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Abstract

Ranking from noisy comparisons is of great practical interest in machine learning.
In this paper, we consider the problem of recovering the exact full ranking for a list
of items under ranking models that do not assume the Strong Stochastic Transitivity
property. We propose a �-correct algorithm, Probe-Rank, that actively learns the
ranking from noisy pairwise comparisons. We prove a sample complexity upper
bound for Probe-Rank, which only depends on the preference probabilities between
items that are adjacent in the true ranking. This improves upon existing sample
complexity results that depend on the preference probabilities for all pairs of items.
Probe-Rank thus outperforms existing methods over a large collection of instances
that do not satisfy Strong Stochastic Transitivity. Thorough numerical experiments
in various settings are conducted, demonstrating that Probe-Rank is significantly
more sample-efficient than the state-of-the-art active ranking method.

1 Introduction

Ranking from noisy comparisons has a wide range of applications including voting [5, 7], identifying
the winner/full ranking of teams in sport leagues, ranking players in online gaming systems [17],
crowdsourcing services [6], web search [8], and recommendation systems [2, 23]. In practice,
comparisons usually contain certain levels of “noise”. For example, duels in a game are not always
won by the more proficient player, and preferences between movies/restaurants can also vary among
different individuals. The presence of noise is commonly studied using a probabilistic comparison
model [12, 25], where an item has a certain probability to win the comparison over another or a group
of items.

We are interested in estimating the total ranking. To guarantee that the ranking is consistent with the
preference probabilities, it is often assumed [12, 14, 21, 25] that if i ranks higher than j, then i wins
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a comparison against j with probability pi,j >
1
2 . This assumption is referred to as Weak Stochastic

Transitivity (WST). It is clear that the closer pi,j is to 1
2 , the more difficult it becomes to compare i

and j. A more strict assumption, Strong Stochastic Transitivity (SST), is also often made [10, 24, 26].
SST requires items that have closer ranks to be more difficult to compare, i.e., if i � j � k, then
pi,k � max (pi,j , pj,k) >

1
2 . Formal definitions of WST and SST are stated in Section 2.

However, SST can be too strong in many scenarios. For instance, in sports, match outcomes are
usually affected by team tactics. Team k may play a tactic that counters team i, resulting in a higher
winning rate against team i compared with team j. Furthermore, items usually have multidimensional
features and people may compare different pairs based on different features. A close pair in the overall
ranking is thus not necessarily harder to compare than a pair that has a large gap. For example, when
comparing cars, people might compare a given pair based on their interior design and another pair
based on performance. As another example, in an experiment with games of chance with different
probabilities of winning and payoffs [30], it was observed that “people chose between adjacent
gambles according to the payoff and between the more extreme gambles according to probability, or
expected value.”

Motivated by such applications, in this paper, we study the problem of recovering the full ranking
of n items under a more general setting, where only WST holds, while SST is not assumed to hold.
We focus on only pairwise queries as they are easier to obtain and less prone to error in practice.
Furthermore, as many applications [6, 22] allow interactions between users/annotators, we consider
comparisons collected in an adaptive manner. Our goal is to use as few comparisons as possible and
achieve a high confidence.

Existing algorithms [21, 25] cannot avoid comparing every item i with the item i⇤ that is the most
similar to i, i.e.,

��pi,i⇤ � 1
2

�� = minj 6=i{
��pi,j � 1

2

��}. Further, [25] pointed out that comparing item
pairs that are adjacent in the true ranking are necessary. When SST holds, adjacent pairs are also the
most difficult pairs to distinguish, existing methods thus achieve sample-efficiency. For example, the
Iterative-Insertion-Ranking (IIR) algorithm proposed in [25] maintains a preference tree and performs
ranking by inserting items one after another. During the insertion process, every item is possible to
be compared with every other item (and thus the most similar one), depending on the relative order of
insertion and the true ranking. Under SST, IIR was shown to enjoy the optimal sample complexity
with mild conditions.

