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ABSTRACT

In multi-task reinforcement learning (RL) under Markov decision processes
(MDPs), the presence of shared latent structures among multiple MDPs has been
shown to yield significant benefits to the sample efficiency compared to single-
task RL. In this paper, we investigate whether such a benefit can extend to more
general sequential decision making problems, such as partially observable MDPs
(POMDPs) and more general predictive state representations (PSRs). The main
challenge here is that the large and complex model space makes it hard to identify
what types of common latent structure of multi-task PSRs can reduce the model
complexity and improve sample efficiency. To this end, we posit a joint model
class for tasks and use the notion of η-bracketing number to quantify its complex-
ity; this number also serves as a general metric to capture the similarity of tasks
and thus determines the benefit of multi-task over single-task RL. We first study
upstream multi-task learning over PSRs, in which all tasks share the same obser-
vation and action spaces. We propose a provably efficient algorithm UMT-PSR
for finding near-optimal policies for all PSRs, and demonstrate that the advantage
of multi-task learning manifests if the joint model class of PSRs has a smaller
η-bracketing number compared to that of individual single-task learning. We also
provide several example multi-task PSRs with small η-bracketing numbers, which
reap the benefits of multi-task learning. We further investigate downstream learn-
ing, in which the agent needs to learn a new target task that shares some com-
monalities with the upstream tasks via a similarity constraint. By exploiting the
learned PSRs from the upstream, we develop a sample-efficient algorithm that
provably finds a near-optimal policy. Upon specialization to the examples used to
elucidate the η-bracketing numbers, our downstream results further highlight the
benefit compared to directly learning the target PSR without upstream informa-
tion. Ours is the first theoretical study that quantifies the benefits of multi-task RL
with PSRs over its single-task counterpart.

1 INTRODUCTION

Multi-task sequential decision making, or multi-task reinforcement learning (MTRL) is a subfield
of reinforcement learning (RL) that extends the learning process across multiple tasks. Many real-
world applications can be modeled by MTRL. For instance, in robotics and autonomous driving,
different types of robots and vehicles in a shared environment can have different observational capa-
bilities based on their sensors and learning goals. Other applications include personalized healthcare,
weather forecasting across different regions, and manufacturing quality control on different types of
products. The fundamental idea behind MTRL is to leverage the inherent similarities among a set
of tasks in order to improve the overall learning efficiency and performance. For Markov decision
processes (MDPs), a line of works (Pathak et al., 2017; Tang et al., 2017; Oord et al., 2018; Laskin
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et al., 2020; Lu et al., 2021; Cheng et al., 2022; Agarwal et al., 2022; Pacchiano et al., 2022) have
explored multi-task representation learning and shown its benefit both practically and theoretically.

However, it is still an open question whether such a benefit can extend to more general sequential
decision making problems, even in partially observable MDPs (POMDPs), let alone more general
predictive state representations (PSRs). In this context, it is even unclear:

When can latent similarity structure encompassed by multiple PSRs be potentially beneficial?

The challenges mainly emanate from two aspects. First, the large and complex model space makes
it hard to identify what types of common latent structure of multi-task PSRs can reduce the model
complexity. The non-Markovian property of these problems implies that the sufficient statistics or
belief about the current environmental state encompasses all the observations and actions from past
interactions with the environment. This dramatically increases the statistical complexity. Even for a
finite observation space and action space, model complexity can be exponentially large in the number
of observations and actions. Such a complex parameter space makes it difficult to identify what types
of latent similarity structure of multi-task PSRs reduce the model complexity. Second, reduced
model complexity does not necessarily result in benefit in statistical efficiency gain of RL. In RL,
model learning and data collection are intertwined. The agent has to choose an exploration policy
in each iteration based on the model learned in the past. Such iterative process introduces temporal
dependence to the collected data, which makes the analysis of multi-task PSRs complicated.

In this paper, we answer the question above with upstream multi-task learning and downstream
transfer learning. We summarize our contributions below.

1. To deal with the first challenge, we propose a unified approach to characterize the effect of task
similarity on model complexity by introducing the notion of the η-bracketing number for the
joint model space of multiple tasks. Regardless of whether the concrete form of task similarity is
implicit or explicit, desirable task similarity should contribute to reduce the η-bracketing number
compared to that without similarity structures. This significantly generalizes existing studies of
multi-task MDPs that considered only specific task similarity structures.

2. We deal with the second challenge in both upstream and downstream learning. For the former, we
propose a novel multi-task PSRs algorithm called UMT-PSR, which features a pairwise additive
distance-based optimistic planning and exploration as well as confidence set construction based
on the bracketing number of the joint model class. We then prove that if the bracketing number
of the multi-task model class normalized by the number of tasks is lower than that of a single
task, UMT-PSR benefits from multi-task learning with these novel designs. We then provide
several specific multi-task POMDP/PSR examples with low bracketing number to demonstrate
that UMT-PSR is often more efficient than single-task learning.

3. We further employ the upstream learning to downstream learning by connecting upstream and
downstream models via similarity constraints. We show that the downstream learning can iden-
tify a near-accurate model and find a near-optimal policy. Upon specialization to the examples
used to elucidate the η-bracketing numbers, our downstream results further highlight the benefit
in comparison to directly learning parameters of PSRs without upstream information. Our analy-
sis here features a novel technique of using Rényi divergence to measure the approximation error
which guarantees the sub-optimality bound without requiring the realizability condition.

Our work is the first theoretical study that characterizes the benefits of multi-task RL with
PSRs/POMDPs over its single-task counterpart.

2 RELATED WORK

MTRL under MDPs: Multitask representation learning and transfer learning have been extensively
studied in RL, particularly under MDPs. Arora et al. (2020) demonstrated that representation learn-
ing can reduce sample complexity for imitation learning. Hu et al. (2021) analyzed MTRL with low
inherent Bellman error (Zanette et al., 2020) and known representation. Zhang & Wang (2021) stud-
ied multi-task learning under similar transition kernels. In contrast, Brunskill & Li (2013) studied
the benefit of MTRL when each task is independently sampled from a distribution over a finite set of
MDPs. Recent studies have also considered the case where all tasks share a common representation,
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including D’Eramo et al. (2020) which demonstrated the convergence rate benefit on value itera-
tion, and Lu et al. (2021) which proved the sample efficiency gain of MTRL under low-rank MDPs.
Some recent work further took the impact of sequential exploration and temporal dependence in
data into account. Considering sequential exploration with shared unknown representation, Cheng
et al. (2022); Agarwal et al. (2022) studied reward free MTRL under low-rank MDPs as upstream
learning and applied the learned representation from upstream to downstream RL. Pacchiano et al.
(2022) focused on a common low-dimensional linear representation and investigated MTRL under
linearly-factored MDPs. Lu et al. (2022) explored MTRL with general function approximation.
There also exist a few papers studying multi-task POMDPs from theoretical (Li et al., 2009) and
practical (Omidshafiei et al., 2017) side.

Note that all the above studies considered specific common model structures shared among tasks,
whereas our paper proposes a unified way to characterize the similarity among tasks. Further, none
of the existing studies considered model-based multi-task PSRs, which is the focus of our paper.

Single-task RL with PSRs and general sequential decision making problems: A general de-
cision making framework PSR (Littman & Sutton, 2001) was proposed to generalize MDPs and
POMDPs. Since then, various approaches have been studied to make the problem tractable with
polynomial sample efficiency. These methods include spectral type of techniques (Boots et al.,
2011; Hefny et al., 2015; Jiang et al., 2018; Zhang et al., 2022), methods based on optimistic plan-
ning and maximum log-likelihood estimators together with confidence set-based design (Zhan et al.,
2022; Liu et al., 2022), the bonus-based approaches (Huang et al., 2023), value-based actor-critic
approaches (Uehara et al., 2022), posterior sampling methods (Zhong et al., 2022). Chen et al.
(2022) further improved the sample efficiency for previous work including OMLE (Liu et al., 2022),
MOPS (Agarwal & Zhang, 2022), and E2D (Foster et al., 2021).

3 PRELIMINARIES

Notations. For any positive integer N , we use [N ] to denote the set {1, · · · , N}. For any vector x,
the i-th coordinate of x is represented as [x]i. For a set X , the Cartesian product of N copies of X
is denoted by XN . For probability distributions P and Q supported on a countable set X , the total
variation distance between them is DTV (P,Q) =

∑
x |P(x) − Q(x)|, and the Rényi divergence of

order α, for α > 1, between them is DR,α(P,Q) = 1
α−1 logEP[(dP/dQ)α−1].

3.1 THE NON-MARKOVIAN DECISION MAKING PROBLEM

We consider an episodic decision making process, which is not necessarily Markovian, with an
observation space O and a finite action space A. We assume that the process is episodic and
each episode contains H steps, i.e., with horizon H . At each step, the evolution of the pro-
cess is controlled by an underlying distribution P, where P(oh|o1, . . . , oh−1, a1, . . . , ah−1) is the
probability of visiting oh at step h given that the learning agent has observed ot ∈ O and taken
action at ∈ A for previous steps t ∈ [h − 1]. And the learning agent receives a reward at
each episode determined by the reward function R : (O × A)H → [0, 1]. We denote such a
process compactly as P = (O,A, H,P, R). For each step h, we denote historical trajectory as
τh := (o1, a1, . . . , oh, ah), the set of all possible historical trajectories as Hh = (O × A)h, the
future trajectory as ωh := (oh+1, ah+1, . . . , oH , aH), and the set of all possible future trajectories
as Ωh = (O ×A)H−h.

The agent interacts with the environment in each episode as follows. At step 1, a fixed initial obser-
vation o1 is drawn. At each step h ∈ [H], due to the non-Markovian nature, the action selection and
environment transitions are based on whole history information. Specifically, the agent can choose
an action ah based on the history τh−1 and the current observation oh with strategy πh(ah|τh−1, oh).
We denote such a strategy as a policy, and collect the policies over H steps into π = {πh}Hh=1, and
denote the set of all feasible policies as Π. Then the environment takes a transition to oh+1 based on
P(oh+1|τh). The episode terminates after H steps.

For any historical trajectory τh, we further divided it into τoh = (o1, . . . , oh) and τah = (a1, . . . , ah)
which is observation and action sequences contained in τh, respectively. Similar to τh, for the future
trajectories ωh, we denote ωo

h as the observation sequence in ωh, and ωa
h as the action sequence

in ωh. For simplicity, we write π(τh) = π(ah|oh, τh−1) · · ·π(a1|o1) to denote the probability of
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choosing the sequence of actions τah given the observations τoh under the policy π. We denote Pπ as
the distribution of the trajectories induced by the policy π under the dynamics P. The value function
of a policy π under P and the rewardR is denoted by V π

P,R = EτH∼Pπ [R(τH)]. The primary learning
goal is to find an ϵ-optimal policy π̄, which is one that satisfies maxπ V

π
P,R − V π̄

P,R ≤ ϵ.

Given that addressing a general decision-making problem entails an exponentially large sample
complexity in the worst case, this paper focuses on the low-rank class of problems as in Zhan et al.
(2022); Liu et al. (2022); Chen et al. (2022). Before formal definition of the low-rank problem, we
introduce the dynamics matrix Dh ∈ R|Hh|×|Ωh| for each h, where we use τh ∈ Hh and ωh ∈ Ωh to
index the rows and columns of the matrix Dh, respectively, and the entry at the τh-th row and ωh-th
column of Dh equals to the conditional probability P(ωo

h, τ
o
h |τah , ωa

h).
Definition 1 (Rank-r sequential decision making problem). A sequential decision making problem
is rank r if for any h, the model dynamics matrix Dh has rank at most r.

