CLUTR: Curriculum Learning via Unsupervised Task Representation Learning

Abdus Salam Azad ' Izzeddin Gur? Jasper Emhoff' Nathaniel Alexis' Aleksandra Faust? Pieter Abbeel !
Ion Stoica !

Abstract

Reinforcement Learning (RL) algorithms are of-
ten known for sample inefficiency and difficult
generalization. Recently, Unsupervised Environ-
ment Design (UED) emerged as a new paradigm
for zero-shot generalization by simultaneously
learning a task distribution and agent policies
on the generated tasks. This is a non-stationary
process where the task distribution evolves along
with agent policies; creating an instability over
time. While past works demonstrated the poten-
tial of such approaches, sampling effectively from
the task space remains an open challenge, bottle-
necking these approaches. To this end, we intro-
duce CLUTR: a novel unsupervised curriculum
learning algorithm that decouples task representa-
tion and curriculum learning into a two-stage op-
timization. It first trains a recurrent variational au-
toencoder on randomly generated tasks to learn a
latent task manifold. Next, a teacher agent creates
a curriculum by maximizing a minimax REGRET-
based objective on a set of latent tasks sampled
from this manifold. Using the fixed-pretrained
task manifold, we show that CLUTR successfully
overcomes the non-stationarity problem and im-
proves stability. Our experimental results show
CLUTR outperforms PAIRED, a principled and
popular UED method, in the challenging Car-
Racing and navigation environments: achieving
10.6X and 45% improvement in zero-shot gen-
eralization, respectively. CLUTR also performs
comparably to the non-UED state-of-the-art for
CarRacing, while requiring 500X fewer environ-
ment interactions. We open source our code
athttps://github.com/clutr/clutr.

"University of California, Berkeley 2Google Research. Corre-
spondence to: Abdus Salam Azad <salam_azad @berkeley.edu>.

Proceedings of the 40" International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1. Introduction

Deep Reinforcement Learning (RL) has shown exciting
progress in the past decade in many challenging domains in-
cluding Atari (Mnih et al., 2015), Dota (Berner et al., 2019),
Go (Silver et al., 2016). However, deep RL is also known
for its sample inefficiency and difficult generalization—
performing poorly on unseen tasks or failing altogether
with the slightest change (Cobbe et al., 2019; Azad et al.,
2022; Zhang et al., 2018). While, Curriculum Learning
(CL) algorithms have shown to improve RL sample effi-
ciency by adapting the training task distribution, i.e., the
curriculum (Portelas et al., 2020; Narvekar et al., 2020),
recently a class of Unsupervised CL algorithms, called Un-
supervised Environment Design (UED) (Dennis et al., 2020;
Jiang et al., 2021a) has shown promising zero-shot general-
ization by automatically generating the training tasks and
adapting the curriculum simultaneously.

UED algorithms employ a teacher that generates training
tasks by sampling the free parameters of the environment
(e.g., the start, goal, and obstacle locations for a navigation
task) and can either be adaptive or random. Contemporary
adaptive UED teachers, i.e., PAIRED (Dennis et al., 2020)
and REPAIRED (Jiang et al., 2021a), are implemented as
RL agents with the free task parameters as their action space.
The teacher agent aims at generating tasks that maximize
the student agent’s regret, defined as the performance gap
between the student agent and an optimal policy. Inspite of
promising zero-shot generalization, adaptive teacher UEDs
are still sample inefficient.

This sample inefficiency is attributed primarily to the diffi-
culty of training a regret based RL teacher (Parker-Holder
et al., 2022). First, the teacher receives a sparse reward only
after specifying the full parameterization of a task; leading
to a long-horizon credit assignment problem. Additionally,
the teacher agent faces a combinatorial explosion problem
if the parameter space is permutation invariant—e.g., for a
navigation task, a set of obstacles corresponds to factorially
different permutations of the parameters'. Most importantly,

'Consider a 13x13 grid for a navigation task, where the loca-
tions are numbered from 1 to 169. Also consider a wall made of
four obstacles spanning the locations: {21, 22, 23, 24}. This wall
can be represented using any permutation of this set, e.g., {22, 24,

https://github.com/clutr/clutr

CLUTR: Curriculum Learning via Unsupervised Task Representation Learning

the teacher needs to simultaneously learn a task manifold—
from scratch—to generate training tasks and navigate this
manifold to induce an efficient curriculum. However, the
teacher learns this task manifold implicitly based on the
student regret and as the student is continuously co-learning
with the teacher, the task manifold also keeps evolving over
time. Hence, the simultaneous learning of task manifold
and curriculum results in an instability over time and makes
it a difficult learning problem.

To address the above-mentioned challenges, we present Cur-
riculum Learning via Unsupervised Task Representation
Learning (CLUTR). At the core of CLUTR, lies a hierar-
chical graphical model that decouples task representation
learning from curriculum learning. We develop a variational
approximation to the UED problem and employ a Recur-
rent Variational AutoEncoder (VAE) to learn a latent task
manifold, which is pretrained unsupervised. Unlike con-
temporary adaptive-teachers, which builds the tasks from
scratch one parameter at a time, the CLUTR teacher gen-
erates tasks in a single timestep by sampling points from
the latent task manifold and uses the generative model to
translate them into complete tasks. The CLUTR teacher
learns the curriculum by navigating the pretrained and fixed
task manifold via maximizing regret. By utilizing a pre-
trained latent task-manifold, the CLUTR teacher can train
as a contextual bandit — overcoming the long-horizon credit
assignment problem — and create a curriculum much more
efficiently — improving stability at no cost to its effective-
ness. Finally, by carefully introducing bias to the training
corpus (such as sorting each parameter vector), CLUTR
solves the combinatorial explosion problem of parameter
space without using any costly environment interactions.

While CLUTR can be integrated with any adaptive teacher
UEDs, we implement CLUTR on top of PAIRED—one of
the most principled and popular UEDs. Our experimental
results show that CLUTR outperforms PAIRED, both in
terms of generalization and sample efficiency, in the chal-
lenging pixel-based continuous CarRacing and partially ob-
servable discrete navigation tasks. For CarRacing, CLUTR
achieves 10.6X higher zero-shot generalization on the F1
benchmark (Jiang et al., 2021a) modeled on 20 real-life F1
racing tracks. Furthermore, CLUTR performs comparably
to the non-UED attention-based CarRacing SOTA (Tang
et al., 2020), outperforming it in nine of the 20 test tracks
while requiring 500X fewer environment interactions. In
navigation tasks, CLUTR outperforms PAIRED in 14 out
of the 16 unseen tasks, achieving a 45% higher solve rate.

In summary, we make the following contributions: i) we
introduce CLUTR, a novel adaptive-teacher UED algorithm
derived from a hierarchical graphical model for UEDs, that
augments the teacher with unsupervised task-representation

23,21}, {23, 21, 24, 22}, resulting in a combinatorial explosion.

learning ii) CLUTR, by decoupling task representation learn-
ing from curriculum learning, solves the long-horizon credit
assignment and the combinatorial explosion problems faced
by regret-based adaptive-teacher UEDs such as PAIRED.
iii) Our experimental results show CLUTR significantly
outperforms PAIRED, both in terms of generalization and
sample efficiency, in two challenging domains: CarRacing
and navigation.

2. Related Work

Unsupervised Curriculum Design: Dennis et al. (2020)
was the first to formalize UED and introduced the mini-
max regret-based UED teacher algorithm, PAIRED, with a
strong theoretical robustness guarantee. However, gradient-
based multi-agent RL has no convergence guarantees
and often fails to converge in practice (Mazumdar et al.,
2019). Pre-existing techniques like Domain Randomization
(DR) (Jakobi, 1997; Sadeghi & Levine, 2016; Tobin et al.,
2017) and minimax adversarial curriculum learning (Mori-
moto & Doya, 2005; Pinto et al., 2017) also fall under the
category of UEDs. DR teacher follows a uniform random
strategy, while the minimax adversarial teachers follow the
maximin criteria, i.e., generate tasks that minimize the re-
turns of the agent. POET (Wang et al., 2019) and Enhanced
POET (Wang et al., 2020) also approached UED, before
PAIRED, using an evolutionary approach of a co-evolving
population of tasks and agents.

Recently, Jiang et al. (2021a) proposed Dual Curriculum
Design (DCD): a novel class of UEDs that augments UED
generation methods (e.g., DR and PAIRED) with replay
capabilities. DCD involves two teachers: one that actively
generates tasks with PAIRED or DR, while the other curates
the curriculum to replay previously generated tasks with
Prioritized Level Replay (PLR) (Jiang et al., 2021b). Jiang
et al. (2021a) shows that, even with random generation (i.e.,
DR), updating the students only on the replayed level (but
not while they are first generated, i.e., no exploratory student
gradient updates as PLR) and with a regret-based scoring
function, PLR can also learn minimax-regret agents at Nash
Equilibrium and call this variation Robust PLR. It also intro-
duces REPAIRED, combining PAIRED with Robust PLR.
Parker-Holder et al. (2022) introduces ACCEL, which im-
proves on Robust PLR by allowing edit/mutation of the tasks
with an evolutionary algorithm. Currently, random-teacher
UEDs outperform adaptive-teacher UED methods.

While CLUTR and other PAIRED-variants actively adapt
task generation to the performance of agents, other algo-
rithms such as PLR generate tasks from a fixed-random task
distribution, resulting in two categories of UED methods,
1) adaptive teacher/generator based UEDs and ii) random-
generator based UEDs. The existing adaptive-teacher UEDs
are variants of PAIRED, which try to improve PAIRED

CLUTR: Curriculum Learning via Unsupervised Task Representation Learning

from different aspects, but are still susceptible to the in-
stability due to an evolving task-manifold. Unlike other
PAIRED variants, CLUTR introduces a novel variational
formulation with a VAE-style pretraining for task-manifold
learning to solve this instability issue and can be applied,
also potentially improve, any adaptive-teacher UEDs. On
the other hand, random-generator UEDs focus on identi-
fying or, prioritizing which tasks to present to the student
from the randomly generated tasks, and is orthogonal to our
proposed approach.

For recent advancements on supervised curriculum learning
and alternate curriculum objectives, we refer the readers
to Huang et al. (2022); Klink et al. (2022); Cho et al. (2023).

Representation Learning: Variational Auto Encoders
(Kingma & Welling, 2013; Rezende et al., 2014; Hig-
gins et al., 2016) have widely been used for their abil-
ity to capture high-level semantic information from low-
level data and generative properties in a wide variety of
complex domains such as computer vision (Razavi et al.,
2019; Gulrajani et al., 2016; Zhang et al., 2021; 2022),
natural language (Bowman et al., 2015; Jain et al., 2017),
speech (Chorowski et al., 2019), and music (Jiang et al.,
2020). VAE has been used in RL as well for representing
image observations (Kendall et al., 2019; Yarats et al., 2021)
and generating goals (Nair et al., 2018). While CLUTR
also utilizes similar VAEs, different from prior work, it com-
bines them in a new curriculum learning algorithm to learn
a latent task manifold. Florensa et al. (2018) also proposed
a curriculum learning algorithm, however, for latent-space
goal generation using a Generative Adversarial Network.

