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Urban and Rural BMI Trajectories in Southeastern Ghana: A Space-Time Modeling
Perspective on Spatial Autocorrelation

Abstract

Spatial autocorrelation in model residuals can have a significant impact on the results of spatial or space-
time models. This can result in misleading estimates of the influence of different factors, potentially
exaggerating or even reversing the perceived effects of these factors. This study also considers the
potential implications of the Modifiable Areal Unit Problem (MAUP) in the context of spatial-temporal
models. In this case study for southeastern Ghana, we examined whether and how spatial autocorrelation
in model residuals might generate bias in regression coefficients when explaining women'’s body mass
index (BMI) across urban and rural areas. Eigenvector spatial filtering, with various settings of influential
zones, was systematically tested in a latent trajectory model to detect the impacts of spatial
autocorrelation. We found that spatial autocorrelation in model residuals did bias the coefficients of key
independent variables such as land cover type, not only affecting their magnitude but also altering their
sign or significance. This highlights the risk of significantly misinterpreting the relationships between
variables. The bias was effectively mitigated or reduced in urban and rural subsets identified through a
data-mining approach, while it persisted in other subsets. This distinction in bias mitigation underscores
the necessity of customizing models to suit specific subset attributes. Such systematic testing also
enabled our choice of appropriate size of influential zones, within which spatial autocorrelation in data
and model residuals was prevalent and thus accounted for biased coefficients. Additionally, we found that
BMI trajectories and the associated drivers in urban areas are quite different from those in rural areas,
indicating the necessity for differentiating analytical approaches between these areas. This finding
therefore justifies the construction of separate BMI models for rural and urban areas. Our methodology
demonstrates the importance of managing both temporal variability and spatial autocorrelation
simultaneously, improving the model's usefulness in handling other space-time data.
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1. INTRODUCTION

The increasing prevalence of women’s overweight and obesity, a serious problem in
Africa, offers a great opportunity to study spatial autocorrelation in model residuals.
Before we offer reasons for this statement, we present some background information
about obesity challenges in Africa. From 1975 to 2016, prevalence of overweight
among African women increased from 13.3% to 34.8% (World Health Organization,
2023). Body mass index (BMI) can be an indicator for people’s obesity and vary
between urban and rural residents. High BMI may indicate a person is overweight,
which can lead to a higher probability of coronary heart disease. Reddy et al. (2002)
used BMI to analyze people’s health condition in rural and urban areas of north India,
and found that rural residents had lower BMI compared to urban residents: To
effectively mitigate the escalation of obesity prevalence, it is crucial to focuson regions
where the issue is most pronounced or where the rate of increase.is highest.
Developing health policies that prioritize these rapidly expanding areas is essential
(Crook et al, 2016).

Given the health concerns related to obesity, especially among West African
women, it is crucial to employ advanced analytical methods to.comprehend and tackle
the concerns. One possible approach to achieve this/goal is.to implement space-time
statistical models to understand how obesity patterns.change over space and time and
the mechanisms behind such patterns. In the next section, we review the literature
related to why and how human socioeconomic and/or behavioral data may be spatially
autocorrelated, accounting for spatial autoecorrelation in model residuals when such
data are used in statistical models. Furthermore, we also show what researchers have
done to handle such autocorrelation. Such information helps justify the necessity and
the way we have used in this paper related to addressing spatial autocorrelation in
model residuals.

1.1 Human behaviour in various living environments

People living in close geographic proximity tend to display similar habits, lifestyles, and
or activity patterns, and such similarity is often reflected in individual- or
neighborhood-level data. This situation influences correlation between the attributes
of individuals'who live in the same or close geographical area(s) at varying degrees,
giving rise to“spatial autocorrelation (more often used in a geographical context) or
neighborhood effects (more often used in a social or economic context). Neglecting
these neighborhood effects can lead to biases in modelling results (Zvoleff et al. 2013;
An et al. 2016; Sullivan et al. 2017). When considering the neighborhood effects on
people’s behavioral or health patterns, such effects might vary between rural and
urban areas (Glenn and Hill 1977). The behavioral difference can result in disparities in
residents’ health, demographic features, and socioeconomic status, among others.

1.2 Spatial Autocorrelation in Model Residuals

Spatial data are rapidly being generated and archived over time, yielding spatial-variant,
multi-temporal data (space-time data hereafter) that enable the exploration of space-
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time phenomena and their background mechanisms. Space-time statistical models are
extremely useful and becoming increasingly popular for understanding the
mechanisms underlying many space-time patterns (An et al. 2015). For example,
Rushworth et al. (2014) applied Markov chain Monte Carlo methods to estimate the
impact of air pollution on respiratory hospital admissions. Sun et al. (2005)
implemented space-time autoregressive models to accurately estimate housing prices
with temporally-dense housing records. For more and different approaches to studying
the mechanisms behind many spatially and temporally variant phenomena, refer to An
et al. (2016).

Despite advancements in space-time data analysis, the Modifiable Areal Unit
Problem (MAUP) remains a significant concern, impacting the interpretability and
validity of statistical models. The MAUP stems from the arbitrary aggregation of spatial
data, leading to varying statistical outcomes based on the size and shape of spatial units
used. This sensitivity to aggregation can lead to misleading conclusions, particularly in
spatial regression models when estimating variable relationships (Wong; 2009 ; Manley
et al., 2006). Recent studies address the MAUP by utilizing. diverse methodological
approaches, such as multi-scale analysis to evaluate spatial pattern stability (Maroko
et al.,, 2020) and geographically weighted regression.to localize relationships and
minimize the impact of spatial aggregation (Fotheringham et al., 2017). These efforts
demonstrate the ongoing refinement of strategies to mitigate the effects of MAUP and
enhance the robustness of space-time models.