As a result, for each h, the probability of observing ωo
h can be represented by a linear combi-

nation of probabilities on a set of future trajectories known to the agent called core tests Qh =

{q1
h, . . . ,q

dh

h } ⊂ Ωh, where dh ≥ r. Specifically, there exist functions m : Ωh → Rdh , ψ : Hh →
Rdh such that (i) the value of the ℓ-th coordinate of ψ(τh) equals to the conditional probability
P(oℓ

h, τ
o
h |aℓh, τah ) on (qℓ

h, τh), where oℓ
h and aℓh to denote the observation and the action sequences

of qℓ
h, and (ii) for any ωh ∈ Ωh, τh ∈ Hh, the conditional probability can be factorized as

P(ωo
h, τ

o
h |τah , ωa

h) = m(ωh)
⊤ψ(τh). (1)

Predictive State Representation. Following from Theorem C.1 in Liu et al. (2022), given core tests
{Qh}Hh=1, any low rank decision making problem admits a (self-consistent) predictive state repre-
sentation (PSR) θ = {(ϕh,Mh)}Hh=1, such that Eq. 1 can be reparameterized by θ. Mathematically,
For any h ∈ [H], τh ∈ Hh, ωh ∈ Ωh:
m(ωh)

⊤ = ϕ⊤HMH(oH , aH) · · ·Mh+1(oh+1, ah+1), ψ(τh) = Mh(oh, ah) · · ·M1(o1, a1)ψ0,

and
∑

(oh,ah)∈O×A ϕ
⊤
h+1Mh(oh, ah) = ϕ⊤h . For ease of the presentation, we assume ψ0 is known.1

The following assumption is standard in the literature (Liu et al., 2022; Chen et al., 2022).
Assumption 1 (γ-well-conditioned PSR). We assume any PSR θ = {(ϕh,Mh)}Hh=1 considered in
this paper is γ-well-conditioned for some γ > 0, i.e.

∀h ∈ [H],maxx∈Rdh :∥x∥1≤1 maxπ∈Π maxτh∈Hh

∑
ωh∈Ωh

π(ωh|τh)|m(ωh)
⊤x| ≤ 1

γ . (2)

In the following context, we use Pθ to indicate the model determined by the PSR θ. For simplicity,
we denote V π

Pθ,R
as V π

θ,R. Moreover, let QA
h = {aℓh}

dh

ℓ=1 be the action sequence set from core tests
which is constructed by eliminating any repeated action sequence. The set QA

h is also known as the
core action sequence set. The set of all rank-r and γ-well-conditioned PSRs is denoted by Θ.

3.2 UPSTREAM MULTI-TASK LEARNING

In upstream multi-task learning, the agent needs to solve N low-rank decision making problems
(also known as source tasks) at the same time instead of only one single problem (task). The set of
N source tasks is denoted by {Pn}Nn=1, where Pn = (O,A, H,Pθ∗

n
, Rn), and θ∗n ∈ Θ.2 In other

words, all N tasks are identical except for their model parameters θ∗n = {(ϕn,∗h ,Mn,∗
h )}Hh=1, and

reward functions Rn. Moreover, we denote the model class of multi-task PSRs as Θu (the subscript
stands for upstream), a subset of ΘN .

The goal of the upstream learning consists of two parts: (i) Finding near-optimal policies for all N
tasks on average. Mathematically, given an accuracy level ϵ, the set of N policies that are produced
by the algorithm {π̄1, . . . , π̄N} should satisfy 1

N

∑N
n=1(maxπ V

π
θ∗
n,Rn

− V π̄n

θ∗
n,Rn

) ≤ ϵ; (ii) Char-
acterizing the theoretical benefit of multi-task PSRs learning in terms of the sample complexity,
compared to learning each task individually.

1The sample complexity of learning ψ0 if it is unknown is relatively small compared to the learning of the
other parameters (Liu et al., 2022).

2For simplicity, we assume all tasks have the same rank and γ, but have different core test sets. The
extension to different ranks and γ’s is straightforward.
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3.3 BRACKETING NUMBER OF JOINT PARAMETER SPACE

One critical factor that affects the efficiency of multi-task learning compared to separate task learn-
ing is the presence of shared latent structure among the tasks, which yields a reduced model space in
multi-task PSRs learning, as compared to separately learning single tasks over the Cartesian product
of N model spaces (see Figure 1 for an illustration in 2 dimensions). Consequently, this reduction
in model complexity can ultimately lead to improved sample efficiency. Unlike the specific shared
model structures among multiple tasks that the previous works studied, such as shared representa-
tion in Cheng et al. (2022) and similar transition kernels in Zhang & Wang (2021), here we focus
on a general shared model space and use the notion of the η-bracketing number to quantify the
complexity of the joint model space. Such a notion plays a central role in capturing the benefit of
multi-task PSR learning over single-task learning.

(
P (∗,1), P (∗,2)

)

P2

(a) Independent learning of each task
where the joint model class is P2

P (∗,1), P (∗,2)

Fu ⊊ P2

(b) Joint learning of tasks with shared la-
tent model structure. The joint model
class is Fu, a strict subset of P2.

Figure 1: Reduction in η-bracketing
number when Fu ⊊ P2

We start with a domain X and a single task function class F ,
in which each element f : X → R+. For the multi-task case,
the function class is a subset Fu of FN .

Definition 2 (η-Bracketing number of vector-valued function
class Fu w.r.t. ∥·∥). Given two vector-valued functions l and
g : X → RN

+ , the bracket [l,g] is the set of all functions
f ∈ Fu satisfying l ≤ f ≤ g.3 An η-bracket is a bracket [l,g]
with ∥g − l∥ < η. The bracketing number Nη(Fu, ∥·∥) is the
minimum number of η-brackets needed to cover Fu.4

In this paper, we are interested in the bracketing number of
the joint model space, i.e., distribution spaces over (O×A)H

parameterized by Θu. For simplicity, we use Nη(Θu) to de-
note the η-bracketing number of {(Pθ1 , . . . ,PθN )|θ ∈ Θu}
w.r.t. the ℓ∞ policy weighted norm ∥·∥p∞, where the ℓ∞
policy weighted norm between two vector-valued functions
l = {l1, . . . , lN} and g = {g1, . . . , gN} defined on (O×A)H

is equal to ∥g − l∥p∞ = maxi∈[N ] maxπi∈Π

∑
τH

|li(τH) −
gi(τH)|πi(τH). As we will show later, a lower η-bracketing
number of the joint model space results in a lower sample
complexity in multi-task PSR learning.

In practice, it is common tasks share certain common model
structures and hence their joint model space will have a much
lower η-bracketing number compared to the product of model
spaces (i.e, treating the model of each task separately). We
provide several such examples of non-Markovian decision
processes in Section 4.3. We provide more examples of
MDPs with their η-bracketing numbers in Appx. F. Notably,
there can be much richer scenarios beyond these examples.

3.4 DOWNSTREAM TRANSFER LEARNING

In downstream learning, the agent is assigned with a new target task P0 = (O,A, H,Pθ∗
0
, R0),

where θ∗0 ∈ Θ, which shares some similarities with source tasks to benefit from upstream learn-
ing. Here, we capture the shared structure between upstream and downstream tasks via the simi-
larity constraint C(θ0, θ∗1 , . . . θ∗N ) ≤ 0 where C : ΘN+1 → Rnd , nd ∈ N. The similarity con-
straint establishes the relationship between the downstream target task and the upstream source
tasks. Hence, the downstream model class is given by Θu

0 = {θ0 ∈ Θ|C(θ0, θ∗1 , . . . θ∗N ) ≤ 0}.
We note that the similarity constraint is general enough to capture various relationships between
upstream and downstream tasks. For example, Cheng et al. (2022) consider the case when the
downstream task shares the same representation as upstream tasks, which is equivalent to assum-
ing [C(θ0, . . . , θ

∗
N )]n = ∥ϕ(∗,n) − ϕ0∥2, where n ∈ [N ] and ϕ(∗,n) is the representation of task

3We write that two vectors a,b satisfy a ≤ b if b− a is coordinate-wise nonnegative.
4We say that a collection of sets S1 . . . , Sn cover a set S if S ⊂ ∪n

i=1Si.
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n. However, the similarity constraint allows much richer beyond the above example, for example,
downstream tasks can have similar but not the same representations as the upstream, or may share
only some representation features, but not all of them.

The goal of the downstream learning is to find a near-optimal policy, by exploiting the constraint
similarity with upstream tasks and utilizing upstream knowledge to achieve better sample efficiency
compared with learning without upstream knowledge.

4 UPSTREAM LEARNING OVER MULTI-TASK PSRS

We present our upstream algorithm in Section 4.1, characterize its theoretical performance in Sec-
tion 4.2 and present examples to validate the benefit of upstream multi-task learning in Section 4.3.

We use bold symbol to represent the multi-task parameters or policy. Specifically, θ = (θ1, . . . , θN ),
and π = (π1, . . . , πN ). We define QA = maxn maxh |Qn,A

h |, where Qn,A
h is the core action

sequence set of task n at step h. The policy, denoted by νh(π, π′), takes π at the initial h − 1 steps
and switches to π′ from the h-th step. Lastly, uX represents the uniform distribution over the set X .

4.1 ALGORITHM: UPSTREAM MULTI-TASK PSRS (UMT-PSR)

We provide the pseudo-code of our upstream multi-task algorithm called Upstream Multi-Task PSRs
(UMT-PSR) in Algorithm 1. This iterative algorithm consists of three main steps as follows.

Algorithm 1 Upstream Multi-Task PSRs (UMT-PSR)

1: Input: B1 = Θ model class, estimation margin β(N), maximum iteration number K.
2: for k = 1, . . . ,K do
3: Set πk = argmaxπ∈ΠN maxθ,θ′∈Bk

∑
n∈[N ] DTV

(
Pπn

θn
,Pπn

θ′
n

)
4: for n, h ∈ [N ]× [H] do
5: Use νπ

n,k

h to collect data τn,k,hH .
6: end for
7: Construct Bk+1 ={

θ ∈ Θu :
∑

t∈[k],h∈[H]
n∈[N]

logPνπn,t

h

θn
(τn,t,hH ) ≥ max

θ′∈Θu

∑
t∈[k],h∈[H]

n∈[N]

logPνπn,t

h

θ′
n

(τn,t,hH )−β(N)

}
∩Bk.

8: end for
9: Output: Any θ ∈ BK+1, and a greedy multi-task policy π = argmaxπ

∑
n∈[N ] V

πn

θ̄n,Rn

Pairwise additive distance based multi-task planning (Line 3): To promote joint planning among
tasks, a natural choice to measure the distance between two multi-task models is the distance be-
tween the two product distributions Pπ1

θ1
× · · · × PπN

θN
and Pπ1

θ′
1
× · · · × PπN

θ′
N

. However, such a
“distance between product distributions” is not sufficient to guarantee the accuracy of the indi-
vidual models of each task, which is needed in the analysis of the sum of the individual value
functions. Hence, we propose to use the “pairwise additive distance” for our planning, defined as
Dπ(θ,θ

′) ≜
∑

n∈[N ] DTV(Pπn

θn
,Pπn

θ′
n
).

More specifically, at each iteration k, UMT-PSR selects a multi-task policy πk = (π1,k, . . . , πN,k)
that maximizes the largest pairwise additive distance maxθ,θ′ Dπ(θ,θ

′) within the confidence set
Bk (which will be specified later). An important property of Bk is that it contains the true model
θ∗ with high probability. Using this property, the largest pairwise additive distance serves as an
optimistic value of the uncertainty Dπ (θ∗,θ) for any multi-task model θ ∈ Bk.

Multi-task exploration (Line 5): Building upon the planning policy πk, for each task n and each
step h, UMT-PSR executes the policy πn,k for first h− 1 steps, and then uniformly selects an action
sequence in A×Qn,A

h for the followingH−h+1 steps. In particular, at step h, UMT-PSR uniformly
takes an action in A, and then uniformly chooses a core action sequence ah such that regardless
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of what the observation sequence is, UMT-PSR always plays the action in the sampled core action
sequence. In summary, for each (n, h) ∈ [N ]×[H], UMT-PSR adopts the policy νh(πn,k, uA×Qn,A

h
)

to collect a sample trajectory τn,k,hH . We abbreviate νh(πn,k, uA×Qn,A
h

) as νπ
n,k

h .

Confidence set construction via bracketing number of joint model class (Line 7): Given the
sampled trajectories, UMT-PSR calls a maximum likelihood estimation oracle to construct the multi-
task confidence set. A novel element here is the use of the bracketing number of the joint model class
to characterize estimation margin β(N), which is an upper bound of the gap between the maximum
log-likelihood within Θu and the log-likelihood of the true model. Such a design provides a unified
way for any MTRL problem and avoids individual design for each problem in a case-by-case manner.

