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Abstract Abstract 
Spatial autocorrelation in model residuals can have a significant impact on the results of spatial or space-
time models. This can result in misleading estimates of the influence of different factors, potentially 
exaggerating or even reversing the perceived effects of these factors. This study also considers the 
potential implications of the Modifiable Areal Unit Problem (MAUP) in the context of spatial-temporal 
models. In this case study for southeastern Ghana, we examined whether and how spatial autocorrelation 
in model residuals might generate bias in regression coefficients when explaining women’s body mass 
index (BMI) across urban and rural areas. Eigenvector spatial filtering, with various settings of influential 
zones, was systematically tested in a latent trajectory model to detect the impacts of spatial 
autocorrelation. We found that spatial autocorrelation in model residuals did bias the coefficients of key 
independent variables such as land cover type, not only affecting their magnitude but also altering their 
sign or significance. This highlights the risk of significantly misinterpreting the relationships between 
variables. The bias was effectively mitigated or reduced in urban and rural subsets identified through a 
data-mining approach, while it persisted in other subsets. This distinction in bias mitigation underscores 
the necessity of customizing models to suit specific subset attributes. Such systematic testing also 
enabled our choice of appropriate size of influential zones, within which spatial autocorrelation in data 
and model residuals was prevalent and thus accounted for biased coefficients. Additionally, we found that 
BMI trajectories and the associated drivers in urban areas are quite different from those in rural areas, 
indicating the necessity for differentiating analytical approaches between these areas. This finding 
therefore justifies the construction of separate BMI models for rural and urban areas. Our methodology 
demonstrates the importance of managing both temporal variability and spatial autocorrelation 
simultaneously, improving the model's usefulness in handling other space-time data. 
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1. INTRODUCTION 
 
The increasing prevalence of women’s overweight and obesity, a serious problem in 
Africa, offers a great opportunity to study spatial autocorrelation in model residuals. 
Before we offer reasons for this statement, we present some background information 
about obesity challenges in Africa.  From 1975 to 2016, prevalence of overweight 
among African women increased from 13.3% to 34.8% (World Health Organization, 
2023). Body mass index (BMI) can be an indicator for people’s obesity and vary 
between urban and rural residents. High BMI may indicate a person is overweight, 
which can lead to a higher probability of coronary heart disease. Reddy et al. (2002) 
used BMI to analyze people’s health condition in rural and urban areas of north India, 
and found that rural residents had lower BMI compared to urban residents. To 
effectively mitigate the escalation of obesity prevalence, it is crucial to focus on regions 
where the issue is most pronounced or where the rate of increase is highest. 
Developing health policies that prioritize these rapidly expanding areas is essential 
(Crook et al, 2016). 

Given the health concerns related to obesity, especially among West African 
women, it is crucial to employ advanced analytical methods to comprehend and tackle 
the concerns. One possible approach to achieve this goal is to implement space-time 
statistical models to understand how obesity patterns change over space and time and 
the mechanisms behind such patterns. In the next section, we review the literature 
related to why and how human socioeconomic and/or behavioral data may be spatially 
autocorrelated, accounting for spatial autocorrelation in model residuals when such 
data are used in statistical models. Furthermore, we also show what researchers have 
done to handle such autocorrelation. Such information helps justify the necessity and 
the way we have used in this paper related to addressing spatial autocorrelation in 
model residuals. 

 
1.1 Human behaviour in various living environments 

 
People living in close geographic proximity tend to display similar habits, lifestyles, and 
or activity patterns, and such similarity is often reflected in individual- or 
neighborhood-level data. This situation influences correlation between the attributes 
of individuals who live in the same or close geographical area(s) at varying degrees, 
giving rise to spatial autocorrelation (more often used in a geographical context) or 
neighborhood effects (more often used in a social or economic context). Neglecting 
these neighborhood effects can lead to biases in modelling results (Zvoleff et al. 2013; 
An et al. 2016; Sullivan et al. 2017). When considering the neighborhood effects on 
people’s behavioral or health patterns, such effects might vary between rural and 
urban areas (Glenn and Hill 1977). The behavioral difference can result in disparities in 
residents’ health, demographic features, and socioeconomic status, among others.  

 
1.2 Spatial Autocorrelation in Model Residuals 

 
Spatial data are rapidly being generated and archived over time, yielding spatial-variant, 
multi-temporal data (space-time data hereafter) that enable the exploration of space-
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time phenomena and their background mechanisms. Space-time statistical models are 
extremely useful and becoming increasingly popular for understanding the 
mechanisms underlying many space-time patterns (An et al. 2015). For example, 
Rushworth et al. (2014) applied Markov chain Monte Carlo methods to estimate the 
impact of air pollution on respiratory hospital admissions. Sun et al. (2005) 
implemented space-time autoregressive models to accurately estimate housing prices 
with temporally-dense housing records. For more and different approaches to studying 
the mechanisms behind many spatially and temporally variant phenomena, refer to An 
et al. (2016). 

Despite advancements in space-time data analysis, the Modifiable Areal Unit 
Problem (MAUP) remains a significant concern, impacting the interpretability and 
validity of statistical models. The MAUP stems from the arbitrary aggregation of spatial 
data, leading to varying statistical outcomes based on the size and shape of spatial units 
used. This sensitivity to aggregation can lead to misleading conclusions, particularly in 
spatial regression models when estimating variable relationships (Wong, 2009 ; Manley 
et al., 2006). Recent studies address the MAUP by utilizing diverse methodological 
approaches, such as multi-scale analysis to evaluate spatial pattern stability (Maroko 
et al., 2020) and geographically weighted regression to localize relationships and 
minimize the impact of spatial aggregation (Fotheringham et al., 2017). These efforts 
demonstrate the ongoing refinement of strategies to mitigate the effects of MAUP and 
enhance the robustness of space-time models. 

 In addition to MAUP, the presence of spatial autocorrelation in such data—and 
subsequently in model residuals–represents a huge challenge in spatial or space-time 
data analysis. If not addressed correctly, spatial autocorrelation can undermine the 
validity of regression outcomes by inflating the significance of coefficients and 
distorting the standard errors (Griffith, 2000). This inflation and distortion lead to 
misleading inferences about the relationships between the dependent and 
independent variables. To improve model performance and associated model 
coefficient estimation, it is crucially important to reduce or remove autocorrelation in 
model residuals. Autocorrelation in model residuals results from multiple factors, such 
as unobserved mechanisms in the model and missing key independent variables 
(Dormamn et al. 2007). Removing or reducing autocorrelation in residuals can yield a 
relatively unbiased model. Baltagi (2021) comprehensively summarized multiple 
approaches to estimating temporal autocorrelation in model residuals. Here, we focus 
on detecting and reducing spatial autocorrelation in model residuals within the context 
of space-time statistical models, aiming to correct for these distortions and improve 
the interpretability and reliability of regression results.  