However, when SST does not hold, comparing nonadjacent items harms the performance. Consider
an extreme scenario where the true ranking is 1 � 2 � 3 and p1,2 = p2,3 = 0.8, p1,3 = 1

2 + 2�10. If
item 1 is directly compared to item 3, then it can take ⇥

�
220
�

queries2. For instance, in IIR, this can
happen during the insertion process of item 3 when item 1 happens to be the root of the preference
tree. A simple fix exists as we can let the three pairs be compared simultaneously. The comparisons
between items 1 and 2, items 2 and 3 will terminate much earlier and provide us with the accurate
enough information 1 � 2, 2 � 3, which is sufficient to recover the total ranking. Therefore, it is
important to devise an algorithm whose sample complexity will not be harmed when SST fails to
hold.

Contribution. In this paper, we propose an active algorithm, termed Probe-Rank, that ranks n
items based on pairwise comparisons. Probe-Rank is a maxing-based algorithm, i.e., it ranks items
by performing n� 1 steps of maxing. We show that as long as the WST condition is satisfied, with
probability at least 1� �, Probe-Rank returns the correct ranking after conducting at most

O

 
n

nX

i=1

⇣
e��2
i

⌘⇣
log log

⇣
e��1
i

⌘
+ log (n/�)

⌘!
(1)

comparisons, where e�i = minj:j and i are adjacent
��pi,j � 1

2

�� . Probe-Rank is the first algorithm whose
sample complexity only depends on comparison probabilities of adjacent items instead of all pairs
of items [21, 25, 29, 31]. Theoretical analyses and numerical experiments under various settings
are provided and show that Probe-Rank is more efficient than the state-of-the-art methods when
comparing nonadjacent items is more difficult than comparing adjacent items. We also present a
preliminary analysis on the sample complexity lower bound in the worst case scenario when SST

2In fact, according to [13], we need ⇥
�
(pi,j � 1/2)�2

�
comparisons to be confident enough about the order

between any two items i and j , i, j 2 [n].
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does not hold. Further, we present a variant of Probe-Rank, named Probe-Rank-SE, in Appendix B.
Numerical experiments show that the variant is more sample-efficient under various settings.

2 Preliminaries

Notation Without loss of generality, let [n] = {1, 2, . . . , n} denote the set of n items. We write
p ⇠ Uni(a, b) to denote that p is sampled uniformly at random from the interval (a, b), and use Ber(p)
to denote a Bernoulli random variable which equals 1 with probability p. We use (i, j) to denote the
unordered item pair, i.e., (i, j) = (j, i). Comparisons between items are probabilistic. Whenever
two items i, j are compared, i (respectively, j) is preferred with probability pi,j (respectively, pj,i),
independent of any other quantities. For all i 6= j, pi,j + pj,i = 1. A probabilistic comparison model
over [n] is thus defined by the set of probabilities P = {pi,j}1i<jn.

In this paper, asymptotic notation including O(·),⌦(·),⇥(·) are defined in the standard sense, with
eO(·), e⌦(·), e⇥(·) denoting corresponding weaker forms by allowing logarithmic factors.

Problem setup We assume that there exists a total ordering ‘�’ over [n] such that �1 � �2 �
· · · � �n for some permutation � = (�1, . . . ,�n) of [n]. The permutation � is referred to as the true
ranking. Two items are called adjacent if they are adjacent in �, i.e., one ranks right next to the other.
To ensure that the true ranking � is consistent with comparisons, we also assume that i has a higher
rank than j if and only if pi,j > 1

2 . In other words, if an item i is more preferred than j in �, then
i has a better chance to win the comparison with j. This assumption is known as Weak Stochastic
Transitivity (WST). A more strict assumption, Strong Stochastic Transitivity (SST), is also frequently
adopted. In addition to WST, SST assumes that whenever i � j � k, pi,k � max (pi,j , pj,k). In this
paper, we assume only WST and our goal is to recover the true ranking � with a given confidence
level � by taking pairwise comparisons and minimize the sample complexity. Problem instances
are uniquely determined by the permutation � representing the true ranking and the comparison
probabilities P.
Definition 1 (�-correct algorithm). An algorithm is said to be �-correct if for any input instance, with
probability at least 1� �, it returns a correct result in finite time.