4.2 MAIN THEORETICAL RESULT

The following theorem characterizes the guarantee of the model estimation and the sample com-
plexity to find a near-optimal multi-task policy.
Theorem 1. Under Assumption 1 , for any fixed δ > 0, let Θu be the multi-task parameter space,
β(N) = c1(log

KHN
δ + logNη(Θu)), where c1 > 0 and η ≤ 1

KHN . Then with probability at least
1− δ, UMT-PSR finds a multi-task model θ = (θ̄1, . . . , θ̄N ) such that∑N

n=1 maxπn∈Π DTV

(
Pπn

θ̄n
,Pπn

θ∗
n

)
≤ Õ

(
QA

γ

√
rH|A|Nβ(N)

K

)
.

In addition, ifK =
c2r|A|Q2

AHβ(N)

Nγ2ϵ2 for large enough c2 > 0, UMT-PSR produces a multi-task policy
π = (π̄1, . . . , π̄N ) such that the average sub-optimality gap is at most ϵ, i.e.

1
N

∑N
n=1

(
maxπ∈Π V

π
θ∗
n,Rn

− V π̄n

θ∗,Rn

)
≤ ϵ. (3)

Benefits of multi-task learning: Theorem 1 shows that with the sample complexity
Õ(

r|A|Q2
AH2β(N)

Nγ2ϵ2 ), UMT-PSR identifies an ϵ-optimal multi-task policy. As a comparison, the best

known sample complexity of a single-task PSR RL is given byO(
r|A|Q2

AH2β
γ2ϵ2 ) in Chen et al. (2022),

where β(1) = Õ(r2|O||A|H2) scales the logarithm of the bracketing number of a single-task PSR
with rank r. It is clear that as long as β(N) < Nβ(1), then UMT-PSR enjoys multi-task benefit in
the sample complexity. In Section 4.3, we will provide several example multi-task POMDPs/PSRs
to illustrate that such a condition can be satisfied broadly.

Next, we make a few comparisons concerning β(N). (i) If N = 1, Theorem 1 matches the best
known sample complexity given in Chen et al. (2022). (ii) If none of tasks share any similarity,
i.e., Θu = ΘN , we have β(N) = Nβ(1), and the sample complexity does not exhibit any benefit
compared to learning the tasks separately. This coincides with the intuition that in the worst case,
multi-task learning is not required. (iii) The benefits of multi-task learning are more evident when
β(N)/N decreases. An extreme example is that when all tasks also share the same dynamics, leading
to β(N) = β(1). In this case, multi-task learning reduces to the batch setting and as the batch size
increases, the iteration number decreases linearly in N .

4.3 IMPORTANT EXAMPLES OF MULTI-TASK PSRS

As shown in Section 3.2 and Theorem 1, for multi-task models with low η-bracketing number, i.e.,
satisfying β(N) < Nβ(1), UMT-PSR exhibits better sample complexity than single-task learning.
In this section, we provide example multi-task POMDPs and PSRs and show that their η-bracketing
number satisfies the condition. Detailed proofs for these examples can be found in Appendix E.2.

Muli-task POMDPs. We consider tabular POMDPs, which is a classic subclass of PSRs. Specifi-
cally, the dynamics in POMDPs consist ofH transition distributions {Th : S×A×S → [0, 1]}Hh=1,
and H emission distributions {Oh : S × O → [0, 1]}Hh=1, where S is a finite state space. The
states capture the entire system information, but are not directly observable. In POMDPs, at
each step h, if the current system state is sh, the agent observes oh with probability Oh(oh|sh).

7
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Then, if the agent takes an action ah based on previous observations oh, . . . , o1 and actions
ah−1, . . . , a1, the system state transits to sh+1 with probability Th(sh+1|sh, ah). We use the nota-
tion Ppo = (O,A, H,S,T,O, R) to represent a POMDP instance. Note that the tuple (S,T,O) in
POMDPs determine the general dynamics P in PSRs. If all tasks share the same state, observation,
and action spaces, then Pnpo = (O,A, H,S,Tn,On, R) represents the model of task n.

Example 1 (Multi-task POMDP with common transition kernels). All tasks (i.e., all POMDPs)
share the same transition kernel, i.e., there exists a set of transition distributions {T∗

h}Hh=1 such that
Tn
h = T∗

h for all n ∈ [N ] and h ∈ [H]. The emission distributions can be different. Such a scenario
arises if the agent observes the same environment from different angles and hence receives different
observations. Then, β(N) is at most O(H(|S|2|A| + |S||O|N) log H|O||A||S|

η ), whereas the single

task β(1) is given by O(H(|S|2|A|+ |S||O|) log H|O||A||S|
η ). Clearly, β(N) < Nβ(1).

Multi-task PSRs: We next provide two example multi-task PSRs, in which tasks do not share
common model parameters. In these examples, the similarities among tasks could alternatively be
established via implicit connections and correlations in latent spaces, which reduce the complexity
of the joint model class, hence the estimation margin and the sample complexity of algorithms
significantly compared with separately learning each single task.

Example 2 (Multi-task PSR with perturbed models). Suppose there exist a latent base task Pb, and
a finite noisy perturbation space ∆. Each task n ∈ [N ] is a noisy perturbation of the latent base task
and can be parameterized into two parts: the base task plus a task-specified noise term. Specifically,
for each step h ∈ [H] and task n ∈ [N ], any (o, a) ∈ O ×A, we have

Mn
h(oh, ah) = Mb

h(oh, ah) + ∆n
h(oh, ah), ∆n

h ∈ ∆.

Such a multi-task PSR satisfies that β(N) = Õ(r2|O||A|H2 + HN log |∆|), whereas β(1) for a
single task is given by Õ(r2|O||A|H2). Clearly, β(N) ≪ Nβ(1) holds if log |∆| ≪ Õ(r2|O||A|H),
which can be easily satisfied for small-size perturbation environments. Hence, the multi-task PSR
benefits from a significantly reduced sample complexity compared to single-task learning.

Example 3 (Multi-task PSR: Linear combination of core tasks). Suppose that the multi-task PSR
lies in the linear span of m core tasks {P1, . . . , Pm}. Specifically, for each task n ∈ [N ], there exists
a coefficient vector αn = (αn

1 , · · · , αn
m)⊤ ∈ Rm s.t. for any h ∈ [H] and (oh, ah) ∈ O ×A,

ϕnh(oh, ah) =
∑m

l=1 α
n
l ϕ

l
h(oh, ah), Mn

h(oh, ah) =
∑m

l=1 α
n
l M

l
h(oh, ah).

For regularization, we assume 0 ≤ αn
l for all l ∈ [m] and n ∈ [N ], and

∑m
l=1 α

n
l = 1 for all

n ∈ [N ]. It can be shown that β(N) = O(m(r2|O||A|H2 +N)), whereas β(1) = Õ(r2|O||A|H2).
Clearly, β(N) ≪ Nβ(1) holds if m ≤ min{N, r2|O||A|H2}, which is satisfied in practice.

5 DOWNSTREAM LEARNING FOR PSRS

In downstream learning, the agent is assigned a new task P0 = (O,A, H,Pθ∗
0
, R0), where θ∗0 ∈ Θu

0 ,
and Θu

0 is defined in Section 3.4. As explained in Section 3.4, upstream and downstream tasks are
connected via the similarity constraint C(θ0, θ∗1 , . . . θ∗N ) ≤ 0. Therefore, the agent can use the
estimated model parameter θ̄1, . . . , θ̄N in the upstream to construct an empirical candidate model
class for the downstream task as Θ̂u

0 = {θ0 ∈ Θ|C(θ0, θ̄1, . . . , θ̄N ) ≤ 0}. Then for downstream
learning, we adopt the standard OMLE (Liu et al., 2022; Chen et al., 2022) for the model class Θ̂u

0 .

The sample complexity of downstream learning will be determined by the bracketing number of
Θ̂u

0 , which is nearly the same as that of the ground truth Θu
0 . Since the similarity constraint will

significantly reduces the complexity of the model parameter space, the bracketing number of Θ̂u
0

should be much smaller than that of the original parameter space Θ. In this way, the downstream can
benefit from the upstream learning with reduced sample complexity. In the following subsections,
we first characterize the performance guarantee for downstream learning in terms of the bracketing
number of Θ̂u

0 , and then show that the similarity constraint reduces the bracketing number for the
examples given in Section 4.3.
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5.1 THEORETICAL GUARANTEE FOR DOWNSTREAM LEARNING

One main challenge in the downstream learning is that the true model may not lie in Θ̂u
0 . To handle

this, we employ Rényi divergence to measure the “distance” from the model class to the true model
as follows, mainly because its unique advantage under the MLE oracle: the Rényi divergence of
order α with α ≥ 1 serves as an upper bound on the TV distance and the KL divergence, and thus
has more robust performance.

Definition 3. Fix α > 1. The approximation error of Θ̂u
0 under α-Rényi divergence is defined as

eα(Θ̂
u
0) = minθ0∈Θ̂u

0
maxπ∈Π DR,α(Pπ

θ∗
0
,Pπ

θ0
).

Theorem 2. Fix α > 1. Let ϵ0 = eα(Θ̂
u
0), β0 = c0(logNη(Θ̂

u
0) + ϵ0KH + (

1{ϵ0 ̸=0}
α−1 +1) log KH

δ )

for some large c0, where η ≤ 1
KH . Under Assumption 1, with probability at least 1− δ, the output

of Algorithm 2 satisfies that

maxπ∈Π DTV

(
Pπ
θ̄0
,Pπ

θ∗
0

)
≤ Õ

(
QA

γ

√
r|A|Hβ0

K +
√
ϵ0

)
.

Benefits of downstream transfer learning: Theorem 2 shows that when ϵ0 < ϵ2/4, with sam-
ple complexity at most Õ(

rQ2
A|A|Hβ0

γ2ϵ2 ), OMLE identifies an ϵ-optimal policy for the downstream
task. As a comparison, the best known sample complexity for single-task PSR RL without transfer
learning is Õ(

rQ2
A|A|Hβ
γ2ϵ2 ), where β = Õ(logNη(Θ)) (Chen et al., 2022). It is clear that as long as

β0 < β, then downstream learning enjoys transfer benefit in the sample complexity.

Notably, in the realizable case when ϵ0 = 0, i.e. θ∗0 ∈ Θ̂u
0 , we must have β0 = Õ(logNη(Θ̂

u
0)) ≤ β,

since Θ̂u
0 ⊂ Θ. In the non-realizable case when ϵ0 > 0, compared to the realizable case, the

estimation error of θ̄0 has an additive factor of Õ(
√
ϵ0 +

√
1/(K(α− 1))) after hiding system

parameters. We remark that this factor shrinks if the approximation error of Θ̂u
0 decreases and the

order of Rényi divergence grows, which coincide with the intuition.

5.2 EXAMPLES IN DOWNSTREAM LEARNING TASKS

We revisit the examples presented in upstream multi-task learning, specifically Examples 1 to 3,
and subsequently extend their application in downstream tasks under the realizable setting. With
the prior knowledge obtained from upstream learning, these examples exhibit reduced η-bracketing
number, and hence benefit in the sample efficiency. Detailed proofs are in Appx. E.3.

Example 1 (Multi-task POMDP with Common transition kernels). Suppose T̂ is the output from
UMT-PSR. In this case, the downstream Θ̂u

0 is constructed by combining T̂ and all possible emission
distributions. Then β0 = Õ(H|S||O|). However, for POMDP without prior knowledge, β =

Õ(H(|S|2|A|+ |S||O|)). Clearly, β0 ≤ β, indicating the benefit of downstream learning.

For PSRs without prior knowledge, we have βPSR = Õ(r2|O||A|H2).

Example 2 (Multi-task PSR with perturbed models). The downstream task P0 is a noisy perturba-
tion of a base task Pb. Specifically, for each step h ∈ [H], any (o, a) ∈ O ×A, we have

ϕ0H = ϕbH ,M
0
h(oh, ah) = Mb

h(oh, ah) + ∆0
h(oh, ah), ∆0

h ∈ ∆.

Then, β0 = Õ(H log |∆|), which is much lower than βPSR if log |∆| ≪ Õ(r2|O||A|H).

Example 3 (Multi-task PSR: Linear combination of core tasks). The downstream task P0 lies in the
linear span of L upstream tasks (e.g. the firs L source tasks). Specifically, there exists a coefficient
vector α0 = (α0

1, · · · , α0
L)

⊤ ∈ RL s.t. for any h ∈ [H] and (oh, ah) ∈ O ×A,

ϕ0H =
∑L

l=1 α
0
l ϕ

l
H , M0

h(oh, ah) =
∑L

l=1 α
0
lM

l
h(oh, ah).