3. Background
3.1. Unsupervised Environment Design (UED)

As formalized by Dennis et al. (2020) UED is the prob-
lem of inducing a curriculum by designing a distribution
of concrete, fully-specified environments, from an under-
specified environment with free parameters. The fully spec-
ified environments are represented using a Partially Observ-
able Markov Decision Process (POMDP) represented by
(A4,0,5,T,Z,R,~), where A, O, and S denote the action,
observation, and state spaces, respectively. Z — O is the
observation function, R : S — R is the reward function,
T : SxA — A(S) is the transition function and - is the dis-
count factor. The underspecified environments are defined
in terms of an Underspecified Partially Observable Markov
Decision Process (UPOMDP) represented by the tuple M =
(A,0,0,8M TM TM RM ~). O is a set representing
the free parameters of the environment and is incorporated
in the transition function as 7™ : § x A x © — A(S9).
Assigning a value to g results in a regular POMDP, i.e.,
UPOMDP + § = POMDP. Traditionally (e.g., in Dennis

et al. (2020) and Jiang et al. (2021a)) O is considered as
a trajectory of environment parameters g or just 6—which
we call task in this paper. For example, 6 can be a concrete
navigation task represented by a sequence of obstacle lo-
cations. We denote a concrete environment generated with
the parameter fcOas M g or simply My. The value
of a policy 7 in My is defined as V() = E[S"[_, r+1],
where 7, is the discounted reward obtained by 7 in My.

3.2. PAIRED

PAIRED (Dennis et al., 2020) solves UED with an
adversarial game involving three players 2: the
agent mp and an antagonist w4, which are trained
on tasks generated by the teacher 6. PAIRED
objective is: mazg . ming U(mp,Ta, 0) =
E, ;[REGRET’(7p,m4)]. Regret is defined by the
difference of the discounted rewards obtained by the
antagonist and the agent in the generated tasks, i.e.,
REGRET! (1p,m4) = V?(ma) — V(np). The PAIRED
teacher agent is defined as A : IT — A(O7), where Il is a
set of possible agent policies and ©7 is the set of possible
tasks. The teacher is trained with an RL algorithm with U
as the reward while, the protagonist and antagonist agents
are trained using the usual discounted rewards from the
environments. Dennis et al. (2020) also introduced the
flexible regret objective, an alternate regret approximation
that is less susceptible to local optima. It is defined by
the difference between the average score of the agent and
antagonist returns and the score of the policy that achieved
the highest average return.

4. Curriculum Learning via Unsupervised
Task Representation Learning

In this section, we formally present CLUTR as a latent UED
and discuss it in details.

4.1. Formulation of CLUTR oz

®
E
)¢
o
\ /’

Figure 1: Hierarchical
Graphical Model for
CLUTR

*In the original PAIRED paper, the primary student agent was
named protagonist. However, in this paper, we generally refer to
it simply as the agent, except in a few instances where using the
term protagonist agent provides greater clarity.

At the core of CLUTR is the
latent generative model repre-
senting the latent task manifold.
Let’s assume that R is a random
variable that denotes a measure
of success over the agent and an-
tagonist agent and z be a latent
random variable that generates
environments/tasks, denoted by
the random variable E. We use

CLUTR: Curriculum Learning via Unsupervised Task Representation Learning

the graphical model shown in Figure 1 to formulate CLUTR.
Both E and R are observed variables while z is an unob-
served latent variable. R can cover a broad range of mea-
sures used in different UED methods including PAIRED and
DR (Domain Randomization). In PAIRED, R represents
the REGRET.

We use a variational formulation of UED by using the above
graphical model to derive the following ELBO for CLUTR,
where VAE(z, E) denotes the VAE objective:

ELBO =~ REGRET(R, E) — VAE(z, E) (1

We share the details of this derivation in Section A of the
Appendix. The above ELBO (Eq.1) defines the optimiza-
tion objective for CLUTR, which can be seen as optimizing
the VAE objective with a regret-based regularization term
and vice versa. As previously discussed, it is difficult to
train a UED teacher while jointly optimizing for both the
curriculum and task representations. Hence, we propose
a two-level optimization for CLUTR. First, we pretrain a
VAE to learn unsupervised task representations, and then
in the curriculum learning phase, we optimize for regret to
generate the curriculum while keeping the VAE fixed. In
Section 5.3, we empirically show that this two-level opti-
mization performs better than the joint optimization of Eq.1,
i.e., finetuning the VAE decoder with the regret loss during
the curriculum learning phase.

4.2. Unsupervised Latent Task Representation Learning

As discussed above, we use a Variational AutoEncoder
(VAE) to model our generative latent task-manifold. Align-
ing with Dennis et al. (2020) and Jiang et al. (2021a),
we represent task 6, as a sequence of integers. For exam-
ple, in a navigation task, these integers denote obstacle,
agent, and goal locations. We use an LSTM-based Recur-
rent VAE (Bowman et al., 2015) to learn task representations
from integer sequences. We learn an embedding for each
integer and use cross-entropy over the sequences to mea-
sure the reconstruction error. This design choice makes
CLUTR applicable to task parameterization beyond integer
sequences, e.g., to sentences or images. To train our VAEs,
we generate random tasks by uniformly sampling from 7,
the set of possible tasks. Thus, we do not require any inter-
action with the environment to learn the task manifold. Such
unsupervised training of the task manifold is practically very
useful as interactions with the environment/simulator are
much more costly than sampling. Furthermore, we sort the
input sequences, fully or partially, when they are permuta-
tion invariant, i.e., essentially represent a set. By sorting the
training sequences, we avoid the combinatorial explosion
faced by other adaptive UED teachers.

Algorithm 1 CLUTR
1: Pretrain VAE with randomly sampled tasks from ©
2: Randomly initialize Agent ¥, Antagonist 74, and
Teacher /~\;
3: repeat
4: Generate latent task vector: z ~ Z from the teacher
5: Create POMDP My where § = G(z) and G is the
VAE decoder function
6: Collect Agent trajectory 77 in Mj.
U (nh) =i g
7. Collect Anta%onist trajectory 74 in Mjy. Compute:
Ut(r) = Syt
8: Compute: REGRET! (77, 74) = U (n4) — U?(z)
9: Train Agent policy 7 with RL update and reward
R(rP) = U%(x")
10: Train Antagonist policy 74 with RL update and re-
ward R(74) = U?(14)
11: Train Teacher policy A with RL update and reward
R(m™) = REGRET
12: until not converged

Compute:

4.3. CLUTR

Now we describe CLUTR, which is outlined in Algorithm 1.
As discussed in Section 4.1, CLUTR follows a two-stage
optimization of Eq. 1. First, the VAE is pretrained to learn
the latent task-manifold Z (Line 1) and kept fixed during the
curriculum learning phase—the loop spanning Line 3 to 12.
Similar to existing adaptive-teacher UED methods, CLUTR
learns a curriculum employing an adversarial game where
the agent mp and the antagonist m4 solve environments
generated by the teacher A. However, unlike the exisiting
adaptive-teachers which directly generate the task param-
eters #, CLUTR teacher is a latent task designer/generator.
Defined as A : IT — A(Z), CLUTR teacher samples latent
task vectors z from the latent task-manifold Z, where II is
a set of possible agent policies (Line 4). We then create an
environment with the concrete task parameters 6 = G(2)
using the VAE decoder G : Z — O (Line 5). The agent and
the antagonist then navigate these environments. These tra-
jectories are collected (Line 6 and 7) and the agent and the
antagonist are updated using the usual discounted rewards
from the environments (Line 9-10). To learn the curriculum,
CLUTR teacher is trained using the same regret-based ob-
jective as PAIRED: REGRET(R, E)) = REGRET? (p, 74)
(Line 8 and 11). In our implementation, we used the Proxi-
mal Policy Optimization (Schulman et al., 2017) algorithm
for updating the teacher and the student agents. As we no-
tice, CLUTR is outlined similar to PAIRED, but with two
critical updates to incorporate the latent space in Line 4 and

Now we discuss a couple of additional properties of CLUTR

CLUTR: Curriculum Learning via Unsupervised Task Representation Learning

compared to other adaptive-teacher UEDs, i.e., PAIRED and
REPAIRED. First, CLUTR teacher samples from the latent
space Z and thus generates a task in a single timestep. Note
that this is not possible for other adaptive UED teachers,
as they operate on parameter space and generate one task
parameter at a time, conditioned on the state of the partially-
generated task so far. Furthermore, Adaptive-teacher UEDs
typically observe the state of their partially generated task to
generate the next parameters. Hence, they require designing
different teacher architectures for environments with differ-
ent state space. CLUTR teacher architecture, however, is
agnostic of the problem domain and does not depend on
their state space. Hence, the same architecture can be used
across different environments.

4.4. CLUTR in the Context of Contemporary UED
Method Landscape

As discussed in Section 2, contemporary UED methods
can be characterized by their i) teacher type (random/fixed
or, learned/adaptive) and, ii) the use of replay. To clearly
place CLUTR in the context of contemporary UEDs, we
discuss another important aspect of curriculum learning
algorithms: how the task manifold is learned. The random-
generator UEDs (e.g., DR, PLR) do not learn a task man-
ifold. Regret-based adaptive-teachers, i.e., PAIRED and
REPAIRED, learn an implicit (e.g., the hidden state of the
teacher LSTM) task-manifold—from scratch—but it is not
utilized explicitly. It is trained via RL, based on the regret
estimates of the tasks they generate. Hence, these task-
manifolds depend on the quality of the estimates, which in
turn depends on the overall health of the multi-agent RL
training. Furthermore, they do not take into account the
actual task structures. In contrast, CLUTR introduces an
explicit task-manifold modeled with VAE, that can repre-
sent a local neighborhood structure capturing the similar-
ity of the tasks, subject to the parameter space being used.
Hence, similar tasks (in terms of parameterization) would be
placed nearby in the latent space. Intuitively this local neigh-
borhood structure should facilitate the teacher to navigate
the manifold effectively. The above discussion illustrates
that CLUTR along with PAIRED and REPAIRED form a
category of UEDs that generates tasks based on a learned
task-manifold, orthogonal to the random generation-based
methods, while CLUTR being the only one utilizing an un-
supervised generative task manifold. Table 1 summarizes
the similarity and differences.

5. Experiments

In this section, we evaluate CLUTR in two challenging
domains: 1) Pixel-Based Car Racing with continuous control
and dense rewards, and ii) partially observable navigation
tasks with discrete control and sparse rewards. We compare

CLUTR primarily with PAIRED to analyze its impact on
improving adaptive-teacher UED algorithms, experimenting
with two commonly used regret objectives: standard and
flexible. As discussed in Section 2 and 4.4, there are other
random-generator and adaptive-teacher UEDs employing
techniques complimentary or orthogonal to our approach.
For completeness, we compare CLUTR with such existing
UED methods in Section D.1 and E in the Appendix.

We then empirically investigate the following hypotheses:
H1: Simultaneous learning of latent task manifold and cur-
riculum degrades performance (Section 5.3)

H2: Training VAE on sorted data solves the combinatorial
explosion problem. (Section 5.4)

At last, we analyze CLUTR curriculum in multiple aspects
while comparing it with PAIRED to have a closer under-
standing. Full details of the environments, network architec-
tures, training hyperparameters, VAE training and further
details are discussed in the Appendix.