It is clear that the closer pi,j is to 1
2 , the more difficult it becomes to obtain the ordering between

i and j. Therefore, the probability gap �i,j , defined as �i,j =
��pi,j � 1

2

��, provides a charac-
terization of the ranking task difficulty and will be used as a parameter for measuring sample
complexities of algorithms. For instance, [25, lemma 12] shows that for any �-correct algorithm A,
lim sup�!0

TA[�]
��2(log log��1+log ��1) > 0, where TA[�] is the expected number of samples taken by

A on two items with probability gap �. Further, for each item i, we define

�i = min
j:j 6=i

�i,j , (2)

the minimum probability gap between item i and any other item j, and define

e�i = min
j:j and i are adjacent in �

�i,j , (3)

the minimum probability gap between i and its adjacent items in the true ranking. Note that �i  e�i

by definition and the equality holds when SST is satisfied.

3 Related work

The problem of ranking under coherent probabilistic comparisons dates back to 1994 [14]. Feige
et al. [14] studied the comparison model assuming that i � j , pi,j =

1
2 +� for some known �.

It was shown that any �-correct algorithm finds the true ranking with at least ⇥(n��2 log (n/�))
comparisons in the worst case. Later in [21], a �-correct algorithm TOP was proposed to rank the
top-k elements by assuming only the existence of a total ranking (WST). The state-of-the-art IIR
algorithm was proposed in [25], as discussed in Section 1. A comparison of related algorithms are
presented in Table 1.
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Table 1: �-correct algorithms for exact ranking with sample complexity guarantee. Definitions of
�i,j ,�i, e�i can be found in Section 2.

Algorithm Assumptions on P Sample complexity

Single Elimination
Tournament [21] WST O

✓
n(logn)2 log(1/�)
min1i<jn �2

i,j

◆

PLPAC-AMPR [29] The Plackett-Luce model O

⇣
n log nmaxi2[n]{ 1

�2
i
log( n

��i
)}
⌘

Iterative-Insertion-Ranking [25] WST O

✓
nP

i=1

1
�2

i

⇣
log log 1

�i
+ log n

�

⌘◆

Probe-Rank (this paper) WST O

✓
n

nP
i=1

1
(e�i)2

⇣
log log 1

e�i
+ log n

�

⌘◆

Ranking or maxing has also been widely studied under more strict assumptions, e.g., SST, RST3 and
STI4 and usually in the probably approximately correct (PAC) setting [10, 11, 12, 24, 26, 27, 29, 32].
In particular, [24, 26, 27, 29] considered parametric comparison models such as the multinomial
logit (MNL) model. Note that parametric models are often more restrictive and can imply SST/STI
conditions. In the PAC setting, the goal is to find an ✏-ranking r1 � r2 � · · · � rn such that
pri,rj > 1

2 � ✏ for all i < j. Although ✏-rankings become closer to the true ranking as ✏ goes
to 0, it is pointed out by [25] that PAC ranking algorithms cannot be easily extended to the case
when ✏ = 0. Among all, [12] is the most relevant work to this paper. In [12], PAC ranking and
maxing were studied for both SST and WST settings. For WST, an instance-independent lower
bound ⇥(n2) was proved, and a brute-force algorithm which compares each pair to an accuracy of
✏ and thus conducts O((n2/✏2) log(n/�)) comparisons was proposed. Note that in this paper, we
are aiming at recovering the exact ranking instead of an ✏-ranking. An exact ranking is preferred
over an epsilon-ranking in competitive applications like voting and sport games, where people are
not satisfied with an approximate winner. Furthermore, as suggested by [25], analyzing the exact
ranking helps us to gain a better understanding about the instance-wise upper and lower bounds. A
trivial extension of the brute-force algorithm can lead to sample complexity eO

⇣
n2

mini,j �2
i,j

⌘
, which

is substantially worse than our proposed algorithm.

Although we believe WST can be considered a natural and reasonably weak assumption, there
are situations that WST does not hold as a ranking over items may not exist or, if it does, all
comparison probabilities are not necessarily consistent with that ranking. So another line of research
is to allow comparison probabilities pi,j take any values in (0, 1) as long as pi,j + pj,i = 1. In
such scenarios, rankings can be defined and derived based on various criteria including Borda
score [16, 19, 28] and Copeland score [4, 33]. The ranking problem has also been studied from
a heterogeneous perspective [18, 31], where queries are made by multiple agents with different
comparison probabilities. In [15], the problem of testing whether the WST condition holds was
studied. More broadly, the problems of ranking, maxing or selection can be formulated in the context
of dueling bandits. A comprehensive survey can be found in [3].

