAV is

∆S1,sm = UfmMLM⊤UfmA(I −Π)B∆Sfm.

This NAV change triggers further rounds of redemptions by second movers. The total change in

each fund’s NAV is

∆S∞ =
∞∑
n=0

∆Sn,sm (11)

where ∆Sn,sm = (UfmMLM⊤UfmA(I −Π)B)n∆Sfm.

10In our numerical calculations, we truncate (5) and (6) so that prices never become negative and funds never sell
more assets than they own. In our theoretical analysis in Appendix B, we show that these caps are unnecessary for
sufficiently small price impact coefficients (lk)k.
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5. Total NAV change. The total NAV change ∆S∞(∆S∗) =
∑∞

n=0∆Sn,sm computed in the

previous steps depends on the initial guess ∆S∗ through ∆Sfm. But recall that we assume that first

movers correctly anticipate the full NAV impact of the initial shock and subsequent liquidations.

This holds when ∆S∗ = ∆S∞(∆S∗); that is, when the anticipated NAV impact is a fixed point of

the mapping defined by (11). The next proposition establishes the existence of such a fixed point.

Proposition 1. Assume that M has nonnegative entries, each price impact coefficient lk is suffi-

ciently small, bi < 1 for each i, and ∆si0 > −si0 for each i.11 Then there exists a unique fixed point

of the mapping ∆S∗ → ∆S∞(∆S∗) defined in step 5 of the above procedure.

3.3 Aggregate Vulnerability Measure

We measure the aggregate vulnerability of the mutual fund sector as the total amplification of

losses through the sector. We measure this amplification through the ratio between the endogenous

losses, due to fund redemptions and fire sales, and the exogenous losses caused by the initial shock

only. Formally, we define the Spillover Loss Ratio as

SLR :=

∑
i ai∆ssli∑
i ai∆s0i

,

where the sum is over funds, ai is fund i’s asset value, and ∆ssli := ∆s∞i −∆s0i is the NAV change

due exclusively to the feedback loop between fund redemptions and fire sales of assets needed to

meet these redemptions.

We impose a cap on both the number of portfolio units that each fund can sell and the price

impact imposed on each asset. A fund cannot sell more portfolio units than it owns, so the total

number of liquidated portfolio units ∆qi is capped at ai. A fund fails if it liquidates all of its assets.

Furthermore, asset prices cannot become negative as a result of price impact from sales.

4 Mutual Fund Aggregate Vulnerability

In this section, we apply the model to the system of U.S. mutual funds and estimate the system’s

Spillover Loss Ratio from data.

4.1 Data Description

We use quarterly mutual fund holding data from the CRSP Survivor-Bias-Free US Mutual Fund

Database spanning the period Q1 2010 through Q4 2020. For each date, we remove from the

database ETFs, index funds, money market funds, funds with missing information, and funds with

less than $5 million in total net assets. The database includes the total net asset value of each fund,

11An initial shock ∆si0 = −si0 implies that fund i’s asset holdings become worthless, and its fire sales are inconse-
quential. Hence, the fixed point of the system could be computed without including fund i.
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and groups each fund’s holdings into the twelve asset classes listed in Table 4.1. We divide funds

into nine types, according to their CRSP Style Code. The types are equity domestic (ED), equity

foreign (EF), fixed income municipal (IU), fixed income corporate (IC), fixed income government

(IG), fixed income foreign (IF), other fixed income (I), mixed fixed income and equity (M), and

other (O). For each type, we work with the 100 largest funds, and we combine the holdings for the

remaining funds into a single aggregate fund.12 Hence, for each quarter the system consists of at

most 909 funds, and we use these funds to construct the matrices A and M from the CRSP data.

We use price impact parameters estimated under stressed trading conditions by Bouveret and

Yu (2021).13 To account for time varying liquidity, we construct a price impact matrix Lt that

depends on time t. The parameters in Table 4.2 pin down the matrix Lt = L∗ at the initial date of

our analysis (the benchmark date), which is Q1 2010. The price impact matrix is then renormalized

by the size of the financial sector on subsequent dates to capture the idea that the pool of potential

buyers of fund assets varies over time. For this calculation, we follow a similar approach to Duarte

and Eisenbach (2021). As a proxy for the wealth wt of potential buyers of liquidated assets, we

take the value of assets held by the U.S. financial sector and U.S. households minus the value of

mutual fund shares they hold. We source this data from the “Financial Accounts of the United

States”.14 The price impact matrix at date t is Lt = w∗

wt
L∗, where w∗ is the value of wt at the

benchmark date.

The CRSP database classifies every fund share class as either institutional or retail. We measure

the proportion of first-mover investors πi in fund i as the proportion of total net assets held by

institutional share classes within fund i. This identification is supported by the empirical evidence

and discussion in Section 2. We will also investigate the effect of varying the proportion of first

movers. Observe that our measure πi depends on the quarter t.

Prior research has studied the relationship between fund flows and performance. For example,

Franzoni and Schmalz (2017) find that the sensitivity of flow to performance strongly depends on

the state of the market and can range from 20% to around 70%. These estimates cannot disentangle

the direct response measured by the coefficient b in our model from the combined effect of first- and

second-mover redemptions. We will therefore examine the impact of different values of b, holding

this parameter constant across funds.

We apply shocks of different magnitudes to different asset classes, based on their relative volatil-

ities. For example, to translate a 10% drop in stock prices to an equally severe shock to municipal

bonds, we would use a drop of 3.981%, based on the relative volatilities in Table 4.2. To calculate

the relative volatilities under stress, we use daily returns during Q1 2020 (the Covid-19 shock) on

12We have verified that aggregating funds at different levels of granularity does not significantly affect our re-
sults. Aggregation may even understate vulnerability, because it removes the first-mover heterogeneity within each
aggregated fund.

13Greenwood et al. (2015) assume that a net trade of 10 billion euros leads to a price change of 10 basis points,
regardless of the liquidated asset. Duarte and Eisenbach (2021) consider heterogeneous price impact parameters
implied by the Net Stable Funding Ratio of the Basel III regulatory framework.

14The corresponding codes are FL794090005 (Domestic financial sectors; total financial assets), FL154090005
(Households and nonprofit organizations; total financial assets), FL793064205 (Domestic financial sectors; mutual
fund shares; asset), FL153064205 (Households and nonprofit organizations; mutual fund shares; asset).
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Domestic Foreign FI FI FI
Equity Equity Corporate Foreign Government

Total assets ($ billions) 1,783 647 46 75 73
Institutional investors (percent) 37.67 48.79 35.64 62.36 47.92

Portfolio shares (percent):
Cash 2.19 2.12 2.03 4.84 1.99
Common Stocks 85.32 84.51 0.38 0.11 0.03
Preferred Stocks 0.23 0.91 0.49 0.11 0.01
Convertible Bonds 0.15 0.04 0.65 0.10 0.00
Corporate Bonds 1.94 0.89 57.86 24.08 5.51
Municipal Bonds 0.08 0.03 2.89 1.11 0.29
Government Bonds 3.33 1.65 16.46 59.09 72.26
Asset-Backed Securities 0.33 0.07 4.92 2.25 6.12
Mortgage-Backed Securities 0.79 0.14 9.39 2.30 10.85
Other Equities 2.40 7.15 0.09 0.06 0.00
Other Fixed-Income Securities 0.34 0.12 2.49 1.52 1.68
Other Securities 2.90 2.38 2.36 4.44 1.24

FI FI Mixed FI Other
Muni Other & Equity

Total assets ($ billions) 213 566 570 110
Institutional investors (percent) 26.29 55.48 27.18 51.82

Portfolio shares (percent):
Cash 1.21 2.67 2.78 6.84
Common Stocks 0.07 0.51 51.93 6.23
Preferred Stocks 0.04 0.43 0.59 0.13
Convertible Bonds 0.00 0.28 1.23 0.34
Corporate Bonds 2.06 43.74 13.98 16.19
Municipal Bonds 95.38 1.52 0.61 0.48
Government Bonds 0.14 18.99 13.91 8.69
Asset-Backed Securities 0.02 9.42 1.64 9.02
Mortgage-Backed Securities 0.02 14.63 4.52 24.39
Other Equities 0.01 0.19 2.26 0.34
Other Fixed-Income Securities 0.45 4.74 1.76 20.72
Other Securities 0.59 2.87 4.77 6.61

Table 4.1: Summary of the balance sheet data used to compute aggregate vulnerability. The table shows
average total net assets, proportion of assets held by institutional fund share classes, and aggregate portfolio
composition for each fund type over the period from Q1 2010 to Q4 2022.
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Asset Class Price Impact Relative Volatility

Cash 0 0

Common Stocks 2.8×10−13 1

Preferred Stocks 2.8×10−13 1

Convertible Bonds 7.7×10−13 0.8710

Corporate Bonds 7.7×10−13 0.3169

Municipal Bonds 14.5×10−13 0.3981

Government Bonds 0.3 ×10−13 0.1905

Asset-Backed Securities 0.5×10−13 0.1829

Mortgage-Backed Securities 0.5×10−13 0.1829

Other Equities 2.8 ×10−13 1

Other Fixed-Income Securities 0.3 ×10−13 0.3169

Other Securities 0 0

Table 4.2: A price impact of 10−13 indicates that a $10 billion net trade leads to a price decline of 10 basis
point. The second column is the relative daily volatility, over Q1 2020, of an ETF representative of each
asset class compared to that of equity.

representative ETFs for each asset class. We use the Vanguard Total Stock Market ETF (VTI) for

common and preferred stocks and other equities; the iShares Convertible Bond ETF (ICTV) for

convertible bonds; the Vanguard Total Bond Market Index Fund ETF (BND) for corporate bonds

and other fixed-income securities; the iShares National Municipal Bond ETF (MUB) for municipal

bonds; the iShares US Treasury Bond ETF (GOVT) for government bonds; and the iShares MBS

ETF (MBB) for mortgage-backed securities and asset-backed securities. Unless otherwise specified,

we apply the exogenous shock simultaneously to all asset classes, excluding the “Other Securities”

class, to which no shock is applied.

4.2 Mutual Fund Vulnerability in the Reference Model

We begin by measuring spillover losses in the reference model without first movers and then measure

the impact of accounting for first movers. Through portfolio overlap, as reflected in M , fire sales

can spread from one asset to another. We refer to the matrix MLM⊤AB as the systemicness

matrix. The total change in each fund’s share value is then given by the vector

∞∑
n=0

(MLM⊤AB)n∆S0,

At each round of redemptions, the vector of shocks is multiplied by the systemicness matrix. If

its spectral radius is smaller than 1, then the spillover losses of each round are eventually smaller

than losses from the previous round of redemptions. If instead the spectral radius is larger than

1, the vector of NAV shocks ∆S0 can get amplified in each iteration. The spectral radius of

the systemicness matrix is therefore a measure of aggregate fund exposure to fire sales caused by

redemptions.
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Figure 4.1: Flow-to-performance sensitivity is assumed constant across funds, data refer to the
first quarter of each year. The left panel shows the spectral radius of the systemicness matrix for
different values of flow-to-performance sensitivity and different years. The right panel shows the
Spillover Loss Ratio for different values of flow-to-performance sensitivity and different years.