5.1. CLUTR Performance on Pixel-Based Continuous
Control CarRacing Environment

The CarRacing environment (Jiang et al., 2021a; Brock-
man et al., 2016) requires the agent to drive a full lap
around a closed-loop racing track modeled with Bézier
Curves (Mortenson, 1999) of up to 12 control points. Both
CLUTR and PAIRED were trained for 2M timesteps for
flexible regret objective and for SM timesteps for the stan-
dard regret objective experiments. We train the VAE on 1
million randomly generated tracks for 1 million gradient
updates. Note that only one VAE was trained and used for
all the experiments (10 independent runs, both objectives).
We evaluate the agents on the F1 benchmark (Jiang et al.,
2021a) containing 20 test tracks modeled on real-life F1 rac-
ing tracks. These tracks are significantly out of distribution
than any tracks that the UED teachers can generate with just
12 control points. Further details on the environment, net-
work architectures, VAE training, and detailed experimental
results with analysis can be found in Section C.1, C.2, C.4, D
of the Appendix, respectively.

Figure 2 shows the mean return obtained by CLUTR and
PAIRED on the full F1 benchmark, on. We independently
experimented with both the standard and flexible regret
objectives. We notice that PAIRED performs miserably
with standard regret in these tasks. However, implementing
CLUTR or changing to the flexible regret objective, im-
proves the performance considerably. Furthermore, CLUTR
with flexible regret results in much better performance, com-
parable to the non-UED attention-based SOTA for CarRac-
ing (Tang et al., 2020), despite not using a self-attention
policy and training on 500X fewer environment interactions,
while outperforming it on nine of the 20 F1 tracks (See
Table 4 in Appendix). We also note, CLUTR improves

CLUTR: Curriculum Learning via Unsupervised Task Representation Learning

Algorithm Task Teacher UED Replay
Representation Learning Model Method Method

DR -

PLR i Random DR PLR

Robust PLR Robust PLR

ACCEL DR + Evolution

PAIRED Implicit via RL .

REPAIRED Learned Regret Robust PLR

Explicit via
CLUTR Unsupervised Generative Model i

Table 1: A comparative characterization of contemporary UED methods

3]
8

Mean Performance on full F1 Benchmark

PAIRED
s CLUTR
400
300
200
100
with

with Attention
Standard Regret Flexible Regret Agent

=)

Figure 2: Comparison on the F1 Benchmark comprising
20 tracks modeled on real-life F1 racing tracks collected
from 10 independent runs. CLUTR achieves 10.6X and
82% higher returns than PAIRED with standard and flexible
regret objectives, respectively. CLUTR also performs com-
parably to the attention-based non-UED CarRacing SOTA,
while requiring 500X fewer environment interactions.

PAIRED irrespective of the choice of the regret objectives:
achieving 10.6X and 82% higher returns with standard and
flexible regret objectives, respectively and outperforming
PAIRED on each of the 20 F1 tracks (See Table 4). Fig-
ure 3 illustrate the agents’ generalization capabilities dur-
ing training, by periodically evaluating them on a subset
of three unseen F1 tracks: Singapore, Germany, and Italy,
which are selected aligning with Jiang et al. (2021a). Based
on these environments, CLUTR shows significantly better
trends of sample efficiency, achieving better generalization
with significantly fewer environment interactions compared
to PAIRED. Furthermore, CLUTR (with flexible regret)
emerges as the best adaptive-teacher UED for CarRacing
outperforming the other adaptive-teacher UED: REPAIRED
and random-generator UEDs: DR, and PLR by 58%, 38%
and 16%, repectively. CLUTR is also the only adaptive-
teacher UED that outperforms the random-teacher UED
methods. CLUTR falls short (by 14%) only to Robust PLR—
a random generator dual-curriculum UED with replay and
stop-gradient capabilities—a method fundamentally differ-
ent than ours or, PAIRED. Further discussion with detailed

performance and comparison can be found in Section D.1.

600
50— CUTR — CWR
FAIRED 500 PAIRED

300

vironm

200

100

0

Selected Test Eny

-100

000 025 050 075 100 125 150 175 200
TimeStep TimeSteps 1e6

(a) with Standard Objective (b) with Flexible Objective

Figure 3: Zero-shot generalization over the course of train-
ing by periodic evaluation on a subset of three F1 tracks:
Singapore, Germany, and Italy. CLUTR indicate signifi-
cantly better sample efficiency than PAIRED.

5.2. CLUTR Performance on Partially Observable
Navigation Tasks on MiniGrid

We now compare CLUTR with PAIRED on the popular
MiniGrid environment, originally introduced by (Chevalier-
Boisvert et al., 2018) and adopted by (Dennis et al., 2020)
for UEDs, for both standard and flexible regret objectives.
In these navigation tasks, an agent explores a grid world to
find the goal while avoiding obstacles and receives a sparse
reward upon reaching the goal. For flexible regret exper-
iment, we generated 10 million random grids to train the
VAE, with the obstacle locations sorted, and the number
of obstacles uniformly varying from zero to 50, aligning
with (Dennis et al., 2020). The standard regret experiment
uses a similar but smaller dataset of 1 million grids. Note
that the results reported in the original PAIRED paper are
obtained after 3 billion timesteps of training, while we train
PAIRED and CLUTR for 250M and 500M timesteps (5 in-
dependent runs), for flexible and standard regret objectives,
respectively. We evaluate on a testset of 16 novel navigation
tasks from Dennis et al. (2020).

Figure 4 shows the mean solve rate obtained by CLUTR and
PAIRED on the test dataset. CLUTR improves PAIRED irre-
spective of the choice of the regret objectives: 45% and 35%

CLUTR: Curriculum Learning via Unsupervised Task Representation Learning

PAIRED
mm CLUTR
0.8
[}
T
¥ 06
[
>
©
@ I
5 04
D
=
0.2
0.0
with Standard with Flexible
Regret (500M) Regret (250M)

Figure 4: Mean solve rate on the test dataset comprising 16
novel nagivation tasks from 5 independent runs. CLUTR
achieves 45% and 35% higher solve rate than PAIRED, with
standard and flexible regret objectives, respectively.

higher solve rate than PAIRED outperforming on 14 and 13
individual test grids out of 16 (See Figure 27 and Figure 22
in Section E for details), with standard and flexible regret
objectives, respectively. Figure 5 plot solve rate on all the 16
test grids during training for flexible objective and a subset
of four grids, namely, Sixteen Rooms, Sixteen Rooms with
Fewer Doors, Labyrinth, and Large Corridor, for standard
objective. We see CLUTR, though showing an initial dip
for flexible objective, shows better sample efficiency by
achieving a higher solve rate earlier than PAIRED.

H s
7 04 §
¥ 204
Eor
. — auir »\‘/

w o1 | — aum

PARED
00

TimeStep bl 00 05 10 20
Tmesta

eps

(a) with Standard ObjectiVe (b) with Flexible ObjeCtiVe
Figure 5: Agent solved rate on the 16 unseen grids from Den-
nis et al. (2020) during training. CLUTR shows better sam-
ple efficiency and generalization than PAIRED. The results
show an average of 5 independent runs..

5.3. Learning Task Manifold and Curriculum: Joint vs
Two-staged Optimization

We hypothesized that learning the task representation and
the curriculum simultaneously results in a difficult learn-
ing problem due to the non-stationarity of the process. To
test this, we conduct an experiment in which we allow fine-
tuning our pretained decoder with the regret loss during
the curriculum learning phase. This experiment, namely
‘CLUTR with Decoder Finetuning’, shows a 29% perfor-
mance drop in the CarRacing domain with the standard
regret objective (Figure 7). Similarly, we see a drop of 10%

in case of flexible regret further justifying our hypothesis
(See Section D.2.2 for details). As a side note, the smaller
drop in the later case indicates that flexible objective mit-
igates some of the instability problem too. Finally, even
with decoder finetuning, CLUTR achieves 7.6X and 65%
improvement over PAIRED, for standard and flexible regret
respectively— indicating the benefits of pretrained decou-
pled latent task space. The above experimental results thus
empirically validates our hypothesis that keeping the pre-
trained task manifold fixed during curriculum learning helps
solving the instability problem.

5.4. Impact of Sorting VAE Training Data on Solving
Combinatorial Explosion

We hypothesized that training a VAE on sorted sequences
can solve the combinatorial explosion problem. To test this,
we conduct an experiment, ‘CLUTR with Shuffled VAE’,
in which we train CLUTR with an alternate VAE—trained
5X longer on a non-sorted and 10X bigger version of the
original dataset. This experiment shows a 31% performance
drop in the CarRacing domain as seen in Figure 7, empiri-
cally validating our hypothesis. On another note, CLUTR
with Shuffled VAE still shows a 7.3X improvement over
PAIRED. This indicates that, even when the task manifold
is ‘suboptimal’, a fixed and pretrained task-manifold, i.e.,
the decoupling of task representation and curriculum learn-
ing, helps solving the learning instability and combinatorial
explosion problem faced by PAIRED. Further details of this
experiment are discussed in Section D.4 of the Appendix.

5.5. Analysis of the Curriculum: CLUTR vs PAIRED

In Section 5.1 and 5.2 we discussed how CLUTR outper-
forms PAIRED, both in terms of sample efficiency and
generalization, suggesting CLUTR induces a significantly
more effective curriculum than PAIRED. For better under-
standing of CLUTR curriculum, in Figure 8 we analyze the
mean regret—the performance gap between the agent and
the adversary—on the teacher-generated curricula for both
CarRacing and navigation tasks.

CLUTR and PAIRED show similar regret patterns, which
is not surprising as both optimize regret using the same
criteria. However, CLUTR converges to a smaller regret
value; faster than PAIRED. From a curriculum learning per-
spective, smoother training is expected with tasks that are
‘slightly’ harder than the agent can already solve or, can ob-
tain ‘slightly’ better returns. In practice, both the agent and
the antagonist are trained in the same training data and con-
text e.g., the same hyper-parameters, architecture, differing
only by their random initial weights. Hence, a lower regret
implies that the teacher is generating tasks at the frontier
of the agents’ capabilities, which are either slightly harder
than the agent should be able to solve (because antagonist is

CLUTR: Curriculum Learning via Unsupervised Task Representation Learning

.-
2o e 9 o

Environment Interactions 2M) ———

—— Environment Interactions (500M) ——

Figure 6: Example tracks(left) and grids(right) generated by CLUTR(top) and PAIRED(bottom) uniformly sampled at
different stages of training. The training progresses from left to right. PAIRED seems to generate over simplified tasks for
substantial amount of time hampering agent learning. CLUTR generates interesting tasks throughout.

N
a
o

N
o
o

Mean Return on F1 Dataset
S o
o o

a1
o

oIII

CLUTR CLUTR with CLUTR with PAIRED
(Fixed Decoder Shuffled
Pretrained Finetuning VAE

Decoder)

Figure 7: Impact of i) joint vs two-staged optimization of
the task manifold and ii) using a ‘Shuffled” VAE, trained
on a larger shuffled dataset. The leftmost column shows
the default CLUTR performance—i.e., using a pretrained
decoder (VAE) trained on sorted training data, kept fixed
during the curriculum learning phase—with standard regret
objective for CarRacing. Allowing the decoder to finetune
with the regret loss results in a 29% performance drop and
the use of Shuffled VAE shows a drop of 31%. These per-
formance drops empricially justify our hypotheses H1 and
H2. Also, CLUTR with decoder finetuning and Shuffled
VAE still outperform PAIRED, with 7.6X and 7.3X better
returns, respectively.