4 Proposed algorithm

In this section, we propose a �-correct algorithm for exact ranking of all problem instances that satisfy
the WST condition. As mentioned previously, our algorithm is designed to outperform existing
methods in situations where nonadjacent items can be more difficult to compare than adjacent items.

To avoid spending unnecessary samples on item pairs with small probability gaps, we propose a
subroutine named Successive-Comparison (SC) (see Subroutine 1). SC uses a parameter ⌧ for
controlling to what extent the comparison should last. Specifically, SC compares a given item pair
for a fixed number b⌧ =

⌃
(2/✏2⌧ ) log(1/�⌧ )

⌥
times with an accuracy level ✏⌧ = 2�⌧ and confidence

level �⌧ = 6�/(⌧2⇡2). If the empirical probability that i (respectively, j) wins is over 1/2 by more

3Under relaxed stochastic transitivity (RST), it is assumed that for all i � j � k, �i,k � �max{�i,j ,�j,k}
for some 0 < � < 1.

4Under stochastic triangle inequality (STI), it is assumed that for all i � j � k, �i,k  �i,j +�j,k.
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than ✏⌧/2, then SC returns i (respectively, j) as the more preferred item. Otherwise, SC will return
‘unsure’ to inform us that more samples are needed.

For two items i and j, SC (i, j, �, ⌧) will be called successively with ⌧ increasing by 1 at a time. We
show in Appendix A that after ⌧ gets large enough such that ✏⌧  �i,j , the correct ordering between
i and j will be returned with high probability.

Subroutine 1 Successive-Comparison(i, j, �, ⌧) (SC)
1: Input: items i, j, confidence level �, probing parameter ⌧
2: wi = 0, ✏⌧ = 2�⌧ , �⌧ = �

c⌧2 , c =
⇡2

6 , b⌧ =
l

2
✏2⌧

log 1
�⌧

m
;

3: For t = 1 to b⌧ do

4: compare i and j once; if i wins, wi = wi + 1;
5: bpi = wi/b⌧ ;
6: return [i, j] if bpi � 1

2 > 1
2✏⌧ ; return [j, i] if bpi � 1

2 < � 1
2✏⌧ ; and return ‘unsure’ else;

Partial order preserving graph During the ranking process, we maintain a directed graph T to
store the partial orders we have obtained from SC instances so far. The graph T is initialized with n
nodes V1, . . . , Vn and no edge exists between any two nodes. Nodes V1, V2, . . . , Vn represent items
1, 2, . . . , n, respectively. In our algorithm, T is involved with three types of operations, edge update,
node removal and maximal set selection. Every time an instance of SC returns a pairwise order, e.g.,
i � j, we add a directed edge from Vi to Vj , written as T = T [ (i � j). Moreover, we also complete
all edges in the transitive closure of the existing edges. In other words, if the edge between Vi and
Vj induces a directed path from Vk1 to Vk2 , then a directed edge from Vk1 to Vk2 is also added to T .
By completing the transitive closure, we can avoid comparing pairs whose ordering can be inferred
from current knowledge and keep T acyclic. In the ranking process, we only run comparisons on
item pairs that are not connected by edges and hence no contradictions in orderings will be returned
by SC. By removing node Vi, we remove Vi and all edges of Vi from T . The maximal elements of
T are the nodes which do not have any incoming edges. Since edges represent comparison results
returned by SC, maximal elements correspond to items that have not lost to any other items. Note
that since T is acyclic, maximal elements always exist.

Next, we establish our ranking algorithm Probe-Rank (see Algorithm 2). Probe-Rank finds the true
ranking by performing maxing for n� 1 rounds. In every round t, subroutine Probe-Max returns an
item in St as the most preferred item (the maximum), where St denotes the set of remaining unranked
items right before round t. The strategy of Probe-Max is to repeatedly apply SC on all item pairs. For
every item pair (i, j), we initialize a global variable ⌧i,j as the probing parameter for SC instances
that run over i, j. The graph T storing obtained partial orders is also viewed as a global variable.
Parameters ⌧i,j and graph T will be accessed and altered in Probe-Max.