The systemicness matrix can be decomposed into three factors, analogously to the decomposi-

tion of aggregate vulnerability in Duarte and Eisenbach (2021): MLM⊤ is the illiquidity concen-

tration, A is the size of the system, B is the flow-to-performance sensitivity. The (i, j) entry of the

illiquidity concentration matrix MLM⊤,
∑K

k=1 lkmikmjk, is the liquidity-weighted portfolio overlap

of funds i and j. Recall that the entries of the diagonal matrices A and B are, respectively, the

net total assets and flow-to-performance sensitivity of each fund. The spectral radius is therefore

larger, and the system more vulnerable, if large funds with high flow-to-performance sensitivity

have significant portfolio overlap on illiquid assets.

The magnitude of the SLR is directly related to the value of the spectral radius. In the right

panel of Figure 4.1, we calculate the SLR for an initial exogenous shock of −5%, scaled by the

relative volatilities listed in Table 4.2, specific to each asset class. By comparing the two panels

in Figure 4.1, we see that spillover losses dwarf initial losses if the spectral radius is close to 1

or larger.15 Moreover, in recent years, the spectral radius has exceeded 1 for large, yet plausible,

values of flow-to-performance sensitivity.

Investors that hold their assets directly, rather than through a mutual fund, may also liquidate

them if their portfolios are subject to a negative shock. As a result, they would drive down asset

prices. If holding a portfolio directly or through a fund does not affect investors’ sensitivity to

performance, the spillover losses quantified using the reference model would remain in the absence

of mutual fund intermediation. However, as we demonstrate in the next section, spillover losses

would be greater if the assets are intermediated by the fund, after accounting for the first-mover

advantage.

15Observe that spillover losses are finite because of the imposed caps discussed in Section 3.3.

17

Electronic copy available at: https://ssrn.com/abstract=4270464



Figure 4.2: The left panel shows the Spillover Loss Ratio over time for different values of flow-
to-performance sensitivity with/without first movers. The right panel shows the proportion of
Spillover Loss Ratio due to the presence of first movers.

4.3 Impact of First-Mover Advantage

We now quantify the share of spillover losses that can be attributed to funds’ liquidity mismatch

and the resulting first-mover advantage.

4.3.1 Spillover Loss Ratio over Time

The presence of first-mover investors exacerbates the vulnerability of a fragile system but has

minimal impact on a resilient one. In fact, first movers have limited incentive to exit a fund

early, if asset liquidation costs are low, i.e., when the spectral radius of the systemicness matrix

is significantly below 1. However, the first-mover advantage has a strong destabilizing effect on a

system that is already vulnerable: if first movers expect funds to face significant spillover losses,

then they benefit from redeeming their fund shares early, accelerating a systemic fire-sale spiral. In

Figure 4.2, we compute the SLR with and without first movers for an initial price change of −5%

multiplied by the relative volatilities in Table 4.2 for each asset. If in the absence of first movers the

system would be resilient to spillover losses, e.g., if flow-to-performance sensitivity is low, then the

impact of first movers is negligible. However, the fragility of a system that is moderately vulnerable

without first movers may deteriorate when accounting for the first-mover advantage. As shown in

Figure 4.2, after the year 2017 and assuming a flow-to-performance sensitivity of 55%, the SLR in

the full model is often at least 20% larger than in the reference model.

4.3.2 Contributing Factors to Spillover Losses

The vulnerability of the mutual fund system is sensitive to several factors (see Figure 4.3). The

first factor is the size of the U.S. mutual fund industry relative to the whole U.S. financial sector.
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Over time, funds have accounted for an increasingly large share of the whole financial market. To

see this, compare the first quarter of 2010 when assets held by mutual funds accounted for less than

12% of all financial assets, with the last quarter of 2019 when this proportion grew to more than

16%.

A second factor is the concentration of fund holdings in illiquid assets. Let am be the aggregate

asset value held by mutual funds and atot the total value of assets in the whole financial system.

The matrix C := atot

am ·MLM⊤A quantifies the impact that portfolio overlap in illiquid assets has

on each fund.16 Notice that this matrix is independent of the size of the system: the entries of
A
am are the weights of each fund in the system, and the entries of atotL are (approximately) a size-

independent measure of each asset’s illiquidity. (Recall that our specification of price impact is such

that assets are more liquid as the size of the whole financial system increases.) We measure the

amplification effect due to portfolio concentration in illiquid assets using the spectral radius of the

matrix C. Notice that accounting only for the impact of C on the initial vector of shocks ∆S0 does

not capture vulnerability due to portfolio commonality. This is because we consider multiple rounds

of redemptions and fire sales and, in each round, the vector of realized shocks across asset classes

may be different compared to the previous round. As seen from the top right panel of Figure 4.3,

the impact of illiquidity concentration on the system’s vulnerability has increased steadily since

2013.

A third factor is the propensity of investors to redeem fund shares in response to a decline in

fund NAV. The stronger the reaction of investors to negative NAV shocks, the more vulnerable

the system to asset fire sales. As shown in Goldstein et al. (2017), funds that hold more illiquid

assets have a higher sensitivity of outflows to bad performance. Even if our analysis assumes that

the flow-to-performance sensitivity bi is the same across funds, a fund holding illiquid assets is

subject to more redemptions after a negative initial shock than a fund holding liquid assets because

first movers anticipate the higher spillover losses and therefore have a stronger incentive to redeem

early.17 Hence, our model is consistent with the finding of Goldstein et al. (2017).

The fourth factor is the proportion of institutional investors among holders of fund shares. Early

redemptions by first movers increase asset liquidation pressure and, hence, spillover losses. The

presence of more first movers creates additional feedback effects, as other first movers account for

their withdrawals and hence redeem additional fund shares. It can be seen from the bottom graph

of Figure 4.3 that the fraction of assets held in institutional fund share classes, our proxy for the

proportion of first movers, has increased to nearly 50% in the year 2020. Even though we presented

the proportion of first movers as a separate factor that affects the system’s vulnerability, we cannot

disentangle the impact of illiquidity concentration from that of first movers. This is because we

consider a system with first mover heterogeneity: fragility is magnified if funds holding concentrated

portfolios have a higher proportion of first movers. Even in an otherwise homogeneous system, if

16Portfolio overlap is measured here in terms of asset categories rather than individual securities.
17Even in the absence of first movers, redemptions would be higher for illiquid funds because of the feedback

loop between price declines and redemptions. The presence of first-movers significantly amplifies the feedback loop
between spillover losses and number of redemptions.
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Figure 4.3: The left panel plots the proportion of assets held by institutional fund share classes
(our proxy for first movers) over time. The right panel plots the spectral radius of the matrix
C = atot

am ·MLM⊤A over time. The bottom panel plots the size of the U.S. mutual fund industry
relative to the whole U.S. financial sector over time. The systemicness matrix is defined as am

atotCB.
Therefore, differences in the magnitudes of the spectral radius of C and that of the systemicness
matrix are due to the relative size of the mutual fund industry am

atot and to the flow-to-performance
sensitivity matrix B (set as a multiple of the identity matrix in all examples in the paper).

first movers are concentrated in fewer funds, the system would be more fragile (as discussed in

Section 4.3.3).

4.3.3 Nonlinearity of Spillover Losses due to First Movers

We demonstrate how the nonlinearity introduced by first-mover incentives exacerbates the impact

of first-mover concentration and initial shocks on spillover losses.

To analyze the impact of the first-mover distribution across funds, we split every fund into

two identical funds, each holding half of the assets of the original fund. We compare two system

configurations for the distribution of first-mover investors. In the first configuration, we set the
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Figure 4.4: Spillover losses when 90% of first movers are concentrated in half of the funds and 10%
on the other half (solid line) and when first movers are evenly distributed across funds (dashed line).
In the left panel, the exogenous shock applied to each asset equal is equal to a price change of -5%
multiplied by its relative volatility specified in Table 4.2. In the right panel, flow-to-performance
sensitivity is set to 55% and the exogenous shock to each asset is obtained by multiplying the price
change on the x-axis by each asset’s relative volatility. We use fund holdings data from Q4 2019.

proportion of first movers in every fund equal to 50%. In the second configuration, for each pair

of identical funds, 90% of the first fund’s shares are owned by first movers, and 90% of the second

fund’s shares are owned by second movers. Hence, the total number of first movers is the same

across the two configurations, but in the second configuration first movers are more concentrated

in half of the funds in the system.

Figure 4.4 illustrates the spillover losses for each of these two configurations using fund holdings

data from Q4 2019. The system in which first movers are highly concentrated in fewer funds is more

fragile than the system in which first movers are evenly distributed across funds (a formal statement

is provided in Proposition 2). The higher fragility is explained by the nonlinearity in spillover

losses created by the first-mover advantage: the feedback between fire sales and fund redemptions

is stronger in funds with a high proportion of first movers, and the resulting downward pressures

imposed on asset prices may also hit funds without first movers. The difference in vulnerability

between the system with first mover concentration and the system in which first movers are evenly

spread across funds is small in the market scenarios where the flow sensitivity to performance is low.

In these market scenarios, the incentive to run is small, and thus fire-sale losses are not impacted

much by the distribution of first movers in the system.

We next study the amplification of initial shocks created by redeeming first movers. In the

reference model, given the linear assumptions on price impact and flow sensitivity to performance,

spillover losses scale linearly with the size of the initial exogenous shock; the SLR increases in

proportion to the initial shock. But the reference model fails to capture the incentive to run

observed with first movers. Figure 4.5 shows that spillover losses grow faster and nonlinearly in
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Figure 4.5: Spillover losses (in trillions of dollars) for different initial exogenous shocks
with/without first movers. Flow-to-performance sensitivity is set equal to 60%. We use asset
holdings data from each year’s first quarter.

the size of the initial exogenous market shock once we account for the first-mover advantage.

In Figure 4.5, assets are subject to initial shocks ranging from −2.5% to −15% times their

corresponding relative volatilities in Table 4.2. Consider, first, the results using parameters for

2020. As we increase the the exogenous shock from 7.5% to 12.5%, the SLR for the reference model

increases linearly, as expected. Over the same range, the SLR accounting for first movers grows far

more, with an inflection in the growth rate at a 10% shock.

For the year 2012, we observe little impact of first movers on spillover losses in Figure 4.5. This

can be explained by the measures plotted in Figure 4.3, where it can be seen that mutual funds

represented a smaller share of the U.S. financial sector, exhibited lesser portfolio overlap in illiquid

assets, and had a reduced proportion of first movers. Such a comparison highlights that solely

extrapolating from the conditions prevalent in 2012 would overlook the heightened vulnerability

of the system in 2016 and 2020. This insight emerges as the key takeaway from Figure 4.5. In a

system sufficiently fragile, a critical threshold exists for the initial shock, beyond which a cascade of

redemptions is triggered, markedly amplifying spillover losses. As a consequence, spillover losses in

ordinary times serve as an inadequate gauge for assessing the aggregate vulnerability of the system

or of the potential magnitude of spillover losses in a highly stressed economy. These effects become

evident only after accounting for the first-mover incentive.

4.3.4 The Interactions of Portfolio Commonality and First Movers

Price shocks can spread across mutual funds and asset classes through portfolio commonality. A

fire sale by one fund drives down the share price of other funds holding the same assets; and a

decline in the price of one asset class can force a fund to sell off other assets to fulfill redemption

requests, which in turn may depress the prices of these other assets. These contagion effects and
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sales by first movers can reinforce each other.

