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ABSTRACT

It is expensive to collect training data for every possible domain that a vision
model may encounter when deployed. We instead consider how simply verbal-
izing the training domain (e.g. “photos of birds”) as well as domains we want
to extend to but do not have data for (e.g. “paintings of birds”) can improve ro-
bustness. Using a multimodal model with a joint image and language embedding
space, our method LADS learns a transformation of the image embeddings from
the training domain to each unseen test domain, while preserving task relevant
information. Without using any images from the unseen test domain, we show
that over the extended domain containing both training and unseen test domains,
LADS outperforms standard fine-tuning and ensemble approaches over a suite of
four benchmarks targeting domain adaptation and dataset bias. Code is available
athttps://github.com/lisadunlap/LADS.
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Figure 1: Consider a model trained to recognize road signs in sunny weather. We aim to extend to
a new domain of snowy weather. Our method LADS (Latent Augmentation using Domain descrip-
tionS) leverages a multimodal model’s knowledge of the classes and the domain shift verbalized in
natural language (“sunny” to “snowy”) to train an augmentation network without any samples from
the unseen test domain. This network is used to translate multimodal image embeddings from the
training domain to the unseen test domain, while retaining class-relevant information. Then, real
and augmented embeddings are used jointly to train a classifier.

1 INTRODUCTION

The ability to extend a model beyond the domain of the training data is central to building robust
computer vision models. Methods for dealing with unseen test distributions often require leveraging
additional image data, but linguistic knowledge of the anticipated domain shift is much cheaper
and easier to obtain. For example, in many settings, the training images are collected in certain
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conditions (e.g., daylight, clear weather, ...) but our sensors may also experience less common
but easy to anticipate conditions (e.g., night, snow, haze, illustrations, ...). Directly collecting or
creating data in all possible anticipated settings is often prohibitively expensive. Thus it is of great
interest how one can linguistically extend to unseen domains: that is, to utilize language to improve
performance on an unseen test domain without sacrificing performance on the training domain.

The use of language in domain generalization has generated significant interest with the development
of large vision-language models such as CLIP (Radford et al., 2021), Flamingo (Alayrac et al.,
2022), and ALIGN (Jia et al., 2021), which allow users to create zero-shot classifiers using only
class names. However, while these models have been shown to achieve remarkable cross-domain
generalization, their zero-shot classifiers often perform far worse than models trained for a particular
downstream task (Radford et al., 2021; Kumar et al., 2022). When training data is available for the
downstream task, a common practice is to fine-tune these models on the training data. While this
significantly improves in-domain accuracy, it degrades performance on unseen domains.

We show that it is possible to leverage the domain-level knowledge (e.g. sunny environments vs.
snowy environments in our example) contained in CLIP or similar models to deal with a variety of
domain shifts in a way that requires no data from the new test domain, exploits the labeled training
data, and is fast to train. Our method only requires users to input text descriptions of the training
and unseen test domains (e.g. “a sunny stop sign” and “a snowy stop sign”) along with their training
data. To achieve language-guided domain generalization, we leverage the broad domain knowledge
encoded in CLIP coupled with its shared image-language embedding space to perform latent feature
augmentation of the training set.

More precisely, the embeddings of these textual descriptions are used to train an augmentation model
which learns a transformation on the CLIP image embeddings of the training domain and “places”
them in the new domain (see Figure 1). We train this augmentation model with two objectives: (1)
translating the image embedding from the training domain to the unseen testing domain, while (2)
retaining the class-specific information of the original image. Once this transformation is learned,
we train a simple linear classifier on the combined augmented and unaugmented image embeddings,
resulting in a classifier that outperforms common fine-tuning methods on the extended domain while
achieving similar performance on the training domain.

We introduce LADS, a method to extend a model to new domains given only a language description
of the distribution shift. Our main contributions are (1) the introduction of the Domain Extension
with Language problem, (2) a novel language-guided latent feature augmentation training proce-
dure, and (3) the extension of our method to address spurious correlation biases in the training data.