Multiple methods have been proposed to address spatial autocorrelation in 
model residuals. Cheng et al. (2014) developed dynamic spatial weights matrices and 
incorporated them in space-time autoregressive integrated moving averages for 
modeling travel time. However, they did not use global metrics (e.g., global Moran’s I 
test, Getis’ G test) to examine spatial autocorrelation. Patuelli et al. (2011) modeled 
German unemployment rates with logistic regression. They found that spatial 
eigenvectors appropriately handled the spatial autocorrelation in model residuals. This 
approach primarily addressed the bias in the estimated coefficients, ensuring more 
accurate representations of the relationships between variables. Gu et al. (2021) 
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applied a negative binomial model with eigenvector spatial filtering (ESF) to model the 
number of college-graduated workers with variables reflecting economic opportunities 
and living environment. As a result, spatial autocorrelation in model residuals was 
greatly reduced and the subsequent model outcomes were more robust in comparison 
with the ones with distortions typically caused by spatial autocorrelation. In the next 
section, we explore how spatial autocorrelation may arise in socioeconomic data.  

Within the context of examining women’s BMI variation over time in Ghana, 
Crook et al (2016) aimed to remove spatial autocorrelation in model residuals and 
understand the impacts from sociodemographic and environmental factors. They 
implemented latent trajectory modeling (LTM) and eigenvector spatial filtering to 
explain women’s BMI with sociodemographic and environmental variables; spatial 
autocorrelation of model residuals was successfully reduced. They explored 
Demographic and Health Survey (DHS) and land cover data over space and time and 
then applied appropriate data preprocessing methods for filling in data gaps which 
result from repeated cross-sectional surveys. Five latent trajectory models in 
conjunction with eigenvector spatial filtering were applied to estimate model 
coefficients and explain women’s BMI after removing or minimizing spatial 
autocorrelation in model residuals. The models explained how women’s BMI varied 
over space and time and the potential impacts from the chosen factors. Land cover 
composition was found to be an important explanatory environmental factor in the 
models. A limitation of the Crook et al. (2016) study is that spatial eigenvectors and the 
size of influential zones were selected in a trial-and-error manner. The optimal number 
of spatial eigenvectors and the size of influential zones were not determined, and the 
selection process was somewhat arbitrary.  

An influential zone is a geographic area within which an entity influences or is 
influenced by its spatial neighbors. The size of a spatial influential zone is often 
determined arbitrarily and without a theoretical or empirical basis (Zvoleff et al. 2013). 
Spatial adjacency is often applied to polyline and polygon-based data to determine the 
influential zone (e.g., Patuelli et al. 2011, Rushworth et al. 2014, Cheng et al. 2014). The 
influential zones remain constant in the Patuelli et al. (2011) and Rushworth et al. (2014) 
conceptualizations, while the zones in Cheng et al. (2014) vary depending on the traffic 
speed of line networks. Distance or rank-based approaches are often applied to point-
based data. Sun et al. (2005) applied distance-decayed functions to determine whether 
a condo is within the same building or community of buildings. Aldstadt and Getis (2006) 
developed a method to determine the size of influential zones based on a 
multidirectional optimal ecotope-based algorithm, which implements the Getis-Ord 
local G statistic to identify high and low local centers of phenomena, such as fertility 
levels (see, for example, Weeks et al, 2010). However, such delicate approaches require 
complete, longitudinal data over space and time. 

In addition, BMI models were assumed to apply similarly to both rural and urban 
communities. However, Crook et al. (2016) suggested that BMI in urban areas should 
be modelled separately from rural areas for more accurate BMI models in future 
studies since factors such as diet and physical activity can vary considerably between 
urban and rural places. Also, the benefits of treating rural and urban areas differently 
are observed in other instances (e.g., Glenn and Hill 1977). 
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1.3 Research objectives 

 
In this study, the significance of the MAUP issue is recognized by incorporating it into 
our analytical framework. Building on the recommendation of Crook et al. (2016) study, 
rural and urban areas are modeled separately. The influence of MAUP on spatial 
analysis is considered and mitigated by applying eigenvector spatial filtering to filter 
out and assess the negative impacts of spatially autocorrelated data regarding 
Ghanaian women’s BMI in the corresponding statistical models (detail in Section Data 
and Methods). Researchers should emphasize the importance of selecting spatial units 
of analysis that are reflective of underlying processes to avoid potential biases related 
to the MAUP, an issue not addressed by Crook et al. (2016). Given this context, the 
goals of this study are to 1) detect the size and impact of influential zones, 2) explore 
whether and how the eigenvector spatial filtering (ESF) technique can be leveraged to 
remove or minimize the bias due to neighborhood effects within the relevant 
influential zones in space-time statistical models, and 3) assess whether new—more 
plausible—insights regarding the mechanisms behind the BMI space time data can be 
obtained once the first two goals are achieved.  

Compared to Crook et al. (2016), the unique contribution of this study comes 
from our development of a systematic approach to selecting the optimal number of 
spatial eigenvectors and the size of influential zones. This approach aids in identifying 
the appropriate scale of analysis to tackle the MAUP. As pointed out earlier, we 
separated urban samples from rural samples to investigate the difference in driving 
forces of women’s BMI between urban and rural areas.  

 
2. DATA AND METHODS 
 
2.1 Study area and data 

 
The study site is located in southeastern Ghana, West Africa (shown in Figure 1), which 
coincides with the World Reference System -2 (WRS-2) coordinate in path 193 – 194, 
row 55 – 56. The south coast of Ghana faces the Gulf of Guinea, and its climate, 
according to Köppen climate classification, belongs to tropical Savanna climate (Aw) 
that contains wet and dry seasons. Elevation ranges from sea level in the south coast 
to about 650 m in the north of the study area. The study area contains two major cities, 
Accra and Kumasi. Agricultural lands surround the two cities, while natural vegetation 
is the major land cover for the remainder of the study area. 

The data for sociodemographic and land cover variables were obtained from two 
main sources. DHS data were used to represent sociodemographic characteristics. The 
surveys were conducted at the household level, geo-tagged periodically (typically every 
five years) and provided at the cluster level. Each cluster was aggregated from multiple 
individuals and households, so each cluster represents a group of people or households 
living in the same community.  The geographic coordinates of the cluster were 
randomly shifted (0-2 km for urban areas; 0-5 km for rural areas) from the original 
location to protect privacy of individuals and households. The DHS data from 1993, 
1998, 2003, and 2008 were used to derive sociodemographic variables and track their 
change over time. At the individual person level, diet and exercise habits are the two 
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main factors that determine whether a person is overweight (Ross et al. 2000). 
However, DHS survey data did not include any information related to diet or exercise. 
Therefore, the focus of this study turned to the relationship between sanitation 
conditions and women’s obesity. Sanitation conditions tend to reflect how urban and 
how wealthy a neighbourhood is. Rural areas are likely not to have a toilet in the house, 
whereas more affluent urban neighborhoods have a high likelihood of having a flush 
toilet.  