In addition to MAUP, the presence of spatial.autocorrelation in such data—and
subsequently in model residuals—represents a huge challenge in spatial or space-time
data analysis. If not addressed correctly, spatial autocorrelation can undermine the
validity of regression outcomes .by inflating the significance of coefficients and
distorting the standard errors (Griffith, 2000). This inflation and distortion lead to
misleading inferences about the relationships between the dependent and
independent variables. To. improve model performance and associated model
coefficient estimation, it is crucially important to reduce or remove autocorrelation in
model residuals. Autocorrelation in model residuals results from multiple factors, such
as unobserved mechanisms. in the model and missing key independent variables
(Dormamn et al. 2007). Removing or reducing autocorrelation in residuals can yield a
relatively unbiased” model. Baltagi (2021) comprehensively summarized multiple
approaches to.estimating temporal autocorrelation in model residuals. Here, we focus
on detecting.and reducing spatial autocorrelation in model residuals within the context
of space-time statistical models, aiming to correct for these distortions and improve
the interpretability and reliability of regression results.

Multiple methods have been proposed to address spatial autocorrelation in
model residuals. Cheng et al. (2014) developed dynamic spatial weights matrices and
incorporated them in space-time autoregressive integrated moving averages for
modeling travel time. However, they did not use global metrics (e.g., global Moran’s |
test, Getis’ G test) to examine spatial autocorrelation. Patuelli et al. (2011) modeled
German unemployment rates with logistic regression. They found that spatial
eigenvectors appropriately handled the spatial autocorrelation in model residuals. This
approach primarily addressed the bias in the estimated coefficients, ensuring more
accurate representations of the relationships between variables. Gu et al. (2021)
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applied a negative binomial model with eigenvector spatial filtering (ESF) to model the
number of college-graduated workers with variables reflecting economic opportunities
and living environment. As a result, spatial autocorrelation in model residuals was
greatly reduced and the subsequent model outcomes were more robust in comparison
with the ones with distortions typically caused by spatial autocorrelation. In the next
section, we explore how spatial autocorrelation may arise in socioeconomic data.

Within the context of examining women’s BMI variation over time in Ghana,
Crook et al (2016) aimed to remove spatial autocorrelation in model residuals and
understand the impacts from sociodemographic and environmental factors. They
implemented latent trajectory modeling (LTM) and eigenvector spatial filtering to
explain women’s BMI with sociodemographic and environmental variables;. spatial
autocorrelation of model residuals was successfully reduced.. They explored
Demographic and Health Survey (DHS) and land cover data over space and time and
then applied appropriate data preprocessing methods for filling in data.gaps which
result from repeated cross-sectional surveys. Five latent trajectory ‘models in
conjunction with eigenvector spatial filtering were applied to estimate model
coefficients and explain women’s BMI after removingwor: minimizing spatial
autocorrelation in model residuals. The models explained howswomen’s BMI varied
over space and time and the potential impacts from the chosen factors. Land cover
composition was found to be an important explanatory environmental factor in the
models. A limitation of the Crook et al. (2016) study is that spatial eigenvectors and the
size of influential zones were selected in a trial-and-error manner. The optimal number
of spatial eigenvectors and the size of influential zones were not determined, and the
selection process was somewhat arbitrary:

An influential zone is a geographic area within which an entity influences or is
influenced by its spatial neighbors. The size of a spatial influential zone is often
determined arbitrarily and without a theoretical or empirical basis (Zvoleff et al. 2013).
Spatial adjacency is often applied:to polyline and polygon-based data to determine the
influential zone (e.g., Patuelli et-al. 2011, Rushworth et al. 2014, Cheng et al. 2014). The
influential zones remain constant in the Patuelli et al. (2011) and Rushworth et al. (2014)
conceptualizations, while the zones in Cheng et al. (2014) vary depending on the traffic
speed of line networks. Distance or rank-based approaches are often applied to point-
based data./Sun etal. (2005) applied distance-decayed functions to determine whether
a condo is within'the same building or community of buildings. Aldstadt and Getis (2006)
developed "a- method to determine the size of influential zones based on a
multidirectional optimal ecotope-based algorithm, which implements the Getis-Ord
local G statistic to identify high and low local centers of phenomena, such as fertility
levels (see, for example, Weeks et al, 2010). However, such delicate approaches require
complete, longitudinal data over space and time.

In addition, BMI models were assumed to apply similarly to both rural and urban
communities. However, Crook et al. (2016) suggested that BMI in urban areas should
be modelled separately from rural areas for more accurate BMI models in future
studies since factors such as diet and physical activity can vary considerably between
urban and rural places. Also, the benefits of treating rural and urban areas differently
are observed in other instances (e.g., Glenn and Hill 1977).
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1.3 Research objectives

In this study, the significance of the MAUP issue is recognized by incorporating it into
our analytical framework. Building on the recommendation of Crook et al. (2016) study,
rural and urban areas are modeled separately. The influence of MAUP on spatial
analysis is considered and mitigated by applying eigenvector spatial filtering to filter
out and assess the negative impacts of spatially autocorrelated data regarding
Ghanaian women’s BMI in the corresponding statistical models (detail in Section Data
and Methods). Researchers should emphasize the importance of selecting spatial units
of analysis that are reflective of underlying processes to avoid potential biases related
to the MAUP, an issue not addressed by Crook et al. (2016). Given this context, the
goals of this study are to 1) detect the size and impact of influential zones, 2).explore
whether and how the eigenvector spatial filtering (ESF) technique can be leveraged to
remove or minimize the bias due to neighborhood effects within the relevant
influential zones in space-time statistical models, and 3) assess whether new—more
plausible—insights regarding the mechanisms behind the BMlspace time data can be
obtained once the first two goals are achieved.

Compared to Crook et al. (2016), the unique contribution of this study comes
from our development of a systematic approach to selecting the optimal number of
spatial eigenvectors and the size of influential zones. This approach aids in identifying
the appropriate scale of analysis to tackle the MAUP. As pointed out earlier, we
separated urban samples from rural samples to investigate the difference in driving
forces of women’s BMI between urban and.rural areas.

2. DATA AND METHODS
2.1 Study area and data

The study site is located in southeastern Ghana, West Africa (shown in Figure 1), which
coincides with the World Reference System -2 (WRS-2) coordinate in path 193 — 194,
row 55 — 56. The south coast of Ghana faces the Gulf of Guinea, and its climate,
according to Kdppen climate classification, belongs to tropical Savanna climate (Aw)
that contains wet and dry seasons. Elevation ranges from sea level in the south coast
to about 650 mrin the north of the study area. The study area contains two major cities,
Accra and Kumasi. Agricultural lands surround the two cities, while natural vegetation
is the major land cover for the remainder of the study area.