We evaluate LADS on two domain adaptation benchmarks, DomainNet (Peng et al., 2019) and CUB-
Paintings (Wang et al., 2020), as well as two benchmarks exhibiting color and contextual bias,
Colored MNIST (Arjovsky et al., 2021) and Waterbirds (Sagawa et al., 2019). On the domain adap-
tation benchmarks, we show that we improve out-of-domain performance by 1-3% while matching
in-domain performance of fine-tuned and ensembled models. On the biased benchmarks, we show
an almost 2x improvement in out-of-domain performance over fine-tuned models. Across all bench-
marks, LADS achieves the highest accuracy on the entire extended test domain containing both
training and unseen test domain samples. Finally, we perform an in-depth analysis of the altered
image embeddings, the effect of each loss function, and the effect of different vision and language
models to understand our framework better.

2 RELATED WORK

Domain Adaptation/Generalization. The challenge of out-of-domain generalization is well stud-
ied (Recht et al., 2019; Petryk et al., 2022; Kumar et al., 2022; Santurkar et al., 2021; Hendrycks &
Dietterich, 2019) with a large body of work in domain adaptation addressing the problem of adapt-
ing a model to perform well on a new target domain. A typical domain adaptation approach involves
collecting additional unlabeled data from the target domain (Ganin & Lempitsky, 2015; Saito et al.,
2017; Arjovsky et al., 2021; Kim et al., 2018; Tzeng et al., 2015), and aims to train a classifier such
that it cannot tell the difference between source and target domain.

In the limited data setting, few-shot domain adaptation (Motiian et al., 2017; Yue et al., 2021) aims
to learn from as little as one example in the target domain. Work in domain generalization (Wang &
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Jiang, 2020; Gulrajani & Lopez-Paz, 2021; Koh et al., 2021) does not need target domain data but
requires a set of several aligned and labeled source domains, and often shows only limited gains.
While we evaluate on certain domain adaptation benchmarks, DA/DG methods primarily focus on
maximizing target domain accuracy, while our work is interested in maximizing the accuracy of the
extended domain. Furthermore, unlike previous works, we assume we have no access to any target
data (labeled or unlabeled), only a single source domain, and our domain shift can be verbalized.

Fine-tuning under Distribution Shift. The goal of fine-tuning under distribution shift is to tailor
pretrained models to a specific task without sacrificing their ability to deal with distribution shifts.
Kumar et al. (2022) found that it is better to fit a linear probe on the features and then fine-tune the
model’s backbone. For robust fine-tuning of CLIP specifically, Wortsman et al. (2021) proposed
ensembling the weights of the fine-tuned image encoder with the zero-shot image encoder. We see
our work as complementary to these ideas, targeting semantically defined domain shifts to increase
OOD performance, while maintaining high ID performance.

Semantic Augmentation with CLIP. With the emergence of CLIP, several works (Ramesh et al.,
2022; Patashnik et al., 2021; Gal et al., 2021) have used language to alter images using a combination
of CLIP and a generative model. Broadly, these works translate an image to a CLIP embedding, alter
the image embedding with a text embedding of the desired augmentation, and use that embedding to
generate an altered image. These CLIP-based works do not attempt to use these data augmentations
in the context of dataset bias or domain adaptation. Some prior work has explored augmentations
using generative models (Sharmanska et al., 2020; Sankaranarayanan et al., 2018; Yan et al., 2021),
but since they generate images at the pixel level, they are often bottle-necked by the quality of the
generative process. In contrast, we choose to manipulate embeddings directly that allows us to
effectively distill the knowledge in CLIP.

Removing Dataset Bias. In computer vision, several works debias data using extra information such
as instance annotations (Hendricks et al., 2018; Li et al., 2018; Rieger et al., 2020), bounding boxes
(Choi et al., 2019), or image-level bias annotations (Kim et al., 2018). Some methods (Sharmanska
et al., 2020; Bau et al., 2020; Santurkar et al., 2021) forego the need for expensive annotations by
utilizing generative models, while Petryk et al. (2022) utilize CLIP to translate language descriptions
of a task into spatial guidance. In contrast, we do not limit ourselves to purely spatial bias or use
per-image annotations of the bias, only a description of what biases may appear in the training data.