Three variables were extracted and used for modeling women’s BMI at the 
cluster level, including mean women’s BMI, % of households with flush toilet 
(FlushToilet), and % of households with no toilet (NoToilet). Crook et al. (2016) found 
significant associations of FlushToilet and NoToilet with the women’s BMI across space 
and time, so we kept them as covariates in this study. The type of toilet is a function of 
local infrastructure development. Existence of modern toilet reflects improved 
environmental and hygienic situations (e.g., lower risk of virus infection), which is one 
of the factors affecting human weight (Institute of Medicine (US) Subcommittee on 
Military Weight Management 2004). In addition, each cluster was labeled as either 
“Rural” or “Urban” in the DHS survey, which was used as an indicator of living 
environments in the later analysis. Note that BMI was multiplied by 100 to limit the 
number of digits behind decimal points (BMI hereafter). 
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Figure 1. Study area and DHS sample locations. The land cover map was derived from semi-
automated classification of a temporal composite (2009-2013) of Landsat imagery by Coulter et 
al. (2016). 

Land cover variables (shown in Figure 1), derived from Landsat satellite imagery, 
represent the living environments of people surveyed in the DHS samples. Extensive 
urban expansion and deforestation occurred within the study area, which could affect 
or be associated with BMI (Crook et al. 2016). Therefore, the land cover variables used 
in Crook et al. (2016), which accounted for urban expansion and deforestation, were 
incorporated for modeling BMI in this paper. Because of predominant cloud cover in 
the study area, multiple dates of Landsat imagery for two epochs (1999-2003 and 2009-
2013) were composited to generate land cover maps for the study areas where 
extensive urban growth and associated land cover change occurred. These two periods 
were chosen to match DHS data cycles, enabling an integrated analysis of 
environmental and sociodemographic impacts on BMI. Detailed image processing and 
land cover derivation are described in Coulter et al. (2016). Each pixel within the study 
area was classified into one of six subclasses of land cover: water, forest, secondary 
forest, savanna, agriculture, and built. The five subclasses except water were later 
aggregated into three more general land cover classes (built, natural vegetation, and 
agriculture) to represent the distribution and changes in living environments. 
 
2.2 Data pre-processing 

 
To extract information for land cover variables, two dates (2000 and 2010) of land cover 
maps were integrated with the DHS clusters. For each cluster, a 2500 m buffer was 
created based on its location, where the parameter 2500 m was used to represent a 
space big enough to include relevant clusters but not too big to include areas that 
would not influence the focal area. The areal coverage of the built (Built) and natural 
vegetation (NaturalVeg) within the buffer were extracted from the two dates of land 
cover maps, respectively. To estimate the land cover area coverage at the four DHS 
survey years, linear interpolation (for 2003 and 2008) and extrapolation (for 1993 and 
1998) were conducted to generate the land cover data for each date of survey clusters. 
The data generation and pre-processing are described in detail in Crook et al (2016).  

To test whether the spatiotemporal pattern of women’s BMI varies over rural 
and urban areas, subsets of rural and urban samples were generated according to two 
classification methods (shown in Table 1). First, we labelled each cluster based on DHS 
classification. The rural and urban clusters were distinguished using a label found in the 
DHS records. Accordingly, 398 clusters belong to rural samples (DHS rural hereafter), 
while 382 clusters belong to urban samples (DHS urban hereafter). Second, we adopted 
another classification method involved gathering rural and urban subsets based on 
distances to other samples. The spatial distribution data of the samples (shown in 
Figure 1) indicate that clusters in urban areas are more densely distributed than those 
in rural areas. However, it is important to address the potential measurement error 
resulting from the shifting of sampling cluster centroids, which varies between urban 
and rural areas. Sampling clusters are approximate centroids of areas where groups of 
households are located, and these centroids can shift over time due to factors such as 
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urban development and rural migration patterns. This shifting can introduce errors in 
our distance-based classification, as our methodology heavily relies on estimating 
distances between clusters. To mitigate this, we refined our approach by analyzing the 
accuracy of cluster designations. We scrutinized how each cluster was determined as 
urban or rural by examining the criteria we used and comparing them with the actual 
characteristics of the area. This analysis involved cross-referencing the DHS 
classification with visual interpretations of the 2000 and 2010 land cover maps. 
Furthermore, we acknowledge that using distances between clusters as the primary 
method for classifying urban and rural areas can be problematic. To address these 
concerns, we conducted tests and determined various distance thresholds for cluster 
classification. We set the threshold at less than or equal to 0.5 km for urban clusters 
and greater than or equal to 3.5 km for rural clusters. This decision was made after 
carefully considering the spatial distribution data of the samples (Figure 1), which 
showed a denser distribution of clusters in urban areas. 

 
Table 1. Samples for representing urban and rural subsets in two definitions. 

 DHS definition Sample number 
Distance-to-the-nearest 

neighbor definition 
Sample 
number 

Urban 
Labeled by DHS 

survey 
382 

Distance to the nearest 
neighborhood cluster 

smaller or equal to 0.5 km 
122 

Rural 
Labeled by DHS 

survey 
398 

Distance to the nearest 
neighborhood cluster 

larger or equal to 3.5 km 
226 

 
2.3 Latent trajectory model 

 
LTM was primarily used to model the temporal trajectory of women’s BMI. LTM is a 
powerful tool for modeling time series data under an assumption that the phenomenon 
of interest arises from an underlying or latent trajectory over time (Curran et al. 2010). 
LTM is constructed in a multilevel manner, and some random effects in a LTM can 
capture the effect of spatial autocorrelation. The shape of the underlying trajectory can 
be depicted by an intercept (α), a slope (β), and other optional parameters (e.g., γ; 
Equation 1). α, β, and γ are usually modeled as a function of chosen independent 
variables (Equations 2~4), which can be either time-variant or time-invariant.  