For regularization, we assume 0 ≤ α0
l for all l ∈ [L], and

∑L
l=1 α

0
l = 1. Then β0 = Õ(LH), which

is much smaller than βPSR if L ≤ min{N, r2|O||A|H2}.
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6 CONCLUSION

In this paper, we study multi-task learning on general non-markovian low-rank decision making
problems. Given that all tasks share the same observation and action spaces, using the approach of
PSRs, we theoretically characterize that multi-task learning presents benefit over single-task learning
if the joint model class of PSRs has a smaller η-bracketing number. We also provide specific example
multi-task PSRs with small η-bracketing numbers. Then, with prior knowledge from the upstream,
we show that downstream learning is more efficient than learning from scratch.
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Supplementary Materials

A MULTI-TASK MLE ANALYSIS

The following lemma shows that the true model lies in the confidence set with high probability.
Proposition 1 (Confidence Set). For all k ∈ [K], and for any θ = (θ1, . . . , θN ) ∈ Θ, let η ≤
1/(NKH), β(N) = c log (Nη(Θ)NKH/δ) for some c ≥ 0. With probability at least 1− δ, for any
k ∈ [K], we have∑

n≤N

∑
t≤k

∑
h≤H

logPνπn,t

h

θ∗
n

(τn,t,hH ) ≥
∑
n≤N

∑
t≤k

∑
h≤H

logPνπn,t

h

θn
(τn,t,hH )− β(N). (4)

Proof. Consider a set of η-brackets, denoted by Θη , that covers Θ. For any θ, we can find two
measures in Θη parameterized by θ and θ such that

∀n, τH , π, Pπ
θn
(τH) ≥ Pπ

θn(τH) ≥ Pθn
(τH), (5)

∀n, DTV

(
Pπ
θn
(τH),Pπ

θn
(τH)

)
≤ η.

Note that the above two inequalities imply that
∑

τH
Pπ
θn
(τH) ≤ η +

∑
τH

Pπ
θn
(τH) ≤ 1 + η.

Then, we have

E

exp
∑

n

k∑
t=1

∑
h

log
Pνπn,t

h

θn
(τn,t,hH )

Pνπn,t

h

θ∗
n

(τn,t,hH )




= E

exp
∑

n

k−1∑
t=1

∑
h

log
Pνπn,t

h

θn
(τn,t,hH )

Pνπn,t

h

θ∗
n

(τn,t,hH )

E

∏
n

∏
h

Pνπn,k

h

θn
(τn,k,hH )

Pνπn,k

h

θ∗
n

(τn,k,hH )




= E

exp
∑

n

k−1∑
t=1

∑
h

log
Pνπn,t

h

θn
(τn,t,hH )

Pνπn,t

h

θ∗
n

(τn,t,hH )

∏
n

∏
h

∑
τn,k,h
H

Pνπn,k

h

θn
(τn,k,hH )


≤ E

exp
∑

n

k−1∑
t=1

∑
h

log

Pνπn,t

h

θn
(τn,t,hH )

Pνπn,t

h

θ∗
n

(τn,t,hH )


∏

n

∏
h

(
1 +

1

NKH

)
≤
(
1 +

1

NKH

)NKH

≤ e.

Therefore, by Chernoff type bound, we have

P

 ∑
t≤k,h≤H

n≤N

log
Pνπn,t

h

θn
(τn,t,hH )

Pνπn,t

h

θ∗
n

(τn,t,hH )
≥ log(1/δ)

 ≤

E

exp
∑ t≤k,h≤H

n≤N
log

P
νπn,t

h
θn

(τn,t,h
H )

P
νπn,t
h

θ∗n
(τn,t,h

H )


1/δ

≤ eδ.

Taking a union bound over all (θ, k) ∈ Θ̄ϵ × [K] and rescaling δ, we have for any θ ∈ Θ,

P

∀θ ∈ Θη, k ∈ [K],
∑

t≤k,h≤H
n≤N

log
Pνπn,t

h

θn
(τn,t,hH )

Pνπn,t

h

θ∗
n

(τn,t,hH )
≥ log(eKNη(Θ)/δ)

 ≤ δ.

The proof is finished by noting that θ is an optimistic measure (see Equation (5)).
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The following lemma establishes the relationship between the Hellinger-squared distance and the
difference of log likelihood functions between true parameters and any possible parameters from the
model class.

Proposition 2. Let η ≤ 1/(N2K2H2), β(N) = c log (Nη(Θ)NKH/δ) for some c ≥ 0. Then, with
probability at least 1− δ, we have, for any θ = (θ1, . . . , θN ) ∈ Θ, the following inequality holds.

∑
t≤k,h≤H

n≤N

D2H

(
Pνπn,t

h

θn
,Pνπn,t

h

θ∗
n

)
≤

∑
t≤k,h≤H

n≤N

log
Pνπn,t

h

θ∗
n

(τn,t,hH )

Pνπn,t

h

θn
(τn,t,hH )

+ β(N).

Proof. By the definition of η-bracket, for any multi-task parameter θ, we can find θ within a finite
set of η-brackets such that

∑
τH

∣∣∣Pπ
θn
(τH)− Pπ

θ̄n
(τH)

∣∣∣ ≤ η. Then, for any n and π, we have

D2H(Pπ
θn ,P

π
θ∗
n
)

= 1−
∑
τH

√
Pπ
θn
(τH)Pπ

θ∗
n
(τH)

= 1−
∑
τH

√
Pπ
θn
(τH)Pπ

θ∗(τH) +
(
Pπ
θn
(τH)− Pπ

θn
(τH)

)
Pπ
θ∗
n
(τH)

(i)

≤ 1−
∑
τH

√
Pπ
θn
(τH)Pπ

θ∗
n
(τH) +

∑
τH

√∣∣∣Pπ
θn
(τH)− Pπ

θn
(τH)

∣∣∣Pπ
θ∗
n
(τH)

(ii)

≤ − log E
τH∼Pπ

θ∗n
(·)

√√√√Pπ
θn
(τH)

Pπ
θ∗
n
(τH)

+

√∑
τH

∣∣∣Pπ
θn
(τH)− Pπ

θn
(τH)

∣∣∣
(iii)

≤ − log E
τH∼Pπ

θ∗n
(·)

√√√√Pπ
θn
(τH)

Pπ
θ∗
n
(τH)

+
√
η, (6)

where (i) follows from the fact that
√
a+ b ≤

√
|a|+

√
|b|, (ii) follows from the fact that 1− x ≤

log x for x ≥ 0 (the first term) and the Cauchy-Schwarz inequality (the second term), and (iii)
follows from the definition of η-bracket.

Then, for any fixed θ̄n, we have

E

exp
1

2

∑
n≤N

∑
t≤k

∑
h≤H

log
Pνπn,t

h

θn
(τn,t,hH )

Pνπn,t

h

θ∗
h

(τn,t,hH )
−
∑
n

∑
π∈Πk

n

log E
τH∼Pπ

θ∗n
(·)

√√√√Pπ
θn
(τH)

Pπ
θ∗
n
(τH)




=

E

∏
n≤N

∏
t≤k

∏
h≤H

√√√√P
νπn,t
h

θn
(τH)

P
νπn,t
h

θ∗n
(τH)


E

∏
n≤N

∏
t≤k

∏
h≤H

√√√√P
νπn,t
h

θn
(τH)

P
νπn,t
h

θ∗n
(τH)


= 1. (7)

Hence, by taking union bound over the finite set of η-brackets and k ∈ [K], with probability at least
1− δ, we have for any k ∈ [K]∑

n≤N

∑
t≤k

∑
h≤H

D2H(P
νπn,t

h

θn
,Pνπn,t

h

θ∗
n

)
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(i)

≤
∑
n≤N

∑
t≤k

∑
h≤H

− log E
τH∼P

νπn,t
h

θ∗n
(·)

√√√√√Pνπn,t

h

θn
(τH)

Pνπn,t

h

θ∗
n

(τH)
+NKH

√
η

(ii)

≤ NKH
√
η +

1

2

∑
n≤N

∑
t≤k

∑
h≤H

log
Pνπn,t

h

θ∗
n

(τn,t,hH )

Pνπn,t

h

θn
(τn,t,hH )

+ log
KNη(Θ)

δ

(iii)

≤ 1 +
1

2

∑
n≤N

∑
t≤k

∑
h≤H

log
Pνπn,t

h

θ∗
n

(τn,t,hH )

Pνπn,t

h

θn
(τn,t,hH )

+ log
KNη(Θ)

δ
.

where (i) follows from Equation (6), (ii) follows from Equation (7), the Chernoff’s method and the
union bound, and (iii) follows from that η ≤ 1/(N2K2H2).

The proof is finished by noting that θn is an optimistic measure.

B PROPERTIES OF PSRS

First, for any model θ = {ϕh,Mh(oh, ah)}, we have the following identity

Mh(oh, ah)ψ̄(τh−1) = Pθ(oh|τh−1)ψ̄(τh). (8)

The following proposition is adapted from Lemma C.3 in Liu et al. (2022) and Proposition 1 in
Huang et al. (2023).

Proposition 3 (TV-distance ≤ Estimation error). For any task n ∈ [N ], policy π, and any two
parameters θ, θ′ ∈ Θ, we have

DTV (Pπ
θ′ ,Pπ

θ ) ≤
H∑

h=1

∑
τH

∣∣m′(ωh)
⊤ (M′

h(oh, ah)−Mh(oh, ah))ψ(τh−1)
∣∣π(τH).

C PROOFS FOR UPSTREAM LEARNING: PROOF OF THEOREM 1

In this section, we first prove two lemmas, and then provide the proof for Theorem 1.

First, by the algorithm design and the construction of the confidence set, we have the following
estimation guarantee.

Lemma 1 (Estimation Guarantee in Upstream Learning). Let η ≤ 1/(N2K2H2), β(N) =
c log (Nη(Θ)NKH/δ) for some c ≥ 0. With probability at least 1 − δ, for any k and any
θ̂ = (θ̂1 . . . , θ̂n) ∈ Bk, we have∑

n≤N

∑
t≤k−1

∑
h≤H

D2H

(
Pνπn,t

h

θ̂n
,Pνπn,t

h

θ∗
n

)
≤ 2β(N).

Proof. The proof follows directly by combining Proposition 1 and Proposition 2, and the optimality
of the confidence set Bk.

Then, we show that estimation error can be upper bounded by the norm of prediction features.

By Lemma G.3 in Liu et al. (2022), for any task n, and step h, we can find a projection An
h ∈

Rdh−1×r such that

(i) : ψn,∗(τh−1) = An
h(A

n
h)

†ψn,∗(τh−1), (ii) : ∥An
h∥1 ≤ 1. (9)
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Lemma 2. Let An
h ∈ Rdh−1×r be the projector satisfying Equation (9). Fix k ∈ [K]. For any

θ̂k = (θ̂k1 . . . , θ̂
k
n) ∈ Bk and any multi-task policy π = (π1, . . . , πn), we have∑

n≤N

DTV

(
Pπn

θ̂k
n

,Pπn

θ∗
n

)
≤
√∑

n≤N

∑
h≤H

E
τh−1∼Pπn

θ∗n

[∥∥(An
h)

†ψ̄n,∗(τh−1)
∥∥2
(Un

k,h)
−1

]
,

where

Un
k,h = λI + (An

h)
†
∑
t<k

E
τh−1∼Pπn,t

θ∗n

[
ψ̄n,∗(τh−1)ψ̄

n,∗(τh−1)
⊤] ((An

h)
†)⊤.

Proof. By Proposition 3, we have

DTV

(
Pπn

θ̂k
n

,Pπn

θ∗
n

)
≤

H∑
h=1

∑
τH

∣∣∣m̂n,k(ωh)
⊤
(
M̂n,k

h (oh, ah)−Mn,∗
h (oh, ah)

)
ψn,∗(τh−1)

∣∣∣πn(τH).

For ease of presentation, we fix a task index n. Index τh−1 by i, ωh−1 by j. De-
note (An

h)
†ψ̄n,∗(τh−1) by xni , m̂n,k(ωh)

⊤
(
M̂n,k

h (oh, ah)−Mn,∗
h (oh, ah)

)
An

hπn(ωh−1|τh−1) by

(wn
j|i)

⊤.