To study the joint impact of portfolio commonality and first movers on financial fragility, we

consider a benchmark system in which funds of type i18 are not connected to other funds in the

system. In such a system, asset liquidation by funds of type i does not impact others in the system,

and vice versa. We then compare the benchmark with the original interconnected system, both

with and without first movers.

Figure 4.6 shows that isolating a fund type from the rest of the system can significantly reduce

the total spillover losses, either because it shields some large funds from fire-sale externalities, or

because it reduces the spread of the shock across asset classes. For Q4 2019, spillover losses due to

portfolio commonality are significantly higher in the presence of first movers. It is the first-mover

advantage that fuels the spread of shocks through the system via the contagion channel stemming

from portfolio commonality. If we consider asset holdings data from the end of Q1 2020, when

prices were already severely depressed by the Covid-19 shock, the impact of first movers would be

less severe (see the right plot of the figure).

Figure 4.6: Change in spillover losses when each fund type is isolated from other fund types, with
and without first movers. For each fund type, the bar with horizontal lines shows the increase in
spillover losses due to first movers if funds of this type are isolated from others. The bar with
diagonal lines and the dotted one show the increase in spillover losses if these funds are connected
to the rest of the system — respectively with and without first movers — relative to the case in
which they have no portfolio commonality with other funds and there are no first movers in the
system. We set the flow-to-performance sensitivity to 55%. We apply initial shocks to all assets
equal to −5%of their respective realized relative volatilities. We consider portfolio holdings in the
fourth quarter (left plot) of 2019 and first quarter (right plot) of 2020.

Next, we explore the transmission of shocks across asset classes via the portfolio commonality

channel, examining both the aggregate fund level and the specific dynamics within individual fund

types.

18The fund types are equity domestic (ED), equity foreign (EF), fixed income municipal (IU), fixed income corporate
(IC), fixed income government (IG), fixed income foreign (IF), other fixed income (I), mixed fixed income and equity
(M), and other (O).
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To assess the impact at the aggregate fund level, we consider a scenario in which a few assets

are subject to a large initial shock, and we aggregate funds within each of the nine types. Figure 4.7

Figure 4.7: Fund returns for different values of fund-to-performance sensitivity for an exogenous
shock to convertible, corporate and municipal bonds, equal to a price change of -20% multiplied by
the realized volatility of each asset. We use asset holdings data from Q4 2019.

shows that for low levels of flow-to-performance sensitivity, spillover losses are inconsequential and

the shock does not spread across the system. In fact, the fund sectors that are most impacted are

those holding the assets subject to the initial shock. This is not the case if investors react more

strongly to fund performance. Large redemptions at funds that hold both fixed income assets —

affected by the exogenous shock — and equity assets may lead to sell-offs in asset classes not hit

by the initial shock, and cause widespread spillover losses through the system. As the flow-to-

performance sensitivity increases, equity funds become the most vulnerable to spillover losses, even

though we applied the initial shock exclusively to fixed income assets. This is because the initial

shock spills over to the equity asset class via the portfolio overlap of mixed funds.

To assess the vulnerability of smaller segments within the mutual fund industry, we compute the

SLR for various categories without accounting for spillover effects between different sectors. These

categories include equity funds (ED, EF), fixed income funds (I, IC, IF), government bond funds

(IG), municipal bond funds (IU) and other funds (M, O). Figure 4.8 shows that the SLR is the

highest for equity funds, which is attributable to the substantial size of mutual funds that specialize

in equity investments.19 The municipal bond sector exhibits the second highest SLR, despite its

considerably smaller scale. This higher SLR is primarily due to the low liquidity characteristic of

municipal bonds. In our analysis, the first-mover advantage is relatively minor within the municipal

19With even higher values of flow-to-performance sensitivity spillover losses magnify significantly in the equity fund
sector.
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bond sector. This is likely because institutional investors, which we use as a proxy for first movers,

represent a smaller proportion of investors in municipal bonds. The SLR is minimal for government

bond funds, reflecting their holdings of highly liquid assets.

Figure 4.8: Spillover Loss Ratio for different values of flow-to-performance sensitivity and different
years with/without first movers. Each panel shows the Spillover Loss Ratio for different subsets
of mutual funds: equity funds (ED, EF), fixed income funds (I, IC, IF), government bond funds
(IG), municipal bond funds (IU) and other funds (M, O). We apply initial shocks of −5% times
the corresponding realized assets’ relative volatilities. We use asset holdings data from each year’s
first quarter.

In Figure 4.9 we compare the weighted average of SLRs for the different segments of the mutual

fund industry and the SLR of the mutual fund sector as a whole. Specifically, let I be the collection

of subsets of mutual fund industry detailed in Figure 4.8 and for every subset I ∈ I define the

weight wI :=
∑

i∈I ai∆s0i∑
i∈Itot ai∆s0i

, where Itot =
⋃

I∈I I denotes the whole system of mutual funds. In

the left panel of Figure 4.9 we plot the weighted average
∑

I∈I wI · SLRI . Equivalently, this is

the ratio between total endogenous spillover losses computed separately for each subset of funds

and the total exogenous initial losses. The difference between the SLR of the whole system (right

panel of Figure 4.9) and the weighted average of SLRs (left panel of Figure 4.9) measures the cross-

impact between different mutual fund sectors. Evidently, in 2016, with a high sensitivity of flows

to performance, the SLR for the entire system is significantly greater than the weighted average of

individual SLRs. Conversely, in 2020, the SLR remains substantial even without considering the

effects of cross-sector interactions, which play a lesser role in contributing to overall spillover losses.
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Figure 4.9: Spillover Loss Ratio for different values of flow-to-performance sensitivity and different
years with/without first movers. The left panel shows the sum of the SLRs for the subsets of
mutual funds detailed in Figure 4.8 weighted by their respective initial exogenous losses. The right
panel shows the SLR of the whole system of mutual funds. We apply initial shocks of −5% times
the corresponding realized assets’ relative volatilities. We use asset holdings data from each year’s
first quarter.

5 Model Variations

In this section, we consider variations of the baseline framework introduced in Section 3. For each

of these variations, we analyze first-mover incentives, aggregate spillover losses, and the overall

impact on mutual fund vulnerability.

5.1 Fund Size Reduction

In the baseline specification of the model, the quantity of shares redeemed is proportional to the

initial size of the fund. This approach ensures that the volume of redemptions triggered by second

movers following a share-price decline ∆s is equivalent to that following two smaller, consecutive

declines, each of magnitude ∆s
2 . Since we interpret the sequence of endogenous share-price changes

as a single systemic event, we choose this as the main specification of our model.

Next, we explore a model variant where the number of redemptions by second movers declines

as the fund sells assets. Specifically, the quantity of shares from fund i that second movers redeem

in the j-th round is represented as ∆wj+1,sm
i = −aji (1 − πi)bi∆sj,smi , with aji reflecting the size

of fund i, after adjusting for the j-th round of asset liquidation. This adaptation introduces a

feedback loop that potentially decreases overall redemption volumes and thereby lessens spillover

losses: diminished need for asset liquidation to satisfy second movers’ redemptions reduces first

movers’ incentive to redeem, leading to fewer subsequent redemptions by second movers. As the

size of the fund size is reduced at each round of second-mover redemptions, the model without

first movers is no longer linear in the size of the initial exogenous shock. The plot in Figure 5.1
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Figure 5.1: Spillover losses (in trillions of dollars) for different initial exogenous shocks
with/without first movers using model variation sketched in Section 5.1. Flow-to-performance
sensitivity is set to 60%. We use asset holdings data from each year’s first quarter.

illustrates the comparative spillover losses with and without first movers. Relative to the baseline

model, we observe a notable reduction in spillover losses (compare to Figure 4.5). Furthermore, the

graph underscores how the presence of first movers amplifies spillover losses, significantly impacting

mutual fund fragility.

5.2 Limiting Redemption Volumes

Funds facing severe redemption surges may halt withdrawals to shield investors from the costs

associated with fire sales. Our model can be adapted to evaluate how spillover losses might decrease

if redemptions were paused after reaching a predefined limit. In our analysis, depicted in Figure

5.2, we consider scenarios with a cap on the percentage of fund shares that can be redeemed. Even

under an ex-ante fragile scenario (using data from Q4 2019 prior to the Covid-19 shock) with a

large exogenous shock and a 50% redemption cap, spillover losses do not diminish. Only when a

very stringent cap on redemptions is applied do we observe a reduction in spillover losses.

Matta and Perotti (2023) develop a theoretical model to characterize the optimal timing of

redemption suspensions, or gates. While our model does not directly incorporate the behavioral

response to gates, it is important to highlight that the potential for halting redemptions could

lead investors to preemptively initiate withdrawals in response to a financial shock and trigger a

market panic event. This phenomenon is documented empirically in Li et al. (2021). Citing similar

concerns, the SEC removed gate provisions for money market funds in 2023.

5.3 Heterogeneous Flow-To-Performance Sensitivity

The sensitivity of investor flow to performance varies across different types of funds. Liquid funds

often show a convex flow-to-performance relationship, indicating increased investor inflows with
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Figure 5.2: Spillover losses (in trillions of dollars) for different caps on the amount of redemptions.
Flow-to-performance sensitivity is set equal to 55%. We examine three levels of redemption caps,
with the most restrictive cap set at 25%, resulting in the suspension of redemptions once the share
of redeemed shares surpasses 25%. Conversely, the least restrictive cap is set at 100%, representing
the baseline scenario where redemptions are allowed to continue without interruption. We use asset
holdings from Q4 2019.

better performance at an accelerating rate. Conversely, illiquid funds typically exhibit a concave

flow-to-performance relationship (as in Chevalier and Ellison (1997), Chen et al. (2010), and Gold-

stein et al. (2017)). This observed behavior can be explained through the first-mover advantage:

as the impact of redemptions on fund performance is more pronounced in illiquid funds, investors

in such funds have a stronger incentive to withdraw early which leads to a higher sensitivity to

negative performance that to positive performance.

In our framework, the flow-to-performance parameter b quantifies the sensitivity of outflows to

negative performance, in the absence of first-mover incentives. The effective outflows implied by

our model also depend on the proportion of first movers and the liquidity level of each fund, and

are therefore larger in illiquid funds.

We explore two scenarios with varying flow-to-performance sensitivities. In one scenario, we

assign specific sensitivities beq := 0.419 for equity, government fixed income, and mixed funds,

and bcorp := 0.859 for other fund types, based on Goldstein et al. (2017)’s estimates for equity

and corporate bond funds. Another scenario adjusts each fund’s sensitivity based on its portfolio

liquidity, setting a linear relationship where a fund entirely invested in stocks has sensitivity beq, and

one fully invested in corporate bonds has bcorp.
20 Table 5.1 shows the average flow-to-performance

20Let l(i) :=
∑K

k=1 lkmik be fund i’s illiquidity level, then we set bi = b∗+1013a∗ ·l(i), where a∗ and b∗ are calibrated
such that the flow-to-performance sensitivity of a fund fully invested in stocks is beq and that of a fund fully invested
in corporate bonds is bcorp. We obtain a∗ ≈ 0.0898 and b∗ ≈ 16.76%. We cap the flow-to-performance sensitivity
at bmax := bcorp − (bcorp − beq) = 129.9%. This is because the flow-to-performance sensitivity for municipal bond
funds implied by our linear rule would be such that each round’s endogenous shock on municipal bond funds is larger
than the shock in the previous round. Such a large flow-to-performance sensitivity is unrealistic, because even small
negative initial shocks would lead to fund failures.
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Fund Type Average
Flow-to-Performance Sensitivity

Domestic Equity 0.407

Foreign Equity 0.405

FI Corporate 0.632

FI Foreign 0.406

FI Government 0.235

FI Muni 1.299

FI Other 0.484

Mixed FI & Equity 0.430

Other 0.286

Table 5.1: Weighted average of flow-to-performance sensitivities by fund type. We use balance sheet data
from Q1 2020.

sensitivity of a fund of each type using data from Q1 2020.21 As it can be seen from Figure 5.3,

accounting for a richer dependence between flow-to-performance sensitivity and fund liquidity can

amplify the incentive to redeem for first movers, compared to the case where we assign all funds

either bcorp or beq.