𝐵𝑀𝐼𝑡 = 𝛼 + 𝛽𝑡 + 𝛾𝑡2 + 𝑒 (1) 

The underlying trajectory of women’s BMI was modeled as function of an 
intercept, a slope, and a quadratic term of time (t) (shown in Equation 1). A quadratic 
term of time was chosen to reflect our observation of some samples having non-linear 
trajectories of BMI. At t=0 (the year 1993), the model reduces to 𝐵𝑀𝐼𝑡 = 𝛼 + 𝑒, where 
e represents the error term. This implies that in 1993, the BMI is predicted solely by 
the intercept α, without additional influence from the linear or quadratic time 
components. This approach was chosen to simplify the model's initiation, assuming 
that prior influences up to this point are encapsulated within α and e. For our LTM, α, 
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β, and γ represent the coefficients of t0, t1, and t2, respectively, and were explained by 
a set of independent variables.  

Our model explains 𝐵𝑀𝐼𝑡 using α, β, and γ that represent changes of BMI over 
time. The values of α, β, and γ already include the influences from earlier times, i.e., 

t−p, … t−2, t−1. For instance, if γ is positive, then the trajectory of BMI would have a 

positive acceleration over time. Put another way, the influences from t−p, … t−2, t−1 
would affect the values of α, β, and γ, making them to be zero (𝐵𝑀𝐼𝑡 at various times 
have no temporal influence on one another), positive (positive temporal correlation), 
or negative (negative temporal correlation). At the same time, our models also allow 
other variables (i.e., 𝐹𝑙𝑢𝑠ℎ𝑇𝑜𝑖𝑙𝑒𝑡𝑡 and 𝑁𝑜𝑇𝑜𝑖𝑙𝑒𝑡𝑡 in Equations 2~4) to affect BMI. 

The three parameters α, β, and γ are geographically variant and modeled as a 
function of several chosen variables in the following equations: 

 𝛼 = 𝛼0 + 𝛼1𝐹𝑙𝑢𝑠ℎ𝑇𝑜𝑖𝑙𝑒𝑡𝑡 + 𝛼2𝑁𝑜𝑇𝑜𝑖𝑙𝑒𝑡𝑡 + 𝜀0  (2) 

 𝛽 = 𝛽0 + 𝛽1𝐹𝑙𝑢𝑠ℎ𝑇𝑜𝑖𝑙𝑒𝑡𝑡 + 𝛽2𝑁𝑜𝑇𝑜𝑖𝑙𝑒𝑡𝑡 + 𝜀1 (3) 

 𝛾 = 𝛾0 + 𝛾1𝐹𝑙𝑢𝑠ℎ𝑇𝑜𝑖𝑙𝑒𝑡𝑡 + 𝛾2𝑁𝑜𝑇𝑜𝑖𝑙𝑒𝑡𝑡 + 𝜀2 (4) 

where 𝛼0, 𝛽0, and 𝛾0 are the global intercept, slope, and quadratic coefficient that do 
not change from cluster to cluster, while the remaining terms (e.g. 𝛼1𝐹𝑙𝑢𝑠ℎ𝑇𝑜𝑖𝑙𝑒𝑡𝑡 +
𝛼2𝑁𝑜𝑇𝑜𝑖𝑙𝑒𝑡𝑡 for 𝛼) are determined by the chosen variables that affect coefficients 𝛼, 
𝛽, and 𝛾 at the corresponding locations.  𝜀0, 𝜀1, and 𝜀2 are the error terms in these 
three parameters (𝛼, 𝛽, and 𝛾). For model specifications above (Equations 2 ~ 4), the 
LTM aims to model and explain temporal changes in the dependent variable (BMI in 
our case). If there is no temporal correlation, all α, β, and γ should be zero, implying a 
stationary situation with no changes over time. However, this contradicts the findings 
of Crook et al. (2016). 

For model A, which is represented in Table 3 as models c0 (urban) and Table 4 as 
e0 (rural), we used two DHS variables (i.e., FlushToilet and NoToilet) at date t 
(where 𝑡 ∈ {0, 1, 2, 3}) to estimate the coefficients of α, β, and γ (shown in Equations 
2, 3, and 4). To examine whether land cover variables increase model predictive power, 
we incorporated land cover variables along with the DHS variables in model B, which 
corresponds to models d1 (urban) in Table 3 and f1 (rural) in Table 4, (shown in 
Equation 5, 6, and 7). Because the DHS and land cover variables varied over time, BMI 
at certain points of time were estimated using the DHS and land cover data at the same 
time (t), where 𝑡 ∈ {0, 1, 2, 3}, where 0, 1, 2, and 3 represent 1993, 1998, 2003, and 
2008. 

    𝛼 = 𝛼0 + 𝛼1𝐹𝑙𝑢𝑠ℎ𝑇𝑜𝑖𝑙𝑒𝑡𝑡 + 𝛼2𝑁𝑜𝑇𝑜𝑖𝑙𝑒𝑡𝑡 + 𝛼3𝐵𝑢𝑖𝑙𝑡𝑡 + 𝛼4𝑁𝑎𝑡𝑢𝑟𝑎𝑙𝑉𝑒𝑔𝑡 + 𝜀0  (5) 

    𝛽 = 𝛽0 + 𝛽1𝐹𝑙𝑢𝑠ℎ𝑇𝑜𝑖𝑙𝑒𝑡𝑡 + 𝛽2𝑁𝑜𝑇𝑜𝑖𝑙𝑒𝑡𝑡 + 𝛽3𝐵𝑢𝑖𝑙𝑡𝑡 + 𝛽4𝑁𝑎𝑡𝑢𝑟𝑎𝑙𝑉𝑒𝑔𝑡 + 𝜀1  (6) 

   𝛾 = 𝛾0 + 𝛾1𝐹𝑙𝑢𝑠ℎ𝑇𝑜𝑖𝑙𝑒𝑡𝑡 + 𝛾2𝑁𝑜𝑇𝑜𝑖𝑙𝑒𝑡𝑡 + 𝛾3𝐵𝑢𝑖𝑙𝑡𝑡 + 𝛾4𝑁𝑎𝑡𝑢𝑟𝑎𝑙𝑉𝑒𝑔𝑡 + 𝜀2  (7) 
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2.4 Eigenvector spatial filtering 

 
Geographically weighted regression (GWR) is widely used to model many different 
phenomena with spatial nonstationarity. However, its coefficients tend to demonstrate 
pronounced multicollinearity and significant positive spatial autocorrelation (Wheeler 
and Tiefelsdorf, 2005).   Griffith (2008) introduced an alternative method to GWR, 
eigenvector spatial-filter-based local regression, to reduce or remove some of GWR’s 
negative effects. In a particular empirical study, the eigenvector spatial-filter-based 
local regression technique is suggested superior to GWR due to its enhanced capability 
to account for autocorrelation in the residuals (Griffith, 2008). The ESF is a spatial 
filtering method that aims to separate spatially structured components from trend. This 
distinction is important for addressing the MAUP by taking into account the spatial 
arrangement of the units of analysis, which helps ensure the reliability of results across 
varying spatial aggregations. This technique enhances statistical modeling for improved 
inference and visualization (Griffith et al., 2014).  