Then, we have∑
τH

∣∣∣m̂n,k(ωh)
⊤
(
M̂n,k

h (oh, ah)−Mn,∗(oh, ah)
)
ψn,∗(τh−1)

∣∣∣πn(τH)

(i)
=
∑
τH

∣∣∣m̂n,k(ωh)
⊤
(
M̂n,k

h (oh, ah)−Mn,∗(oh, ah)
)
ψ̄n,∗(τh−1)πn(ωh−1|τh−1)

∣∣∣Pπn

θ∗
n
(τh−1)

=
∑
i

Pπn

θ∗
n
(i)
∑
j

∣∣∣(wn
j|i)

⊤xni

∣∣∣
= Ei∼Pπn

θ∗n

(xni )⊤
∑

j

wn
j|isgn((w

n
j|i)

⊤xni )


(ii)

≤ Ei∼Pπn
θ∗n

∥xni ∥(Un
k,h−1)

−1

∥∥∥∥∥∥
∑
j

wn
j|isgn((w

n
j|i)

⊤xni )

∥∥∥∥∥∥
Un

k,h−1

 ,
where (i) follows from the property of the projection An

h and definition of the prediction feature
ψ̄n,∗, and (ii) is due to the Cauchy’s inequality.

Fix an index i = i0. We aim to analyze
∥∥∑

j w
n
j|i0sgn((w

n
j|i0)

⊤xni0)
∥∥
Un

k,h−1

. We have∥∥∥∥∥∥
∑
j

wn
j|i0sgn((w

n
j|i0)

⊤xni0)

∥∥∥∥∥∥
2

Un
k,h−1

= λ

∥∥∥∥∥∥
∑
j

sgn((wn
j|i0)

⊤xni0)w
n
j|i0

∥∥∥∥∥∥
2

2︸ ︷︷ ︸
I1

+
∑
t<k

E
i∼P

νπn,t
h

θ∗n

∑
j

sgn((wn
j|i0)

⊤xni0)(w
n
j|i0)

⊤xni

2

︸ ︷︷ ︸
I2

.

For the first term I1, we have

√
I1 =

√
λ max

x∈Rr:∥x∥2=1

∣∣∣∣∣∣
∑
j

sgn((wn
j|i0)

⊤xni0)(w
n
j|i0)

⊤x

∣∣∣∣∣∣
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≤
√
λ max

x∈Rr:∥x∥2=1

∑
ωh−1

πn(ωh−1|i0)
∣∣∣m̂n,k(ωh)

⊤
(
M̂n,k

h (oh, ah)−Mn,∗
h (oh, ah)

)
An

hx
∣∣∣

≤
√
λ max

x∈Rr:∥x∥2=1

∑
ωh−1

πn(ωh−1|i0)
∣∣m̂n,k(ωh−1)

⊤An
hx
∣∣

+
√
λ max

x∈Rr:∥x∥2=1

∑
ωh−1

πn(ωh−1|i0)
∣∣m̂n,k(ωh)

⊤Mn,∗
h (oh, ah)A

n
hx
∣∣

(i)

≤
√
λ

γ
max

x∈Rr:∥x∥2=1
∥An

hx∥1 +
√
λ

γ
max

x∈Rr:∥x∥2=1

∑
oh,ah

πn(ah|oh, i0) ∥Mn,∗(oh, ah)A
n
hx∥1

(ii)

≤ 2
√
λrQA

γ2
,

where (i) follows from Assumption 1, and (ii) follows from the property of An
h stated before

Lemma 2.

For the second term I2, we have

I2 ≤
∑
t<k

E
τh−1∼Pπn,t

θ∗n

∑
ωh−1

πn(ωh−1|i0)
∣∣∣m̂n,k(ωh)

⊤
(
M̂n,k

h (oh, ah)−Mn,∗
h (oh, ah)

)
ψ̄n,∗(τh−1)

∣∣∣
2

≤
∑
t<k

E
τh−1∼Pπn,t

θ∗n

∑
ωh−1

πn(ωh−1|i0)
∣∣∣m̂n,k(ωh)

⊤M̂n,k(oh, ah)
(
ψ̄n,∗(τh−1)− ¯̂

ψn,k(τh−1)
)∣∣∣

+
∑
ωh−1

πn(ωh−1|i0)
∣∣∣m̂n,k(ωh)

⊤
(
M̂n,k(oh, ah)

¯̂
ψn,k(τh−1)−Mn,∗(oh, ah)ψ̄

n,∗(τh−1)
)∣∣∣
2

(a)

≤ 1

γ2

∑
t<k

E
τh−1∼Pπn,t

θ∗n

[(∥∥∥ψ̄n,∗(τh−1)− ¯̂
ψn,k(τh−1)

∥∥∥
1

+
∑
oh,ah

πn(ah|oh, i0)
∥∥∥Pθ̂k

n
(oh|τh−1)

¯̂
ψn,k(τh)− Pθ∗

n
(oh|τh−1)ψ̄

n,∗(τh)
∥∥∥
1

)2


≤ 2

γ2

∑
t<k

E
τh−1∼Pπn,t

θ∗n

[∥∥∥ψ̄n,∗(τh−1)− ¯̂
ψn,k(τh−1)

∥∥∥2
1

]
︸ ︷︷ ︸

I21

+
2

γ2

∑
t<k

E
τh−1∼Pπn,t

θ∗n

(∑
oh,ah

πn(ah|oh, i0)
∥∥∥Pθ̂k

n
(oh|τh−1)

¯̂
ψn,k(τh)− Pθ∗

n
(oh|τh−1)ψ̄

n,∗(τh)
∥∥∥
1

)2


︸ ︷︷ ︸
I22

,

where (a) is due to Equation (8) and Assumption 1.

Recall that the ℓ-th coordinate of a prediction feature ψ̄(τh−1) is the conditional probability of core
test oℓ

h−1. Hence, for the term I21, we have

I21 = E
τh−1∼Pπn,t

θ∗n


dn

h−1∑
ℓ=1

∣∣∣Pθ̂k
n
(on,ℓ

h−1|τh−1,a
n,ℓ
h−1)− Pθ∗

n
(on,ℓ

h−1|τh−1,a
n,ℓ
h−1)

∣∣∣
2


≤ Q2
A E

τh−1∼Pπn,t

θ∗n


Ea∼u

Qn,A
h−1

∑
oh−1

∣∣∣Pθ̂k
n
(oh−1|τh−1,a)− Pθ∗

n
(oh−1|τh−1,a)

∣∣∣
2


= Q2
A E

τh−1∼Pπn,t

θ∗n

D2TV

(
P
u
Qn,A

h−1

θ̂k
n

(ωh−1|τh−1),P
u
Qn,A

h−1

θ∗
n

(ωh−1|τh−1)

)
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(a)

≤ Q2
A|A| E

τh−2,oh−1∼Pπn,t

θ∗n

E
ah−1∼uA

D2H

(
P
u
Qn,A

h−1

θ̂k
n

(ωh−1|τh−1),P
u
Qn,A

h−1

θ∗
n

(ωh−1|τh−1)

)
(b)

≤ Q2
A|A|D2H

(
Pνπn,t

h−1

θ̂k
n

(τH),Pνπn,t

h−1

θ∗
n

(τH)

)
,

where (a) and (b) follow from Lemma 7.

In addition, we can bound I22 as follows.

I22 ≤ 2 E
τh−1∼Pπn,t

θ∗n

(∑
oh,ah

πn(ah|oh, τh−1)
∣∣∣Pθ̂k

n
(oh|τh−1)− Pθ∗

n
(oh|τh−1)

∣∣∣ ∥ ¯̂ψn,k(τh)∥1

)2

+ 2 E
τh−1∼Pπn,t

θ∗n

(∑
oh,ah

πn(ah|oh, τh−1)Pθ∗
n
(oh|τh−1)

∥∥∥ ¯̂ψn,k(τh)− ψ̄n,∗(τh)
∥∥∥
1

)2

(i)

≤ 2Q2
A E

τh−1∼Pπn,t

θ∗n

D2TV

(
Pθ̂k

n
(oh|τh−1),Pθ∗(oh|τh−1)

)
+ 2Q2

A E
τh−1∼Pπn,t

θ

E
oh∼Pθ∗n (·|τh−1)

E
ah∼πn

D2TV

(
P
u
Qn,A

h

θ̂k
n

(ωh|τh),P
u
Qn,A

h

θ∗
n

(ωh|τh)
)

(ii)

≤ 2Q2
A|A| E

τh−2,oh−1∼Pπn,t

θ∗n

E
ah−1∼uA

D2H

(
Pθ̂k

n
(oh|τh−1),Pθ∗(oh|τh−1)

)
+ 2Q2

A|A| E
τh−1∼Pπn,t

θ

E
oh∼Pθ∗n (·|τh−1)

E
ah∼uA

D2H

(
P
u
Qn,A

h

θ̂k
n

(ωh|τh),P
u
Qn,A

h

θ∗
n

(ωh|τh)
)

(iii)

≤ 2Q2
A|A|

(
D2H

(
Pνπn,t

h−1

θ̂k
n

(τH),Pνπn,t

h−1

θ∗
n

(τH)

)
+ D2H

(
Pνπn,t

h

θ̂k
n

(τH),Pνπn,t

h

θ∗
n

(τH)

))
,

where (i) follows from that the coordinate of ψ̄ takes the value on the conditional probability over
core test, (ii) and (iii) follow from Lemma 7.

Substituting the upper bounds of I21 and I22 into I2, we obtain that

I2 ≤ 6Q2
A|A|
γ2

∑
t<k

(
D2H

(
Pνπn,t

h−1

θ̂k
n

(τH),Pνπn,t

h−1

θ∗
n

(τH)

)
+ D2H

(
Pνπn,t

h

θ̂k
n

(τH),Pνπn,t

h

θ∗
n

(τH)

))
.

Denote D2H

(
Pνπn,t

h

θ̂k
n

(τH),Pνπn,t

h

θ∗
n

(τH)

)
by ζnt,h. Therefore,

DTV

(
Pπn

θ̂k
n

,Pπn

θ∗

)
≤
∑
h

Eτh−1∼Pπn
θ∗n

√Cλ +
∑
t<k

ζnt,h−1 +
∑
t<k

ζnt,h
∥∥(An

h)
†ψ̄n,∗(τh−1)

∥∥
(Un

k,h)
−1

 .
Summing over n, we have∑
n

DTV

(
Pπn

θ̂k
n

,Pπn

θ∗

)
≤
∑
n

∑
h

√
Cλ +

∑
t<k

ζnt,h−1 +
∑
t<k

ζnt,hEτh−1∼Pπn
θ∗n

[∥∥(An
h)

†ψ̄n,∗(τh−1)
∥∥
(Un

k,h)
−1

]

≤
√
NHCλ +

∑
n

∑
h

∑
t<k

(ζnt,h−1 + ζnt,h)

√∑
n

∑
h

(
Eτh−1∼Pπn

θ∗n

[∥∥(An
h)

†ψ̄n,∗(τh−1)
∥∥
(Un

k,h)
−1

])2
(i)

≤ QA

√
|A|β(N)

γ

√∑
n

∑
h

(
Eτh−1∼Pπn

θ∗n

[∥∥(An
h)

†ψ̄n,∗(τh−1)
∥∥
(Un

k,h)
−1

])2
,
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where (i) is due to the estimation guarantee Lemma 1.

Theorem 3 (Restatement of Theorem 1). For any fixed δ ≥ 0, let Θ be the multi-task parameter
space, β(N) = c1(log

KHN
δ + logNη(Θ)), where c1 ≥ 0 and η ≤ 1

KHN . Then, under Assump-
tion 1, with probability at least 1 − δ, UMT-PSR finds a multi-task model θ = (θ̄1, . . . , θ̄N ) such
that

N∑
n=1

max
πn

DTV

(
Pπn

θ̄n
,Pπn

θ∗
n

)
≤ Õ

(
QA

γ

√
rH|A|Nβ(N)

K

)
. (10)

In addition, if K =
c2r|A|Q2

AHβ(N)

Nγ2ϵ2 for some c2, UMT-PSR produces a multi-task policy π =

(π̄1, . . . , π̄N ) such that the average sub-optimality gap is at most ϵ, i.e.