The data for sociodemographic and land cover variables were obtained from two
main sources. DHS data were used to represent sociodemographic characteristics. The
surveys were conducted at the household level, geo-tagged periodically (typically every
five years) and provided at the cluster level. Each cluster was aggregated from multiple
individuals and households, so each cluster represents a group of people or households
living in the same community. The geographic coordinates of the cluster were
randomly shifted (0-2 km for urban areas; 0-5 km for rural areas) from the original
location to protect privacy of individuals and households. The DHS data from 1993,
1998, 2003, and 2008 were used to derive sociodemographic variables and track their
change over time. At the individual person level, diet and exercise habits are the two
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main factors that determine whether a person is overweight (Ross et al. 2000).
However, DHS survey data did not include any information related to diet or exercise.
Therefore, the focus of this study turned to the relationship between sanitation
conditions and women’s obesity. Sanitation conditions tend to reflect how urban and
how wealthy a neighbourhood is. Rural areas are likely not to have a toilet in the house,
whereas more affluent urban neighborhoods have a high likelihood of having a flush
toilet.

Three variables were extracted and used for modeling women’s BMI at the
cluster level, including mean women’s BMI, % of households with flush toilet
(FlushToilet), and % of households with no toilet (NoToilet). Crook et al. (2016) found
significant associations of FlushToilet and NoToilet with the women’s BMI across space
and time, so we kept them as covariates in this study. The type of toilet is a function of
local infrastructure development. Existence of modern toilet reflects .improved
environmental and hygienic situations (e.g., lower risk of virus infection), which is one
of the factors affecting human weight (Institute of Medicine (US) Subcommittee on
Military Weight Management 2004). In addition, each cluster was labeled as either
“Rural” or “Urban” in the DHS survey, which was used asran indicator of living
environments in the later analysis. Note that BMI was multiplied by 100 to limit the
number of digits behind decimal points (BM/ hereafter).
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Figure 1. Study area and DHS sample locations. The land cover map was derived from semi-
automated classification of a temporal composite (2009-2013) of Landsat imagery by Coulter et
al. (2016).

Land cover variables (shown in Figure 1), derived from Landsat satellite imagery,
represent the living environments of people surveyed in the DHS samples. Extensive
urban expansion and deforestation occurred within the study area, which could affect
or be associated with BMI (Crook et al. 2016). Therefore, the land cover variables used
in Crook et al. (2016), which accounted for urban expansion and deforestation, were
incorporated for modeling BMI in this paper. Because of predominant cloud cover in
the study area, multiple dates of Landsat imagery for two epochs (1999-2003 and 2009-
2013) were composited to generate land cover maps for the study areas where
extensive urban growth and associated land cover change occurred. These two periods
were chosen to match DHS data cycles, enabling an integrated. analysis of
environmental and sociodemographic impacts on BMI. Detailed image processing and
land cover derivation are described in Coulter et al. (2016). Each pixel\within the study
area was classified into one of six subclasses of land cover:(water, forest, secondary
forest, savanna, agriculture, and built. The five subclasses. except water were later
aggregated into three more general land cover classes (built, nhatural vegetation, and
agriculture) to represent the distribution and changes in living environments.

2.2 Data pre-processing

To extract information for land cover variables, two dates (2000 and 2010) of land cover
maps were integrated with the DHS clusters. For each cluster, a 2500 m buffer was
created based on its location, where the parameter 2500 m was used to represent a
space big enough to include relevant clusters but not too big to include areas that
would not influence the focal area. The areal coverage of the built (Built) and natural
vegetation (NaturalVeg) within the buffer were extracted from the two dates of land
cover maps, respectively. To estimate the land cover area coverage at the four DHS
survey years, linear interpolation (for 2003 and 2008) and extrapolation (for 1993 and
1998) were conductedto generate the land cover data for each date of survey clusters.
The data generation and pre-processing are described in detail in Crook et al (2016).
To test whether the spatiotemporal pattern of women’s BMI varies over rural
and urban.areas, subsets of rural and urban samples were generated according to two
classification methods (shown in Table 1). First, we labelled each cluster based on DHS
classification. The rural and urban clusters were distinguished using a label found in the
DHS records. Accordingly, 398 clusters belong to rural samples (DHS rural hereafter),
while 382 clusters belong to urban samples (DHS urban hereafter). Second, we adopted
another classification method involved gathering rural and urban subsets based on
distances to other samples. The spatial distribution data of the samples (shown in
Figure 1) indicate that clusters in urban areas are more densely distributed than those
in rural areas. However, it is important to address the potential measurement error
resulting from the shifting of sampling cluster centroids, which varies between urban
and rural areas. Sampling clusters are approximate centroids of areas where groups of
households are located, and these centroids can shift over time due to factors such as
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urban development and rural migration patterns. This shifting can introduce errors in
our distance-based classification, as our methodology heavily relies on estimating
distances between clusters. To mitigate this, we refined our approach by analyzing the
accuracy of cluster designations. We scrutinized how each cluster was determined as
urban or rural by examining the criteria we used and comparing them with the actual
characteristics of the area. This analysis involved cross-referencing the DHS
classification with visual interpretations of the 2000 and 2010 land cover maps.
Furthermore, we acknowledge that using distances between clusters as the primary
method for classifying urban and rural areas can be problematic. To address these
concerns, we conducted tests and determined various distance thresholds for cluster
classification. We set the threshold at less than or equal to 0.5 km for urban clusters
and greater than or equal to 3.5 km for rural clusters. This decision was/made after
carefully considering the spatial distribution data of the samples (Figure.1), which
showed a denser distribution of clusters in urban areas.

Table 1. Samples for representing urban and rural subsets in two definitions.