3 LATENT AUGMENTATION USING DOMAIN DESCRIPTIONS

We consider the supervised learning problem of generalizing to new unseen domains using only
the verbal descriptions of the training domain and the anticipated but unseen new domains. More
formally, we are given a training dataset {x;,y;};"; drawn from the training domain Disning, the
class names t,, a written description fiining Of the training domain, and a set of written descriptions

{tfmseen .i»‘?:l of k unseen domains {D{ ..}* ; that we expect to encounter at test time. Our goal
is to train a model that performs well on both the original domain Diining as well as the unseen
domains { D¢, .en }¥_;. We call this the Domain Extension with Language problem.

Large vision-language models have demonstrated the ability to generalize to new domains with
language but only in the zero-shot setting. In order to utilize available training data, we explore the
popular fine-tuning technique of linear probing: fitting a linear classifier to the image embeddings
of large vision-language models. We chose linear probing over full fine-tuning as it is faster to train
and has been shown to result in more robust classifiers (Kumar et al., 2022; Radford et al., 2021).

While standard linear probing only uses the image embeddings and the numerical labels, LADS also
utilizes the text describing the classes and the descriptions of domain shift to augment the probe’s
training data to mimic samples from the unseen domain. Our two-stage approach first learns a
network that transforms the image embeddings rather than the pixels themselves, with the goals
of (1) augmenting the embedding to be aligned with the unseen domain while (2) retaining the
features consistent with its class label. The second stage performs linear probing on the training
set containing both the original image embeddings as well as the augmented image embeddings to
produce a classifier that is more robust to the specified domains. Note that we do not use any data
from DF in either stage—we only use the class names and domain descriptions. An outline of

unseen
the first stage of our method (training the augmentation network) is depicted in Figure 2.
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Figure 2: LADS. Let the task be to classify Puffin vs. Sparrow. The training data Dyining contains
photos of the two classes but we would like to extend our classifier to paintings as well: that is,
Dynseen- We aim to do this using the text descriptions of the training and new domain, fyining and
tunseen, respectively. The augmentation network fq is trained to transform image embeddings from
Diraining 10 Dynseen Using a domain alignment loss Lpa and a class consistency loss Lcc. When Lpa
is low, the augmented embeddings are in the new domain but may have drifted from their class.
When Lcc is low, the augmented embeddings will retain class information but may fail to reflect the
desired change in domain. f,, aims to augment every image embedding to a space with low domain
alignment loss and low class consistency loss, resulting in fyue(/(x)) having an image embedding
similar to a painting of a Puffin. Note that the hallucinated image embeddings on the right are a
pictorial representation of the effect of each loss function and not actually generated by LADS.

We choose CLIP (Radford et al., 2021) as our vision-language model in our evaluations. Let Ip(x) =
CLIPjy (x) € Z denote the image embedding of input image x and Ty (t) = CLIP(t) € T denote
the CLIP text embedding of some text ¢. Furthermore, let Zqining © t, denote the composition of
the domain description and the class name. For example, if #aining = “a photo of a”, t&nseen = “a

painting of a” and t, could be “Puffin”. The composition tining © ty 1S “a photo of a Puffin”.

Stage 1: Training the augmentation network. The first stage of LADS is to learn an augmen-

tation network f,fug : T — T that transforms image embeddings from Dyyining to DE, .., using the
corresponding language descriptions #raining and tF en- As mentioned previously, a valuable aug-

mentation is one which places the transformed embedding in unseen domain D, ... while retaining

features relevant to the class label. To achieve this, we train f,ﬁlg using a combination of two losses:
Domain Alignment and Class Consistency. In the setting of adapting to multiple new domains at

once, we train a unique ,ﬁlg network for each domain as described above.

Domain Alignment. The domain alignment loss encourages the augmented image embeddings
k (Ip(x)) to look like image embeddings from the new domain D This loss is guided by

aug unseen*
k

the text embeddings of the domain descriptions ;... and Ziraining-

While CLIP is trained such that the space of image embeddings Z has some correspondence with
the space of text embeddings 7T, it is not obvious what a mapping between Z and 7 should look like.
Thus, inspired by prior work (Patashnik et al., 2021; Gal et al., 2021), we assume the existence of
a “global direction” that corresponds to a shift from Dining to D{fnseen that is shared across both the
image embedding space and text embeddings space.