1

N

N∑
n=1

(
max
π

V π
θ∗
n,Rn

− V π̄n

θ∗,Rn

)
≤ ϵ. (11)

Proof. Note that θ̄ ∈ Bk for all k ∈ [K + 1]. Therefore, by Lemma 2, we have

K
∑
n

DTV

(
Pπn

θ̄n
,Pπn

θ∗
n

)
(i)

≤
∑
k≤K

∑
n≤N

max
θ̂k
n,θ̃

k
n∈Bk

DTV

(
Pπn,k

θ̂k
n
,Pπn,k

θ̃k
n

)
≤ 2

∑
k

∑
n

max
θ̂k
n∈Bk

DTV

(
Pπn,k

θ̂k
n
,Pπn,k

θn∗

)
≤
∑
k≤K

8QA

√
|A|β(N)

γ

√∑
n≤N

∑
h≤H

E
τh∼Pπn,k

θ∗n

[∥∥(An
h)

†ψ̄n,∗(τh−1)
∥∥2
(Un

k,h)
−1

]
(ii)

≤ 8QA

√
K|A|β(N)

γ

√∑
k≤K

∑
n≤N

∑
h≤H

E
τh∼Pπn,k

θ∗n

[∥∥(An
h)

†ψ̄n,∗(τh−1)
∥∥2
(Un

k,h)
−1

]
(iii)

≤
8QA

√
K|A|β
γ

√
rNH log(1 + rK/λ),

where (i) follows from the fact that θ̄n ∈ Bk for all k ∈ [K], (ii) is due to the Cauchy’s inequality,
and (iii) follows from Lemma 9.

Hence,

∑
n

DTV

(
Pπn

θ̄n
,Pπn

θ∗
n

)
≤ Õ

(
QA

√
r|A|NHβ(N) log(1 + rK/λ)

γ
√
K

)
.

D DOWNSTREAM LEARNING: PROOF OF THEOREM 2

In this section, we first provide the full algorithm of OMLE. Then, we prove a new estimation guar-
antee under the presence of approximation error of Θ̂u

0 . Finally, we provide the proof of Theorem 2.
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D.1 OPTIMISTIC MODEL-BASED ALGORITHM

In this section, we provide the full algorithm of OMLE (Liu et al., 2022; Chen et al., 2022) given a
model class Θ̂ and an estimation margin β0, for the completeness of the paper.

First, OMLE seeks a exploration policy πk that maximizes the largest total variation distance be-
tween any two model parameters θ and θ′ within a confidence set Bk. Then, OMLE uses policies
adapted from πk to collect data. Finally, using the collected sample trajectories, OMLE constructs
a confidence set which includes the true model parameter. The pseudo code is provided in Algo-
rithm 2.

Algorithm 2 Downstream multi-task PSR (OMLE)

1: Input: B1 = Θ̂u
0 , estimation margin β0.

2: for k = 1, . . . ,KDown do
3:

πk = argmax
π∈Π

max
θ,θ′∈Bk

DTV (Pπ
θ ,Pπ

θ′)

4: for h ∈ [H] do
5: Use νπ

k

h to collect data τk,hH .
6: end for
7: Construct confidence set Bk+1 :

Bk+1 =

{
θ ∈ Θ̂ :

∑
t<k

∑
h

logPνπt

h

θ (τ t,hH ) ≥ max
θ′∈Θ̂

∑
t<k

∑
h

logPνπt

h

θ (τ t,hH )− β0

}
∩Bk

8: end for
9: Output: Any θ̄0 ∈ BKDown+1, and a greedy policy π̄0 = argmaxπ V

π
θ̄0,R0

.

D.2 ESTIMATION GUARANTEE OF OMLE

Recall that ϵ0 = eα(Θ̂
u
0) = minθ0∈Θ̂u

0
maxπ DR,α(Pπ

θ∗
0
,Pπ

θ0
) is the approximation error of the model

class Θ̂u
0 . In this section, let θϵ00 = argminθ0∈Θ̂u

0
maxπ DR,α(Pπ

θ∗
0
,Pπ

θ0
).

The following lemma is from Proposition B.1 in Liu et al. (2022).

Lemma 3. Let η ≤ 1
KH . With probability at least 1− δ, for any θ0 ∈ Θ̂u

0 , we have

∑
t<k

∑
h

log
Pνπt

h

θ0
(τ t,hH )

Pνπt

h

θ∗
0
(τ t,hH )

≤ log(Nη(Θ̂
u
0)) + log

eK

δ
.

Then, we show that the log-likelihood of model θϵ00 is sufficiently large.
Lemma 4. With probability at least 1− δ, we have

∑
t<k

∑
h

log
Pνπt

h

θ∗
0
(τ t,hH )

Pνπt

h

θ
ϵ0
0

(τ t,hH )
≤ ϵ0KH +

1{ϵ0 ̸=0}

α− 1
log

K

δ
.

Proof. By the definition of θϵ00 , we have

1

α− 1
logEPπ

θ∗

( Pπ′

θ∗(τH)

Pπ′
θϵ0 (τH)

)α−1
 ≤ ϵ0. (12)

If ϵ0 = 0, then the proof is trivial. In the following, we mainly consider the case when ϵ0 > 0.

20



Published as a conference paper at ICLR 2024

By the Markov’s inequality, for any x ∈ R, we have

P

(∑
t<k

∑
h

log
Pπt,h

θ∗ (τ t,hH )

Pπt,h

θϵ0 (τ t,hH )
≥ x

)

= P

∏
t<k

∏
h

(
Pπt,h

θ∗ (τ t,hH )

Pπt,h

θϵ0 (τ t,hH )

)α−1

≥ e(α−1)x


≤ e−(α−1)xE

∏
t<k

∏
h

(
Pπt,h

θ∗ (τ t,hH )

Pπt,h

θϵ0 (τ t,hH )

)α−1

E

(Pπk,h

θ∗ (τk,hH )

Pπk,h

θϵ0 (τk,hH )

)α−1 ∣∣∣∣πk,h


(i)

≤ e−(α−1)xe(α−1)KHϵ0

= e−(α−1)(x−KHϵ0),

where (i) follows from Equation (12).

By choosing x = ϵ0KH + 1
α−1 log(K/δ) and taking union bound over k, we conclude that, with

probability at least 1− δ,∑
t<k

∑
h

log
Pπt,h

θ∗ (τ t,hH )

Pπt,h

θϵ0 (τ t,hH )
≤ ϵ0KH +

1

α− 1
log

K

δ
.

Combining Lemma 3 and Lemma 4, we immediately obtain that with probability at least 1 − δ/2,
the following bound holds.∑

t<k

∑
h

logPνπt

h

θ
ϵ0
0

(τ t,hH ) ≥ max
θ0∈Θ̂u

0

∑
t<k

∑
h

logPνπt

h

θ0
(τ t,hH )

−
(
logNη(Θ̂

u
0) + log

4eK

δ
+ ϵ0KH +

1{ϵ0 ̸=0}

α− 1
log

4K

δ

)
,

where η ≤ 1
KH .

Setting β0 = logNη(Θ̂
u
0) + log 4eK

δ + ϵ0KH +
1{ϵ0 ̸=0}
α−1 log 4K

δ , we conclude that θϵ00 ∈ Bk for all
k ∈ [K]. Based on this fact, we have the following estimation guarantee.

Lemma 5. With probability at least 1− δ, for any k ∈ [K] and θ0 ∈ Bk, we have∑
t<k

∑
h

D2TV

(
Pνπt

h

θ0
,Pνπt

h

θ∗
0

)
≤ 2β0.

Proof. We follow the same argument as in Proposition 2, except setting N = 1 and Θu = Θ̂u
0 .

Then, we obtain that, with probability at least 1− δ/2, the following inequality holds.

∑
t<k

∑
h

D2H

(
Pνπt

h

θ0
,Pνπt

h

θ∗
0

)
≤
∑
t≤k

∑
h

log
Pνπt

h

θ∗
0
(τ t,hH )

Pνπt

h

θ0
(τ t,hH )

+ log
KNη(Θ̂

u
0)

δ
.

Since θ0, θϵ00 ∈ Bk, by the optimality of Bk, we further have∑
t<k

∑
h

D2H

(
Pνπt

h

θ0
,Pνπt

h

θ∗
0

)
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≤
∑
t≤k

∑
h

log
Pνπt

h

θ∗
0
(τ t,hH )

Pνπt

h

θ
ϵ0
0

(τ t,hH )
+ β0 + log

KNη(Θ̂
u
0)

δ

(i)

≤ ϵ0KH +
1{ϵ0 ̸=0}

α− 1
log

K

δ
+ β0 + log

KNη(Θ̂
u
0)

δ

≤ 2β0,

where (i) is due to Lemma 4.

D.3 PROOF OF THEOREM 2

Theorem 4 (Restatement of Theorem 2). Fix α > 1. Let ϵ0 = eα(Θ̂
u
0), β0 = O(log KH

δ +

logNη(Θ̂
u
0) + ϵ0KH +

1{ϵ0 ̸=0}
α−1 ), where η ≤ 1

KH . Under Assumption 1, with probability at least
1− δ, the output of Algorithm 2 satisfies that

maxπ∈Π DTV

(
Pπ
θ̄0
,Pπ

θ∗
0

)
≤ Õ

(
QA

γ

√
r|A|Hβ0

K +
√
ϵ0

)
. (13)

Proof. First, we follow the proof in Lemma 2, except setting N = 1. We obtain that

DTV

(
Pπ
θ̂k
0

(τH),Pπ
θ∗
0
(τH)

)
≤ QA|A|

γ

√
Cλ +

∑
t<k

ζ0t,h

∑
h

Eτh−1∼Pπ
θ∗0

[
∥(A0

h)
†ψ̄0,∗(τh−1)∥(U0

k,h)
−1

]
(i)

≤ O

(
QA

√
|A|β0
γ

∑
h

Eτh−1∼Pπ
θ∗0

[
∥(A0

h)
†ψ̄0,∗(τh−1)∥(U0

k,h)
−1

])
,

where 

Cλ =
λrQ2

A|A|
γ4

,

λ =
γ4β0
rQ2

A|A|
,

ζ0t,h = D2H

(
Pνπt

h

θ̂k
0

(τ t,hH ),Pνπt

h

θ∗
0
(τ t,hH )

)
,

U0
k,h = λI + (A0

h)
†
∑
t<k

Eνt
h

τh−1∼Pθ∗0
ψ̄0,∗(τh−1)ψ̄

0,∗(τh−1)
⊤((A0

h)
†)⊤,

(14)

and (i) is due to the estimation guarantee.

Therefore,

KDTV

(
Pπ
θ̄0
,Pπ

θ∗
0

)
≤ KDTV

(
Pπ
θ̄0
,Pπ

θ
ϵ0
0

)
+KDTV

(
Pπ
θ
ϵ0
0
,Pπ

θ∗
0

)
≤
∑
k

max
θ̂k
0 ,θ̃

k
0∈Bk

DTV

(
Pπk

θ̂k
0

,Pπk

θ̃k
0

)
+K

√
ϵ0

≤ 2
∑
k

max
θ̂k
0∈Bk

DTV

(
Pπk

θ̂k
0

,Pπk

θ∗
0

)
+K

√
ϵ0

≤
QA

√
|A|(β0 + ϵ0KH + 1

α−1 log(K/δ))

γ

√
rHK log(1 + rK/λ) +K

√
ϵ0.
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E BRACKETING NUMBERS OF EXAMPLES AND MISSING PROOFS IN
SECTION 4.3 AND SECTION 5.2

In the section, we present bracketing numbers of examples and missing Proofs in Section 4.3 and
Section 5.2. Because ϕ⊤h =

∑
(oh,ah)∈O×A ϕ

⊤
h+1Mh(oh, ah) for each h ∈ [H − 1], ϕh can be de-

cided by ϕH and {Mh}Hh=1. For simplicity, in this section, we reparameterize the PSRs parameters
as θ = {ϕH , {Mh}Hh=1}. Without loss of generality, from Theorem C.1 and C.7 in Liu et al. (2022),
we assume for any (o, a) ∈ O ×A, Mh(o, a) ∈ Rr×r, and the rank of Mh(o, a) is r.

E.1 BRACKETING NUMBERS OF BASIC SINGLE-TASK PSRS

For completeness, in this subsection, we first present the analysis of bracketing number of basic
single-task PSRs.
Lemma 6 (Bracketing number of single-task PSRs). Let Θ be the collection of PSR parameters
of all rank-r sequential decision making problems with obseration space O, action space A and
horizon H . Then we have

logNη(Θ) ≤ O(r2H2|O||A| log( |O||A|
η

)).