DHS definition Sample number D|sta'nce-to-the'-n.e'arest Sample
neighbor definition number
Distance.to the nearest
Labeled by DHS .
Urban abeled by 382 neighborhood cluster 122
survey
smaller or equal to 0.5 km
Distance to the nearest
Labeled by DHS .
Rural abelea by 398 neighborhood cluster 226
survey
larger or equal to 3.5 km

2.3 Latent trajectory model

LTM was primarily used to.model the temporal trajectory of women’s BMI. LTM is a
powerful tool for modeling time series data under an assumption that the phenomenon
of interest arises from an underlying or latent trajectory over time (Curran et al. 2010).
LTM is constructed in a multilevel manner, and some random effects in a LTM can
capture the effect of spatial autocorrelation. The shape of the underlying trajectory can
be depicted.by an intercept (a), a slope (8), and other optional parameters (e.g., y;
Equation 1). a, 6, and y are usually modeled as a function of chosen independent
variables.(Equations 2~4), which can be either time-variant or time-invariant.

BMI, =a+ft+yt>+e (1)

The underlying trajectory of women’s BMI was modeled as function of an
intercept, a slope, and a quadratic term of time (t) (shown in Equation 1). A quadratic
term of time was chosen to reflect our observation of some samples having non-linear
trajectories of BMI. At t=0 (the year 1993), the model reduces to BMI; = a + e, where
e represents the error term. This implies that in 1993, the BMI is predicted solely by
the intercept a, without additional influence from the linear or quadratic time
components. This approach was chosen to simplify the model's initiation, assuming
that prior influences up to this point are encapsulated within a and e. For our LTM, a,
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8, and y represent the coefficients of t, t, and t?, respectively, and were explained by
a set of independent variables.

Our model explains BMI; using a, 8, and y that represent changes of BMI over
time. The values of a, 8, and y already include the influences from earlier times, i.e.,
t—p, ... t=2, t—1. For instance, if y is positive, then the trajectory of BMI would have a
positive acceleration over time. Put another way, the influences from t—p, ... t—2, t—1
would affect the values of a, 8, and y, making them to be zero (BMI, at various times
have no temporal influence on one another), positive (positive temporal correlation),
or negative (negative temporal correlation). At the same time, our models also allow
other variables (i.e., FlushToilet; and NoToilet; in Equations 2~4) to affect BMI.

The three parameters a, 6, and y are geographically variant and modeled as a
function of several chosen variables in the following equations:

a = ay + a,FlushToilet, + a,NoToilet, + &, (2)
B = Bo + f1FlushToilet, + f,NoToilety + & (3)
y = VYo + y1FlushToilet; + y,NoToilety + ¢, (4)

where ay, 5, and y, are the global intercept, slope, and 'guadratic coefficient that do
not change from cluster to cluster, while the remaining terms (e.g. a; FlushToilet; +
a,NoToilet, for a) are determined by the chosen variables that affect coefficients «,
B, and y at the corresponding locations.. &g, €1,,and &, are the error terms in these
three parameters (a, 8, and y). For model specifications above (Equations 2 ~ 4), the
LTM aims to model and explain temporal changes in the dependent variable (BM! in
our case). If there is no temporal correlation, all , 8, and y should be zero, implying a
stationary situation with no changes.over time. However, this contradicts the findings
of Crook et al. (2016).

For model A, which'is represented in Table 3 as models cO (urban) and Table 4 as
e0 (rural), we used _two DHS variables (i.e., FlushToilet and NoToilet) at date t
(where t € {0, 1, 2,3}) to estimate the coefficients of a, 8, and y (shown in Equations
2,3, and 4). To examine'whether land cover variables increase model predictive power,
we incorporatedland cover variables along with the DHS variables in model B, which
corresponds.to models d1 (urban) in Table 3 and f1 (rural) in Table 4, (shown in
Equation 5, 6, and 7). Because the DHS and land cover variables varied over time, BMI
at certain points of time were estimated using the DHS and land cover data at the same
time (t), where t € {0, 1,2, 3}, where 0, 1, 2, and 3 represent 1993, 1998, 2003, and
2008.

a = ay + a;FlushToilet, + a,NoToilet, + azBuilt, + a,NaturalVeg, + &, (5)
B = Bo + f1FlushToilet, + B,NoToilet, + f3Built, + f,NaturalVeg, + &, (6)

y =yg + y1FlushToilet, + y,NoToilet, + y3Built, + y,NaturalVeg, + &, (7)
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2.4 Eigenvector spatial filtering

Geographically weighted regression (GWR) is widely used to model many different
phenomena with spatial nonstationarity. However, its coefficients tend to demonstrate
pronounced multicollinearity and significant positive spatial autocorrelation (Wheeler
and Tiefelsdorf, 2005). Griffith (2008) introduced an alternative method to GWR,
eigenvector spatial-filter-based local regression, to reduce or remove some of GWR’s
negative effects. In a particular empirical study, the eigenvector spatial-filter-based
local regression technique is suggested superior to GWR due to its enhanced capability
to account for autocorrelation in the residuals (Griffith, 2008). The ESF is_a spatial
filtering method that aims to separate spatially structured components from trend. This
distinction is important for addressing the MAUP by taking into account the spatial
arrangement of the units of analysis, which helps ensure the reliability of results across
varying spatial aggregations. This technique enhances statistical modeling for improved
inference and visualization (Griffith et al., 2014).

The ESF approach was incorporated in the LTM ‘to mitigate spatial
autocorrelation in model residuals. Spatial filtering methods" (Griffith 2000) are
instrumental in this context by decomposing key variables~in regular multiple
regression models to spatial and non-spatial components. The non-spatial components
are largely free of spatial autocorrelation, which should be primarily driven by
explanatory variables. This method begins with/ defining a spatial weight matrix,
indicating the spatial extent within which samples-affect, and are affected by, one
another. Spatial autocorrelation can be removed or minimized by incorporating a set
of eigenvectors (derived from the spatial. weight matrix) as additional independent
variables (Griffith 2000, Tiefelsdorf.and Griffith 2007, and Chun and Griffith 2011). Each
chosen eigenvector represents a spatial-pattern of a known or unknown driving force
(variable) at a certain scale. In other words, eigenvectors associated with large
eigenvalues stand for somewhat large-scale patterns, while those with small
eigenvalues stand for small/local patterns (Getis, 2010; Griffith, 2010). Therefore, we
do not need to assume.the variables (or the subsequent residuals) are spatially
autocorrelated in.the same way over time.