2 3
TimeStep

(a) Mean Regret - CarRacing (b) Mean Regret - Navigation
Figure 8: Mean standard regret during training. CLUTR
shows a smaller regret value indicating a smaller perfor-
mance gap between the agent and the antagonist, compared
to PAIRED.

solving them) or, the tasks in which antagonist is performing
slightly better. On the other hand, higher regret values can
result from generating tasks which are biased towards the
strength or, idiosyncracy of only one of the agents, which
might not be useful for generalization. In fact, PAIRED has
shown to over exploit the relative strength of the antagonist
for CarRacing (Jiang et al. (2021a)), inducing curriculum
showing high regret but poor generalization. Furthermore,
a high regret can also imply the antagonist becoming sig-
nificantly better than agent, which may lead to the teacher
not having enough incentive to generate novel and diverse
tasks, harming agent learning. Hence the lower regret value,
might indicate that CLUTR is identifying the frontier of
agents’ capabilities better than PAIRED and thus inducing
a more effective curriculum for training the student agents,
as supported by the empirical performance.

Figure 6 shows snapshots of CLUTR and PAIRED gener-
ated curriculums as training progress. We notice, PAIRED
generates over-simplified tasks for substantial amount of
time, which might hamper its generalization and sample
efficiency. On the other hand, CLUTR doesnt seem to start
with overly-simplistic tasks, rather generates tasks with a
wide range of difficulty throughout. Section E.4 shares de-
tailed analysis supporting the above observation and further
insights.

6. Conclusion: Limitations and Future Work

In this work, we introduce CLUTR, an unsupervised latent
space adaptive-teacher UED method that augments adap-
tive UED teachers with a pretrained latent task manifold
to decouple task representation learning from curriculum
learning. CLUTR first trains a recurrent VAE from random
tasks to learn the latent task manifold and then employs
a regret-based adaptive-teacher to induce the curriculum.
Through this decoupling, CLUTR solves the long-horizon
credit assignment and the combinatorial explosion prob-
lems faced by regret-based adaptive-teacher UED methods.
Our experimental results show strong empirical evidence
supporting the effectiveness of our proposed approach.

CLUTR: Curriculum Learning via Unsupervised Task Representation Learning

Even though CLUTR and other regret-based UEDs empiri-
cally show good generalization on human-curated complex
transfer tasks, they rarely can generate human-level task
structures during training. An interesting direction would
be to enable UED algorithms to generate realistic tasks. Fur-
thermore, as these methods rely significantly on the design
of parameter-space, it would be interesting to investigate
how these methods scale on the higher dimensional environ-
ments. Another important direction would be to reduce the
gap between the theoretical and practical aspects of regret-
based multi-agent UED algorithms, which are subject to the
quality of regret estimates and multi-agent RL training. At
last, random generator algorithms like Robust PLR or even,
DR have been shown to perform better than adaptive-teacher
approaches like CLUTR or PAIRED. An interesting direc-
tion would be to investigate the conditions/environments
under which a random generator performs better than an
adaptive generator and vice versa. At last, we are excited
about latent-space curriculum design and hope our work
will encourage further research in this domain.

Acknowledgments

This project is a collaboration under the Google-BAIR
(Berkeley Artifcial Intelligence Research) Commons pro-
gram. It was supported in part by NSF CISE Expeditions
Award CCF-1730628, in addition to gifts from Astronomer,
Google, IBM, Intel, Lacework, Microsoft, Mohamed Bin
Zayed University of Artificial Intelligence, Nexla, Sam-
sung SDS, Uber, and VMware. We gratefully acknowl-
edge Natasha Jaques for their valuable feedback. We also
acknowledge Raymond Chong, Adrian Liu, and Sarah
Bhaskaran for the valuable discussions.

References

Azad, A. S., Kim, E., Wu, Q., Lee, K., Stoica, 1., Abbeel,
P., Sangiovanni-Vincentelli, A., and Seshia, S. A. Pro-
grammatic modeling and generation of real-time strate-
gic soccer environments for reinforcement learning. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 36, pp. 6028-6036, 2022.

Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak, P.,
Dennison, C., Farhi, D., Fischer, Q., Hashme, S., Hesse,
C., et al. Dota 2 with large scale deep reinforcement
learning. arXiv preprint arXiv:1912.06680, 2019.

Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A. M., Joze-
fowicz, R., and Bengio, S. Generating sentences from
a continuous space. arXiv preprint arXiv:1511.06349,
2015.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
arXiv preprint arXiv:1606.01540, 2016.

Chevalier-Boisvert, M., Willems, L., and Pal, S. Minimalis-
tic gridworld environment for gymnasium. https://
github.com/Farama-Foundation/MiniGrid,
2018.

Cho, D., Lee, S., and Kim, H. J. Outcome-directed rein-
forcement learning by uncertainty & temporal distance-
aware curriculum goal generation. arXiv preprint
arXiv:2301.11741, 2023.

Chorowski, J., Weiss, R. J., Bengio, S., and van den Oord,
A. Unsupervised speech representation learning using
wavenet autoencoders. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 27(12):2041-2053,
2019. doi: 10.1109/TASLP.2019.2938863.

Cobbe, K., Klimov, O., Hesse, C., Kim, T., and Schulman,
J. Quantifying generalization in reinforcement learning.
In International Conference on Machine Learning, pp.
1282-1289. PMLR, 2019.

Dennis, M., Jaques, N., Vinitsky, E., Bayen, A., Russell,
S., Critch, A., and Levine, S. Emergent complexity and
zero-shot transfer via unsupervised environment design.
Advances in neural information processing systems, 33:
13049-13061, 2020.

Florensa, C., Held, D., Geng, X., and Abbeel, P. Automatic
goal generation for reinforcement learning agents. In
International conference on machine learning, pp. 1515-
1528. PMLR, 2018.

Gulrajani, 1., Kumar, K., Ahmed, F., Taiga, A. A., Visin,
F., Vazquez, D., and Courville, A. Pixelvae: A la-
tent variable model for natural images. arXiv preprint
arXiv:1611.05013, 2016.

https://github.com/Farama-Foundation/MiniGrid
https://github.com/Farama-Foundation/MiniGrid

CLUTR: Curriculum Learning via Unsupervised Task Representation Learning

Higgins, 1., Matthey, L., Pal, A., Burgess, C., Glorot, X.,
Botvinick, M., Mohamed, S., and Lerchner, A. beta-
vae: Learning basic visual concepts with a constrained
variational framework. 2016.

Huang, P., Xu, M., Zhu, J., Shi, L., Fang, F., and Zhao,
D. Curriculum reinforcement learning using optimal
transport via gradual domain adaptation. arXiv preprint
arXiv:2210.10195, 2022.

Jain, U., Zhang, Z., and Schwing, A. G. Creativity: Gener-
ating diverse questions using variational autoencoders. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 6485-6494, 2017.

Jakobi, N. Evolutionary robotics and the radical envelope-
of-noise hypothesis. Adaptive behavior, 6(2):325-368,
1997.

Jiang, J., Xia, G. G., Carlton, D. B., Anderson, C. N.,
and Miyakawa, R. H. Transformer vae: A hierarchi-
cal model for structure-aware and interpretable music
representation learning. In ICASSP 2020 - 2020 IEEE
International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pp. 516-520, 2020. doi:
10.1109/ICASSP40776.2020.9054554.

Jiang, M., Dennis, M., Parker-Holder, J., Foerster, J., Grefen-
stette, E., and Rocktédschel, T. Replay-guided adversarial
environment design. Advances in Neural Information
Processing Systems, 34:1884-1897, 2021a.

Jiang, M., Grefenstette, E., and Rocktischel, T. Prioritized
level replay. In International Conference on Machine
Learning, pp. 4940-4950. PMLR, 2021b.

Kendall, A., Hawke, J., Janz, D., Mazur, P., Reda, D., Allen,
J.-M., Lam, V.-D., Bewley, A., and Shah, A. Learning
to drive in a day. In 2019 International Conference on
Robotics and Automation (ICRA), pp. 8248-8254. 1IEEE,
2019.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Klink, P, Yang, H., D’Eramo, C., Peters, J., and Pajarinen,
J. Curriculum reinforcement learning via constrained op-

timal transport. In International Conference on Machine
Learning, pp. 11341-11358. PMLR, 2022.

Mazumdar, E., Ratliff, L. J., Jordan, M. 1., and Sastry,
S. S. Policy-gradient algorithms have no guarantees
of convergence in linear quadratic games, 2019. URL
https://arxiv.org/abs/1907.03712.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control

10

through deep reinforcement learning. nature, 518(7540):
529-533, 2015.

Morimoto, J. and Doya, K. Robust reinforcement learning.
Neural computation, 17(2):335-359, 2005.

Mortenson, M. E. Mathematics for computer graphics ap-
plications. Industrial Press Inc., 1999.

Nair, A. V., Pong, V., Dalal, M., Bahl, S., Lin, S., and
Levine, S. Visual reinforcement learning with imag-
ined goals. In Bengio, S., Wallach, H., Larochelle,
H., Grauman, K., Cesa-Bianchi, N., and Garnett,
R. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 31. Curran Associates,
Inc., 2018. URL https://proceedings.
neurips.cc/paper/2018/file/
7ec69dd44416c46745f6edd947b470cd-Paper.
pdf.

Narvekar, S., Peng, B., Leonetti, M., Sinapov, J., Taylor,
M. E., and Stone, P. Curriculum learning for reinforce-
ment learning domains: A framework and survey. arXiv
preprint arXiv:2003.04960, 2020.

Parker-Holder, J., Jiang, M., Dennis, M., Samvelyan, M.,
Foerster, J., Grefenstette, E., and Rocktischel, T. Evolv-
ing curricula with regret-based environment design. arXiv
preprint arXiv:2203.01302, 2022.

Pinto, L., Davidson, J., and Gupta, A. Supervision via
competition: Robot adversaries for learning tasks. In
2017 IEEE International Conference on Robotics and
Automation (ICRA), pp. 1601-1608. IEEE, 2017.

Portelas, R., Colas, C., Weng, L., Hofmann, K., and
Oudeyer, P.-Y. Automatic curriculum learning for deep rl:
A short survey. arXiv preprint arXiv:2003.04664, 2020.

Razavi, A., Van den Oord, A., and Vinyals, O. Generating
diverse high-fidelity images with vq-vae-2. Advances in
neural information processing systems, 32, 2019.

Rezende, D. J., Mohamed, S., and Wierstra, D. Stochastic
backpropagation and approximate inference in deep gen-
erative models. In International conference on machine
learning, pp. 1278-1286. PMLR, 2014.

Sadeghi, F. and Levine, S. Cad2rl: Real single-image flight
without a single real image, 2016. URL https://
arxiv.org/abs/1611.04201.

Schulman, J., Wolski, F., Dhariwal, P.,, Radford, A.,
and Klimov, O. Proximal policy optimization algo-
rithms, 2017. URL https://arxiv.org/abs/
1707.06347.

https://arxiv.org/abs/1907.03712
https://proceedings.neurips.cc/paper/2018/file/7ec69dd44416c46745f6edd947b470cd-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/7ec69dd44416c46745f6edd947b470cd-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/7ec69dd44416c46745f6edd947b470cd-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/7ec69dd44416c46745f6edd947b470cd-Paper.pdf
https://arxiv.org/abs/1611.04201
https://arxiv.org/abs/1611.04201
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347

CLUTR: Curriculum Learning via Unsupervised Task Representation Learning

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, 1.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
nature, 529(7587):484-489, 2016.

Tang, Y., Nguyen, D., and Ha, D. Neuroevolution of self-
interpretable agents. In Proceedings of the 2020 Genetic
and Evolutionary Computation Conference, pp. 414-424,
2020.

Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W.,
and Abbeel, P. Domain randomization for transferring
deep neural networks from simulation to the real world.
In 2017 IEEE/RSJ international conference on intelligent
robots and systems (IROS), pp. 23-30. IEEE, 2017.

Wang, R., Lehman, J., Clune, J., and Stanley, K. O. Paired
open-ended trailblazer (poet): Endlessly generating in-
creasingly complex and diverse learning environments
and their solutions. arXiv preprint arXiv:1901.01753,
2019.

Wang, R., Lehman, J., Rawal, A., Zhi, J., Li, Y., Clune, J.,
and Stanley, K. Enhanced poet: Open-ended reinforce-
ment learning through unbounded invention of learning

challenges and their solutions. In International Confer-
ence on Machine Learning, pp. 9940-9951. PMLR, 2020.

Yarats, D., Zhang, A., Kostrikov, 1., Amos, B., Pineau, J.,
and Fergus, R. Improving sample efficiency in model-
free reinforcement learning from images. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 35, pp. 10674-10681, 2021.

Zhang, A., Ballas, N., and Pineau, J. A dissection of over-
fitting and generalization in continuous reinforcement
learning. arXiv preprint arXiv:1806.07937, 2018.

Zhang, M., Zhang, A., and McDonagh, S. On the out-of-
distribution generalization of probabilistic image mod-
elling. Advances in Neural Information Processing Sys-
tems, 34:3811-3823, 2021.

Zhang, M., Xiao, T. Z., Paige, B., and Barber, D. Improv-
ing vae-based representation learning. arXiv preprint
arXiv:2205.14539, 2022.

11

Ethic Statement

Unsupervised Environment Design can be applied to many
real-world applications and shares similar ethical concerns
and considerations with other Artificially Intelligent(AI)
systems. For example, Al systems can cause more unem-
ployment or be used for reasons/applications that have a
negative societal impact, for which responsible usage of
such Al systems must be promoted and established. During
our research, all the experiments were done in simulation
and no human or living subjects were used.

Reproducibility

Our code, saved checkpoints, and training data are available
athttps://github.com/clutr/clutr

https://github.com/clutr/clutr

CLUTR: Curriculum Learning via Unsupervised Task Representation Learning

A. CLUTR Objective Derivation

We use a hierarchical graphical model to formulate the latent environment design problem.

Let’s assume that R is a random variable that denotes a measure of success defined using the
protagonist and antagonist agents and z be a latent random variable. We use the graphical

model in Figure 9 where 2z generates an environment E and R is the success defined over E.

Both E and R are observed variables while z is an unobserved variable. R covers a broad
range of measures used in different UED methods including PAIRED and DR (Domain
Randomization). In PAIRED, R represents the REGRET as the difference of returns between
the antagonist and protagonist agents and it depends on the environments that the agents are
evaluated on.

We use a variational formulation of UED by using the above graphical model. We first define
the variational objective as the KL-divergence between an approximate posterior distribution
and true posterior distribution over latent variable z,

= B, q)llog q(2)] — E.qz)llog p(R, E, 2)] + log p(R, E)

where both R and E are given.
Next, we write the ELBO,

ELBO = E. g log p(R, E,2)] — E.q(z)[log q(2)]
= E.q(»)log p(RIE)p(E]2)p(2)] — E.vq(z)llog q(2)]

= EZNq(Z) [lOg p(R‘E)] + Ezwq(z) [IOg p(E‘Z)] =+ EZNq(z) [IOg p(Z)] -

=log p(R|E) + E.q()log p(E|2)] — E.q(z)[log ZZ;]

=log p(R|E) + E.q(z)[log p(E|2)] — Dxr(q(2)llp(2))
= log p(R|E) — VAE(z, E)

I
?
. A

z)

Figure 9:
Graphical
CLUTR

Hierarchical

Model

Ezwq(z) [IOg Q(Z)]

for

We can also induce an objective that includes minimax REGRET. Let R be distributed according to an exponential

distribution, p(R|E) « exp(REGRET(7p,m4|E)),

we derive,

ELBO =~ REGRET(R, E) — VAE(z, E)

where the normalizing factor is ignored.

B. Robustness Guarantees

CLUTR essentially proposes including a pretrained latent space within the teacher/generator. From the teacher’s perspective,
the difference is while the PAIRED teacher starts from randomly initialized weights, CLUTR starts from the pretrained
weights. Thus, CLUTR does not impose new assumptions on possible teacher policies. Furthermore, CLUTR does not
change any other specifics of the underlying PAIRED algorithm. Hence, CLUTR holds the same theoretical robustness

guarantees provided by PAIRED.

In practice, both CLUTR and PAIRED deviate from these theoretical guarantees. For example, both algorithms approximate
the regret value, which is the case for other regret-based UEDs such as Robust PLR and REPAIRED ((Jiang et al., 2021a)).
Also, the robustness guarantee depends on reaching the Nash equilibrium of the multiagent adversarial game. However,

12

CLUTR: Curriculum Learning via Unsupervised Task Representation Learning

gradient-based multi-agent RL has no convergence guarantees and often fails to converge in practice((Mazumdar et al.,
2019)). We also note that, by introducing the latent space, CLUTR VAE might not have access to the full task space due
to practical limitations on training, e.g., the training dataset not having all possible tasks. However, when the decoder is
allowed to be finetuned, CLUTR will have access to the full task space, similar to PAIRED. Our empirical results (discussed
in Section 5.3) suggest that keeping the pretrained decoder fixed performs better than finetuning it, so we kept it fixed for
our main experiments. We also want to mention, when the flexible objective is used, CLUTR (and PAIRED) does not hold
the robustness guarantee as it changes the dynamics of the underlying game between the teacher and the agents, even though
flexible regret works better in practice.

C. Training Details
C.1. Environment Details

Car Racing: The CarRacing environment was originally proposed by OpenAl Gym (Brockman et al., 2016), and later has
been reparameterized by (Jiang et al., 2021a) with Bézier Curves((Mortenson, 1999)) for UED algorithms. This environment
requires the agents to drive a full lap around a closed-loop track. The track is defined by a Bézier Curve modeled with
a sequence of upto 12 arbitrary control points, each spaced within a fixed radius B/2 of the center of the B x B field.
This sequence of control points can uniquely identify a track, subject to a set of predefined curvature constraints (Jiang
et al., 2021a). The control points are encoded in a 10 x 10 grid—a discrete downsampled version of the racing track
field. Each control point hence is a integer denoting a cell of the grid and the cell coordinates are upscaled to match
the original scale of the field afterwards. This ensures no two control points are too close together, preventing areas of
excessive track overlapping. The track consists of a sequence of L polygons and the agent receives a reward of 1000/ L upon
visiting each unvisited polygon and a penalty of —0.1 at each time step to incentivize completing the tracks faster. Episodes
terminate if the agent drives too far off-track but is not given any additional penalty. The agent controls a 3 dimensional
continuous action space corresponding to the car’s steer: torque € [—1.0, 1.0], gas: acceleration € [0, 0, 1.0], and brake:
deceleration € [0.0, 1.0]. Each action is repeated 8 times. The agent receive a 96 x 96 x 3 RGB pixel observation. The top
84 x 96 portion of the frame contains a clipped, egocentric, bird’s eye view of the horizontally centered car. The bottom
12 x 96 segment simulates a dashboard visualizing the agent’s latest action and return. Snapshots of the test track in the F1
benchmark are shown in Figure 10.

Minigrid: The environment is partially observable and based on (Chevalier-Boisvert et al., 2018) and adopted for UED by
(Dennis et al., 2020). Each navigation task is represented with a sequence of integers denoting the locations of the obstacles,
the goal, and the starting position of the agent: on a 15 x 15 grid similar to (Dennis et al., 2020). The grids are surrounded
by walls on the sides, making it essentially a 13 x 13 grid. (Dennis et al., 2020) parameterizes the locations using integers.
Each task is a sequence of 52 integers, while the first 50 numbers denote the location of obstacles followed by the goal and
the agent’s initial location. The sequences may contain duplicates to allow the generation of navigation tasks with fewer
than 50 obstacles. Snapshots of the test grids used in our paper are shown in Figure 11.

C.2. Network Architectures
All the student and teacher agents are trained with PPO (Schulman et al., 2017).
Student Architecture

For CarRacing, we use the same student architecture as (Jiang et al., 2021a). The architecture consists an image embedding
module composed of 2D Convolutions with square kernels of sizes 2,2,2,2,3,3, stride lengths 2,2,2,21,1 and channel outputs
of 8, 16, 64, 128, 256 stacked together. The image embedding is of size 256 and is passed through a Fully Connected (FC)
layer of 100 hidden units and then passed through ReLLU activations. This embedding is then passed through two FC with
100 hidden neurons, and then a softplus layer, and finally added to 1 for the beta distribution used for the continuous action
space. Further details can be found in (Jiang et al., 2021a).

For navigation tasks, we use the same student architecture as (Dennis et al., 2020). The observation is a tuple with a
5 x 5 x 3 grid observation and a direction integer in [0 — 3]. The grid view is fed to a convolutional layer with kernels of
size 3 with 16 filters and the direction integer is passed through a FC with 5 units. This is followed by an LSTM of size 256,
and then to two FC layers with 32 units, which connect to the policy outputs. The value network uses the same architecture.

Teacher Architecture

13

CLUTR: Curriculum Learning via Unsupervised Task Representation Learning

Belgium Brazil Mexico Australia Austria

Portugal Malaysia Netherlands Spain France
Hungary Russia Singapore USA Bahrain

China

Monaco Germany

UK

Figure 10: Snapshots of the test tracks in F1 benchmark

i i Door: i i Door: Maze Maze2

Labyrinth Labyrinth2 SimpleCrossingSIN1 SimpleCrossingSIN2 SimpleCrossingSIN3 SimpleCrossingS11N5 smallCorridor LargeCorridor

Figure 11: Snapshots of the test grids for MiniGrid

14

CLUTR: Curriculum Learning via Unsupervised Task Representation Learning

For CarRacing, CLUTR teacher takes a random noise and generates a continuous vector, i.e., the latent task vector. We pass
the random noise through a feed-forward network with one hidden layer of 8 neurons as the teacher. The output of this layer
is fed through two separate fully-connected layers, each with a hidden size of 8 and an output dimension equal to the latent
space dimension, followed by soft plus activations. We then add 1 to each component of these two output vectors, which
serve as the « and 3 parameters respectively for the Beta distributions used to sample each latent dimension. In all of our
experiments, we used a 64-dimensional latent task space.

For Minigrid experiments with flexible regret objective, we use a similar architecture as CarRacing described above, except
the hidden layer consists of 10 neurons, instead of eight. For Minigrid experiments with standard regret objective (which is
discussed later in Section E.2), we use the network architecture used in (Dennis et al., 2020) but only take a noise input. As
this adversary network generates discrete actions, we scale them to real numbers before feeding into the VAE decoder.

VAE architecture

We use the architecture proposed in (Bowman et al., 2015). We use a word-embedding layer of size 300 with random
initialization. The encoder comprises a conditional ‘Highway’ network followed by an LSTM. The Highway network is a
two-staged network stacked on top of each other. Each stage computes o(x) ©® f(G(x)) + (1 — o(z)) © Q(x), where z is
the inputs to each of the highway network stages, G and Q is affine transformation, o(z) is a sigmoid non-linearization,
and © is element-wise multiplication. G and () are feed-forward networks with a single hidden layer with equal input and
output dimensions of 300, equal to the word-embedding output dimension. We use ReLLU activation as f. The highway
network is followed by a bidirectional LSTM with a single layer of 600 units. The LSTM outputs are passed through linear
layer of dimension 64 to get the VAE mean and log variance. The mean vectors are passed through a hyperbolic tangent
activation. For CarRacing (both Flexible and Standard Objective experiments) and navigation (only Standard Objective)
tasks the output of the hyperbolic tangent activation is linearly scaled in [—4, 4]. No such scaling is done for the MiniGrid
experiments with Flexible Regret Objective. The decoder takes in latent vectors of dimension 64 and passes through a
bidirectional LSTM with two hidden layers of size 800 and follows it by a linear layer with size equaling the parameter
vector dimension.