The ESF approach was incorporated in the LTM to mitigate spatial 
autocorrelation in model residuals. Spatial filtering methods (Griffith 2000) are 
instrumental in this context by decomposing key variables in regular multiple 
regression models to spatial and non-spatial components. The non-spatial components 
are largely free of spatial autocorrelation, which should be primarily driven by 
explanatory variables. This method begins with defining a spatial weight matrix, 
indicating the spatial extent within which samples affect, and are affected by, one 
another. Spatial autocorrelation can be removed or minimized by incorporating a set 
of eigenvectors (derived from the spatial weight matrix) as additional independent 
variables (Griffith 2000, Tiefelsdorf and Griffith 2007, and Chun and Griffith 2011). Each 
chosen eigenvector represents a spatial pattern of a known or unknown driving force 
(variable) at a certain scale. In other words, eigenvectors associated with large 
eigenvalues stand for somewhat large-scale patterns, while those with small 
eigenvalues stand for small/local patterns (Getis, 2010; Griffith, 2010). Therefore, we 
do not need to assume the variables (or the subsequent residuals) are spatially 
autocorrelated in the same way over time. 

As we had limited prior knowledge about the size of influential zones in which 
data are mostly autocorrelated, a data-mining approach was developed to determine 
the most likely size. Cheng et al (2014) and Aldstadt and Getis (2006) estimated 
dynamic spatial weight matrices because they had longitudinal data sets, however, our 
ability to do so is constrained by the temporal incompleteness of the DHS data. Also, 
the DHS survey density varies over rural and urban areas. The K-nearest neighbor (KNN) 
method is a conceptually straightforward approach that allows for flexible definition of 
the influence zone size. It also helps to minimize the negative impacts of spatially 
autocorrelated data. Thus, the KNN algorithm was used to define the spatial weight 

matrix (Ck) for all sampled clusters, where k represents the number of nearest 
neighbors (Aldstadt and Getis 2006). Taking the 2-nearest neighbor definition as an 
example: for each cluster, 1 was assigned to the nearest two clusters, while 0 to other 

clusters. The same algorithm was applied to generate spatial weight matrices (Ck) 
where k represents the tested cluster sizes of 4, 8, 16, 32, and 64, respectively. This 
process did not group neighborhoods into a single cluster but instead created separate 
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spatial weight matrices for each tested cluster size, treating each as an individual 
influential zone. A distance-based neighborhood definition was not used because of 
high variation in density of cluster samples over rural and urban areas. In the original 
case of the KNN algorithm, the imaginary part in all complex numbers in the 
eigenvalues were dropped before eigenvector selection, and the top k eigenvectors 
were selected only based on the real part of associated eigenvalues. To test whether 
dropping imaginary parts induce substantial differences in regression results, the KNN-
spatial weight matrices were forced to be symmetrical to generate the real-number-
only eigenvalues and corresponding eigenvectors (forced real number hereafter) for 
regression analysis. 

Given the extensive literature on the selection of appropriate eigenvectors, we 
employed a data mining approach to systematically determine the optimal number of 
top k eigenvectors. This approach involved an iterative process where various 
configurations of eigenvectors were evaluated to ascertain the configuration that 
minimized spatial autocorrelation in the residuals most effectively, Therefore, we 

chose the top k eigenvectors (i.e., from E1 to Ek, where 0 < 𝑘 ≤ 15 given our moderate 
sample size; Crook et al. 2016) as independent variables to account for the spatial 
autocorrelation potentially existing in women’s BMI data and independent variables 
(Griffith 2000). Due to the time-invariant property of spatial eigenvectors, spatial 
eigenvectors were added to Equations 2~4 and 5~7 for modeling α, β, and γ (An et al. 
2016).  
 

3. RESULTS 
 
3.1 Model fitting 

 
Multiple distance thresholds were tested to classify a certain cluster as urban (if the 
nearest distance between all pairs of clusters is less than a certain threshold) or rural 
(the above distance is greater than the threshold). The distance between any two 
clusters ranged from 0 to 320 km, corresponding to the shortest and longest distances 
between any two clusters. With this data-driven approach, the urban clusters were 
derived at the nearest distance less than or equal to 0.5 km, while the rural clusters 
were derived at the nearest distance greater than or equal to 3.5 km. With these two 
thresholds, 122 clusters were labeled as urban samples, while 226 clusters were 
labeled as rural samples. The spatial locations of the 122 and 226 clusters highly reflect 
the urban and rural environments respectively based on the land cover maps. We 
excluded 432 clusters with a nearest neighbor distance between 0.5 km and 3.5 km 
from our data analysis.  

To determine the influential zone, the joint effects of two confounding 
parameters were considered: the number of spatial eigenvectors and the way to define 
rural and urban sites (Glenn and Hill 1977). To explore whether the land cover variables 
could substantially increase the explanatory power of the corresponding model, the 
Akaike information criterion correction (AICc) index was employed to select potential 
models (Burnham and Anderson 2004).  

The trends of AICc were plotted against the size of influential zone and number 
of spatial eigenvectors (Figure 2). It should be noted that AICc values could not be 
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calculated for certain models due to divergence, resulting in the blank areas in Figure 
2(b), (d), (i), and (j). The models with land cover variables have lower AICc over all 
datasets, which indicates that land cover variables are instrumental in modelling 
women’s BMI. 

 

Figure 2. Trends of Akaike information criterion correction (AICc) of BMI models for various 
settings for influential zones and spatial eigenvectors. (a), (c), I, (g), and (i) are BMI models 
without land cover variables, while (b), (d), (f), (h), and (j) are BMI models with land cover 
variables (i.e., built and natural vegetation areas). (a) and (b) were derived from all 780 cluster 
points; (c) and (d) were derived from NN urban subset that are defined with the nearest distance 
smaller or equals to 0.5 km(e) and (f) were derived from NN rural subset that are defined with 
the nearest distance larger or equals to 3.5 km; (g) and (h) are derived from urban subset that 
are defined by DHS; (i) and (j) are derived from rural subset that are defined by DHS. Vertical 
axis on each figure represents the number of spatial eigenvectors ranging from 1 to 15. 
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Horizontal axis represents the size of influential zone ranging from 2 to 64, which are shown in 
scale of log2.  