This “global direction” is defined as the normalized difference of the embeddings from the target
domain and the embeddings from the source domain. Formally, the domain alignment loss of f;flg

for training point (x;, y;) is

- fﬁ; (I@(Xi)) - 19(Xi) Te(tunseen yi) - TO(tLra.inin yz)
[_‘, k = 1— g . ! £ . 1
or(fag) = 2 <|| 5 00c2)) — oG] T Cumesn: ) — ToChwamng-wi) )

Class Consistency. The domain alignment loss in Equation 1 encourages the augmented embeddings
to only differ in the direction of change in the domain. If there were one global shared direction
corresponding to the domain shift, optimizing £ps would be sufficient. However, in practice, we
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find that optimizing Lpa alone removes some class relevant information and results in little diversity
among the augmented embeddings of different images (see Section 4.6 and Figure 11). Thus we
add a class consistency loss which preserves class information in the augmented embeddings. We
measure class information in the image embeddings by our ability to classify the images accurately
via CLIP zero-shot with the class names. Formally,

ﬁcc(f'ﬁ,g) = ZCYOSS‘CHUOPY (SOftmaX[faﬁlg(Ie (x1)) - To(yi)], i) ()
i=1

Note that this is the same objective as the standard CLIP loss. We use CLIP zero-shot rather than
trying to fine-tune CLIP because that could lead to overfitting where we classify the augmented
training image embeddings correctly even when they do not contain class relevant information.

Our final objective Lpaps(fag) to train the augmentation network as the first step in LADS is a
linear combination of the the domain alignment loss and class consistency loss:

Lraps(fag) = @Loa(fang) + (1 — @) Lec(fhig), 3)

where « is a hyperparameter dictating the trade-off between domain alignment and class consistent.

Stage 2: Fine-tuning. After the augmentation network fa’flg is trained, we train a linear probe on

the original image embeddings Iy(x;) along with the augmented embeddings fX (I5(x;)). Infer-
ence is straightforward: apply the linear probe on the CLIP image embeddings of tie test images.

3.1 ADDRESSING DATASET BIAS

In addition to dealing with extended domains, LADS can also be used in the dataset bias setting
where there are spurious correlations in the dataset. For example, in Waterbirds (Sagawa et al.,
2019), we want to classify Landbirds vs. Waterbirds, where the spurious correlation is the back-
ground (Landbirds appear on forest backgrounds and Waterbirds appear on water backgrounds in
training). To prevent a classifier from using this correlation to make predictions, we can use LADS
to generate augmentations that represent “Landbird on water” and “Waterbird on land”.

We do this by using CLIP to label the backgrounds of each image and then decide what #irining and
tunseen 18 per example. Given the domain information ¢;,,4 = “a {} in the forest” and tyater = “a
{} on the water”, we can use zero-shot CLIP to determine if a given image is on land or water. If
the image is predicted to be on land, when training fa,., Lpa for that particular example will use
Lwaining = tland, tunseen = twater and vice versa. The class consistency loss and the other parts of
the pipeline remain unchanged. Because we are using the vision and language model to label the

domains, we do not need per-image labels of the bias, only a hypothesis of what the bias may be.

4 EXPERIMENTS

In this section we discuss our main experiments and results. We defer dataset details, the remainder
of the experiments and their discussion to the Appendix (B, D, E).

4.1 IMPLEMENTATION DETAILS

In line with Radford et al. (2021), we normalize all text and image embeddings when performing
zero-shot inference or training with CLIP embeddings. The augmentation network f,,e used in
LADS is a 2-layer MLP with input and output dimensions of 768 and a hidden dimension of 384.
Within LADS and all the CLIP-related baselines, we use the OpenAl CLIP model with a ViT-L
backbone and resize all images to 224x224. We train on 10 GeForce RTX 2080 Ti GPUs.

For each baseline, we do a hyperparameter sweep across learning rate and weight decay and choose
the parameters with the highest class-balanced validation accuracy. For LADS we also do a sweep
across the parameters of the augmentation network, namely learning rate, weight decay, and «, and
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select a checkpoint based on the validation loss. In general, we set o = 0.5, I = 0.001, wd = 0.05.
Our hyperparameter search spaces and final choice of hyperparameters are listed in Table 4.

In our results we report test accuracy on Diraining, Dunseen, and the extended domain which averages
the two. We run each method over 5 different random seeds and report the mean and standard
deviation.