5.4 Alternative Specification of First Movers

In the main model specification, we identify first movers with institutional investors. This choice

stems from our examination of municipal mutual funds detailed in Section 2, as well as insights

drawn from the empirical study of money market funds conducted by Schmidt et al. (2016) and

the analysis of swing pricing by Jin et al. (2022). Goldstein et al. (2017) show that the first-mover

incentive is lower in institutional-oriented funds, which are defined as those with a proportion of

institutional share classes of over 80%. This is because large investors tend to internalize the costs

generated by their redemptions. On the other hand, institutional investors are more attentive and

therefore also respond more strongly to past performance.22 We consider an alternative specification

of first movers to address this consideration.

In Figure 4.5, flow-to-performance is set to 60% and the proportion of first movers is proxied

by each fund’s fraction of institutional share classes. We alter the specification of the model to

be consistent with the findings in Goldstein et al. (2017). For institutional-oriented funds23 we set

the proportion of first movers to 0 and multiply the flow-to-performance sensitivity by a factor of

21The average fund of type FI Corporate has flow-to-performance sensitivity significantly lower than bcorp. This is
because such a fund holds a sizable position in government bonds and therefore its portfolio is more liquid than that
of an ideal fund that holds exclusively corporate bonds.

22Quoting Goldstein et al. (2017): “Institutional investors react more strongly to past performance because they
monitor more, but their reaction to past performance is less affected by the illiquidity of the assets because they are
less affected by strategic complementarities.”

23Defined as those with more than 80% of assets held through institutional share classes, as in Goldstein et al.
(2017).
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Figure 5.3: Spillover losses (in trillions of dollars) for different initial exogenous shocks
with/without first movers with heterogeneous flow-to-performance sensitivities. Left panel: we
assign sensitivities beq := 0.419 for equity, government fixed income, and mixed funds, and
bcorp := 0.859 for other fund types, based on Goldstein et al. (2017)’s estimates for equity and
corporate bond funds. Right panel: funds’ sensitivities are based on a linear interpolation between
a fund entirely invested in stocks with sensitivity beq, and one fully invested in corporate bonds
with sensitivity bcorp. We use asset holdings data from each year’s first quarter.

2 (the coefficient on Alpha in Table 9A in Goldstein et al. (2017) is twice as large for institutional-

oriented funds as for retail-oriented funds). For all other funds we do not make any adjustment on

the proportion of first movers and the flow-to-performance sensitivity. Figure 5.4 shows spillover

losses with this model specification. Losses are slightly larger but comparable to those in the main

specification shown in Figure 4.5.

6 Policy Assessment

In this section, we employ the stress testing framework outlined in Section 3 to measure the effec-

tiveness and implications of policies aiming for financial stability.

6.1 Swing Pricing

In November 2022, the Securities and Exchange Commission (SEC) proposed a rule mandating

that U.S. open-end mutual funds implement swing pricing. This rule requires funds to adjust

(“swing”) their daily NAV to account for the estimated future costs of liquidations stemming from

net outflows. The goal of this regulation is to shift the burden of these liquidation costs from

the remaining investors to those who are redeeming their shares, thereby mitigating NAV dilution

and diminishing the advantage that early redeemers may have. Since 2018, U.S. funds have had

the option to apply swing pricing, allowing them to adjust their NAV by up to 2% to cover the

anticipated costs related to current redemptions.
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Figure 5.4: Spillover losses (in trillions of dollars) for different initial exogenous shocks
with/without first movers. Institutional-oriented funds have no first movers, but larger flow-to-
performance sensitivity. We use asset holdings data from each year’s first quarter. See Section 5.4
for the details.

The optimal swing pricing strategy ensures that first movers fully internalize the liquidation

costs associated with their redemptions, resulting in spillover losses equal to those in a system

without first movers (see Capponi et al. (2020)). In the context of our stress testing framework,

first movers would receive their payouts at an adjusted NAV s0i + ∆s0i + ∆ss.p.i , with the optimal

swing pricing adjustment given by ∆ss.p.i := −
∑K

k=1miklk
∑N

j=1mjk∆qfmj . This adjustment offsets

the first-mover incentive. Under a capped swing pricing policy, the adjustment would instead be

equal to ∆ss.p.i := max{−
∑K

k=1miklk
∑N

j=1mjk∆qfmj ,−2%}.
In Figure 6.1, we compare spillover losses in the absence of swing pricing, with an optimal swing

pricing policy, and with a swing pricing adjustment capped at 2%. As is evident from the figure,

implementing a policy with a cap on swing pricing adjustments would have a minimal impact on

mitigating overall spillover losses during periods of financial stress, such as those experienced in 2016

and 2020. This observation argues against imposing an ad hoc cap on swing pricing adjustments.

An effective swing pricing rule would fully transfers liquidation costs to redeeming investors.

As highlighted by Capponi et al. (2020), in the absence of a liquidity mismatch first movers are

disincentivized from redeeming early, aligning spillover losses with those in a system without first

movers. Consequently, full adoption of swing pricing across the mutual fund industry would reduce

spillover losses, especially during times of reduced liquidity. Instead, partial adoption of swing

pricing, with only some funds integrating this policy, may alter the distribution of first movers

without enhancing the system’s overall resilience to financial shocks. To illustrate this point, we

analyze two scenarios: one where no fund employs swing pricing and first movers constitute 50%

of investors across all funds, and a hypothetical scenario where swing pricing is adopted by half of

the mutual funds while the rest do not, leading first movers to prefer funds without swing pricing
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Figure 6.1: Spillover losses (in trillions of dollars) for different initial exogenous shocks with the
optimal swing pricing rule, with a swing pricing adjustment capped at 2% and without swing
pricing. Flow-to-performance sensitivity is set equal to 60%. We use asset holdings data from each
year’s first quarter.

to avoid bearing liquidation costs due to their redemptions.24

The graph in Figure 6.2 demonstrates that spillover losses are markedly higher in a scenario

where first movers concentrate in funds that do not use swing pricing.25 These findings under-

score that while swing pricing can mitigate fire-sale losses at the level of individual funds and,

if broadly applied, across the entire system, its effectiveness may be compromised or even prove

counterproductive when adopted by only a subset of funds.

Next, we quantify analytically how the distribution of first movers across funds impacts the total

change in NAV. In Proposition 2, we show that a higher concentration exacerbates the feedback

loop between fund redemptions and asset sales, and imposes a higher downward impact on the NAV.

Technical details about the mathematical set-up and the proof of the proposition are relegated to

Appendix D.

Proposition 2. Consider two funds holding identical portfolios, both subject to an initial negative

shock ∆s0. Let π̄
2 ∈ (0, 12 ] be the proportion of first movers in the system, and let π ∈

(
π̄
2 , π̄

)
be the proportion of first movers in the first fund. The proportion of first movers in the second

fund is π̄ − π. If the price impact is sufficiently small, then for all π there exists a fixed point

∆S∗(π) = (∆s∗1(π),∆s∗2(π))
⊤ of the mapping ∆S∗ → ∆S∞(∆S∗) such that ∆s∗1(π) + ∆s∗2(π) is

decreasing in π. Since ∆s0 < 0, this implies that the spillover loss ratio is increasing in π.

24In a fund that does not implement swing pricing, first movers’ only realized losses after redemption are given
by the initial exogenous shock. Instead, in funds that implement swing pricing, their realized losses also include
liquidation costs.

25This comparison considers the extreme case where all first mover migrate to non-adopting funds, although in
reality, some first movers might opt for funds with swing pricing to benefit from reduced fire-sale losses if they do
not redeem their shares. The overall impact of uneven swing pricing adoption hinges on the eventual distribution of
first movers across funds.
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Figure 6.2: Spillover losses when first movers are concentrated in half of the funds (solid line) and
when first movers are evenly distributed across funds (dashed line). In the left panel, the exogenous
shock applied to each asset is equal to a price change of -5% multiplied by its relative volatility
specified in Table 4.2. In the right panel, flow-to-performance sensitivity is set to 50% and the
exogenous shock to each asset is obtained by multiplying the price change on the x-axis by each
asset’s relative volatility. We use asset holdings data from Q4 2019.

As stated in the proposition, the aggregate exposure of the funds to redemption and fire sales

is minimized if first movers are evenly distributed between the two funds. This result has im-

plications for policies aimed at mitigating first-mover externalities. It warns that a regulatory

intervention that unintentionally alters the distribution of first movers across funds could adversely

affect financial stability.

6.2 Preemptive Cash Buffers for Liquidity Management

In the baseline specification of the model, mutual funds are assumed to liquidate assets in proportion

to their initial allocations when facing redemptions. However, an alternative strategy involves funds

first using their cash reserves to satisfy redemption requests before liquidating less liquid assets.

Employing cash buffers as a strategy for liquidity management can effectively reduce the risk of

fire sales triggered by outflows and diminish the incentive for investors to redeem shares early.26

We introduce a variation to the baseline model to explore the impact of utilizing cash buffers

before liquidating other assets. In this adjusted model, funds exhaust their cash reserves prior

to selling off assets, which are then liquidated in proportion to their non-cash allocation in the

portfolio. This adjustment allows us to assess the extent to which cash buffers can diminish the

advantage of redeeming early. Our findings indicate that utilizing cash in this manner lowers

spillover losses both in scenarios with and without first movers, as evidenced by comparing the plot

26It is worth noting that the empirical evidence regarding the use of cash to meet redemptions is mixed. Some
funds are observed to increase their cash holdings in response to outflows, liquidating more assets than necessary to
fulfill redemption requests and thereby augmenting their cash positions (e.g., Morris et al. (2017), Shek et al. (2018)).
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Figure 6.3: Spillover losses (in trillions of dollars) for different initial exogenous shocks
with/without first movers when funds deplete their cash buffers first before liquidating other assets.
Flow-to-performance sensitivity is set to 60%. We use asset holdings data from each year’s first
quarter.

in Figure 6.3 with that in Figure 4.5. An alternative liquidation strategy would be for the fund to

liquidate more-liquid assets first. We analyze a model variation with a pecking order liquidation

strategy in Appendix C.