 
3.2 Spatial autocorrelation in model residuals 

 
The spatial autocorrelation in model residuals was examined with global Moran’s I test 
as shown in Figure 3 and Table 2. The Z-score associated with the global Moran’s I 
dropped with the inclusion of land cover variables over all subsets. Spatial 
autocorrelation effects were removed or reduced to an acceptable level (i.e., the 
absolute value of Z-score is less than a threshold such as 1.96) for some models, 
especially those associated with the NN urban and rural subsets. For the model using 
the NN urban subset without land cover variables, spatial autocorrelation was removed 
when the influential zones were 8, 16, 32, and 64 nearest neighbors, along with more 
than four spatial eigenvectors. Spatial autocorrelation was removed in more 
combinations of influential zone sizes and spatial eigenvectors for the same subset with 
land cover variables (i.e., large areas under 1.96; Figure 3(g)). In comparison, spatial 
autocorrelation was still present for more combinations of influential zone sizes and 
spatial eigenvectors for the NN rural subset regardless of including the land cover 
variables or not (see Figure 3(c) and (h)).  

In general, spatial autocorrelation was successfully removed, especially for the 
NN urban subset. However, models with too many spatial eigenvectors may face the 
‘curse of dimensionality’ (Chun and Griffith, 2011), especially when the sample size is 
limited. In addition, increasing the size of the influential zone may lead to losing the 
meaning of testing spatial-explicit models. Taking the NN urban subset for example, 
over half of the total urban samples (64 out of 122) are the spatial neighbors for each 
sample under the setting of 64-size-influential zone, which implies that spatial 
autocorrelation at finer scales (i.e., less than 64) is ignored in the corresponding LTM-
ESF model. 

 
Table 2. Average Z-Scores associated with global Moran’s I test for BMI model residuals over 
various data subsets. The averaged Z-Scores are derived from all combinations of influential 
zones and spatial eigenvectors. 

 Without land cover variables With land cover variables 

All 780 samples 52.06 49.70 

NN urban samples 5.89 4.49 

NN rural samples 13.58 13.44 

DHS urban samples 22.41 21.93 

DHS rural samples 28.72 28.29 
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Figure 3. Z-score of BMI model residuals for various settings for influential zone and spatial 
eigenvectors. Note that (I (c), (e), (g), and (i) are BMI models without land cover variables, while 
(b), (d), (f), (h), and (j) are BMI models with land cover variables (i.e., built and natural vegetation 
areas). (a) and (b) were derived from all 780 cluster points; (c) and (d) were derived from the 
NN urban subset that are defined with the nearest distance smaller or equals 0.5 km; (e) and (f) 
were derived from the NN rural subset that are defined with the nearest distance larger or 
equals to 3.5 km; (g) and (h) were derived from urban subset that are defined by DHS; (i) and (j) 
were derived from rural subset that are defined by DHS. Vertical axis represents the number of 
spatial eigenvectors ranging from 1 to 15. Horizontal axis represents the size of influential zone 
ranging from 2 to 64, which are shown in the scale of log2. Combinations of the size of spatial 
neighbors and number of spatial eigenvectors that generated a Z-Score less than 1.96 (α less 
than or equal to .05) are delineated using black contours marked with 1.96 in some of the sub-
figures, and sub-figures without the delineation indicate that spatial autocorrelation effects are 
not removed. 
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3.3 Optimal models without spatial autocorrelation 

 
The BMI models without spatial autocorrelation (i.e., Z-score of Moran’s I less than 
1.96) were identified by analyzing the residuals Moran’s I in Figure 3(c) and (d). For the 
NN urban subset, models with fewest spatial eigenvectors and the smallest influential 
zones (shown in Table 3) were chosen for model brevity. The BMI models without ESF 

(i.e., Model c0 and Model d0) are listed for comparison. The coefficient for t0 (i.e., α0) 
is positive and significant for all the four models (Table 3), suggesting that BMI is initially 

significant and positive. The coefficient β0 significantly affects all the four BMI models, 

but γ0 significantly affects BMI in a declining manner over time. FlushToilet and NoToilet 

have significant effects on all models, except for α2 of NoToilet, where α2 becomes 
insignificant with spatial eigenvectors. For the NN urban subset with land cover 
variables (model d0 and d1), the Built land cover variable has a positive impact on the 
intercept α3, mostly insignificant impact on the slope, but significantly positive impact 
on the quadratic term. On the other hand, NaturalVeg exhibits almost no significant 
impact in all models. Most spatial eigenvectors significantly influence the BMI, 
reinforcing the spatially dependent nature of urban BMI trends. 
 
Table 3. BMI models for NN urban subset samples without spatial autocorrelation in residuals 

 
Model c0 (with 

spatial 
autocorrelation) 

Model c1 (data-
driven urban 

subset modeled 
without land 

cover variables) 

Model d0 
(with spatial 

autocorrelation) 

Model d1 (data-
driven urban 

subset modeled 
without land 

cover variables) 

Size of 
influential 
zone 

0 8 0 8 

Number of 
spatial 
eigenvectors 

0 14 0 11 

t0 (α0) 2075.52*** 2151.75*** 1958.52*** 2061.73*** 

FlushToilet 
(α1) 

2523.56*** 1831.54** 2551.15*** 2027.75*** 

NoToilet (α2) 524.43** 155.53 722.07*** 196.25 

Built (α3)   1.1×10-5*** 4.981×10-6 

NaturalVeg 
(α4) 

  4.615×10-6*** 1.300×10-5 

t1 (β0) 160.00*** 137.83*** 283.16*** 220.38*** 

FlushToilet 
(β1) 

-1323.98*** -982.21*** -1204.33*** -1085.12*** 

NoToilet (β2) -615.43*** -298.15* -842.61*** -366.02** 

Built (β3)   -1×10-5*** -4.640×10-6 

NaturalVeg 
(β4) 

  -1.000×10-5 -1.000×10-5 

t2 (γ0) -19.54** -16.04** -50.57*** -33.92** 

FlushToilet (γ1) 191.15*** 144.35*** 153.91*** 149.98*** 

NoToilet (γ2) 151.59*** 78.42** 214.07*** 93.26** 
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Built (γ3)   3.033×10-6*** 1.287×10-6*** 

NaturalVeg 
(γ4) 

  2.686×10-6 2.54×10-6 

E1 (δ1)  -286.00***  -317.25*** 

E2 (δ2)  -373.73***  -406.40*** 

E3 (δ3)  339.28***  373.20*** 

E4 (δ4)  708.99***  568.02*** 

E5 (δ5)  -74.15***  -106.17*** 

E6 (δ6)  -108.85**  -71.33* 

E7 (δ7)  195.46**  129.63* 

E8 (δ8)  295.54**  102.84 

E9 (δ9)  197.32**  -21.13 

E10 (δ10)  -964.45***  -608.54*** 

E11 (δ11)  -554.70***  -371.98*** 

E11 (δ12)  -59.17*   

E11 (δ13)  -48089   

E11 (δ14)  -48003***   

AICc 5345.3 5076.5*** 5258.2 5019.4 

Z score of 
global Moran’s 
I test 

>10 0.89 >10 1.43 

*means p-value <0.05; ** means -p-value <0.01; *** means p-value <0.0001. 
** shaded cells indicate changes in significant level for that correspondent coefficients. 