4.2 DATASETS

CUB-Paintings (one new domain) is composed of 2 datasets, CUB-200 (Wah et al., 2011), a
fine-grained bird classification benchmark containing 200 different bird species and CUB-200-
Paintings (Wang et al., 2020), which contains the same classes as CUB-200 but instead of real
images they are paintings collected from the web and filtered manually. We use the domain descrip-
tions tiaining = ““a photo of a {} bird”, ¢} .., = “a painting of a {} bird”.

DomainNet (multiple new domains) is a specific split (Tan et al., 2020) of the original Do-
mainNet (Peng et al., 2019) dataset which contains the 40 most common classes from 4 do-
mains: ‘sketch’, ‘real’, ‘clipart’, and ‘painting’. Like prior work (Kumar et al., 2022; Tan et al.,
2020), we train on sketches and evaluate on the three other domains. We use the domain de-
SCriptions tyaining = “a sketch of a ¢l .. = “clipartof a 7, 2 .., = “a painting of a ", t3 .., =
“a realistic photo of a ™.

Colored MNIST (color bias) (Arjovsky et al., 2021) was made by taking the original MNIST
Digits (Deng, 2012), and coloring them red or blue. In the training and validation sets,
even numbers are red and odd numbers are blue, while in the test set digits are colored
randomly. The task is to classify the digits 0,1,..,9. We use the domain descriptions

EEINTS

“a photo of a red number ”, “a photo of a blue number .

Waterbirds (contextual bias) (Sagawa et al., 2019) is a synthetically created dataset which creates
contextual bias by taking species of landbirds and waterbirds from the CUB-200 Wah et al. (2011)
dataset and pasting them on forest and water backgrounds from the Places (Zhou et al., 2017) dataset.
For the training and validation sets, all landbirds appear on forest backgrounds and waterbirds appear
on water backgrounds while the test set has an even representation of backgrounds and bird types.

CLINTS

We use the domain descriptions “a photo of a {} in the forest”, “a photo of a {} on the water”.

4.3 BASELINES

Generic and Adaptive zero-shot CLIP are the zero-shot baselines proposed by Radford et al. (2021):
(CLIP ZS (G)) uses the class name alone as the text prompt, while adaptive zero-shot CLIP (CLIP
ZS (A)) caters the text prompts to the specific domains (e.g. “a painting of an airplane.”). To do well
on the extended domain, we average the text embeddings of each class across all possible domains.

CLIP LP fits a linear classifier on top of the CLIP image embeddings.
CLIP LP (ZS init) initializes the linear classifier with the text embeddings.

WiSE -LP (Wortsman et al., 2021) is an ensembling technique which fine-tunes a CLIP model and
does a weighted average of the fine-tuned model’s weights with the original. Due to the size of
the vision and language models we are using, we did not fine-tune the entire backbone and instead
ensembled the classifier with the linear classifier probe as explained by Wortsman et al. (2021).

VOGAN + CLIP (Crowson et al., 2022) is a method that uses a VQGAN (Esser et al., 2021) trained
with CLIP to augment images in pixel space. Using a text prompt and an image, we perform “style
transfer” to the new domain in order to augment the training data. We then train a linear probe on the
augmented and non-augmented CLIP embeddings. Due to the amount of time and compute required
to generate images, we only ran this baseline for DomainNet and augmented approximately 15% of
the training dataset. Examples of the augmented images are provided in Table 7.

4.4 RESULTS

Table 1 shows in-domain (ID) and out-of-domain (OOD) accuracy on CUB-Paintings and Domain-
Net. The “Extended” column is the average accuracy of the two, corresponding to the full extended
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domain. For CUB-Paintings and DomainNet, LADS is able to match or improve the ID accuracy
of the fine-tuning baselines while improving over their OOD accuracy. Although CLIP zero-shot
achieves higher OOD accuracy on DomainNet, LADS achieves the highest result when evaluated on
the full extended domain. We also improve over the VQGAN+CLIP baseline on DomainNet.

For Colored MNIST (Figure 3a) and Waterbirds (Figure 3b), LADS is able to roughly match ID
accuracy of the fine-tuned CLIP and OOD accuracy of CLIP zero-shot, resulting in approximately a
10% improvement on the extended domain. We explore different weighted averages of ID and ODD

accuarcy to compute the extended domain accuracy in Section C of the Appendix.