As we had limijted prior knowledge about the size of influential zones in which
data are mostly autocorrelated, a data-mining approach was developed to determine
the most likely size. Cheng et al (2014) and Aldstadt and Getis (2006) estimated
dynamic spatial weight matrices because they had longitudinal data sets, however, our
ability to do so is constrained by the temporal incompleteness of the DHS data. Also,
the DHS'survey density varies over rural and urban areas. The K-nearest neighbor (KNN)
method is a conceptually straightforward approach that allows for flexible definition of
the influence zone size. It also helps to minimize the negative impacts of spatially
autocorrelated data. Thus, the KNN algorithm was used to define the spatial weight
matrix (C¥) for all sampled clusters, where k represents the number of nearest
neighbors (Aldstadt and Getis 2006). Taking the 2-nearest neighbor definition as an
example: for each cluster, 1 was assigned to the nearest two clusters, while 0 to other
clusters. The same algorithm was applied to generate spatial weight matrices (C¥)
where k represents the tested cluster sizes of 4, 8, 16, 32, and 64, respectively. This
process did not group neighborhoods into a single cluster but instead created separate
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spatial weight matrices for each tested cluster size, treating each as an individual
influential zone. A distance-based neighborhood definition was not used because of
high variation in density of cluster samples over rural and urban areas. In the original
case of the KNN algorithm, the imaginary part in all complex numbers in the
eigenvalues were dropped before eigenvector selection, and the top k eigenvectors
were selected only based on the real part of associated eigenvalues. To test whether
dropping imaginary parts induce substantial differences in regression results, the KNN-
spatial weight matrices were forced to be symmetrical to generate the real-number-
only eigenvalues and corresponding eigenvectors (forced real number hereafter) for
regression analysis.

Given the extensive literature on the selection of appropriate eigenvectors, we
employed a data mining approach to systematically determine the optimal number of
top k eigenvectors. This approach involved an iterative process where various
configurations of eigenvectors were evaluated to ascertain the configuration that
minimized spatial autocorrelation in the residuals most effectively, Therefore, we
chose the top k eigenvectors (i.e., from E1 to Ex, where 0 < k <.15 given our moderate
sample size; Crook et al. 2016) as independent variables. toraccount for the spatial
autocorrelation potentially existing in women’s BMI data and independent variables
(Griffith 2000). Due to the time-invariant property of spatial eigenvectors, spatial
eigenvectors were added to Equations 2~4 and 5~7 for modeling a, 8, and y (An et al.
2016).

3. RESULTS
3.1 Model fitting

Multiple distance thresholds were tested to classify a certain cluster as urban (if the
nearest distance between all pairs of clusters is less than a certain threshold) or rural
(the above distance is greater than the threshold). The distance between any two
clusters ranged from 0'to 320 km, corresponding to the shortest and longest distances
between any two, clusters. With this data-driven approach, the urban clusters were
derived at the nearest distance less than or equal to 0.5 km, while the rural clusters
were derived at the nearest distance greater than or equal to 3.5 km. With these two
thresholds, 122 clusters were labeled as urban samples, while 226 clusters were
labeled as rural samples. The spatial locations of the 122 and 226 clusters highly reflect
the urban and rural environments respectively based on the land cover maps. We
excluded 432 clusters with a nearest neighbor distance between 0.5 km and 3.5 km
from our data analysis.

To determine the influential zone, the joint effects of two confounding
parameters were considered: the number of spatial eigenvectors and the way to define
rural and urban sites (Glenn and Hill 1977). To explore whether the land cover variables
could substantially increase the explanatory power of the corresponding model, the
Akaike information criterion correction (AlICc) index was employed to select potential
models (Burnham and Anderson 2004).

The trends of AlCc were plotted against the size of influential zone and number
of spatial eigenvectors (Figure 2). It should be noted that AlCc values could not be
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calculated for certain models due to divergence, resulting in the blank areas in Figure
2(b), (d), (i), and (j). The models with land cover variables have lower AICc over all
datasets, which indicates that land cover variables are instrumental in modelling
women’s BMI.
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Figure 2. Trends of Akaike information criterion correction (AlCc) of BMI models for various
settings for influential zones and spatial eigenvectors. (a), (c), I, (g), and (i) are BMI models
without land cover variables, while (b), (d), (f), (h), and (j) are BMI models with land cover
variables (i.e., built and natural vegetation areas). (a) and (b) were derived from all 780 cluster
points; (c) and (d) were derived from NN urban subset that are defined with the nearest distance
smaller or equals to 0.5 km(e) and (f) were derived from NN rural subset that are defined with
the nearest distance larger or equals to 3.5 km; (g) and (h) are derived from urban subset that
are defined by DHS; (i) and (j) are derived from rural subset that are defined by DHS. Vertical
axis on each figure represents the number of spatial eigenvectors ranging from 1 to 15.
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Horizontal axis represents the size of influential zone ranging from 2 to 64, which are shown in
scale of loga.

3.2 Spatial autocorrelation in model residuals

The spatial autocorrelation in model residuals was examined with global Moran’s | test
as shown in Figure 3 and Table 2. The Z-score associated with the global Moran’s |
dropped with the inclusion of land cover variables over all subsets. Spatial
autocorrelation effects were removed or reduced to an acceptable level (i.e., the
absolute value of Z-score is less than a threshold such as 1.96) for some models,
especially those associated with the NN urban and rural subsets. For the model using
the NN urban subset without land cover variables, spatial autocorrelation was'removed
when the influential zones were 8, 16, 32, and 64 nearest neighbors, along with more
than four spatial eigenvectors. Spatial autocorrelation was removed in more
combinations of influential zone sizes and spatial eigenvectors for the same subset with
land cover variables (i.e., large areas under 1.96; Figure 3(g)). In.comparison, spatial
autocorrelation was still present for more combinations of influential zone sizes and
spatial eigenvectors for the NN rural subset regardless of including the land cover
variables or not (see Figure 3(c) and (h)).