In the NN rural subset, two models were selected and shown in Table 4 along 
with the models without ESF (i.e., Model e0 and f0). For both models (i.e., Model e1 
and f1), the trajectories of BMI show as a convex function of time, indicating that BMI 
starts at high values (significant, positive α0), decreases over time (negative, significant 
β0), and then increases later (positive, significant γ0). FlushToilet has similar impacts on 
the intercept, slope, and quadratic term for both the urban (Table 3) and rural (Table 
4). NoToilet has no significant impact on BMI for the rural subset. Land cover variables 
consistently have significant effects on the model with Built and NaturalVeg having 
almost significant impacts on the intercepts, slope, and quadratic terms of the models. 
Most spatial eigenvectors have significant effects in the modelling of BMI, and inclusion 
of the eigenvectors in the model increases the goodness of fit. 

 
Table 4. BMI models for NN rural subset have no residual spatial autocorrelation. 

 

Model e0 
(with spatial 

autocorrelation) 

Model e1 
(data-driven 
rural subset 

modeled 
without land 

cover variables) 

Model f0 
(with spatial 

autocorrelation) 

Model f1 
(data-driven 
rural subset 

modeled with 
land cover 
variables) 

Size of 
influential 
zone 

0 26 0 26 
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Number of 
spatial 
eigenvectors 

0 8 0 10 

t0 (α0) 2135.97*** 2161.32*** 2089.94*** 2090.41*** 

FlushToilet 
(α1) 

2258.65*** 1733.54*** 2204.46*** 1884.88*** 

NoToilet (α2) -57.63 -181.72 -44.50 -98.59 

Built (α3)   2.400×10-5** 1.900×10-5* 

NaturalVeg 
(α4) 

  3.987×10-6 4.742×10-6* 

t1 (β0) 1.18 -4.92 46.28 48.10 

FlushToilet 
(β1) 

-828.90*** -587.66** -757.36** -634.20** 

NoToilet (β2) 143.02 208.16* 114.96 156.80 

Built (β3)   -2×10-5* -2.000×10-5* 

NaturalVeg 
(β4) 

  -4.170×10-6* -3.85×10-6 

t2 (γ0) 12.12** 12.81** 4.97*** 3.71 

FlushToilet (γ1) 103.69** 73.95* 77.35 73.87 

NoToilet (γ2) -39.02 -52.84** -33.24 -42.61* 

Built (γ3)   3.766×10-6** 3.785×10-6** 

NaturalVeg 
(γ4) 

  7.293×10-7*** 6.766×10-7*** 

E1 (δ1)  -503.43***  -484.59*** 

E2 (δ2)  86.48**  105.68*** 

E3 (δ3)  -224.05***  -197.88*** 

E4 (δ4)  -71.81**  -86.73** 

E5 (δ5)  -229.27***  -221.13*** 

E6 (δ6)  98.63**  76.24** 

E7 (δ7)  41.42  3.60 

E8 (δ8)  168.39***  451.13*** 

E9 (δ9)    -237.79* 

E10 (δ10)    272.06*** 

AICc 10077.1 9775.6 10061.1 9754.7 

Z score of 
global Moran’s 
I test 

>12 1.91 >12 1.25 

*means p-value <0.05; ** means -p-value <0.01; *** means p-value <0.0001. 
 

4. DISCUSSION  
 
Traditional GIS analytical tools are excellent in handling spatial variability but often 
struggle with temporal variability. These tools face even greater challenges when it 
comes to accounting for both spatial autocorrelation and temporal autocorrelation 
simultaneously (An et al. 2015). The LTM-ESF approach overcomes these limitations by 
accommodating the complexity of spatial-temporal interactions, offering deeper 
insights into the underlying mechanisms affecting health outcomes such as BMI. This 
approach distinguishes our study by elucidating spatial-temporal patterns unique to 
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urban and rural settings, as demonstrated by the divergent trajectories revealed in our 
analysis. This is an innovative methodological expansion, where traditional spatial 
analysis and temporal analysis methods are integrated without sacrificing one or the 
other. The approach is suitable for analyzing certain types of health data, like BMI, 
which is inherently influenced by both spatial surroundings and temporal changes. 
However, this methodological expansion is still in its early stages, with many related 
issues, such as space-time interactions, that require further exploration. 
 
4.1 Model difference between rural and urban samples 

 
By using the selected DHS and land cover variables, the BMI trajectories for rural 
clusters are substantially different from those of urban clusters. Based on the BMI 
models derived from the NN urban subset, women’s BMI follows a concave function 
(see Table 3), which indicates that BMI grows gradually, then slows down, and finally 
decreases in urban areas from 1993 to 2008. Conversely, women’s BMI in rural areas 

has a near zero slope but a positive coefficient for the t2 term, suggesting an increasing 
pattern in the long run according to the BMI models from the NN rural subsets (see 
Table 4). The differences in BMI trajectories indicate that women’s BMI will reach (or 
has reached) a climax for urban areas, which is not observed in rural areas by 2008. 
Examining these differences is crucial for comprehending the impact of the MAUP, as 
it reveals spatial patterns that may not be evident when analyzing data in aggregate. 
The spatial dependence between urban and rural samples was not addressed by Crook 
et al (2016); our analysis, using separate models for rural and urban samples, reveals 
significant trajectory differences, suggesting that health outcomes like BMI are not only 
dependent on individual or community-level factors but also on the larger spatial-
temporal context. Our study's methodological approach and findings contribute to a 
more nuanced understanding of the MAUP, offering a pathway for more localized and 
effective public health interventions. This insight underscores the need for tailored 
analytical approaches in spatial studies, considering the diverse characteristics of 
different geographical segments. 
 
4.2 Challenges in Defining Influential Zones 

 
The detectability of spatial autocorrelation in model residuals can be attributed to 
several factors. In one instance, this detectability is related to the definition of 
influential zone. Whether a certain zone really reflects the “neighborhood” within 
which people influence one another or share some common characteristics is unknown 
to varying degrees. Thus, the influential zone of each cluster had to be decided based 
on a data-mining approach (i.e., KNN algorithm) in this study. If the zone reflects the 
true neighborhood, then we will detect and remove/minimize the spatial 
autocorrelation through the ESF approach; otherwise, the spatial autocorrelation may 
still exist even we use the ESF approach. 