7 Theoretical Underpinnings and Investor Behavior

The framework of Section 3.2 builds on exogenously specified rules for the behavior of investors and

mutual funds. Our stress testing approach therefore does not capture potential equilibrium effects

from the strategic responses of market participants. In this section, we discuss the potential for

endogenizing the mechanisms in our framework and the potential limitations of our reduced-form

approach. We focus on three features of our model: (i) the sensitivity of fund flows to performance;

(ii) the behavior of first movers; and (iii) the distribution of first movers across different types of

funds.

(i) Flow-performance sensitivity. Our framework assumes that poor returns lead some propor-

tion of investors to exit a fund. The sensitivity of mutual fund flows to fund performance has

been studied extensively in the empirical literature; see the survey of Christoffersen et al. (2014)

and, in the context of swing pricing, Jin et al. (2022) and Lewrick and Schanz (2023). Berk and

Green (2004) develop a model that explains the flow-performance link as the response of rational

investors to skilled managers who face decreasing returns to scale in their investment performance.

The model of Berk and Green (2004) does not specifically consider the consequences of a market-

wide shock, and our model does not differentiate between fund managers; but it is reasonable to

assert that the assumption that flows respond to performance is well-established both empirically

and theoretically.
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(ii) Investor behavior. Building on the assumption that flows respond to performance, our stress

test begins with an asset price shock that leads to fund outflows. This shock contrasts with the

mechanisms in models of mutual funds that build on the framework of Diamond and Dybvig (1983),

particularly Allen and Walther (2021), Lewrick and Schanz (2017), Matta and Perotti (2023), and

Ma et al. (2022a). The Diamond and Dybvig (1983) approach endogenizes the response of investors,

but it requires an exogenous liquidity shock that causes some fraction of investors to withdraw funds

early. Our framework could easily be modified to include a liquidity shock in which some fraction

of investors exit each fund. For market-wide stress testing, an asset shock proves easier to interpret

and calibrate to a realistic size.

Chen et al. (2010) develop a global-games model in which investor flows respond to fund per-

formance and in which the response is stronger for funds holding less-liquid assets. Although this

feature is not part of our main framework, we incorporated it in a reduced-form way in Section 5.3

by using different flow sensitivity parameters for different types of funds. Additionally, the model

by Chen et al. (2010) predicts that the impact of asset liquidity on flow sensitivity diminishes in

funds dominated by large investors, a feature we incorporated in Section 5.4.

Matta and Perotti (2023) utilize a global-games framework to study the optimal timing of gates

on redemptions. We incorporated a simplified version of this feature in Section 5.2, where we

examined redemption caps.

Our stress testing framework builds on the model in Capponi et al. (2020) and its characteri-

zation of first movers. The first movers in Capponi et al. (2020) have rational expectations, in the

sense that they respond to anticipated liquidation costs that are subsequently realized. The model

does not provide an equilibrium setting to fully endogenize the behavior of first and second movers;

such a setting could potentially lead to more refined predictions.

Our first movers “run” on the mutual fund in anticipation of fire-sale losses. In the framework

of Diamond and Dybvig (1983), a run corresponds to a bad equilibrium in which investors who

are not subject to a liquidity shock nevertheless liquidate their investments early. In the version

of the model of Ma et al. (2022a) without swing pricing, all investors liquidate early in the run

equilibrium. In contrast, our stress testing framework enables the adjustment of the proportion of

first movers. This flexibility allows for a nuanced exploration of the run’s intensity, offering insights

into how varying levels of preemptive liquidation can influence the overall severity of a financial

run.

(iii) Distribution of first movers. We have shown in Section 6.1 that the distribution of first

movers across funds can have important consequences for spillover losses. However, we have not

endogenized the distribution of first movers across funds or the liquidity management choices of

different funds. These decisions could have important implications for financial stability, but to

the best of our knowledge there are no models that characterize them. Funds can vary their use

of cash buffers, asset liquidity, and use of swing pricing. What combinations of these tools should

we expect to see in a market equilibrium? How should we expect different types of investors to

distribute themselves across funds that use different liquidity management tools? Answers to these
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questions (which were also raised in Capponi et al. (2023)) should ideally inform stress testing of

the fund industry.

Some interesting empirical evidence relevant to these questions can be found in Jin et al. (2022).

They find that funds become less likely to adopt alternative pricing rules (such as swing pricing) as

the number of funds adopting them increases: the positive externalities of funds’ liquidity manage-

ment reduces the incentive for other funds to adopt alternative pricing for liquidity management.

These findings would be important elements to try to capture in a theoretical framework that

explains funds’ and investors’ preferences for liquidity management tools.

Notably, even within the extensively explored Diamond-Dybvig framework, there appears to be

a gap in the literature regarding the endogenization of the distribution of investors with varying

liquidity needs across different financial institutions, characterized by their asset liquidity levels.

Bridging this gap could significantly enhance our understanding of the dynamics at play in liquidity

management practices.

8 Conclusion

We have developed a framework to quantify the vulnerability of the mutual fund sector to fire sales

triggered by fund redemptions. The distinguishing feature of our framework is that it accounts for

the liquidity mismatch that arises when mutual funds hold illiquid assets but provide same-day

liquidity to their investors. We have constructed measures that quantify the mutual fund sector’s

vulnerability and its sensitivity to key parameters such as the distribution of first movers, shock size,

and flow-to-performance sensitivity. We have evaluated these measures using mutual fund holdings

data during stressed market conditions. Our framework can serve as a tool to test the impact of

policies aimed at reducing spillover losses due to fund runs and common portfolio holdings.

We have shown that the first-mover incentive introduces a nonlinear dependence between

spillover losses and the size of initial asset shocks. This nonlinearity can severely exacerbate the

aggregate vulnerability of the system for large, yet plausible, sizes of initial shocks if first movers

are concentrated in fewer funds or if the investor base of illiquid funds includes a high proportion

of first movers.
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A Cross-Sectional Regression of Municipal Bond Fund Flows

To check the robustness of the results in Section 2, we run the following cross-sectional regression

using data in the CRSP database for Q1 2020:

Flowi = α+ βinstInstReturni + βretailRetailReturni + γControlsi + εi,

where Flowi is the flow for fund i, defined as
TNAend

i −TNAi(1+Returni)
TNAi

, where TNAend
i is the total

net asset value of fund share class i at the end of the quarter, TNAi is the total net asset value

at the beginning of the quarter, and Returni is the fund share class’s return. For institutional

fund share classes, InstReturn is the fund share class’s return, and RetailReturn is set to 0. For

retail fund share classes, RetailReturn is the fund share class’s return, and we set InstReturn to

0. We control for lagged flow (the flow over the previous quarter), Log(TNA) (the logarithm of

total net assets held by the fund at the beginning of the quarter), and Log(age) (the logarithm

of the fund’s age at the beginning of the quarter, expressed in years). We regress flows against

contemporaneous returns (after fees), and not against returns over the previous quarter. Our

specification is designed to capture the relation between the Covid-19 market shock and flows

within the same quarter. In Table A.2, we report the summary statistics for the fund share classes

in our sample. Table A.3 reports the results of the regression. The relation between flows and

returns is statistically significant at the 1% level for both institutional and retail fund share classes.

Returns are associated with outflows that are larger for institutional fund share classes (0.620)

compared to retail fund share classes (0.381), consistent with the view that institutional investors

react more strongly to negative returns than retail investors. The difference is on the borderline

of the conventional standard for significance: an F -test of the hypothesis that βinst = βretail has a

p-value of 0.060.

Table A.1: Summary statistics for characteristics of fund share classes in the sample for the panel regression
in Section 2. We report the mean, median, standard deviation, 5th percentile (P5), 95th percentile (P95)
and total number of observations (N).

Institutional Fund Share Classes

Mean Median Std dev P5 P95 N

Flow -0.0097 0.0037 0.4609 -0.6488 0.5352 19,960
Return -0.0128 0.0100 0.8457 -1.4400 0.5905 19,960

Log(TNA) 4.2125 4.4426 2.5541 -0.8647 7.6385 19,960

Retail Fund Share Classes

Mean Median Std dev P5 P95 N

Flow -0.0106 -0.0009 0.4094 -0.5283 0.4468 37,379
Return -0.0167 0.0100 0.9152 -1.5400 0.6200 37,379

Log(TNA) 3.8717 4.1005 2.4409 -0.4274 7.4593 37,379
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Table A.2: Summary statistics of fund share classes’ characteristics in our sample, used for the cross-
sectional regression in Appendix A. We report the mean, median, standard deviation, 5th percentile (P5),
95th percentile (P95) and total number of observations (N).

Mean Median Std dev P5 P95 N

Flow -0.0089 -0.0144 0.0747 -0.1114 0.1155 1436
InstReturn -0.0238 -0.0182 0.0213 -0.0711 -0.0001 544
RetailReturn -0.0238 -0.0191 0.0199 -0.0702 -0.0016 892
Lagged Flow 0.0340 0.0217 0.0858 -0.0810 0.1902 1436
Log(TNA) 4.7140 4.6250 1.7058 2.1604 7.6902 1436
Log(age) 2.5697 2.8396 0.8726 0.8823 3.5440 1436

Table A.3: Relation between flows and returns in municipal bond funds. We source data from the CRSP
database for Q1 2020. Flow is the proportional fund share class flow over Q1 2020. InstReturn is the return
over Q1 2020 if the fund share class is institutional and 0 otherwise. RetailReturn is the return over Q1
2020 if the fund share class is retail and 0 otherwise. Lagged Flow is the flow over Q4 2019. Log(TNA) is
the natural logarithm of total net assets at the beginning of Q1 2020. Log(age) is the natural logarithm of
the fund share class age (expressed in years) at the beginning of Q1 2020. We removed index funds, ETFs,
ETNs, fund share classes with TNA lower than 5 million dollars, and fund share classes less than one year
old. Flows are winsorized at the 1st and 99th percentiles.

Dependent
Variable:

Flow

Constant 0.041***
(0.01)

InstReturn 0.620***
(0.12)

RetailReturn 0.381***
(0.10)

Lagged Flow 0.270***
(0.02)

Log(TNA) -0.001
(0.00)

Log(age) -0.016***
(0.00)

N 1436
Adj. R2 0.170

***p < 0.01, **p < 0.05, *p < 0.1
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B Existence and Uniqueness of the Fixed Point

In this section, we show that the procedure described in Section 3.2 has a unique fixed point. Before

stating the main result, we state and prove a technical lemma which will be used in the proof of

Proposition 1.

Lemma B.1. Suppose that f(x, y) is continuous in (x, y) ∈ X × Y , and strictly monotone in x

for each y, where X ⊂ R and Y ⊂ Rd are compact. Then for any sequence (xn, yn) ∈ X × Y with

limn→∞ yn = y0 and f(xn, yn) = 0 for all n, there is an x0 ∈ X for which

lim
n→∞

xn = x0, f(x0, y0) = 0.

Proof. Since X is compact, the sequence xn has at least one limit point, and any limit point must

be in X. Let x0 ∈ X be a limit point and let xnk
be a subsequence through which xnk

→ x0. Then

(xnk
, ynk

) → (x0, y0), and the continuity of f implies that

0 = lim
k→∞

f(xnk
, ynk

) = f(x0, y0).

Since f(x, y) is strictly monotone in x for each y, x0 is uniquely determined by y0. Thus, xn has

just one limit point x0, and we conclude that xn → x0.