Proof. We assume ψ0 is known,5 and ∥ψ0∥2 ≤
√
|A|H . By Corollary C.8 from Liu et al. (2022),

the PSR model class have following form:

Θ =
{
θ : θ = {ϕH , {Mh}Hh=1}, ∥Mh(o, a)∥2 ≤ 1 for(o, a) ∈ O ×A, ∥ϕH∥2 ≤ 1

}
.

Denote Θ̃δ as the δ-cover of Θ w.r.t ℓ∞-norm with δ = η
(|O||A|)cH for some large c > 0. Mathemat-

ically, for any θ = {ϕH , {Mh}Hh=1} ∈ Θ, there exists θ̃ = {ϕ̃H , {M̃h}Hh=1} ∈ Θ̃δ , such that for
any (o, a) ∈ O ×A,∥∥∥ϕH − ϕ̃H

∥∥∥
∞

≤ δ,
∥∥∥Vec(Mh(o, a))− Vec(M̃h(o, a))

∥∥∥
∞

≤ δ.

Next, we show that Θ̃δ can constitute an η-bracket for Θ. For any policy π, we have∑
τH∈(O×A)H

∣∣Pθ(τH)− Pθ̃(τH)
∣∣× π(τH)

≤
∑

τH∈(O×A)H

H∑
h=1

∣∣∣mh(ωh)
⊤
(
M̃h(oh, ah)−Mh(oh, ah)

)
ψh−1(τh−1)

∣∣∣× π(τH)

(i)

≤
∑

τH∈(O×A)H

H∑
h=1

∥mh(ωh)∥2
∥∥∥(M̃h(oh, ah)−Mh(oh, ah)

)∥∥∥
2
∥ψh−1(τh−1)∥2 × π(τH)

(ii)

≤
∑

τH∈(O×A)H

H∑
h=1

∥∥∥(M̃h(oh, ah)−Mh(oh, ah)
)∥∥∥

2

√
|A|H × π(τH)

(iii)

≤
∑

τH∈(O×A)H

H∑
h=1

√
r
∥∥∥(M̃h(oh, ah)−Mh(oh, ah)

)∥∥∥
∞

√
|A|H × π(τH) (15)

≤
∑

τH∈(O×A)H

H∑
h=1

√
r3
∥∥∥(Vec(M̃h(oh, ah))− Vec(Mh(oh, ah))

)∥∥∥
∞

√
|A|H × π(τH)

≤ H
√
r3|A|Hδ ≤ η,

5Such assumption does not influence the order of bracketing number since the model complexity related to
Ψ0 does not dominate.
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where (i) follows from the property of operation norm of matrix, (ii) follows from the fact that
∥mh(ωh)∥2 ≤ ∥ϕH∥2 ∥MH(oH , aH)∥2 . . . ∥Mh+1(oh+1, ah+1)∥2 ≤ 1 and ∥ψh−1(τh−1)∥ ≤
∥Mh−1(oh−1, ah−1)∥2 . . . ∥M1(o1, a1)∥2 ∥ψ0∥2 ≤

√
|A|H , and (iii) follows from the relation-

ship between the operation norm induced by ℓ2 norm and ℓ∞ norm.

By Lemma 10,

|Θ̃δ| ≤
(
1 + 2

√
r

δ

)r+r2×H|O||A|

=

(
3
√
r
(|O||A|)cH

η

)r+r2×H|O||A|

and

log |Θ̃δ| = O(r2H2|O||A| log( |O||A|
η

)),

which equals to the log η-bracketing number.

E.2 BRACKETING NUMBER OF UPSTREAM EXAMPLES

Example 1(Multi-task POMDP with same transition kernels): The multi-task parameter space
is {

(Th,a,O1
h, . . . ,ON

h ) : Th,a ∈ R|S|×|S|,Oi
h ∈ R|O|×|A|, ∀i ∈ [N ]

}
h∈[H],a∈A

.

Note that the value of each coordinate of these matrices are probabilities, and thus are
bounded within [0,1]. Therefore, the η-bracketing number in this case is O(H(|S|2|A| +
N |O||S|) log H|S||O||A|

η )

Example 2(Multi-task PSR with perturbed models): Suppose there exist a latent base task Pb,
and a noisy perturbation space ∆. Each task n ∈ [N ] is a noisy perturbation of the latent base task
and can be parameterized into two parts: the base task plus a task-specified noise term. Specifically,
for each step h ∈ [H] and task n ∈ [N ], any (o, a) ∈ O ×A, we have

Mn
h(oh, ah) = Mb

h(oh, ah) + ∆n
h(oh, ah), ∆n

h ∈ ∆.

Such a multi-task PSR satisfies that β(N) ≤ O(log KHN
δ + r2|O||A|H2 log |O||A|

η +HN log |∆|),
whereas β(1) for a single task is given by O(r2|O||A|H2 log |O||A|

η +H(N − 1) log |∆|). Clearly,
β(N) ≪ Nβ(1) holds if log |∆| ≪ Õ(r2|O||A|H), which can be easily satisfied for low perturba-
tion environments. In such a case, the multi-task PSR benefits from a significantly reduced sample
complexity compared to single-task learning.

Proof of Example 2. Suppose there exist a latent base task model space:

Θb =
{
θ : θ = {ϕH , {Mh}Hh=1}, ∥Mh(o, a)∥2 ≤ 1 for(o, a) ∈ O ×A, ∥ϕH∥2 ≤ 1

}
.

A base task model is selected: θb = {ϕbH , {Mb
h}Hh=1}. The parameters of each task n in multi-task

PSR models are as follows:

Θn =
{
θ : θ = {ϕbH , {Mb

h +∆n
h}Hh=1},∆n

h ∈ ∆, ∥ϕnH∥2 ≤ 1
}
,

where ∆n
h(·, ·) : O×A → Rdh×dh−1 for any h ∈ [H], and n ∈ [N ], and ∆ is the noisy perturbation

space with finite cardinality.

Let Θ̃b
δ be the δ-cover of Θb w.r.t ℓ∞-norm with δ = η

(|O||A|)cH . From Lemma 6, we have |Θ̃b
δ | =(

(|O||A|)cH
η

)2r+r2×H|O||A|
. For each n ∈ [N ], denote

Θ̃n
δ = Θ̃b

δ +∆

:=
{
θ : θ =

(
ϕ̃bH , {M̃n

h +∆n
h}Hh=1

)
;
(
ϕ̃bH , {M̃h}Hh=1

)
∈ Θ̃b

δ ; ∆
n
h ∈ ∆

}
.
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Obviously, |Θ̃n
δ | =

(
3
√
r (|O||A|)cH

η

)r+r2×H|O||A|
× |∆|H . Then denote the multi-task δ-cover

as Θ̃δ = Θ̃1
δ × · · · × Θ̃N

δ . Following from Lemma 6, for any task n ≥ 1, Θ̃n
δ can constitute

an η-bracket for Θn, so Θ̃δ can constitute an η-bracket for Θ. By noticing that each Θ̄n
δ has

a common part, and the changing part is only related to ∆n
h . The corresponding η-bracketing

number is
(
3
√
r (|O||A|)cH

η

)r+r2×H|O||A|
× |∆|HN , and the log η-bracketing number is at most

O
(
r2|O||A|H2 log |O||A|

η +H(N − 1) log |∆|
)

.

Example 3(Multi-task PSRs: Linear combination of core tasks): Suppose that the multi-
task PSR lies in the linear span of m core tasks, i.e., there exist a set of core tasks indexed by
{1, 2, . . . ,m} such that each PSR can be represented as a linear combination of those m core tasks.
Specifically, for each task n ∈ [N ], there exists a coefficient vector αn = (αn

1 , · · · , αn
m)⊤ ∈ Rm

s.t. for any h ∈ [H] and (oh, ah) ∈ O ×A,

ϕnh(oh, ah) =
∑m

l=1 α
n
l ϕ

l
h(oh, ah), Mn

h(oh, ah) =
∑m

l=1 α
n
l M

l
h(oh, ah).

For regularization, we assume 0 ≤ αn
l ≤ 1 for all l ∈ [m] and n ∈ [N ], and

∑m
l=1 α

n
l = 1 for all n ∈

[N ]. It can be shown that β(N) = O(m(r2|O||A|H2+N) log |O||A|
η ), whereas β(1) for a single task

is given by r2|O||A|H2 log |O||A|
η . Clearly, β(N) ≪ Nβ(1) holds if m ≤ min{N, r2|O||A|H2},

which is satisfied in practice.

Proof of Example 3. Denote the core tasks model class Θ0 = Θ0,1×· · ·×Θ0,m, and the multi-task
model class Θ = Θ1 × · · · ×ΘN , where for any n ∈ [N ], Θn is defined as:

Θn =


 m∑

l=1

αn
l ϕ

l
H ,

{
m∑
l=1

αn
l M

l
h

}H

h=1

 : αn = (αn
1 , · · · , αn

m)⊤ ∈ Rm;
(
ϕlH , {Ml

h}Hh=1

)
∈ Θ0,l

 .

For any δ ≥ 0, we first consider the δ-cover of the model class of core tasks Θ̃0
δ = Θ̃0,1

δ ×· · ·×Θ̃0,m
δ ,

where for each base tasks l ∈ [m], Θ̃l
δ is a δ-cover for Θm. Similar to proof of Lemma 6, |Θ̃0,l

δ | =
(3
√
r × 1

δ )
r2H2|O||A| and |Θ̃0

δ | = (3
√
r × 1

δ )
r2H2|O||A|m.

Then we consider the cover for multi-task parameter space. Denote Cm
δ as a δ-cover for the unit

ball in Rm w.r.t. ℓ1 norm. Mathematically, for any n ∈ [N ] and vector αn ∈ Rm, there exists an
α̃n ∈ Cm

δ such that ∥αn − α̃n∥1 ≤ δ. In addition, the cardinality |Cm
δ | = ( 3δ )

m.

Define the multi-task model class Θ̃δ = Θ̃1
δ × · · · × Θ̃N

δ , where for any n ∈ [N ], Θ̃n
δ is defined as

Θ̃n
δ =


 m∑

l=1

α̃n
l ϕ̃

l
H ,

{
m∑
l=1

α̃n
l M̃

l
h

}H

h=1

 : α̃n = (α̃n
1 , · · · , α̃n

m)⊤ ∈ Cm
δ ;
(
ϕ̃lH , {M̃l

h}Hh=1

)
∈ Θ̃0,l

δ

 .

We next show that Θ̃δ is a η-bracket of Θδ .

By definition, for any model of base task l ∈ [m]: θl =
(
ϕlH , {Ml

h}Hh=1

)
∈ Θl, there exists

θ̃l =
(
ϕ̃lH , {M̃l

h}Hh=1

)
∈ Θ̃l

δ , such that for any (o, a) ∈ O ×A,∥∥∥ϕlH − ϕ̃lH

∥∥∥
∞

≤ δ,
∥∥∥Vec(Ml

h(o, a))− Vec(M̃l
h(o, a))

∥∥∥
∞

≤ δ.

Then, for any θl ∈ Θl,αn ∈ Rm, there exist θ̃ ∈ Θ̃l
δ and α̃n ∈ Cδ such that∥∥∥∥∥

m∑
l=1

αn
l ϕ

l
H −

m∑
l=1

α̃n
l ϕ̃

l
H

∥∥∥∥∥
∞

≤
m∑
l=1

|αn
l |
∥∥∥ϕlH − ϕ̃lH

∥∥∥
∞

+
m∑
l=1

|α̃n
l − αn

l |
∥∥∥ϕ̃lH∥∥∥∞
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≤
m∑
l=1

αn
l δ +

m∑
l=1

|α̃n
l − αn

l | ≤ 2δ,

and for any (oh, ah) ∈ O ×A∥∥∥∥∥
m∑
l=1

αn
l M

l
h −

m∑
l=1

α̃n
l M̃

l
h

∥∥∥∥∥
∞

≤
m∑
l=1

|αn
l |
∥∥∥Ml

h − M̃l
h

∥∥∥
∞

+
m∑
l=1

|α̃n
l − αn

l |
∥∥∥M̃l

h

∥∥∥
∞

≤
m∑
l=1

αn
l

√
r
∥∥∥Vec(Ml

h)− Vec(M̃l
h)
∥∥∥
∞

+
m∑
l=1

|α̃n
l − αn

l |
∥∥∥M̃l

h

∥∥∥
∞

≤
m∑
l=1

αn
l

√
rδ +

m∑
l=1

√
r|α̃n

l − αn
l |

=
√
rδ +

√
r ∥α̃n − αn∥1 ≤ 2

√
rδ.