Algorithm 2 Probe-Rank
1: Input: items [n], confidence level �
2: S1 = [n], Ans = [0]n, initialize T , ⌧i,j = 1 for all pairs of items i 6= j;
3: For t = 1 to n� 1 do

4: imax = Probe-Max(St, 2�/n2);
5: remove imax from T ; Ans[t� 1] = imax; St+1 = St \ {imax};
6: Ans[n� 1] = Sn[0]; return Ans;

In Probe-Max(S, �) (see Subroutine 3), SC instances are performed only on items that are possible to
be the actual maximum. Let U be the set of maximal elements in T . By definition, every item in U
has not lost to any other item in S yet. Assuming all previous comparison results (obtained form SC)
are correct, to find the actual maximum, it suffices to focus on items in U . We use S2 to denote the
set of all unordered item pairs in S, i.e., S2 = {(a, b) : a, b 2 S, a 6= b}. All ‘legitimate’ pairs that
can potentially provide us with information about the maximum item in S are thus

P = {(i, j) : (i 2 U or j 2 U) , (i, j) 2 S2, (i, j) /2 T}, (4)

where (i, j) /2 T means that nodes Vi and Vj are not connected in T . While U contains more than
one items, Probe-Max keeps applying SC on item pairs in P . If an item in U loses a comparison, then

5



we remove it from U . In every iteration of the while loop, the pairs (i⇤, j⇤) in P with the smallest
⌧ value are chosen and SC (i⇤, j⇤, �, ⌧i⇤,j⇤) are performed. Note that the ⌧ value increases by one
after each call of SC. Starting with item pairs with small ⌧ values guarantees that we do not miss any
useful information that can be obtained by paying only a small amount of comparisons.

Subroutine 3 Probe-Max(S, �)
1: Input: set of unranked items S, SC confidence level �
2: Let U be the set of maximal elements according to T ;
3: While |U | > 1 do

4: Let P = {(i, j) : (i 2 U or j 2 U) , (i, j) 2 S2, (i, j) /2 T};
5: For (a, b) in argmin(x,y)2P ⌧x,y do

6: Ans = SC (a, b, �, ⌧a,b); ⌧a,b = ⌧a,b + 1;
7: If Ans is not ‘unsure’ then

8: w, l = Ans; T = T [ (w � l); If |U | > 1 and l 2 U then U = U \ {l};
9: return U [0];

We provide a simple example demonstrating the ranking process.

Example 1. Consider items {1, 2, 3, 4} with true ranking 1 � 2 � 3 � 4. Figure 1 shows the status
of T, U, St throughout the ranking process. In particular, we assume the pairwise comparison results
are all correct and returned in order 1 � 2, 2 � 4, 1 � 3, 2 � 3, 3 � 4.

1

2

3

4

(a) ranking starts. S1 =
{1, 2, 3, 4}, U = S1.

1

2

3

4

(b) 1 � 2 returned. U =
{1, 3, 4}.

1

2

3

4

(c) 2 � 4 returned. U =
{1, 3}.

1

2

3

4

(d) 1 � 3 returned. U = {1}.

2

3

4

(e) 1 is the maximum, remove it.
S2 = {2, 3, 4}, U = {2, 3}.

2

3

4

(f) 2 � 3 returned. U = {2}.

3

4

(g) 2 is the maximum, remove
it. S3 = {3, 4}, U =
{3, 4}.

3

4

(h) 3 � 4 returned. U =
{3}.

Figure 1: An illustration of the steps by Probe-Ranking, assuming true ranking as 1 � 2 � 3 � 4.

5 Upper bound on the sample complexity of Probe-Rank

In this section, we provide a sample complexity upper bound for the proposed algorithm Probe-Rank.

Theorem 2. Let � > 0 be an arbitrary constant. For all problem instances satisfying the Weak
Stochastic Transitivity (WST) property, with probability at least 1� �, Probe-Rank returns the true
ranking of n items and conducts at most

O

 
n

nX

i=1

⇣
e��2
i

⌘⇣
log log

⇣
e��1
i

⌘
+ log

⇣n
�

⌘⌘!
(5)

comparisons, where e�i is defined as in (3).