Dataset Method ID (0]0)D] Extended
CUB-Paintings  CLIP ZS (G) 60.34% 52.84% 56.59%
CUB-Paintings CLIP ZS (A) 61.93% 54.38% 58.16%
CUB-Paintings CLIP LP 85.9140.08 % 64.334+0.29% 75.12+0.18%
CUB-Paintings CLIP LP (ZS init)  86.08+0.11% 65.054+0.05% 75.57+0.06%
CUB-Paintings ~ WiSE-LP 81.74+0.34% 64.8040.10% 73.27+0.22%
CUB-Paintings LADS 86.14+0.29 % 66.18+ 0.25%  76.16+0.23%
DomainNet CLIP ZS (G) 93.49% 95.94% 94.72%
DomainNet CLIP ZS (A) 93.24% 96.01% 94.62%
DomainNet CLIP LP 95.034+0.07% 93.754+0.02% 94.3940.04%
DomainNet CLIP LP (ZS init)  95.214+0.21% 93.954+0.03% 94.584+0.11%
DomainNet WiSE-LP 95.1940.34%  93.68+£0.12%  94.44+0.11%
DomainNet VQGAN+CLIP 95.54+ 0.09%  93.83+0.10%  94.67+ 0.09%
DomainNet LADS 9533 £0.33% 9521 £0.09% 95.27+ 0.14%

Table 1: In-domain (ID), out-of-domain (OOD) and extended domain accuracy on CUB-Paintings
and DomainNet. For DomainNet, we include the pixel augmentation baseline VQGAN+CLIP and
OOD accuracy is the average of the 3 unseen domains. LADS is able to beat all methods on the
extended domain for both datasets. Note that for tasks where CLIP zero-shot does not perform well,
LADS is able to significantly outperform zero-shot on the unseen domain.
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Figure 3: Result on dataset bias benchmarks. Left and center plots show the training domain
and unseen domain performance of the zeroshot and fine-tuned baselines respectively. For both
Colored MNIST (a) and Waterbirds (b), LADS is able to roughly match the unseen domain accuracy
of zero-shot methods and the seen domain accuracy of fine-tuned methods, resulting in improved
performance on the extended domain (right).
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CLIP LP VQGAN+CLIP LADS

Domain Alignment score  81.30£1.35%  69.26+2.31% 85.4440.61%
Class Consistency score 91.42+0.47%  77.14£1.22% 87.26+0.74%

Table 2: Augmentation Quality for DomainNet. The domain alignment and class consistency
scores over 1000 randomly sampled training embeddings and their nearest neighbor in the test set.
LADS achieves higher domain alignment and class consistency scores than VQGAN+CLIP, and is
able to obtain a somewhat similar class consistency score to the unaugmented image embeddings.

4.5 ANALYSIS OF AUGMENTATION QUALITY

In this section, we explore the quality of the embeddings generated by our augmentation network.
We perform our analysis for DomainNet below, defering the remaining results to Appendix D.1, D.2.

Since there is no publicly available model to convert CLIP embeddings to images, we use the nearest
neighbors of the augmented embeddings from the extended test domain to confirm that our augmen-
tations match our expectations. We take a random subset of 1,000 samples from the image embed-
dings used to train the linear probe: for CLIP LP, this is simply {Ip(x;), y; }?_;, for VQGAN+CLIP
it is of a mix of {Ip(x;),y; }1_; and GAN generated images, and for LADS it is {Ip(x;),y; }}_, and
the augmented embeddings Ule{ Jue(To(xi)), v i for each unseen domain j. We obtain the
nearest neighbors in the extended test set (containing images from the training and unseen domain)
with respect to cosine similarity of the image embeddings.

In line with our domain alignment and class consistency loss functions, we define metrics for (1)
correctly altering the domain of the image embedding, while (2) retaining the class information.
We define the percentage of the nearest neighbors that belong in the desired domain as the domain
alignment score, and the percentage that belong to the original class as the class consistency score.