Proof of Proposition 1. Using first the expressions for nfm
i and qfmi in (8) and then the expression

for ∆wfm
i in (4), the ratios Ufm

i = qfmi /nfm
i in (9) become

Ufm
i =

q0i −∆qfmi

n0
i −∆wfm

i

=
q0i −∆qfmi

n0
i + ai · πi · bi ·∆s∗i

. (B.1)

The denominator is strictly positive because n0
i = ai, bi < 1 by hypothesis, πi ≤ 1, and ∆s∗i ∈

[−1, 0]. Substituting (B.1) into (10) and also substituting the expression for ∆pfmi in (5) into (10),

we find that the NAV change of fund i due to the exogenous shock and first movers’ redemptions

is given by

∆sfmi =
n0
i −∆qfmi

n0
i + ai · πi · bi ·∆s∗i

·

p0i +∆p0i −
K∑
k=1

N∑
j=1

miklkmjk∆qfmj

− s0i , (B.2)

for i = 1, . . . , N . We can similarly use (4) and (5) to write (6) as

∆qfmi ·

p0i +∆p0i −
K∑
k=1

N∑
j=1

miklkmjk∆qfmj

 = ∆wfm
i · (s0i +∆s0i )

= −ai · πi · bi ·∆s∗i · (s0i +∆s0i ). (B.3)

We will use (B.2) and (B.3) to show the existence and uniqueness of a fixed point of the mapping
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∆S∗ 7→ ∆S∞(∆S∗) defined by (11).

Proof of Existence. We will analyze the mapping from (∆s∗1, . . . ,∆s∗N ) to (∆qfm1 , . . . ,∆qfmN )

implicitly defined by (B.3), and then utilize it in the mapping from (∆s∗1, . . . ,∆s∗N ) to (∆sfm1 , . . . ,∆sfmN )

defined by (B.2).

We will apply Brouwer’s fixed point theorem to show the existence of a fixed point of the map-

ping ∆S∗ 7→ ∆S∞(∆S∗) defined by (11). This boils down to proving the following two statements:

(i) The function in (11) is continuous w.r.t. the input ∆S∗ ∈ [−1, 0]N .

(ii) For each input ∆S∗ ∈ [−1, 0]N , the output of the function in (11) is also in [−1, 0]N .

We next state and prove the following lemma:

Lemma B.2. For sufficiently small l1, . . . , lK , there exists a continuous mapping

Φ : [−1, 0]N → [0, n0
1]× · · · × [0, n0

N ]

Φ(∆s∗1,∆s∗2, . . . ,∆s∗N ) = (∆qfm1 ,∆qfm2 , . . . ,∆qfmN )⊤,

such that (∆qfm1 ,∆qfm2 , . . . ,∆qfmN )⊤ solves (B.3).

Proof. The system (B.3) can be regarded as a system of N quadratic equations, which can be

solved sequentially.

Fix ∆s∗1 ∈ [−1, 0] and (∆q2, . . . ,∆qN ) ∈ [0, n0
2]× · · · × [0, n0

N ]. Then, for i = 1, equation (B.3)

is a quadratic equation in the variable ∆qfm1 . One solution of this equation is given by

∆qfm1 = ∆qfm1 (∆s∗1,∆q2, . . . ,∆qN ) =
−β1 +

√
β2
1 − 4α1γ1

2α1
, (B.4)

where

α1 = −
K∑
k=1

m1klkm1k, β1 = ∆p01 + p01 −
K∑
k=1

N∑
j=2

m1klkmjk∆qj ,

and

γ1 = a1 · π1 · b1 ·∆s∗1 · (s01 +∆s01).

Notice that, for sufficiently small (lk)
K
k=1, the quantity β2

1 −4α1γ1 is strictly positive, and hence the

function ∆qfm1 (·) as defined in (B.4) takes only real values. Moreover, it is positive because both

the numerator and denominator of ∆qfm1 (·) are negative quantities. We claim that ∆qfm1 ∈ [0, n0
1].

To see why, evaluate (B.3) at the endpoints of this interval. At ∆qfm1 = 0, the left side of (B.3) is

zero and thus less than or equal to the right side of (B.3), which is nonnegative because ∆s∗i ≤ 0
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and ∆s0i > −s0i . At ∆qfm1 = n0
1, the left side of (B.3) satisfies

n0
1 ·
(
∆p01 + p01 −

K∑
k=1

m1klkm1kn
0
1 −

K∑
k=1

N∑
j=2

m1klkmjk∆qj

)

≥ n0
1 ·
(
∆p01 + p01 −

K∑
k=1

N∑
j=1

m1klkmjkn
0
j

)
≥ a1 · π1 · b1 · (s01 +∆s01)

≥ −a1 · π1 · b1 ·∆s∗1 · (s01 +∆s01),

where the first inequality holds because ∆qj ≤ n0
j . The second inequality holds for sufficiently small

(lk)k’s because n0
1 = a1, π1 ≤ 1, b1 < 1. The last inequality follows from ∆s∗1 ∈ [−1, 0]. Hence,

by the intermediate value theorem, one of the two roots of (B.3) belongs to the interval [0, n0
1].

Because the root
−β1−

√
β2
1−4α1γ1

2α1
can be arbitrarily large for sufficiently small (lk)

K
k=1, we conclude

that ∆qfm1 (·) as defined in (B.4) takes values in [0, n0
1] .

Next, we show that there exists a constant P1, independent of l1, . . . , lK , such that the following

uniform bound holds:

P1 ≥ sup
∆s∗1∈[−1,0],∆q2∈[0,n0

2],...,∆qN∈[0,n0
N ]

max

{∣∣∣∣∣∂∆qfm1
∂∆s∗1

∣∣∣∣∣ ,
∣∣∣∣∣∂∆qfm1
∂∆q2

∣∣∣∣∣ , . . . ,
∣∣∣∣∣∂∆qfm1
∂∆qN

∣∣∣∣∣
}
. (B.5)

To see this, set i = 1 in (B.3), and rewrite the corresponding equation by treating ∆qfm1 as a

function of (∆s∗1,∆q2, . . . ,∆qN ). This yields

∆qfm1 (∆s∗1,∆q2, . . . ,∆qN ) ·
(
∆p01 + p01 −

K∑
k=1

m1klkm1k∆qfm1 (∆s∗1,∆q2, . . . ,∆qN )

−
K∑
k=1

N∑
j=2

m1klkmjk∆qj

)
= −a1 · π1 · b1 ·∆s∗1 · (s01 +∆s01).

Differentiating the expression above with respect to ∆q2 on both sides leads to

∂∆qfm1
∂∆q2

·
(
∆p01 + p01 − 2

K∑
k=1

m1klkm1k∆qfm1 −
K∑
k=1

N∑
j=2

m1klkmjk∆qj

)
−∆qfm1

K∑
k=1

m1klkm2k = 0.

Because we have previously shown that ∆qfm1 takes values in [0, n0
1], the equality above implies

that
∂∆qfm1
∂∆q2

is uniformly bounded for sufficiently small l1, . . . , lK as assumed in this proposition.

The other derivatives appearing on the right-hand side of (B.5) can be estimated similarly, and we

can thus conclude the existence of a uniform bound P1 in (B.5).

Next, set i = 2 in (B.3). We want to show that, for any (∆s∗1,∆s∗2,∆q3, . . . ,∆qN ) ∈ [−1, 0]2 ×
[0, n0

3]× · · · × [0, n0
N ], there exists a function ∆qfm2 (∆s∗1,∆s∗2,∆q3, . . . ,∆qN ) in the interval [0, n0

2].
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Rewriting equation (B.3) for i = 2, we get

∆qfm2 ·
(
∆p02 + p02 −

K∑
k=1

m2klkm1k∆qfm1 (∆s∗1,∆qfm2 ,∆q3, . . . ,∆qN )−
K∑
k=1

m2klkm2k∆qfm2

−
K∑
k=1

N∑
j=3

m2klkmjk∆qj

)
= −a2 · π2 · b2 ·∆s∗2 · (s02 +∆s02). (B.6)

We will show that ∆qfm2 ∈ [0, n0
2] by considering the values at the endpoints of this interval. If

we set ∆qfm2 = 0 on the left side of (B.6), then the left side evaluates to zero, and it is less than

or equal to the right side which is nonnegative. If we set ∆qfm2 = n0
2 on the left side, then using

similar arguments as for the case ∆qfm1 = n0
1, we obtain

n0
2 ·
(
∆p02 + p02 −

K∑
k=1

m2klkm1k∆qfm1 (∆s∗1, n
0
2,∆q3, . . . ,∆qN )−

K∑
k=1

m2klkm2kn
0
2

−
K∑
k=1

N∑
j=3

m2klkmjk∆qj

)

≥ n0
2 ·
(
∆p02 + p02 −

K∑
k=1

N∑
j=1

m2klkmjkn
0
j

)
≥ a2 · π2 · b2 · (s02 +∆s02)

≥ −a2 · π2 · b2 ·∆s∗2 · (s02 +∆s02),

where in the first inequality we have used the previously established fact that ∆qfm1 ∈ [0, n0
1], and

for the second inequality we have used that a2 = n0
2, π2 ≤ 1, and b2 < 1.

Next, we show that the left side of equation (B.3) is an increasing function of ∆qfm2 by showing

that its derivative with respect to ∆qfm2 is positive. Using the chain rule of differentiation, we find

that the derivative of the left side of (B.3) with respect to ∆qfm2 is given by

∆p02 + p02 −
K∑
k=1

2∑
j=1

m2klkmjk∆qfmj −
K∑
k=1

N∑
j=3

m2klkmjk∆qj

−∆qfm2 ·
( K∑

k=1

m2klkm1k
∂∆qfm1

∂∆qfm2
+

K∑
k=1

m2klkm2k

)

≥
(
∆p02 + p02 −

K∑
k=1

N∑
j=1

m2klkmjkn
0
j

)
− n0

2 ·
( K∑

k=1

m2klkm1kP1 +

K∑
k=1

m2klkm2k

)
> 0,

where the first inequality holds because we have shown that the functions ∆qfm1 and ∆qfm2 satisfy

∆qfm1 ∈ [0, n0
1] and ∆qfm2 ∈ [0, n0

2], and because each input variable ∆qj is in the interval [0, n0
j ],

for j ≥ 3. The last inequality holds for sufficiently small (lk)k. Since we have shown that the left

side of (B.3) is strictly increasing in ∆qfm2 (with ∆s∗1 fixed), it follows that (B.3) defines a unique
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implicit function ∆qfm2 = ∆qfm2 (∆s∗1,∆s∗2,∆q3, . . . ,∆qN ) ∈ [0, n0
2].

The continuity of the function ∆qfm2 (∆s∗1,∆s∗2,∆q3, . . . ,∆qN ) follows by applying Lemma B.1

with x = ∆qfm2 (∆s∗1,∆s∗2,∆q3, . . . ,∆qN ), y = (∆s∗1,∆s∗2,∆q3, . . . ,∆qN ), and f(x, y) as the dif-

ference between the left and right sides of (B.6). By replacing the input ∆q2 of ∆qfm1 with the

function ∆qfm2 , we can write

∆q1 = ∆qfm1 (∆s∗1,∆qfm2 (∆s∗1,∆s∗2,∆q3, . . . ,∆qN ),∆q3, . . . ,∆qN ),

∆q2 = ∆qfm2 (∆s∗1,∆s∗2,∆q3, . . . ,∆qN ).