The proof of Theorem 2 is deferred to Appendix A.
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By the preceding theorem, the sample complexity of Probe-Rank is upper bounded by the sum of
terms (e�i)�2(log log(e�i)�1 + log(n/�)) with an additional multiplicative factor of n. Recall from
Section 2 that the term (e�i)�2(log log(e�i)�1 + log(n/�)) can be viewed as a lower bound on the
number of comparisons that is needed for obtaining the order between i and its adjacent items with
confidence level �/n. Theorem 2 thus suggests that in Probe-Rank, every item is compared until it
can be distinguished from its neighbors and no further. This matches with our intuition that only
comparisons between adjacent items are necessary, and a single nonadjacent pair being extremely
hard to distinguish should not harm the overall sample complexity. In contrast, sample complexities
of existing algorithms are determined by the smallest probability gap between items, which can lead
to a substantially large amount of unnecessary comparisons.

However, Probe-Rank achieves the dependence on e�i instead of �i at the cost of an additional
multiplicative factor of n. Intuitively, because we have zero prior information about which items are
adjacent and which are not, Probe-Rank pays ⇥ (n) attempts for each item i in order to ‘identify’ its
neighbors and get the ordering feedback.

We compare Probe-Rank with the state-of-the-art IIR algorithm. Let C (Probe) and C (IIR) denote
the sample complexities of two algorithms. From Table 1 and Theorem 2,

C (Probe) =
nX

i=1

e⇥
⇣
n(e�i)

�2
⌘
, C (IIR) =

nX

i=1

e⇥
�
(�i)

�2
�
, (6)

noting that from the proofs, the sample complexity upper bounds are both tight in the worst case.

Under WST with no other conditions assumed, �i  e�i. In particular, when e�i/�i = ⇥(
p
n) for all

i, then C (Probe) and C (IIR) are of the same asymptotic order with respect to n; if e�i/�i = !(
p
n),

then Probe-Rank is asymptotically more sample-efficient than IIR. These phenomena are also reflected
in our numerical experiments in Section 6 (see Figure 3).

Remark. It is worth noting that IIR is optimal if the more strict assumption SST as well as
some other conditions are made, as shown in [25]. When SST holds, e�i = �i. Probe-Rank thus
suffers from an additional factor of n. This case is also included in our numerical experiment (see
Figure 2(a)).

6 Experiments

In this section, we present numerical experiments demonstrating the practical performance of Probe-
Rank. We compare Probe-Rank with the IIR algorithm, which was shown to outperform all the other
baseline algorithms both theoretically and numerically [25]. Our implementation can be found on
Github 5.

We study different settings where SST is satisfied, not guaranteed, or violated, but WST always
holds, which is consistent with our theory. Specifically, we want to rank n items with the true
ranking �1 � �2 � · · · � �n, where n varies over [10, 100]. The probabilistic comparison model
pij is generated in different ways to satisfy different assumptions. Note that � and �d are tuning
parameters in all the following settings.

• SST: SST is satisfied. Comparison probabilities pij are generated from the MNL model, where
p�i,�j = (exp(s�i � s�j )+1)�1, and s�1 , . . . , s�n is a decreasing sequence where s�i = 100�d ·
(n+1�i)

n .
• WST: SST does not necessarily hold. Let pi,j ⇠ Uni( 12 +�d, 1) for all items i � j.
• NON-SST: SST does not hold. For adjacent items, we have p�i,�i+1 ⇠ Uni

�
1
2 +�d, 1

�
. Otherwise,

we have p�i,�j ⇠ Uni
�
1
2 + �d

10 ,
1
2 +�d

�
for j > i+ 1.

• ADJ-ASYM: SST does not hold. This setting is used to verify the asymptotic analysis in Section 5.
For adjacent items, we set p�i,�i+1 = 1

2 +�d. Otherwise, we set p�i,�j = 1
2 + �d

n↵ for j > i+ 1.
We consider cases where ↵ equals 0.5 or 1.

• ADJ-CNST: SST does not hold. For adjacent items, we set p�i,�i+1 = 1
2 +�. Otherwise p�i,�j =

1
2 +�d for j > i+ 1. Here � > �d.
5https://github.com/tao-j/aht/releases/tag/v0.1
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(a) SST: �d = 0.3
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(b) WST: �d = 0.3
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(c) NON-SST: �d = 0.3

Figure 2: Comparison of sample complexities of Probe-Rank and IIR under various settings. In each
subfigure, �d is fixed while the number of items varies.
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(a) ADJ-ASYM: �d = 0.3, ↵ = 1
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(b) ADJ-ASYM: �d = 0.3,↵ = 0.5

Figure 3: Relationship between n and gap �d

All experiments are averaged over 100
independent trials. For each trial, the
ground truth ranking � is generated uni-
formly at random and the comparison
probabilities are assigned accordingly.
The confidence level � is fixed to be 0.1.
Throughout the experiment, every trial
for every algorithm successfully recov-
ered the correct ranking.