Similar to the analysis in the proof of Lemma 6, specifically, Equation (15), Θ̃t
δ can constitute an

η-bracket for Θt with δ = η
2
√
r(|O||A|)cH .

The cardinality of the cover of multi-task model class is |Θ̃δ| = |Θ̃0
δ ||Cδ|N = (3

√
r ×

1
δ )

r2H2|O||A|m × ( 3δ )
mN .

In conclusion, the log η-bracketing number isO
(
r2H2|O||A|m log( rH|O||A|

η ) +mN log( rH|O||A|
η )

)
.

E.3 BRACKETING NUMBER OF DOWNSTREAM EXAMPLES

Example 1 Note that the model class for downstream learning is Θ̂u
0 = {Oh}h∈[H]. Thus, we

immediately obtaint that logNη(Θ̂
u
0) = O(H|O||S| log |O||S|

η )

Example 2(Multi-task PSR with perturbed models): Similar to the upstream tasks, the down-
stream task 0 is also a noisy perturbation of the latent base task. Specifically, for each step h ∈ [H],
any (o, a) ∈ O ×A, we have

ϕ0H = ϕbH ,M
0
h(oh, ah) = Mb

h(oh, ah) + ∆0
h(oh, ah), ∆0

h ∈ ∆. (16)

The log η-bracketing number is at most H log |∆|.

Proof. Suppose the estimated model parameter of the base task is θ̄b = {ϕ̄bH , {M
b

h}Hh=1}. Because
the downstream task model parameters satisfy Equation (16), the empirical candidate model class
can be characterized as

Θ̂u
0 = {θ : θ = {ϕ0H , {M0

h}Hh=1};ϕ0H = ϕ̄bH ;

M0
h(oh, ah) = M

b

h(oh, ah) + ∆0
h(oh, ah), (oh, ah) ∈ O ×A; ∆0

h ∈ ∆}.

If θ̄b is given, then the candidate model class is decided by ∆. Then for any η > 0, the η-bracketing
number is |∆|H .

Example 3(Multi-task PSRs: Linear combination of core tasks): Suppose the downstream task
0 also lies in the linear span of m core tasks same as the upstream. Moreover, assume the upstream
tasks are diverse enough to span the whole core tasks space. As a result, the downstream task can
be represented as a linear combination of a subset of the upstream tasks. Specifically, there exists a
constant L satisfying m ≤ L ≤ N and a coefficient vector α0 = (α0

1, · · · , α0
L)

⊤ ∈ RL s.t. for any
h ∈ [H] and (oh, ah) ∈ O ×A,

ϕ0H =
∑L

l=1 α
0
l ϕ

l
H , M0

h(oh, ah) =
∑L

l=1 α
0
lM

l
h(oh, ah). (17)
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For regularization, we assume 0 ≤ α0
l ≤ 1 for all l ∈ [L], and

∑L
l=1 α

0
l = 1. It can be shown

that β0 = O(LH log( r|O||A|
η )), whereas β(1) for learning without prior information is given by

O(r2|O||A|H2 log |O||A|
η ). Clearly, β0 ≪ β(1) holds if m ≤ min{N, r2|O||A|H2}, which is

satisfied in practice.

Proof. Suppose for the upstream task l ∈ [L], the estimated model parameter is θ̄l =

{ϕ̄lH , {M
l

h}Hh=1}. Because the downstream task model parameters satisfy Equation (17), the empir-
ical candidate model class can be characterized as

Θ̂u
0 = {θ : θ = {ϕ0H , {M0

h}Hh=1};ϕ0H =
L∑

l=1

α0
nϕ̄

l
H ;

M0
h(oh, ah) =

L∑
l=1

α0
lM

l

h(oh, ah), (oh, ah) ∈ O ×A;α0 ∈ RL }.

Then we consider the cover for Θ̂u
0 . Denote CL

δ as a δ-cover for the unit ball in RL w.r.t. ℓ1 norm.
Mathematically, for any vector α0 ∈ RL, there exists an α̃0 ∈ CL

δ such that
∥∥α0 − α̃0

∥∥
1
≤ δ. In

addition, the cardinality |CL
δ | = ( 3δ )

L.

Define

Θ̃u
δ = {θ : θ = {ϕ0H , {Mh}Hh=1};ϕ0H =

L∑
l=1

α̃0
l ϕ̄

l
H ;

M0
h(oh, ah) =

L∑
l=1

α̃0
lM

l

h(oh, ah), (oh, ah) ∈ O ×A; α̃0 ∈ CL
δ }.

Then, for any θ0 ∈ Θ̂0 with α0 ∈ RL, there exist θ̃ ∈ Θ̃u
δ with α̃0 ∈ CL

δ such that∥∥∥∥∥
L∑

l=1

α0
l ϕ̄

l
H −

L∑
l=1

α̃0
l ϕ̄

l
H

∥∥∥∥∥
∞

≤
L∑

l=1

|α0
l − α̃0

l |
∥∥ϕ̄lH∥∥∞ ≤

∥∥α0 − α̃0
∥∥
1
≤ δ,

and for any (oh, ah) ∈ O ×A∥∥∥∥∥
L∑

l=1

α0
lM

l

h(oh, ah)−
L∑

l=1

α̃0
lM

l

h(oh, ah)

∥∥∥∥∥
∞

≤
L∑

l=1

|α0
l − α̃0

l |
∥∥∥Ml

h(oh, ah)
∥∥∥
∞

≤
√
r
∥∥α0 − α̃0

∥∥ ≤
√
rδ.

Similar to the analysis in the proof of Lemma 6, specifically, Equation (15), Θ̃u
δ can constitute an

η-bracket for Θ̂u
0 with δ = η

2
√
r(|O||A|)cH .

The cardinality of the cover of multi-task model class is |Θ̃u
δ | = |CL

δ | = ( 3δ )
L. In conclusion, the

log η-bracketing number is O
(
LH log( r|O||A|

η )
)

.

F EXAMPLES OF MULTI-TASK MDPS FROM PREVIOUS WORK

To demonstrate that our framework encompasses multi-task learning under MDPs, we provide sev-
eral examples of MDPs from previous work in this subsection. Suppose S is the state space, there
exist N source tasks, and P (∗,n) : S ×A× S → R is the true transition kernel of task n.

Cheng et al. (2022) studied multi-task learning under low-rank MDPs in which the transition kernel
P (∗,n) has a d dimension low-rank decomposition into two embedding functions ϕ(∗) : S × A →
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Fu ⊂ P2

P
(∗,1), P (∗,2) 

P0

P1

DTV(P
0(·|s, a), P1(·|s, a)) ≤ ϵ

Figure 2: Supplementary illustration of joint model class in two dimensions for MDPs. A concrete
example of tasks with similar transition kernels, i.e., any point (P 0, P 1) in the joint class Fu satisfies
max(s,a)∈S×A DTV(P

0(·|s, a), P 1(·|s, a)) ≤ ϵ for a small positive constant ϵ.

Rd, µ(∗,n) : S → Rd as P (∗,n)(s, a, s
′
) = ⟨ϕ(∗)(s, a), µ(∗,n)(s

′
)⟩ for all (s, a, s

′
) ∈ S ×A× S for

each task n. In this setting, Cheng et al. (2022) assume the N source tasks share common represen-
tations ϕ(∗) and for each task n, ϕ(∗) ∈ Φ, µ(∗,n) ∈ Ψ for finite model class {Φ,Ψ}. Consequently,
the η-bracketing number for the multi-task low-rank MDPs model class is at most O(H|Φ||Ψ|N ),
which is much smaller than the one of the individual single-task with O(H|Φ|N |Ψ|N ) if |Φ| ≫ |Ψ|
.

Zhang & Wang (2021) studied multi-task learning under tabular MDPs with an assumption that for
any two tasks n1, n2 ∈ [N ], it holds that max(s,a)∈S×A DTV(P

(∗,n1)(·|s, a)|P (∗,n2)(·|s, a)) ≤ ϵ
for some small ϵ > 0. Then the multi-task model class is much smaller than the model
class of N individual single-task (see Figure 2 for an illustration when N = 2). Conse-
quently, the η-bracketing number for the multi-task low-rank MDPs model class is at most
O(H|S|2|A|(log H|A||S|

η + (N − 1) log H|A||S|ϵ
η )). This is smaller than that of each individual

single-task, which is O(HN |S|2|A| log H|A||S|
η ) if ϵ ≤ η and N ≥ 1.

G AUXILLARY LEMMAS

The following lemma characterizes the relationship between the total variation distance and the
Hellinger-squared distance. Note that the result for probability measures has been proved in Lemma
H.1 in Zhong et al. (2022). Since we consider more general bounded measures, we provide the full
proof for completeness.
Lemma 7. Given two bounded measures P and Q defined on the set X , let |P | =

∑
x∈X P (x) and

|Q| =
∑

x∈X Q(x). We have

D2TV(P,Q) ≤ 4(|P |+ |Q|)D2H(P,Q).

In addition, if PY |X , QY |X are two conditional distributions over a random variable Y , and PX,Y =
PY |XP , QX,Y = QY |XQ are the joint distributions when X follows the distributions P and Q,
respectively, we have

E
X∼P

[
D2H(PY |X(·|X), QY |X(·|X))

]
≤ 8D2H(PX,Y , QX,Y ).

Lemma 8. Suppose P and Q are two probability distributions. For any α > 1, we have the following
inequality.

DTV(P,Q) ≤
√

1

2
DR,α(P,Q).
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Proof. By Pinsker’s inequality, we have

DTV(P,Q) ≤
√

1

2
DKL(P,Q).

By Theorem 5 from Van Erven & Harremos (2014), we have

DKL(P,Q) = lim
α↑1

DR,α(P,Q) ≤ inf
α>1

DR,α(P,Q).

Lemma 9 (Elliptical potential lemma ). For any sequence of vectors X = {x1, . . . , xn, . . .} ⊂ Rd,
let Uk = λI +

∑
t<k xkx

⊤
k , where λ is a positive constant, and B > 0 is a real number. If the rank

of X is at most r, then, we have

K∑
k=1

min
{
∥xk∥2U−1

k

, B
}
≤ (1 +B)r log(1 +K/λ),

K∑
k=1

min
{
∥xk∥U−1

k
,
√
B
}
≤
√
(1 +B)rK log(1 +K/λ).

Proof. Note that the second inequality is an immediate result from the first inequality by the
Cauchy’s inequality. Hence, it suffices to prove the first inequality. To this end, we have

K∑
k=1

min
{
∥xk∥2U−1

k

, B
} (i)

≤ (1 +B)

K∑
k=1

log
(
1 + ∥xk∥2U−1

k

)
= (1 +B)

K∑
k=1

log
(
1 + trace

(
(Uk+1 − Uk)U

−1
k

))
= (1 +B)

K∑
k=1

log
(
1 + trace

(
U

−1/2
k (Uk+1 − Uk)U

−1/2
k

))
≤ (1 +B)

K∑
k=1

log det
(
Id + U

−1/2
k (Uk+1 − Uk)U

−1/2
k

)
= (1 +B)

K∑
k=1

log
det (Uk+1)

det(Uk)

= (1 +B) log
det(UK+1)

det(U1)

= (1 +B) log det

(
I +

1

λ

K∑
k=1

xkx
⊤
k

)
(ii)

≤ (1 +B)r log(1 +K/λ),

where (i) follows because x ≤ (1 + B) log(1 + x) if 0 < x ≤ B, and (ii) follows because
rank(X ) ≤ r.

To compute the bracketing number of mulit-task model class, we first require a basic result on the
covering number of a Euclidean ball as follows. Proof of the lemma can be found in Lemma 5.2 in
Vershynin (2010).
Lemma 10 (Covering Number of Euclidean Ball). For any ϵ > 0, the ϵ-covering number of the
Euclidean ball in Rd with radius R > 0 is upper bounded by (1 + 2R/ϵ)d.
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