Then equation (B.3) holds for i = 1, 2 simultaneously. Using the boundedness of ∆qfm1 and ∆qfm2
together with the bound (B.5) (which is needed to bound the derivatives appearing in the chain

rule of differentiation), we can show the existence of a uniform bound P2 such that

P2 ≥ sup
∆s∗1,∆s∗2∈[−1,0],∆q3∈[0,n0

2],...,∆qN∈[0,n0
N ]

max

{∣∣∣∣∣∂∆qfm2
∂∆s∗1

∣∣∣∣∣ ,
∣∣∣∣∣∂∆qfm2
∂∆s∗2

∣∣∣∣∣ ,
∣∣∣∣∣∂∆qfm2
∂∆q3

∣∣∣∣∣ , . . . ,
∣∣∣∣∣∂∆qfm2
∂∆qN

∣∣∣∣∣
}
,

(B.7)

using a similar method to that used to show the existence of P1 in (B.5), and under the assumption

that l1, . . . , lK are sufficiently small.

Repeating the steps above for i = 3, . . . , N , and again assuming l1, . . . , lK are sufficiently

small, we obtain N continuous functions

∆qfm1 (∆s∗1,∆q2, . . . ,∆qN ) : [−1, 0]× [0, n0
2]× · · · × [0, n0

N ] → [0, n0
1];

∆qfm2 (∆s∗1,∆s∗2,∆q3, . . . ,∆qN ) : [−1, 0]2 × [0, n0
3]× · · · × [0, n0

N ] → [0, n0
2];

...

∆qfmN−1(∆s∗1,∆s∗2, . . . ,∆s∗N−1,∆qN ) : [−1, 0]N−1 × [0, n0
N ] → [0, n0

N−1];

∆qfmN (∆s∗1,∆s∗2, , . . . ,∆s∗N ) : [−1, 0]N → [0, n0
N ].

If we replace each input variable ∆qj with the function ∆qfmj , all of these functions become functions

of ∆s∗1, . . . ,∆s∗N . We have thus constructed a function Φ : [−1, 0]N → [0, n0
1] × · · · × [0, n0

N ] for

which

Φ(∆s∗1,∆s∗2, . . . ,∆s∗N ) = (∆qfm1 ,∆qfm2 , . . . ,∆qfmN )⊤

solves (B.3). This ends the proof of the claim.

Next, we show that for each input ∆S∗ ∈ [−1, 0]N , the corresponding output given by (11) is

still in [−1, 0]N . Towards this goal, we will bound Ufm, and we begin by showing that

−ai · πi · bi ·∆s∗i ≤ ∆qfmi . (B.8)
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Since ∆qfmj ≤ n0
j , we have

p0i +∆p0i −
K∑
k=1

N∑
j=1

miklkmjk∆qfmj ≥ p0i +∆p0i −
K∑
k=1

N∑
j=1

miklkmjk∆n0
j > 0,

where the last inequality holds for sufficiently small (lk)k. Hence, if ∆s∗i = 0, then ∆qfmi = 0 and

(B.8) is satisfied. Assume now that ∆s∗i < 0. Then (B.3) yields

−ai · πi · bi ·∆s∗i · (s0i +∆s0i ) = ∆qfmi ·

p0i +∆p0i −
K∑
k=1

N∑
j=1

miklkmjk∆qfmj


≤ ∆qfmi ·

(
p0i +∆p0i

)
.

Hence, using s0i +∆s0i = p0i +∆p0i > 0 we find that (B.8) is again satisfied.

Applying (B.8) in (B.1) shows that Ufm
i ≤ 1. In view of the definition in (9), we have that

Ufm
i ≥ 0. If Ufm

i = 0, it follows from (B.2) that ∆sfmi = −s0i < 0. If 0 < Ufm
i ≤ 1, then combining

(B.1) and (B.2) yields

∆sfmi =
n0
i −∆qfmi

n0
i + ai · πi · bi ·∆s∗i

·

p0i +∆p0i −
K∑
k=1

N∑
j=1

miklkmjk∆qfmj

− s0i (B.9)

≤ p0i +∆p0i −
K∑
k=1

N∑
j=1

miklkmjk∆qfmj − s0i

= ∆p0i −
K∑
k=1

N∑
j=1

miklkmjk∆qfmj ≤ 0,

where the last inequality follows from the fact that ∆p0i < 0 and ∆qfmj ∈ [0, n0
j ]. Hence,

∥∆Sfm∥∞ ≤ max
i=1,...,K

−∆p0i +
K∑
k=1

N∑
j=1

miklkmjkn
0
j

 ,

where for a matrix D = (dij)m×n ∈ Rm×n we have defined

∥D∥∞ := max
i=1,...,m

n∑
j=1

|dij |.

Since ∥Ufm∥∞ ≤ 1 as shown above, and because the matrix of portfolio weights M = [mik] has
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norm ∥M∥∞ ≤ 1, then

∥UfmMLM⊤UfmA(I −Π)B∥∞
≤ ∥Ufm∥∞∥M∥∞∥LM⊤∥∞∥Ufm∥∞∥A(I −Π)B∥∞

≤ max
k=1,...,K


N∑
j=1

lkmjk

 · max
i=1,...,K

aibi

Then (11) yields∥∥∥∥∥
∞∑
n=0

∆Sn,sm

∥∥∥∥∥
∞

≤ ∥∆Sfm∥∞
1− ∥UfmMLM⊤UfmA(I −Π)B∥∞

(B.10)

≤ max
i=1,...,K


K∑
k=1

N∑
j=1

miklkmjkn
0
j −∆p0i


/1− max

k=1,...,K


N∑
j=1

lkmjk

 · max
i=1,...,K

aibi


≤ 1,

where the last inequality holds by the assumption that maxk lk is sufficiently small.

We know from (B.9) that ∆sfmi ≤ 0. Moreover, for each n ≥ 1,(
UfmMLM⊤UfmA(I −Π)B

)n
(B.11)

is the product of matrices with nonnegative entries and therefore has nonnegative entries. Hence,

∆Sn,sm =
(
UfmMLM⊤UfmA(I −Π)B

)n
∆Sfm ∈ (−∞, 0]N ,

and thus
∑∞

n=0∆Sn,sm ∈ [−∞, 0]N . Together with (B.10), we obtain that
∑∞

n=0∆Sn,sm ∈ [−1, 0]N .

To establish the existence of a fixed point of (11) using Brouwer’s fixed point theorem, it

remains to show that the output in (11) is continuous in ∆S∗. In the Claim above, we established

(∆qfm1 ,∆qfm2 , . . . ,∆qfmN ) is a continuous function of ∆S∗. Let ∆S∗
(k) ∈ [−1, 0]N be such that

lim
k→+∞

∆S∗
(k) = ∆S∗.

For ∆S∗
(k), k = 1, 2, . . ., denote by Ufm

(k) , ∆Sfm
(k) the corresponding terms in (11). Because of the

continuous dependence of (∆qfm1 ,∆qfm2 , . . . ,∆qfmN ) on ∆S∗, it holds that

lim
k→+∞

Ufm
(k) = Ufm, lim

k→+∞
∆Sfm

(k) = ∆Sfm.
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To see why limk→+∞ Ufm
(k) = Ufm, recall that Ufm

(k),i =
qfm
(k),i

nfm
(k),i

. Moreover, observe that

lim
k→+∞

nfm
(k),i = n0

i + ai · πi · bi · lim
k→+∞

∆s∗(k),i = n0
i + ai · πi · bi ·∆s∗i > 0.

Because the output (∆qfm1 ,∆qfm2 , . . . ,∆qfmN ) depends continuously on the input ∆S∗, we have

lim
k→+∞

qfm(k),i = q0i − lim
k→+∞

∆qfm(k),i = q0i −∆qfmi = qfmi .

By combining the two limits above, we confirm that limk→+∞ Ufm
(k) = Ufm.

Notice also that

∥∥∥(Ufm
(k) MLM⊤Ufm

(k) A(I −Π)B
)n∥∥∥

∞
≤

 max
k=1,...,K


N∑
j=1

lkmjk

 · max
i=1,...,K

aibi

n

,

∥∆Sfm
(k) ∥∞ ≤ max

i=1,...,K


K∑
k=1

N∑
j=1

miklkmjkn
0
j −∆p0i

 .

Therefore the dominated convergence theorem implies that

lim
k→+∞

+∞∑
n=0

(
Ufm
(k) MLM⊤Ufm

(k) A(I −Π)B
)n

∆Sfm
(k) =

+∞∑
n=0

(
UfmMLM⊤UfmA(I −Π)B

)n
∆Sfm,

which shows the continuity of the output of (11) with respect to the input ∆S∗.

In sum, the mapping (11) is continuous, and it maps [−1, 0]N into itself. According to Brouwer’s

theorem, it follows that the mapping has a fixed point.

Proof of Uniqueness. Define the smooth mapping

Ψ : [0, n0
1]× · · · × [0, n0

N ] → RN

Ψ(∆qfm1 ,∆qfm2 , . . . ,∆qfmN ) = (−∆s∗1,−∆s∗2, . . . ,−∆s∗N )⊤, (B.12)

so that

−∆s∗i =
1

(s0i +∆s0i )aiπibi
·∆qfmi ·

(
∆p0i + p0i −

K∑
k=1

N∑
j=1

miklkmjk∆qfmj

)
, i = 1, . . . , N.

Using the notations above, we may restate Lemma B.2 as follows:

[0, 1]N ⊂ Ψ
(
[0, n0

1]× · · · × [0, n0
N ]
)
,

i.e., for each (−∆s∗1, . . . ,−∆s∗N ) ∈ [0, 1]N we can find an input (∆qfm1 , . . . ,∆qfmN ) such that
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(∆s∗1, . . . ,∆s∗N ) is the corresponding output:

Ψ(∆qfm1 ,∆qfm2 , . . . ,∆qfmN ) = (−∆s∗1,−∆s∗2, . . . ,−∆s∗N )⊤.

Showing the uniqueness of solutions to (B.3) is now equivalent to showing that Ψ is injective.

Viewing l1, . . . , lK as parameters and denoting by J(∆qfm1 , . . . ,∆qfmN , l1, . . . , lK) the Jacobian of

Ψ, we can easily show by direct calculation that, for any (∆qfm1 , . . . ,∆qfmN )⊤ ∈ [0, n0
1]×· · ·× [0, n0

N ],

J(∆qfm1 , . . . ,∆qfmN , 0, . . . , 0) ≥ δIN , (B.13)

where

δ := min
i=1,...,N

{
∆p0i + p0i

(s0i +∆s0i )aiπibi

}
> 0,

and the operator A ≥ B means that the matrix A − B is positive semidefinite. Notice that

[0, n0
1] × · · · × [0, n0

N ] is compact and a direct calculation reveals that the function J is smooth

in (∆qfm1 , . . . ,∆qfmN , l1, . . . , lK). Because J is continuous function defined on a finite-dimensional

compact domain, it is uniformly continuous. In view of the uniform continuity of J , there exists a

neighborhood L of (0, . . . , 0)⊤ such that for (∆qfm1 , . . . ,∆qfmN , l1, . . . , lK)⊤ ∈ [0, n0
1]×· · ·×[0, n0

N ]×L,

J(∆qfm1 , . . . ,∆qfmN , l1, . . . , lK)

= J(∆qfm1 , . . . ,∆qfmN , 0, . . . , 0) +R(∆qfm1 , . . . ,∆qfmN , l1, . . . , lK), (B.14)

where ∥R(∆qfm1 , . . . ,∆qfmN , l1, . . . , lK)∥2 < δ
2 , i.e., for any q ∈ RN , q ̸= 0,

|R(∆qfm1 , . . . ,∆qfmN , l1, . . . , lK)q| ≤ δ

2
∥q∥2. (B.15)

Next, we fix (l1, . . . , lK) ∈ L. Let q1, q2 ∈ [0, n0
1]× · · · × [0, n0

N ], and denote by

g(t) := ⟨Ψ
(
q1 + t(q2 − q1)

)
, q2 − q1⟩, t ∈ [0, 1].