 
4.3 Multiscale Spatial Autocorrelation 
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Another reason why spatial autocorrelation in model residuals is not effectively 
removed in some instances may stem from multiscale spatial autocorrelation 
(Overmars et al. 2003), which might reflect the existence of some unobserved 
independent variables over multiple scales. For example, the residuals of a BMI model 
are shown in Figure 4, in which the independent variables for the model are DHS and 
land cover variables along with ESF. A spatial weight matrix was derived from eight-
nearest-neighbor influential zone, and the top eight spatial eigenvectors were used in 
the model. Based on the location of high/low residuals, clusters in the Greater Accra 
region generally have relatively low residuals, while those around Central and Eastern 
regions display high residuals. Clusters in the same districts generally have the same 
level of residuals, which implies that some unobserved independent variables may exist 
at these two administrative levels. The spatial distribution of residuals clearly shows 
that rural and urban areas have extensive differences in BMI patterns and the 
associated mechanisms behind such patterns, which supports our decision to build 
different models for rural and urban samples. The unobserved independent variables 
may exert influences on the BMI model, which might arise from differences in regional 
policies. Thus, BMI models with spatial neighborhood defined at multiple scales (e.g., 
through putting eigenvectors obtained from different neighborhood definitions into 
one model) should be explored in future studies. 
 
4.4 Limitations 

 
We suggest that future research focus on the following developments. First, it is 
recommended to use empirical data if possible. We had quasi-longitudinal data, in 
which each cluster (location) had interpolated data at four times due to the data 
limitation. However, such data interpolation, although largely justified in Crook et al. 
(2016), may still introduce noise or uncertainty. The distinction lies in empirical data 
being derived from direct observation or experimentation, whereas quasi-longitudinal 
data, although useful, involves estimation and therefore carries an element of 
conjecture. This nuance emphasizes the importance of data authenticity in order to 
minimize analytical distortions. Also, future research could try other methods of 
selecting spatial filters. In this study, only the top k eigenvectors were adopted 
although well justified in ESF literature (e.g., Griffith, 2008; Griffith et al., 2014), but it 
might be worthwhile to test other ways of finding the best eigenvectors, such as the 
stepwise regression method for spatial eigenvector selection (Griffith 2000, Tiefelsdorf 
and Griffith 2007). More sophisticated spatial weight matrices (e.g., distance decayed 

or the kth-order spatial neighborhood definitions) could be tested for the efficacy of 
removing spatial autocorrelation in model residuals. The eigenvectors are determined 
by the chosen spatial weight matrix; once it is determined, the eigenvectors become 
available and do not change over time. Choosing appropriate eigenvectors can help 
address spatial autocorrelation in future studies. 
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Figure 4. Residuals of a BMI model derived from DHS and land cover variables along with 
eigenvector spatial filtering based on all 780 DHS samples. The eigenvectors were derived 
from an eight-nearest-neighbor influential zone, and top eight spatial eigenvectors were used 
in the BMI model. The residuals are shown in standard deviation fashion. 
 
5. CONCLUSION 
 
This paper presents a data-mining method that aims to detect the effective influential 
zone size and the number of spatial eigenvectors empirically to support an analysis of 
spatial-temporal distributions of BMI in Southeastern Ghana. Spatial autocorrelation in 
model residuals was successfully removed or reduced to an acceptable level for the NN 
urban and rural subsets of samples. This approach demonstrates the ability to 
empirically address the MAUP by determining the scale at which spatial processes 
operate most meaningfully. However, for DHS Urban and Rural subsets, spatial 
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autocorrelation could not be eliminated or reduced. The findings indicate that the 
model results obtained from the NN urban subsets differ significantly from those of the 
NN rural subsets, particularly in terms of the sign and significance level of coefficients. 
Incorporating the unique application of women's BMI in Ghana introduces a new 
perspective to the research, deviating from conventional analyses. By delineating the 
size of influential zones and the number of spatial eigenvectors specifically within the 
context of women’s health, our study contributes a novel lens through which to view 
the interplay of spatial factors in health outcomes. Separating the rural subset from the 
urban subset was an important step towards uncovering trajectories and the 
associated mechanisms of BMI changes. 

In ideal situations where spatial neighbourhood or influential zone size is known, 
our LTM-ESF approach will become easier to use—e.g., there is no need to use the data 
mining method to decide the neighbourhood size, making the modelling practice more 
straightforward. On the other hand, our LTM-ESF approach can handle instances 
without prior knowledge about the neighbourhood/zone size, as demonstrated in this 
paper. Despite the capability of the LTM-ESF approach, we believe that further 
attention and research efforts—especially in situations with panel data–are necessary 
for addressing the spatial autocorrelation challenge in space-time statistical models, 
especially for spatial autocorrelation in model residuals. Such efforts will lead to better 
capturing the variability in both space and time, revealing the hidden patterns of the 
phenomena of interest and potential mechanisms.  

In conclusion, the LTM-ESF method—in combination with the data mining 
approach—makes a significant contribution to the field of spatial-temporal analysis, 
providing a new perspective for examining complex data patterns. Its development 
signifies progress in methodological approaches, paving an effective way for continued 
research and refinement to better understand and interpret the intricate dynamics and 
mechanisms underlying spatial-temporal data. 
 

APPENDIX 
 
To examine whether complex numbers in eigenvalues diminish the effect of 
eigenvector spatial filtering, we derived spatial eigenvectors based on a set of distance-
based, as well as the “forced-real number” option based spatial weighted matrices and 
used them as spatial eigenvectors. Such matrices are symmetric, so the resultant spatial 
eigenvalues are all real numbers. The differences between the original and the “forced-
real number” options are minor. Four subsets (NN urban, rural, DHS urban, and rural) 
were tested for spatial weight matrices derived from distance-based approaches. The 
n780 dataset was excluded due to the cluster density variation over rural and urban 
areas. Therefore, we examined whether spatial autocorrelation in model residuals was 
removed in several additional models with distance-based spatial weighted matrices 
(weight equals to 1 for samples within distance threshold (dc) from a sample, while 0 
otherwise). Distances range from 1 to 6 km were used to determine the influenced 
zone for NN and DHS urban subsets, while distances from 10 to 60 km were applied to 
determine the influenced zone for NN and DHS rural subsets. The distance thresholds 
were determined based on distances to the average nearest neighbor of the rural and 
urban subsets, respectively. The resultant LTM-ESF models for women’s BMI have 
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similar AICc compared to the models with spatial eigenvectors derived from KNN 
algorithm. However, spatial autocorrelation in model residuals is still present in all 
models with spatial eigenvector filtering, except for one model in DHS urban subset (1 
km of influenced zone and 1 spatial eigenvector). Thus, whether complex numbers are 
present in the eigenvalues or not does not affect the power of spatial eigenvector 
filtering. 
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