C.3. Hyperparameters

All our agents are trained with PPO Schulman et al. (2017). We did not perform any hyperparameter search for our
experiments. The CarRacing experiments used the same parameters used in Jiang et al. (2021a) and the Minigrid experiments
used the parameters from Dennis et al. (2020). The VAE used for CarRacing and Minigrid standard objective experiments
(Section E.2) were trained using the default parameters from Bowman et al. (2015). For the VAE used in the Minigrid
flexible objective experiments, which we presented in the main text of the paper, we used a reconstruction weight of 1000
and ran the training for 10M steps to incorporate the larger dataset. The detailed parameters are listed in Table 2 and Table 3.

The flexible objective blurs the distinction between the agent and the antagonist. Hence, we designate the agent achieving
the higher average training return during the last 10 steps as the primary student agent and the other one as antagonist.

Parameter Value
Batch Size 32
Number of Training Steps 1000000
Reconstruction Weight 79
Latent Variable Size 64
Word Embedding size 300
Maximum Sequence Length 52
Encoder Activation Hyperbolic Tangent
Learning Rate 0.00005
Dropout 0.3

Table 2: Hyperparameters for training the Task VAE

15

CLUTR: Curriculum Learning via Unsupervised Task Representation Learning

Parameter CarRacing | MiniGrid
y 0.99 0.995
AGAE 0.9 0.95
PPO rollout length 125 256
PPO epochs 8 5
PPO minibatches per epoch 4 1
PPO clip range 0.2 0.2
PPO number of workers 16 32
Adam learning rate 3e-4 le-4
Adam € le-5 le-5
PPO max gradient norm 0.5 0.5
PPO value clipping no yes
Return normalization yes no
Value loss coefficient 0.5 0.5
Student entropy coefficient 0 0
Action Repeat 8 -

Table 3: Hyperparameters for PAIRED and CLUTR PPO training.

C.4. VAE Training Data

For CarRacing, we follow the same parameterization as Jiang et al. (2021a): each track is defined with a sequence of up to
12 integers denoting control points of a Bézier Curve. . Each control point is represented with an integer. We generate 1M
random sorted integer sequences of fixed length 12 with duplicates—which enables generating tracks defined with less than
12 control points.

For navigation tasks we use the parameterization of Dennis et al. (2020), generating upto 50 obstacles for each task for
a 15 x 15 grid, surrounded by walls, effectively an active area of 13 x 13. Hence, each location is numbered in 1 to 169.
Every number except the last two of the sequence represent obstacle locations, and the last two represent the goal and
agent location, respectively. To generate training data, we uniformly generate 1M and 10M sequences of variable length
between 2 and 52 (inclusive), for the standard and flexible regret objective, respectively. We note that, the obstacle locations,
though represented as a sequence, essentially is a set. The parameter vector is thus partially permutation invariant. As we
discussed in 4.2, due to this permutation invariance, conteporary adaptive-teacher UEDs, e.g., PAIRED and REPAIRED,
face combinatorial explosion. CLUTR addresses this by sorting the obstacle locations of this parameter-vector dataset.

C.5. Details on Compute Resources

We have conducted our experiments in cloud machines from :Amazon EC2 - Secure Cloud Services (https://aws.
amazon.com/) and Google Cloud Platform (GCP) - Google Cloud (https://cloud.google.com/). We used a
single NVIDIA T4 GPUs for our experiments with machines having 8(16) and 16(32) physical(virtual) cores, 64GB and
128 GB Memory for CarRacing and Minigrid experiments. A typical 500M Minigrid training of CLUTR ran with a speed
of around 800-900 environment interactions per second, taking around 6-8 days, with 32 parallel workers. CarRacing
experiments ran on around 90-110 environment interactions per second with 16 parallel processes.

D. Detailed Experimental results on CarRacing
D.1. Detailed Comparison on Full F1 dataset

Figure 12 and Table 4, compares CLUTR with contemporary random-generator UED methods, REPAIRED, and the attention
based SOTA. It is to be noted that, CLUTR and PAIRED with flexible regret objective was trained for 2M timesteps. All the
other UED methods, along with CLUTR and PAIRED with standard regret was trained for SM timesteps.

We notice that, each of the random-teacher UEDs outperform all the other adaptive-teacher UEDs, with the exception
of CLUTR with flexible regret objective. PAIRED performs miserably in its basic form, however performs significantly
better when coupled with extended capabilties e.g., by using flexible regret objective, or by introducing replay and stop-

16

https://aws.amazon.com/
https://aws.amazon.com/
https://cloud.google.com/

CLUTR: Curriculum Learning via Unsupervised Task Representation Learning

PAIRED

2 500 mmm CLUTR
@
£
=
5]
[~
& 400
-
w
=
S 300
@
s}
c
<
£ 20
A=
it
o
5
3 100
=

0

with REPAIRED PLR Robusl DR Attention
Slandald Regret Flewale Regret Agent

Figure 12: Comparison on the F1 Benchmark comprising 20 tracks modeled on real-life F1 racing tracks. CLUTR (with
flexible regret) emerges as the best adaptive-teacher UED for CarRacing and being the only adaptive-teacher UED to
outperform some of the random-generator UEDs. Each of the other adaptive-teacher UEDs (REPAIRED, PAIRED with
flexible regret, CLUTR with standard regret) are outperformed by all of the random-generator UEDs (DR, PLR, Robust PLR).
CLUTR outperforms the adaptive-teacher PAIRED and REPAIRED by 82% and 58%, respectively, while outperforming
Domain Randomization and PLR, by 38% and 16%, repectively. It only falls short to Robust PLR by 14%. The results show
mean and standard error of 10 independent runs.

gradient capabilities (i.e., REPAIRED). However, they they still fall short to the random-teacher UEDs. This indicates that
adaptive-teacher UEDs face significant difficulty in this domain.

CLUTR with flexible regret emerges as the best adaptive-teacher UED despite being trained only for 2M timesteps. It

achieves an impressive 18X higher zero-shot generalization than PAIRED with standard regret and outperforms REPAIRED
by 58%.

CLUTR with flexible regret is the only adaptive-teacher UED to outperform other random-teacher UEDs. CLUTR
outperforms Domain Randomization and PLR, by 38% and 16%, repectively. It only falls short to Robust PLR by 14%.
Nonetheless, CLUTR shows competitive results compared to Robust PLR, showing comparable results in seven out of the
20 test tracks and outperforming in the Netherlands track. CLUTR also outperforms the non-UED SOTA on the full F1
dataset. It outperforms the Attention Agent on nine out of the 20 tracks and shows comparable performance in another one.

Figure 13 compares how different UEDs perform during training by periodically evaluating them on three tracks from
the F1 benchmark: Singapore, Germany, and Italy. CLUTR (with flexible regret) shows better generalization and sample
efficiency than all the other UEDs, except Robust PLR. CLUTR showed better performance than Robust PLR till alomost
3M timesteps, after that CLUTR and Robust PLR curves followed each other closely, and near the very end Robust PLR
surpasses CLUTR.

17

ia Unsupervised Task Representation Learning

ing v

lum Learni

Curricul

CLUTR

*Quo Ul douewIojIeda[qeredwod smoys pue s)oeL ()Z AU} JO IO ¢ U0 YIOS qHN-UouU) swoadino oste Y10 TD ~oen
SpueIayJaN 9y} ur 31 Suruiojradino pue syoeI) 189} ()7 Y} JO N0 UIAIS U Y J ISNqOY 03 10adsa1 yrmd synsa s[qeredurod smoys Y LT ‘SSO[EYICUON {1d 1Snqoy
0 110Us S[[eJ ATuo pue (qIATVdT pue Y14 ‘uonezrwopuey urewo ‘QIYIVd swiopzodino Y 1.NTD ~oen jey) uo juase uonuape oY) suoyrodinosoiqereduwos
SI ‘[epow Suruaojiad 1s2q INO J2I3Y S[QIXS] YIM YLNTD ‘SUBdW UWN[0d JUZY UONUANY) UL 1Bl 9[IYM ‘swyiioI[e (N Suowe YOS SI0uap 2orjpiog

‘sdajsowun) JA[G 10§ unit a1om SO JOYl0 oy} [[V "sdaisowun) JAg 10 pauren) sem 191391 9[qIxoy s IV Pue Y LNTD Byl 910U dpL "S9ATI[qO 101501 9[qIXay pue

pIepue)s Y30q 10 HUIVd PUe YLNTD Modal opp rewyouaq [oY} JO Syoes} [enpIAIpUI 9y} UO sunpiios[e g JoYl0 pue Y LNTD usamiaq uostredwo)) 4 9[qel,

8LY ITF89 91 FLST | ¥TFILT 61 ¥9C €T F 6T LIFIES TTFVOV LTFTPE UBIA
z61- IEFSET 6CFLY | 6CFLT 11¥F611- STFOTI CEFIYE 8TFEVT IE€FE€9C vSn
6CL 61 FILY SITFO6EE | 81 F96€ STF8EI TTF 08¢ LIFSES 91 F9Sy 8T FEC6E 3N
6SL SIF96V 61 F¥I¥ | SIFELE PTFHEI ¥T F 8S¢ PIFTT9 LIFTI8Y PTFEEY uredg
9,2 61 F78€ ICFC6I | 81 F6CCT ¥IFS¢- ITF YL SIF99S TCF98¢ 6TF9¢g | uodedurg
€L CTF L6V PCFLEE | STF6IC IZFIS STF6IY PIF6F9 tCF6LY 0F FT8E eIssny
909 0CFF 6IF6V] | PTF66C €I F6h- 1T F59¢ SIFEYY SIFLOV LTFCE [esmiod
[€1 12F88F $CTF90E | LTFT0E 0T F 0L 1T F L0E STF6IY ICFS8IY 9T F8TE | SPue[ayloN
Ges 6CFO09F 8TFSTI | OSEF¥ET 81 F8T- 9T ¥ 95T 6T F98F TCF09¢ 8T F89C OOBUOIA]
08S 61 FLT9 O0€FI6E | 1€ FL8E I€FL9 0€ FSIY TIFCIL 1TFI9S €€ F8SH OOIXO\
00€ TCFOY 1TFT6 | STFYLL LIF9CT L1 F00T SIFO00F O0CTFE8T STFILT eIsAe[eI
86L I F6E9 LTFISY | IEF6EY YTFCEI STFILE TIFSTY9 0CTF88S LTF IO Areig
69L YCF0€9 1E€FLTE | TEFSTE 6C T 86 6CF VIV LIFS0L 9TFEES TEF SO AreSungy
404 0CF¥0r 9TF98C | 9TFS61 91 F €¢- TTFUT SIF66F 0TF88C ETFVLC Auewron
394 IEF86b HTFS8SI | 0EF99C €I FI8- 6T F0¥C TCFSLY SEF06T CTEFOLT Qoue1]
vie STFPST ICFET| 61FEE 6F101- I FL PCFSIC 0CFHS YT FSII eury)
StI 81 F€9¢ 91 FLET | 91 FHHC 81 F9L 61 F95C SIFSSy LIFL8E €TF60E [1zeig
899 SIF6Tr LIF60E | ¥1FGSIE 0CFCL 61 F €6C TLFbLY SIFLTE 91 F8CE wnig[eg
lLE OCF ¥y 8TF€8I | ¥TFSTT 61 FS¢- €T FS6C SIF06S CTTFIIY LTTFS6C urelqeq
[1s 61 FL0S €TFIIE | 61 F60€ YT F 6 61 F St¢ CIFSI9 QIFTHy ITF 60V esny
978 0CFE89 6TFTIVE | 8TFO6LF TTFO0I LTF V1Y SIFT69 ETFSHS 6T F 8% erensny
Juady (JNT) 12139y 21q1xe[q 10139y pIepuelS
uonuANY | YILNTO NIV | YLNTD aHIVd | AEIIvday | ¥71d 1snqoy I1d a yoeiy,

18

CLUTR: Curriculum Learning via Unsupervised Task Representation Learning

600

—— CLUTR
—— REPAIRED
— PLR B —
400 Robust PLR

300

200

100

Test Environment Returns

-100

0 1 2 3 4 5
TimeStep 1e6

Figure 13: Comparison of mean agent returns on three tracks: Singapore, Germany, and Italy. Based on this subset of tracks,
CLUTR (with flexible regret) shows better generalization than all the other UEDs, except Robust PLR. CLUTR was ahead
of Robust PLR till around 3M timesteps, followed by both curves following each other closely, and near the very end Robust
PLR surpassed CLUTR.