We use internal clusters of intel “Sky-
lake” generation CPUs. Each job con-
tains a single model type for item num-
bers ranging from 10 to 100 with a step size of 10. Models are generated from a job unique random
seed shared among the two algorithms. Most jobs with sample complexity smaller than 107 terminate
in 3 minutes. For �d = 0.1 under the ADJ-ASYM model, 3 hours are needed due to high sample
complexity. Due to the space limit, more detailed experimental setups and thorough ablation studies
can be found in Appendix C.

Performance comparison Figure 2 with y-axis in log-scale shows comparison of IIR and Probe-
Ranking under the SST, WST and NON-SST settings. The parameter �d is set to be 0.3. It can be seen
that under the SST and WST settings (Figures 2(a), 2(b)), Probe-Rank consumes less samples than IIR
for small n. As n gets larger, however, IIR becomes more sample-efficient due to that Probe-Rank
has an additional factor of n in its sample complexity compared with IIR for instances satisfy SST.
However, under the NON-SST setting where SST does not hold, Probe-Rank has a clear advantage
over IIR, as shown in Figure 2(c).

Dependence on n and the probability gaps Following Theorem 2, we verify that the sample
complexity of Probe-Rank is lower than IIR when the number of items n gets larger. We use the
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(a) NON-SST: n = 80
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(b) ADJ-CNST: n = 80, � = 0.4

Figure 4: Ablation study on the dependence of the sample
complexity on the probability gap �d.

ADJ-ASYM setting to simulate situations
where nonadjacent items can be much
more difficult to compare. In particu-
lar, we choose ↵ = 1 (see Figure 3(a))
and ↵ = 1/2 (see Figure 3(b)). It
can be seen from Figure 3(a) that as
the number of items n gets larger, the
gap between the two curves also gets
larger. This matches our analysis that
when e�i/�i = !(

p
n), then the sam-

ple complexity of IIR is of higher or-
der than that of Probe-Rank. When
e�i/�i = ⇥(

p
n), Figure 3(b) shows

that the gap between the two sample
complexities varies little as n increases.
Our analysis also suggests that sample complexities of two algorithms are of the same order.
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Furthermore, we show through the NON-SST and ADJ-CNST settings that when the probability gaps
of nonadjacent item pairs decrease, the advantage of our algorithm will be more and more prominent.

In Figure 4, we fix n = 80 and let �d vary. Clearly, Probe-Rank has an advantage over IIR in
both settings. In particular, Figure 4(b) shows the comparison of two algorithms in the ADJ-CNST
setting with the probability gaps between adjacent items � fixed as 0.4. As the probability gap
between nonadjacent items �d varies from 0.01 to 0.4, it can be seen that the sample complexity of
Probe-Rank does not vary much. However, the sample complexity of IIR has a positive correlation
with 1

�2
d

. This numerical result matches our analysis that Probe-Ranking is not affected by the
comparison probability of nonadjacent items, which does not hold for IIR.

7 Discussion on the lower bound

In this section, we provide some insights about the lower bound for pairwise ranking by proposing a
conjecture based on a particularly hard instance IWST that satisfies the WST condition.
Problem 1 (IWST ). The problem instance IWST is constructed as follows. Consider n items with
an underlying ordering ‘�’. For all i � j,

pi,j =

⇢
1
2 +�, if i and j are adjacent,
1
2 + cn�10�2/ log(1/�), otherwise,

where c and � are constants and n�10 can be replaced by any other quantity that is smaller than n�2.