In general, spatial autocorrelation was successfully.removed, especially for the
NN urban subset. However, models with teo many spatial eigenvectors may face the
‘curse of dimensionality’ (Chun and Griffith, 2011), especially when the sample size is
limited. In addition, increasing the size of the influential zone may lead to losing the
meaning of testing spatial-explicit models. Taking the NN urban subset for example,
over half of the total urban samples (64 out of 122) are the spatial neighbors for each
sample under the setting of 64-size-influential zone, which implies that spatial
autocorrelation at finer scales|(i.e., less than 64) is ignored in the corresponding LTM-
ESF model.

Table 2. Average Z-Scores associated with global Moran’s | test for BMI model residuals over
various data subsets. The averaged Z-Scores are derived from all combinations of influential
zones and spatial eigenvectors.

Without land cover variables With land cover variables
All 780 samples 52.06 49.70
NN urban.samples 5.89 4.49
NN rural samples 13.58 13.44
DHS urban samples 22.41 21.93
DHS rural samples 28.72 28.29
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Figure 3..Z-score of BMI model residuals for various settings for influential zone and spatial
eigenvectors. Note that (I (c), (e), (g), and (i) are BMI models without land cover variables, while
(b), (d), (f),.(h), and (j) are BMI models with land cover variables (i.e., built and natural vegetation
areas). (a) and (b) were derived from all 780 cluster points; (c) and (d) were derived from the
NN urban subset that are defined with the nearest distance smaller or equals 0.5 km; (e) and (f)
were derived from the NN rural subset that are defined with the nearest distance larger or
equals to 3.5 km; (g) and (h) were derived from urban subset that are defined by DHS; (i) and (j)
were derived from rural subset that are defined by DHS. Vertical axis represents the number of
spatial eigenvectors ranging from 1 to 15. Horizontal axis represents the size of influential zone
ranging from 2 to 64, which are shown in the scale of log.. Combinations of the size of spatial
neighbors and number of spatial eigenvectors that generated a Z-Score less than 1.96 (a less
than or equal to .05) are delineated using black contours marked with 1.96 in some of the sub-
figures, and sub-figures without the delineation indicate that spatial autocorrelation effects are
not removed.
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3.3 Optimal models without spatial autocorrelation

The BMI models without spatial autocorrelation (i.e., Z-score of Moran’s | less than
1.96) were identified by analyzing the residuals Moran’s | in Figure 3(c) and (d). For the
NN urban subset, models with fewest spatial eigenvectors and the smallest influential
zones (shown in Table 3) were chosen for model brevity. The BMI models without ESF
(i.e., Model cO and Model d0) are listed for comparison. The coefficient for t° (i.e., o)
is positive and significant for all the four models (Table 3), suggesting that BMl is initially
significant and positive. The coefficient 8y significantly affects all the four BMI models,
but yo significantly affects BMI in a declining manner over time. FlushToilet and NoToilet
have significant effects on all models, except for a, of NoToilet, where a2 becomes
insignificant with spatial eigenvectors. For the NN urban subset®with.'land cover
variables (model dO and d1), the Built land cover variable has a positive impact'on the
intercept a3, mostly insignificant impact on the slope, but significantly positive impact
on the quadratic term. On the other hand, NaturalVeg exhibits'almost no significant
impact in all models. Most spatial eigenvectors significantly ‘influence the BMI,
reinforcing the spatially dependent nature of urban BMI trends.

Table 3. BMI models for NN urban subset samples without spatial autocorrelation in residuals

Model c1 (data- Model d1 (data-
Model c0 (with driven urban Model dO driven urban
spatial subset modeled (with spatial subset modeled
autocorrelation) without land autocorrelation) without land
cover variables) cover variables)
Size of
influential 0 8 0 8
zone
Number of
spatial 0 14 0 11
eigenvectors
t° (aro) 2075.52%** 2151.75%** 1958.52%** 2061.73***
(F;‘i;hTO"Et 2523.56%** 1831.54** 2551.15%** 2027.75%**
NoToilet (a2) 524.43** 155.53 722.07*** 196.25
Built (a3) 1.1x10-5*** 4.981x10°
Naturalveg 4.615x10°6%** 1.300x10°
(aa)
t! (Bo) 160.00%** 137.83%** 283.16%** 220.38***
(Fgl‘)ShTo"et -1323.98%** -982.21%** -1204.33%** -1085.12%**
NoToilet (82) -615.43%** -298.15* -842.61*** -366.02**
Built (8s) ~1x 10 %** -4.640x10°®
NaturalVeg -1.000x10° -1.000x10°
(64)
t2 (o) -19.54** -16.04** -50.57*** -33.92**
FlushToilet (y1) 191.15%** 144.35%** 153.91%** 149.98***
NoToilet (y2) 151.59%** 78.42%* 214.07%** 93.26%*
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Built (y3) 3.033x10°**¥* | 1.287x10°***
NaturalVeg 2.686x10° 2.54x10°
(va)

E1 (61) 1286.00%** 317.25%%*
E2 (62) -373.73%** -406.40%**
E3 (63) 339.28*** 373.20***
Ea (64) 708.99*** 568.02***
Es (6s) -74.15%** -106.17%**
Es (56) -108.85** 71.33*
E7 (67) 195.46** 129.63%*
Es (53) 295.54%* 102.84
Eo (59) 197.32%* 2113
E1o0 (810) -964.45%** ~608.54***
E11 (611) -554.70%** -371,98%**
E11 (612) -59.17*

E11 (613) -48089

E11 (814) -48003***

AlCc 5345.3 5076.5*** 5258.2 5019.4

Z score of

global Moran’s >10 0.89 >10 1.43

| test

*means p-value <0.05; ** means -p-value <0.01; *** means p-value <0.0001.
** shaded cells indicate changes in significant level for that correspondent coefficients.