19

CLUTR: Curriculum Learning via Unsupervised Task Representation Learning

800

600

400

Mean Returns

200

—— CLUTR - Agent
—— CLUTR - Adversary
—— Paired - Agent

0 —— Paired - Adversary

0.00 0.25 0.50 0.75 1.00 125 1.50 1.75 2.00
TimeSteps 1e6

Figure 14: Mean return on the training tasks for both the student agents. CLUTR student agents show close performance,
while PAIRED students show a bigger gap of performance between them. Closely competing agents can indicate the training
tasks being slightly harder than the agents can currently solve, resulting in a smoother curriculum

D.2. CLUTR with flexible regret loss
D.2.1. TRAINING RETURNS

Figure 14 plot mean return on the training tasks for both the student agents. CLUTR student agents show close performance,
while PAIRED students show a bigger gap of performance between them. Closely competing agents can indicate the training
tasks being slightly harder than the agents can currently solve.

D.2.2. LEARNING TASK MANIFOLD AND CURRICULUM: JOINT VS TWO-STAGED OPTIMIZATION
500

400
300

200

Mean Return on F1 Dataset

100

0
CLUTR CLUTR with PAIRED
(Fixed Decoder
Pretrained Finetuning
Decoder)

Figure 15: Impact of joint vs two-staged optimization of the task manifold. The leftmost column shows the default CLUTR
performance—i.e., using a pretrained decoder kept fixed during the curriculum learning phase—with flexible regret objective
in the CarRacing domain. Decoder finetuning, i.e., when the decoder is allowed to finetune with the regret loss, results in a
10% performance drop. This performance drop empricially justify our choice of using a pretrained and fixed VAE to solve
learning instability.

In Section 5.3, we empirically justified our hypothesis that learning the task representation and the curriculum simultaneously
results in a difficult learning problem due to the non-stationarity of the process—using the standard regret objective. In this
section we repeat the experiment with the flexible regret objective. In Figure 15, we see a 10% drop in the performance
when the decoder was allowed to finetune with regret loss, further justifying our hypothesis. As a side note, the smaller drop
compared to standard regret objective indicates that flexible objective mitigates some of the instability problem too. Finally,
even with decoder finetuning, CLUTR achieves a 65% improvement over PAIRED indicating the benefits of pretrained

20

CLUTR: Curriculum Learning via Unsupervised Task Representation Learning

decoupled latent task space.

D.3. CLUTR with standard regret loss

We train CLUTR with the standard regret loss for SM timesteps. Figure 16 compares the impact of standard/flexible regret
loss on the regret and agent returns during training. With standard regret loss, CLUTR shows a lower regret value, but shows
similar pattern. The CLUTR agent achieves better returns with flexible loss throughout the training.

Figure 17 compares the mean regret and agent training returns with PAIRED. CLUTR with standard loss shows much lower
regret than PAIRED (Figure 17a). Figure 17b shows that the CLUTR agents compete closely, while PAIRED antagonist
achieves much higher returns than the PAIRED agent which leads to higher regret returns for the teacher agent but results
in a weak student agent. To test the Zero-shot generalization, we evaluate CLUTR with the standard loss on the full F1
benchmark. Figure 18 shows CLUTR with standard regret loss outperforms PAIRED in all the 20 test tracks. This implies
that CLUTR outperforms PAIRED irrespective of the choice of the loss function (standard/flexible). Figure 19 compares the
sample efficiency of CLUTR with the standard regret loss with PAIRED by evaluating the agents on four selected tracks
(Vanilla, Singapore, Germany, Italy) during training. It can be seen that CLUTR, even without the regret loss, outperforms
PAIRED significantly. We note that these test environments were not used in any way, neither during training CLUTR (and
PAIRED) nor while designing it.

As mentioned in (Jiang et al., 2021a) PAIRED overexploits the relative strengths of the antagonist over the protagonist agent
and generates a curriculum that gradually reduces the task complexity. However, CLUTR overcomes this and generates
a curriculum where the agent and the antagonist closely compete (Figure 17b) and shows a robust generalization on the
unseen F1 benchmark.

Agent Returns - CLUTR with/without Flexible Regret

Mean Regret - CLUTR with/without Flexible Regret

800
25
20 E 600
2
7]
- o
2 =
215 @ 400
4 £
c 1]
Q =
2 Z
=10 S o0
—— CLUTR w/o flexible regret- Agent
—— CLUTR w/o flexible regret- Antagonist
0.5 —— CLUTR - Agent
—— CLUTR wio flexible regret 0 CLUTR - Antagonist
—— CLUTR
0.0 0 1 2 3 4 5
0 1 2 3 4 5 TimeStep 1e6

TimeStep 1e6

(b) Returns on UED generated Car Racing tracks - with vs without
(a) Mean Regret - Car Racing - with vs without flexible regret loss flexible regret loss

Figure 16: Mean Regret and agent returns during training CLUTR (with flexible regret) vs CLUTR with standard PAIRED
regret approximation.

D.4. Extended Analysis on Impact of sorting training data for VAE training

The non-sorted dataset was generated by shuffling each track of the original VAE training dataset 10 different times, resulting
in a 10X bigger dataset (10M tracks). It was trained for 5X longer for 5M training steps. We planned on training for 10M
gradient steps (10X than the original VAE) but stopped at SM as it converged much sooner. We ran both CLUTR and
CLUTR-shuffled, i.e., CLUTR with a VAE trained on non-sorted data up to 5SM timesteps. CLUTR-shuffled shows inferior
performance and also signs of unlearning compared to CLUTR. Figure 20 shows detailed experiment results.

D.5. Impact of Task Representation Learning

21

CLUTR: Curriculum Learning via Unsupervised Task Representation Learning

30
25 800
%2}
S
4+ 20 5 600
] 7]
< r
b €
s £
s 15 £ 400
o
= £
=
=
i}
1.0 200
—— CLUTR wi/o flexible regret - Agent
—— CLUTR wro flexible regret - Antagonist
05 — CLUTR — PAIRED - Agent
’ —— PAIRED 0 —— PAIRED - Antagonist
0 1 2 3 4 5 0 1 2 3 4 5
TimeStep 1e6 TimeStep 1e6
(a) Mean Regret - Car Racing (b) Returns on UED generated Car Racing tracks

Figure 17: Mean Regret and agent returns during training CLUTR with standard PAIRED regret loss (i.e., without the
flexible regret). CLUTR shows a smaller regret value(i.e., closely competing agent and antagonist), indicating a better UED

curriculum.
UL R NE ORI R
== -+ e

CLUTR PAIRED CLUTR PAIRED CLUTR PAIRED CLUTR PAIRED CLUTR PAIRED CLUTR PAIRED CLUTR PAIRED CLUTR PAIRED CLUTR PAIRED CLUTR PAIRED

Belgium
Brazil
Mexico
Australia
Austria
Portugal
Malaysia
Netherlands
Spain
France

400
@ =
2 @ <] c @ 3 g
ol @ a < @] =
2 nln : - s - g 3 - 5 i ’ . : - 8 - - in
I £ o
0 w e —l— - —f — e e
CLUTR PAIRED CLUTR PAIRED CLUTR PAIRED CLUTR PAIRED CLUTR PAIRED CLUTR PAIRED CLUTR PAIRED CLUTR PAIRED CLUTR PAIRED CLUTR PAIRED

Figure 18: Zero-shot generalization of both PAIRED and CLUTR (with the standard regret loss) agents after SM timesteps
on the full F1 benchmark. CLUTR with the standard regret loss outperforms PAIRED on every track. For each track, we test
the agents on 10 different episodes and the error bar denotes the standard error.

E 400
2
I
T 300
=
c
@
£
5 200
s
z
w100
B
=
o]
—— CLUTR w/o flexible regret
-100 —— PAIRED
0 1 2 3 4 5
TimeStep 1e6

Figure 19: Test Returns on Selected Tracks (Vanilla, Singapore, Germany, and Italy) of CLUTR with standard PAIRED
regret loss alongside PAIRED performance.

22

CLUTR: Curriculum Learning via Unsupervised Task Representation Learning

800

600
500
g 600
2 400
[7}
i
ot 0
= =4
2400 FJ/— 5 300
15 [}
s i3
g Ao F 200
z (]
g =
200 100
—— CLUTR
/ —— CLUTR-Shuffled 0 —— CLUTR-Shuffled
0 # PAIRED —— CLUTR
-100 PAIRED
0 1 2 3 4 5
TimeStep 1e6 0 1 2 3 4 5
TimeStep 1e6

(a) During training CLUTR agent achieves higher returns while,
CLUTR-shuffled agent shows lower returns. CLUTR-Shuffled (b) CLUTR achieves higher and more stable mean returns on the
agent’s return is also less stable showing a decrease and increase. selected tracks. CLUTR-Shuffle shows signs of unlearning.

Figure 20: Analysis of sorting training data for VAE. Trained on shuffled data, CLUTR-Shuffled performs inferior compared
to CLUTR and shows signs of unlearning.

—— Deviation in Performance L
120 | 200

In this section, we discuss the impact of the learned task
representation on performance. In Section 5.3, we showed
that if we finetune the VAE decoder during curriculum
learning, the overall performance drops significantly (Fig-
ure 7). To get a better understanding, in Figure 21, we
plot how much the performance deviates as the VAE de-
coder changes during the training process. The curve in
red shows the deviation of the decoder from its pretrained
weights as it is fine-tuned during the training. We estimate a0 ‘ ‘ —— Deviationfrom Pretreined Decoder |
the deviation as the L2 distance between the finetuned and ° ' : ? : >

the pretrained decoder weights. The green curve shows

TimeStep 1e6
the performance drop from CLUTR (with standard loss). Figure 21: Impact of pretrained decoder weights on perfor-
To estimate the performance drop, we periodically evalu- mance. The red curve plots the deviation of the decoder from
ate both CLUTR and CLUTR with Finetuned VAE, onthe jts pretrained weights as it is finetuned. The green curve
selected test tracks during training. From the figure, we shows the performance drop from CLUTR with the standard

observe that, as the decoder weights are finetuned, they Jogs. These curves suggest that pretrained weights are crucial
become increasingly different from the initial pretrained for performance.

weights. At the same time, the overall performance gap
from CLUTR also increases. This suggests that the pre-
trained VAE weights are crucial for better performance.