By a reduction, any �-correct algorithm that finds the maximum item for IWST can be constructed
to find the maximum item for ISNG, described below in Problem 2. Therefore, a lower bound on
the sample complexity for maxing in Problem 2 will imply a lower bound of the same order for
the maxing (and thus, ranking) problem for IWST . This lower bound is also a worst-case lower
bound for ranking under WST. In the following, we provide an analysis for Problem 2. The reduction
technique will be deferred to Appendix D.
Problem 2 (ISNG). Consider n items with an underlying ordering ‘�’. One can make queries of the
form ‘if i � j’. The feedback Yi,j is a binary random variable which takes value 1 if the answer is
YES and takes value 0 otherwise. The random variables Yi,j are defined to follow distributions:

Yi,j ⇠
⇢

Ber( 12 � 2�), if i � j and i, j are adjacent,
Ber( 12 ), otherwise.

Consider random vectors defined by pi = (Yi,1, Yi,2, . . . , Yi,n) in Problem 2. The maximum element
i⇤ corresponds to the random vector pi⇤ , where each entry is a 1/2-Bernoulli random variable. For
every other non-maximum element i, pi will contain exactly one (1/2 � 2�)-Bernoulli random
variable. Under such problem setting, finding the maximum item is equivalent to finding which vector
has all its entries as 1/2-Bernoulli random variables.

We conjecture that any �-correct algorithm that can find the maximum item for ISNG has a sample
complexity at least

⌦
�
n2��2 log(1/�)

�
. (7)

We start from viewing it as a hypothesis testing problem. Consider that an agent is asked to determine
if p1 satisfies hypothesis H0, defined as

H0 : p1 = (p1,1, . . . , p1,n), where p1,k ⇠ Ber(1/2), 8k 2 [n],

or Hj , in which the j-th entry is biased:

Hj : p1 = (p1,1, . . . , p1,n), where p1,j ⇠ Ber(1/2� 2�), p1,k ⇠ Ber(1/2), 8k 6= j.

Suppose the hypothesis testing algorithm A is �-correct and stops within T rounds of interactions.
We denote A(T ) as the output at the T -th round, which is either 0 (accept H0) or 1 (reject H0). For
any given j 6= 1, by the Bretagnolle–Huber inequality, we have

2� � P0(A(T ) 6= 0) + Pj(A(T ) = 0) � 1

2
e�KL(PA

0 ||PA
j ), (8)
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where P0 is the probability measure under H0, and PA
0 is the probability measure of the canonical

bandit model under H0. In fact, we have the divergence decomposition lemma [20, Lemma 15.1]:

KL(PA
0 ||PA

j ) =
nX

k=1

E0[Nk(T )]KL(P0,k||Pj,k) = E0[Nj(T )]KL(Ber(1/2)||Ber(1/2� 2�)), (9)

where E0 denotes the expectation under H0; E0[Nk(T )] denotes under H0, the expected number of
queries for the entry p1,k within T rounds.; P0,k, Pj,k are the Bernoulli distributions specified by p1,k
under H0, Hj , respectively. The second equality is due to the fact that the only difference between
H0 and Hj is that the j-th entry has different Bernoulli distributions.

Combining the two inequality above gives:

E0[Nj(T )]KL(Ber(1/2)||Ber(1/2� 2�)) � log(1/4�). (10)

Since KL(Ber(1/2)||Ber(1/2�x)) < (4x)2 for all x < 2/9, we get E0[Nj(T )] = ⌦(��2 log(1/�)).
Thus, the total expected number of queries under H0 will be ⌦(n��2 log(1/�)).

In Problem 2, there are in total n vectors. We reasonably conjecture that to identify which vector
satisfies H0 requires at least ⌦(n) attempts, with each attempt costs ⌦(n��2 log(1/�)), i.e, any
�-correct algorithm requires ⌦

�
n2 log(1/�)/�2

�
queries.

8 Conclusion and future work

In this paper, we studied the problem of exact ranking under the most general assumption WST.
We proposed a �-correct algorithm Probe-Rank, and derived an instance-wise upper bound on its
sample complexity. The upper bound shows that the performance of Probe-Rank only depend on
the comparison probabilities of adjacent items and thus improves existing results when SST does
not hold. Numerical results also suggest that our ranking algorithm outperforms state-of-the-art. A
discussion over the lower bound for pairwise ranking is also provided. We propose a conjecture that
in the worst case, any algorithm has sample complexity n times the number of comparisons needed
for comparing all adjacent items. However, it remains an open problem whether our conjecture holds
and will be left to future work.
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