In the NN rural subset, two models were selected and shown in Table 4 along
with the models without ESF (i.e., Model e0-and f0). For both models (i.e., Model el
and f1), the trajectories of BMI show as a convex function of time, indicating that BMI
starts at high values (significant, positive ao), decreases over time (negative, significant
B0), and then increases later (positive, significant yo). FlushToilet has similar impacts on
the intercept, slope, and-quadratic term for both the urban (Table 3) and rural (Table
4). NoToilet has no significant impact on BMI for the rural subset. Land cover variables
consistently have significant effects on the model with Built and NaturalVeg having
almost significant impacts on the intercepts, slope, and quadratic terms of the models.
Most spatialeigenvectors have significant effects in the modelling of BMI, and inclusion
of the eigenvectors in the model increases the goodness of fit.

Table 4. BMI models for NN rural subset have no residual spatial autocorrelation.

Model e0
(with spatial
autocorrelation)

Model el
(data-driven
rural subset

modeled

Model fO
(with spatial
autocorrelation)

Model f1
(data-driven
rural subset

modeled with

without land land cover
cover variables) variables)
Size of
influential 0 26 0 26
zone
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Number of

spatial 0 8 0 10

eigenvectors

10 (o) 2135.97%%* 2161.32%%* 2089.94%** 2090.41%**

(F;”;hTo"et 2258.65%** 1733.54%** 2204.46*** 1884.88%**
1

NoToilet (at2) 57.63 181.72 ~44.50 -98.59

Built (a3) 2.400x10°** 1.900x10°5*

:\'aat)uralveg 3.987x10° 4.742x10°6%
4

t* (Bo) 118 4.92 46.28 48.10

(F(;“)Shm"et -828.90%** 587.66%* 757.36%* 634:20%
1

NoToilet (82) 143.02 208.16* 114.96 156.80

Built (63) 2x10°* -2.000x10°5*

?‘;;“ra'\/eg -4.170x10°* 3.85x10°
4

£ (yo) 12.12%* 12.81%* 4.97%%* 371

FlushToilet (y1) 103.69** 73.95* 77.35 73.87

NoToilet (y2) 39.02 52.84%* 33.24 42.61*

Built (y3) 3.766x10°%* | 3.785x100%*

?:/a)t“ra'veg 7.293x107%** | 6.766x107***
4

E1 (62) _503.43%** ~484.59%**

E (52) 86.48%* 105.68%**

Es (53) 224.05%** ~197.88%**

E4 (54) 71.81** -86.73**

Es (65) 229.27%** 221.13%**

Ee (86) 98.63** 76.24%*

E7 (67) 41.42 3.60

Es (3) 168.39%** 451.13%%*

Es (89) -237.79*

E1o0 (610) 272.06***

AlCc 10077.1 9775.6 10061.1 9754.7

Z score of

global Moran’s >12 1.91 >12 1.25

| test

*means p-value <0.05; ** means -p-value <0.01; *** means p-value <0.0001.
4. DISCUSSION

Traditional GIS analytical tools are excellent in handling spatial variability but often
struggle with temporal variability. These tools face even greater challenges when it
comes to accounting for both spatial autocorrelation and temporal autocorrelation
simultaneously (An et al. 2015). The LTM-ESF approach overcomes these limitations by
accommodating the complexity of spatial-temporal interactions, offering deeper
insights into the underlying mechanisms affecting health outcomes such as BMI. This
approach distinguishes our study by elucidating spatial-temporal patterns unique to
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urban and rural settings, as demonstrated by the divergent trajectories revealed in our
analysis. This is an innovative methodological expansion, where traditional spatial
analysis and temporal analysis methods are integrated without sacrificing one or the
other. The approach is suitable for analyzing certain types of health data, like BMI,
which is inherently influenced by both spatial surroundings and temporal changes.
However, this methodological expansion is still in its early stages, with many related
issues, such as space-time interactions, that require further exploration.

4.1 Model difference between rural and urban samples

By using the selected DHS and land cover variables, the BMI trajectories ‘for rural
clusters are substantially different from those of urban clusters. Based.on the BMI
models derived from the NN urban subset, women’s BMI follows a concave function
(see Table 3), which indicates that BMI grows gradually, then slows:down; and finally
decreases in urban areas from 1993 to 2008. Conversely, women’s BML in rural areas
has a near zero slope but a positive coefficient for the t? term,suggesting an increasing
pattern in the long run according to the BMI models from the NN rural subsets (see
Table 4). The differences in BMI trajectories indicate that women’s BMI will reach (or
has reached) a climax for urban areas, which is not observed in rural areas by 2008.
Examining these differences is crucial for comprehending the impact of the MAUP, as
it reveals spatial patterns that may not be‘evident when analyzing data in aggregate.
The spatial dependence between urban and rural samples was not addressed by Crook
et al (2016); our analysis, using separate models for rural and urban samples, reveals
significant trajectory differences, suggesting that health outcomes like BMI are not only
dependent on individual or community-level factors but also on the larger spatial-
temporal context. Our study's.methodological approach and findings contribute to a
more nuanced understanding of the MAUP, offering a pathway for more localized and
effective public health interventions. This insight underscores the need for tailored
analytical approachessin spatial studies, considering the diverse characteristics of
different geographical segments.

4.2 Challenges in Defining Influential Zones

The detectability of spatial autocorrelation in model residuals can be attributed to
several factors. In one instance, this detectability is related to the definition of
influential zone. Whether a certain zone really reflects the “neighborhood” within
which people influence one another or share some common characteristics is unknown
to varying degrees. Thus, the influential zone of each cluster had to be decided based
on a data-mining approach (i.e., KNN algorithm) in this study. If the zone reflects the
true neighborhood, then we will detect and remove/minimize the spatial
autocorrelation through the ESF approach; otherwise, the spatial autocorrelation may
still exist even we use the ESF approach.