Then

⟨Ψ(q2)−Ψ(q1), q2 − q1⟩ = g(1)− g(0) =

∫ 1

0
g′(t)dt.
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Observe that q1 + t(q2 − q1) ∈ [0, n0
1]× · · · × [0, n0

N ]. Using (B.13), (B.14) and (B.15),∫ 1

0
g′(t)dt =

∫ 1

0
⟨J
(
q1 + t(q2 − q1), l1, . . . , lK

)
(q2 − q1), q2 − q1⟩dt

=

∫ 1

0
⟨J
(
q1 + t(q2 − q1), 0, . . . , 0

)
(q2 − q1), q2 − q1⟩dt

+

∫ 1

0
⟨R
(
q1 + t(q2 − q1), l1, . . . , lK

)
(q2 − q1), q2 − q1⟩dt

≥ δ|q2 − q1|2 −
δ

2
|q2 − q1|2 =

δ

2
|q2 − q1|2.

The above inequality can be equivalently restated as

⟨Ψ(q2)−Ψ(q1), q2 − q1⟩ ≥
δ

2
|q2 − q1|2,

Hence, if Ψ(q2) = Ψ(q1), then

0 ≤ δ

2
|q2 − q1|2 ≤ ⟨Ψ(q2)−Ψ(q1), q2 − q1⟩ = 0,

i.e., q1 = q2. This proves that Ψ is injective.

C Spillover Losses and Pecking Order of Liquidation

In this section, we quantify the dependence of aggregate vulnerability to flow-to-performance sen-

sitivity and first movers under a different asset liquidation strategy followed by funds. Specifically,

we assume that funds follow a pecking order of liquidation, meaning that they sequentially liquidate

assets in increasing order of price impact parameters. First, funds use cash, then they liquidate

government bonds, and then sequentially the other assets. We assume that the assets labeled as

“Other Securities,” “Other Equities,” and “Other Fixed-Income Securities” are the last ones to be

liquidated because we do not have granular information on those assets.27

If all funds follow the pecking order liquidation strategy and the flow-to-performance sensitiv-

ity is low, aggregate spillover losses are significantly lower compared to the case of proportional

liquidation. This is due to two compounding effects. First, the use of cash and the sale of liq-

uid assets to repay redeeming investors reduces the downward impact on asset prices caused by

redemptions and asset liquidation. Second, fire sales are concentrated in fewer (and more liquid)

assets, which reduces asset price contagion. However, if the sensitivity of flow to performance is

large, the first-mover advantage substantially increases the aggregate vulnerability of the mutual

fund system.

27For computational reasons, we aggregate funds within each of the nine types. Unlike the proportion liquidation
strategy, we cannot use matrix algebra to compute the quantities needed to estimate the SLR.
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Figure C.1: The figure shows the Spillover Loss Ratio for different values of flow-to-performance
ratio when funds follow a pecking order liquidation strategy both in the absence of first movers
(dashed line) and if all investors are first movers (solid line). For each asset, we apply a shock equal
to −5% price change times its relative volatility. We use asset holdings data from Q1 2020.

In Figure C.1, we compare the SLR in the two polar cases with no first movers, or all first-

mover investors. Spillover losses are orders of magnitude larger in the system with only first movers

compared to the system without first movers. The reason is that all funds first liquidate the same

assets, severely impacting their prices and precipitating the spiral of redemptions and fire sales.

This scenario is reminiscent of the disruption of Treasury markets during the Covid-19 crisis: as

discussed in Ma et al. (2022b), concentrated sales of their most liquid assets by fixed-income mutual

funds led to a significant increase in Treasury yields.

D Analytical Results on First Mover Concentration

Consider a system with two funds holding identical portfolios. Let π̄
2 be the proportion of first

movers in the whole system, and let π ∈
(
π̄
2 , π̄

)
be the proportion of first movers in the first fund.

The proportion of first movers in the second fund is π̄ − π. Let ℓ :=
∑K

k=1m
2
iklk. Both funds are

subject to an initial identical portfolio shock ∆s0. Let ∆Qfm = x = (x1, x2) be the number of

portfolio units each fund sells to repay first movers, and let ∆S∗ = y = (y1, y2) be the aggregate

shock to each fund’s NAV. The amounts x1 and x2 are the solutions to the system

x1(s
0 +∆s0 − ℓ(x1 + x2)) = −ab(s0 +∆s0)πy1,

x2(s
0 +∆s0 − ℓ(x1 + x2)) = −ab(s0 +∆s0)(π̄ − π)y2,
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where we assume without loss of generality that p0 = s0. More explicitly,

x1 = fx,1(y1, y2) := πy1
s0 +∆s0 −

√
(s0 +∆s0)(s0 +∆s0 + 4abℓ(πy1 + (π̄ − π)y2))

2ℓ(πy1 + (π̄ − π)y2)
,

x2 = fx,2(y1, y2) := (π̄ − π)y2
s0 +∆s0 −

√
(s0 +∆s0)(s0 +∆s0 + 4abℓ(πy1 + (π̄ − π)y2))

2ℓ(πy1 + (π̄ − π)y2)
,

where we have chosen the smallest roots, i.e., the ones corresponding to the least amount of assets

funds would have to liquidate to meet first movers’ redemptions. The NAV change of fund 1

observed by second movers is

∆sfm1 =
a− x1

a+ abπy1
(s0 +∆s0 − ℓ(x1 + x2))− s0.

We may rewrite the above expression, and obtain that each fund’s NAV change observed by second

movers is equal to

∆Sfm = (∆s0 − ℓ(x1 + x2))

(
1

1

)
− (s0 +∆s0 − ℓ(x1 + x2))

(
x1+abπy1
a+abπy1

x2+ab(π̄−π)y2
a+ab(π̄−π)y2

)
.

Define v1 := a−x1
a+abπy1

, v2 := a−x2
a+ab(π̄−π)y2

. The matrix Ufm defined in Section 3.2 is then given

by

Ufm =

(
v1 0

0 v2

)
,

and in each round of second movers’ redemptions the NAV change is multiplied by the matrix

T := UfmMLM⊤UfmA(I −Π)B. An explicit calculation yields

T = abℓ

(
(1− π)v21 (1− (π̄ − π))v1v2

(1− π)v1v2 (1− (π̄ − π))v22

)
.

For sufficiently small ℓ, the matrix I−T is invertible and the aggregate impact on each fund’s NAV

is then given by (
y1

y2

)
=

(
fy,1(x, y)

fy,2(x, y)

)
:=

∞∑
n=0

Tn∆Sfm = (I − T )−1∆Sfm. (D.16)

Therefore, to find the aggregate NAV change we need to solve the fixed point of the system x = fx(y)

and y = fy(x, y). The component y = (y1, y2) gives the aggregate NAV changes for funds 1 and 2,

respectively.

Next, we restate Proposition 2 using the notation introduced in this section. In particular, the

fixed point y∗ plays the role of ∆S∗ in Proposition 2. We make the dependence of the functions fx

and fy on π explicit by writing fπ
x and fπ

y .

Proposition 2’. Assume ∆s0 ∈ (−1, 0) and b ·∆s0 ∈ (−1, 0). For sufficiently small ℓ, there exists
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a fixed point y∗(π) for fπ
y (f

π
x (y), y), where π ∈ ( π̄2 , π̄) is the proportion of first movers in the first

fund. Define g(π) := limℓ↓0
1
ℓ (y

∗
1(π) + y∗2(π) − 2∆s0), i.e., y∗1(π) + y∗2(π) = 2∆s0 + ℓ · g(π) + o(ℓ).

The function g(π) is decreasing in π.

Proof. Fix π ∈ ( π̄2 , π̄) and let yπ := y∗(π) be the vector of aggregate NAV changes if the proportion

of first movers for each fund is, respectively, π and π̄ − π. For ℓ = 0, asset liquidation does not

move prices, and therefore yπ = (∆s0,∆s0). By continuity, a fixed point yπ exists for sufficiently

small ℓ. Assume yπ = (∆s0,∆s0) + ℓ · yπ,1 + o(ℓ2), where yπ,1 is independent of ℓ. The first order

expansion of (x1, x2) = fπ
x (y

π) yields

x1 = −abπ∆s0 + ℓabπ
abπ̄(∆s0)2 − yπ,11 (s0 +∆s0)

s0 +∆s0
+ o(ℓ),

x2 = −ab(π̄ − π)∆s0 + ℓab(π̄ − π)
abπ̄(∆s0)2 − yπ,12 (s0 +∆s0)

s0 +∆s0
+ o(ℓ).

After plugging the expansion for (x1, x2) into the right-hand side in equation (D.16), we obtain

(I − T )−1∆Sfm = ∆s0 + ℓ ·

(
ab∆s0(2+bπ∆s0(2−π̄))

1+bπ∆s0
ab∆s0(2+b(π̄−π)∆s0(2−π̄))

1+b(π̄−π)∆s0

)
+ o(ℓ).

Hence, by comparing the terms of order ℓ in equation (D.16), we get

yπ,11 = ab∆s0
2 + bπ∆s0(2− π̄)

1 + bπ∆s0
,

yπ,12 = ab∆s0
2 + b(π̄ − π)∆s0(2− π̄)

1 + b(π̄ − π)∆s0
.

In particular, yπ1 + yπ2 = 2∆s0 + ℓ · g(π) + o(ℓ), where

g(π) = ab∆s0
[
2 + bπ∆s0(2− π̄)

1 + bπ∆s0
+

2 + b(π̄ − π)∆s0(2− π̄)

1 + b(π̄ − π)∆s0

]
.

The first derivative of g(π) is

ab3(∆s0)3π̄
(2π − π̄)(2 + bπ̄∆s0)

(1 + bπ∆s0)2(1 + b(π̄ − π)∆s0)2
,

which is negative because 2π > π̄, ∆s0 < 0, and b ·∆s0 > −1. This concludes the proof.

An increase in first mover concentration has a twofold effect on each fund’s NAV. First, addi-

tional first-mover redemptions at the first fund negatively impact its NAV (and, conversely, fewer

first mover redemptions at the second fund increase its NAV). This effect is symmetric across the

two funds. Second, an increase in the proportion of first movers reduces the number of investors

that bear the cost of first movers’ redemptions, while this externality is spread over more investors

for the fund with fewer first movers. This effect is asymmetric, because it exacerbates the impact
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of first movers on the first fund’s NAV and reduces the benefit of having fewer first movers. Hence,

the aggregate effect of first mover concentration on the system is negative.
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