The CLIP LP scores can be viewed as an approximate upperbound for those of LADS since they
reflect the nearest neighbors of only the original sketch embeddings in the extended domain. As
shown in Table 2, LADS is able to beat the domain alignment score and closely fall behind the
class consistency score of the linear probe, implying that the augmentations are of similar quality to
the original image embeddings. Furthermore, LADS has better domain alignment and class consis-
tency than VQGAN+CLIP, indicating that the long and laborious pixel-level augmentation may be
producing lower quality training samples than our simple embedding augmentation.

For qualitative analysis of LADS, we visualize a random sample of 10 nearest neighbors from Do-
mainNet in Figure 4 (the sketch embeddings are non-augmented, all others are augmented). The
nearest neighbors of augmented embeddings closely resemble embeddings of similar images in the
desired unseen domain. Even if the nearest neighbor is of a different class, it maintains some visual
similarity to the original image.

sketch— clipart sketch— painting sketch— real
Training |y
Image »m”"
NN from
Extended \;
Domain »

Figure 4: Nearest Neighbors for LADS on DomainNet Sketch — Clipart, Painting, Real. The
top row shows training images with the label on top being the intended domain augmentation for
that embedding. The bottom row shows the nearest neighbor of the augmentation in the extended
domain. Not only does LADS produce augmented embeddings within the correct domain, embed-
dings often match the specific class and stylistic elements of each original image.
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4.6 ABLATIONS

In this section, we ablate the class consistency and domain alignment loss described in Section 2.
We defer the remainder of the ablations, including ablations of the domain descriptions and the CLIP
model, to Appendix D.3, D.4, D.5.

In order to measure the impact of the domain alignment and class consistency loss functions, we
ablate each one and report the accuracy, domain alignment score, and class consistency score. We
also experiment with a domain-specific class consistency loss, which replaces T'(y;) with T'(t% ...
;) in order to enforce the class and domain all in one loss. We display our results on the Waterbirds
dataset below, with experiments on the other datasets in Appendix D.3.

As shown in Figure 5, the domain alignment loss alone results in a high domain alignment score, but
low accuracy due to losing some class specific information. Meanwhile, the class consistency loss
alone achieves the highest class consistency score because it retains the relevant class information,
but it fails to improve the OOD accuracy since the augmented embeddings are not within the new
domain. Even in the case of domain specific Lcc when the extended domain is incorporated into
the class consistency loss, the scores only slightly improve. It is only when we combine both our
losses that we are able to retain class information while transforming the image embeddings to the
desired domain, leading to improved out-of-domain accuracy. Nearest neighbor visualizations of
the different losses are given in Appendix D.3.

100

CLIP LP Lec Loa + Lec 100

-l = Dom + Lec

98.10-

90

80

80.04—
78.73—
84.95

70

Accuracy (%)
71.81
Score (%)

60

50

40

ID O0D Extended 0 Domain Alignment Class Consistency

Figure 5: Effect of the Loss Functions. We report the results of training with just the domain
alignment loss, the class consistency loss, a domain-specific class consistency loss, and the domain
alignment + class consistency loss, on Waterbirds. The DA loss results in high DA score but low
accuracy. The CC loss results in low DA score and does not improve the OOD accuracy; the domain-
specific CC variant brings negligible gains. Our final design (Lpa+Lcc) works the best.

5 LIMITATIONS AND FUTURE WORK

Since one must input a natural language description of the distribution shift, LADS may not apply to
“natural” distribution shifts where the change cannot be verbalized (Koh et al., 2021). Furthermore,
as our approach is reliant on the richness of concepts learned by a pretrained vision-language model,
it is also limited to domains that can be accurately represented with textual descriptions, and are well
covered in the data the pretrained models were trained on. As a general rule of thumb, if CLIP zero-
shot has very poor performance when it comes to classifying the domains and/or classes, LADS
should not be used (see Section E of the Appendix).

We have presented LADS, a fine-tuning method for addressing the task of Domain Extension with
Language. We view LADS as a jumping-off point for further exploration regarding how we can use
the zero-shot capabilities of large multimodal models to improve accuracy on a desired domain given
only language description as input. We hope that future work is able to perform reliable embedding
augmentations independently of the ability of CLIP to correctly classify the domains and classes at
hand. Furthermore, we hope future work is able to analyze more complicated domain shifts such as
the ones seen in WILDS Koh et al. (2021) or Imagenet-A (Hendrycks et al., 2021).
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