4.3 Multiscale Spatial Autocorrelation
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Another reason why spatial autocorrelation in model residuals is not effectively
removed in some instances may stem from multiscale spatial autocorrelation
(Overmars et al. 2003), which might reflect the existence of some unobserved
independent variables over multiple scales. For example, the residuals of a BMI model
are shown in Figure 4, in which the independent variables for the model are DHS and
land cover variables along with ESF. A spatial weight matrix was derived from eight-
nearest-neighbor influential zone, and the top eight spatial eigenvectors were used in
the model. Based on the location of high/low residuals, clusters in the Greater Accra
region generally have relatively low residuals, while those around Central and Eastern
regions display high residuals. Clusters in the same districts generally have the same
level of residuals, which implies that some unobserved independent variables may exist
at these two administrative levels. The spatial distribution of residuals clearly shows
that rural and urban areas have extensive differences in BMI patterns and the
associated mechanisms behind such patterns, which supports our. decision to build
different models for rural and urban samples. The unobserved independent variables
may exert influences on the BMI model, which might arise from differences in regional
policies. Thus, BMI models with spatial neighborhood defined-at'multiple scales (e.g.,
through putting eigenvectors obtained from different neighborhood definitions into
one model) should be explored in future studies.

4.4 Limitations

We suggest that future research focus on. the following developments. First, it is
recommended to use empirical data if possible. We had quasi-longitudinal data, in
which each cluster (location) had-interpolated data at four times due to the data
limitation. However, such data.interpolation, although largely justified in Crook et al.
(2016), may still introduce noise or uncertainty. The distinction lies in empirical data
being derived from direct observation or experimentation, whereas quasi-longitudinal
data, although useful, involves estimation and therefore carries an element of
conjecture. This nuance emphasizes the importance of data authenticity in order to
minimize analytical distortions. Also, future research could try other methods of
selecting spatial filters. In this study, only the top k eigenvectors were adopted
although well justified in ESF literature (e.g., Griffith, 2008; Griffith et al., 2014), but it
might be worthwhile to test other ways of finding the best eigenvectors, such as the
stepwise regression method for spatial eigenvector selection (Griffith 2000, Tiefelsdorf
and Griffith 2007). More sophisticated spatial weight matrices (e.g., distance decayed
or the k-order spatial neighborhood definitions) could be tested for the efficacy of
removing spatial autocorrelation in model residuals. The eigenvectors are determined
by the chosen spatial weight matrix; once it is determined, the eigenvectors become
available and do not change over time. Choosing appropriate eigenvectors can help
address spatial autocorrelation in future studies.
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Figure 4. Residuals of a BMI model derived from DHS and land cover variables along with
eigenvector spatial filtering based on all 780 DHS samples. The eigenvectors were derived
from an eight-nearest-neighbor influential zone, and top eight spatial eigenvectors were used
in the BMI.model. The residuals are shown in standard deviation fashion.

5. CONCLUSION

This paper presents a data-mining method that aims to detect the effective influential
zone size and the number of spatial eigenvectors empirically to support an analysis of
spatial-temporal distributions of BMI in Southeastern Ghana. Spatial autocorrelation in
model residuals was successfully removed or reduced to an acceptable level for the NN
urban and rural subsets of samples. This approach demonstrates the ability to
empirically address the MAUP by determining the scale at which spatial processes
operate most meaningfully. However, for DHS Urban and Rural subsets, spatial
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autocorrelation could not be eliminated or reduced. The findings indicate that the
model results obtained from the NN urban subsets differ significantly from those of the
NN rural subsets, particularly in terms of the sign and significance level of coefficients.
Incorporating the unique application of women's BMI in Ghana introduces a new
perspective to the research, deviating from conventional analyses. By delineating the
size of influential zones and the number of spatial eigenvectors specifically within the
context of women’s health, our study contributes a novel lens through which to view
the interplay of spatial factors in health outcomes. Separating the rural subset from the
urban subset was an important step towards uncovering trajectories and the
associated mechanisms of BMI changes.

In ideal situations where spatial neighbourhood or influential zone size is known,
our LTM-ESF approach will become easier to use—e.g., there is no need to use the'data
mining method to decide the neighbourhood size, making the modelling practice more
straightforward. On the other hand, our LTM-ESF approach canshandle instances
without prior knowledge about the neighbourhood/zone size, as;.demonstrated in this
paper. Despite the capability of the LTM-ESF approach, we ‘believe that further
attention and research efforts—especially in situations with panel data—are necessary
for addressing the spatial autocorrelation challenge in_space-time statistical models,
especially for spatial autocorrelation in model residuals. Such efforts will lead to better
capturing the variability in both space and time, revealing-the hidden patterns of the
phenomena of interest and potential mechanisms.

In conclusion, the LTM-ESF method—in combination with the data mining
approach—makes a significant contribution to the field of spatial-temporal analysis,
providing a new perspective for/examining complex data patterns. Its development
signifies progress in methodologicalapproaches, paving an effective way for continued
research and refinement to better'understand and interpret the intricate dynamics and
mechanisms underlying spatial-temporal data.

APPENDIX

To examine whether complex numbers in eigenvalues diminish the effect of
eigenvector spatial filtering, we derived spatial eigenvectors based on a set of distance-
based, as well as the “forced-real number” option based spatial weighted matrices and
used them as'spatial eigenvectors. Such matrices are symmetric, so the resultant spatial
eigenvalues are all real numbers. The differences between the original and the “forced-
real number” options are minor. Four subsets (NN urban, rural, DHS urban, and rural)
were tested for spatial weight matrices derived from distance-based approaches. The
n780 dataset was excluded due to the cluster density variation over rural and urban
areas. Therefore, we examined whether spatial autocorrelation in model residuals was
removed in several additional models with distance-based spatial weighted matrices
(weight equals to 1 for samples within distance threshold (dc) from a sample, while 0
otherwise). Distances range from 1 to 6 km were used to determine the influenced
zone for NN and DHS urban subsets, while distances from 10 to 60 km were applied to
determine the influenced zone for NN and DHS rural subsets. The distance thresholds
were determined based on distances to the average nearest neighbor of the rural and
urban subsets, respectively. The resultant LTM-ESF models for women’s BMI have
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similar AlCc compared to the models with spatial eigenvectors derived from KNN
algorithm. However, spatial autocorrelation in model residuals is still present in all
models with spatial eigenvector filtering, except for one model in DHS urban subset (1
km of influenced zone and 1 spatial eigenvector). Thus, whether complex numbers are
present in the eigenvalues or not does not affect the power of spatial eigenvector
filtering.
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