100 4

80

60 4

40 1

Mean L2 Difference

T
~
n

204
r5.0

Difference in Test Environment Returns
-
153
o

r2.s

Furthermore, the quality of the learned representation depends on the quality of the data they are trained on. In section 5.4,
we showed that a VAE trained on a non-sorted dataset significantly deteriorates the performance (Figure 7). This further
suggests that the learned representation has a significant impact on performance. We also want to note that both of these
variations (CLUTR with Finetuned VAE and the CLUTR with Shuffled VAE) perform much better than PAIRED, which
suggests that, though CLUTR’s performance depends on the representation, with a reasonable representation, it can still
perform better than PAIRED.

23

CLUTR: Curriculum Learning via Unsupervised Task Representation Learning

E. Detailed Experimental results on MiniGrid
E.1. CLUTR with flexible regret objective

To train the CLUTR VAE, we generated 10 million random grids, with the obstacle locations sorted, and the number of
obstacles uniformly varying from zero to 50, aligning with (Dennis et al., 2020). We train both CLUTR and PAIRED using
the flexible regret objectives.

Figure 22 shows zero-shot generalization performance of CLUTR and PAIRED on the 16 unseen navigation tasks from Den-
nis et al. (2020), in terms of the percent of environments the agent solved, i.e., solved rate. CLUTR achieves a 1.35X better
generalization solving 58% of the unseen grids, than PAIRED which solves 43% of the unseen grids. It can also be seen that
CLUTR outperforms PAIRED on 13 out of the 16 test navigation tasks.

LU TTTRP

Figure 22: Zero-shot generalization of CLUTR and PAIRED, in terms of percent of the environments solved. CLUTR
achieves a higher solved rate than PAIRED in 13 out of the 16 tasks. We evaluate the agents with 10 independent episodes
on each task. Error bars denote the standard error.

Figure 23 compared the mean perforamnce of CLUTR, PAIRED, and REPAIRED. REPAIRED outperforms both PAIRED
and CLUTR. We note that, REPAIRED and CLUTR are both improvement towards PAIRED. However, REPAIRED involves
a dual-curriculum methods, with two different teachers adopting replay capabilities with disabling exploratory gradients. On
the other hand CLUTR is a much simpler method, and can also be augmented with REPAIRED too.

E.1.1. TRAINING RETURNS

Figure 24 plot mean return on the training tasks for both the student agents. CLUTR student agents show close performance,
while PAIRED students show a bigger gap of performance between them.

08

06

Solve Rate

=]
~

0.0
CLUTR PAIRED REPAIRED

Figure 23: Mean solve rate on Minigrid testset. REPAIRED outperforms both CLUTR and PAIRED.

24

CLUTR: Curriculum Learning via Unsupervised Task Representation Learning

J

g 0.6
=]
©
14
=
3 04
=
—— CLUTR - Agent
02 — CLUTR - Adversary
Paired - Agent
—— Paired - Adversary
0.0 0.5 1.0 1.5 20 25

TimeSteps 1e8

Figure 24: Mean return on the training tasks for both the student agents. CLUTR student agents show close performance,
while PAIRED students show a bigger gap of performance between them. Closely competing agents can indicate the training
tasks being slightly harder than the agents can currently solve, resulting in a smoother curriculum

0.8

E 0.6
3
©
14
c
$ 04
=
02 —— CLUTR - Agent
’ —— CLUTR - Adversary
Paired - Agent
—— Paired - Adversary
0.0
0 1 2 3 4 5
TimeSteps 1e8

Figure 25: Mean return on the training tasks for both the student agents. CLUTR student agents show close performance,
while PAIRED students show a bigger gap of performance between them initiallly at the beginning.

E.2. CLUTR with standard regret objective

E.2.1. TRAINING RETURNS

Figure 25 plot mean return on the training tasks for both the student agents. CLUTR student agents show close performance,
while PAIRED students show a bigger gap of performance between them initiallly at the beginning.

E.2.2. PERFORMANCE

Figure 27 shows zero-shot generalization performance of CLUTR and PAIRED on 16 unseen navigation tasks from (Dennis
et al., 2020) based on the percent of environments the agent solved, i.e., solved rate. CLUTR achieves superior generalization
solving 64% of the unseen grids, a 45.45% improvement over PAIRED, which achieves a 44% solve rate. From figure 27 it
can be seen CLUTR outperforms PAIRED achieving a higher mean solve rate on 14 out of the 16 unseen navigation tasks.
Figure 26 shows solved rates on four selected grids (Sixteen Rooms, Sixteen Rooms with Fewer Doors, Labyrinth, and
Large Corridor) during training. CLUTR shows better sample efficiency, as well as generalization than PAIRED.

E.3. Comparison with Other UED Methods

Comparison with Domain Randomization:

25

CLUTR: Curriculum Learning via Unsupervised Task Representation Learning

Test Returns.

— CLUTR
00 —— PAIRED

0 1 2 3 4 5
TimeStep 1e8

Figure 26: Agent solved rate on selected grids during training. CLUTR shows better sample efficiency and generalization
than PAIRED. The results show an average of 5 independent runs.

- o el P}

z =4 z =z

7 ? 3 o

075 =) =) k2 g

g g £ 2 E o o 9

2 050 2 2 2 g N & g

<} 2 <] <1 £ 2 g g

[} 5} o 5 3

B 025 B 2 I} s

o o a a

: : : : mm mm

@ 0.00 @ o 7]

CLUTR PAIRED CLUTR PAIRED CLUTR PAIRED CLUTR PAIRED CLUTR PARED , CLUTR PAIRED CLUTR PAIRED CLUTR PAIRED

g 2
3 8

5075 5 g g o 2

g £ £ g g : g 2

S 050 5 € E £ [8 H

S 3 = £ < g i 4

s) g 3 g S g g

£ 025 5 3 = @ - 3

” (] mm g : :

0.00 g E
CLUTR PAIRED CLUTR PAIRED CLUTR PAIRED CLUTR PAIRED CLUTR PAIRED » CLUTR PAIRED CLUTR PAIRED z CLUTR PAIRED

Figure 27: Zero-shot generalization of CLUTR and PAIRED, in terms of percent of the 14 solved. CLUTR achieves a
higher solved rate than PAIRED in 14 out of the 16 unseen tasks. We evaluate the agents with 100 independent episodes on
each task. Error bars denote the standard error.

26

CLUTR: Curriculum Learning via Unsupervised Task Representation Learning

s PAIRED
mmm CLUTR
mam DR

0.6

05

04

0.3

Mean Solve Rate

02

01

0.0

with Flexible Regret (250M)

Figure 28: Comparison of CLUTR (and PAIRED) with Domain Randomization(DR) baseline. CLUTR outperforms DR
with a 29% higher solve rate.

Since, CLUTR VAE is trained on uniformly random samples, for completeness we compare CLUTR’s result with Domain
Randomization (DR) baseline in Figure 28. Similar to our flexible regret objective experiments, we trained DR for 250M
timesteps with up to 50 obstacles. Our results show that CLUTR significantly outperforms DR with a 29% higher solve rate,
while DR exhibits only marginal improvement over PAIRED.

Comparison with ACCEL: ACCEL (Parker-Holder et al., 2022) outperforms CLUTR in the MiniGrid domain, as shown in
Figure 29. We would like to mention that ACCEL was trained using 60-block settings, whereas CLUTR and PAIRED were
trained using 50-block settings. We would further note that ACCEL and CLUTR are fundamentally different approaches with
distinctly different training settings and techniques. While ACCEL uses a dual-curriculum with a random generator/teacher,
level-replay with stop-gradient (Jiang et al., 2021a), and an evolutionary algorithm for task editing; CLUTR focuses on
improving adaptive-teacher UED algorithms. Therefore, a direct comparison between the two methods would require a
more careful consideration of their respective training methodologies, strengths, and limitations.

E.4. Curriculum Analysis
E.4.1. CURRICULUM SNAPSHOT

In this section, we visually inspect the curriculum generated by CLUTR and PAIRED, with snapshots of tasks generated by
these methods during different stages of the training (Figure 30). We illustrate one common mode of failure/ineffectiveness
shown by PAIRED: The curriculum starts with arbitrarily complex tasks, which none of the agents can solve at the initial
stage of training. After a while, PAIRED starts generating rudimentary degenerate tasks. While kept training, PAIRED
eventually gets out of the degenerative local minima, and the curriculum complexity starts to emerge. On the other hand,
CLUTR does not show such degeneration and generates seemingly interesting tasks throughout.

E.4.2. CLUTR vs PAIRED

Figure 31 shows 3D Histograms showing the frequency of the generated grids against the total number of obstacles they
contain. PAIRED starts with a high number of obstacles and then degenerates quickly into grids with very few numbers
of obstacles and stays similar for a significant number of steps. Eventually, the number of obstacles increases sharply,
converging into a band of around 20 to 40 obstacles on average. On the other hand, in CLUTR, the number of obstacles starts
flat, centers around a peak around the middle but still with a wide interval for some number of steps, and the peak drops
slightly while the interval stays almost the same. After the ‘convergence’, PAIRED rarely generates grids with fewer or
more obstacles than the band it converges to. On the contrary, CLUTR still generates grids with few or many blocks, which

27

CLUTR: Curriculum Learning via Unsupervised Task Representation Learning

s PAIRED
mmm CLUTR

0.8 mmm ACCEL

0.6

0.0
with Standard Regret (500M) with Flexible Regret (250M)

Mean Solve Rate
o
s

[\¥]

Figure 29: Comparison of CLUTR (and PAIRED) with ACCEL. ACCEL outperforms both CLUTR and PAIRED. However,
we note that ACCEL is a fundamentally different approaches with distinctly different training settings and techniques.

—— Environment Interactions (S00M) ——

Figure 30: Example grids(right) generated by CLUTR(top) and PAIRED(bottom) uniformly sampled at different stages of
training. The training progresses from left to right.

28

CLUTR: Curriculum Learning via Unsupervised Task Representation Learning

might help to address unlearning or improve the agents on grids with more obstacles, respectively. The above observations
illustrate that we can achieve a more efficient curriculum learning without making the problem too easy early or without
focusing on a narrow interval with a flat distribution later. Instead, we can start with a wide interval and gradually focus on a
peak around the middle without making the interval very narrow.

Number of
Training Grids
Number of
Training Grids

(a) CLUTR (b) PAIRED

Figure 31: 3D Histograms showing the frequency of the generated grids against the total number of blocks they contain.
Both PAIRED and CLUTR converge to a similar band of grids. However, CLUTR converges much faster.

Figure 32a shows the average episode lengths of both CLUTR and PAIRED. The curves show both methods start with long
episodes—indicating at the beginning, the agents do not solve the training grids consistently, and many of the episodes
end due to timeout. As the agents learn, the episodes become shorter for both methods until they converge to a small value.
However, CLUTR converges sooner than PAIRED.

120 PAIRED 50.0
— CLUTR PAIRED
< 100 17.5 —— CLUTR
£
g 15.0
3 80 £
[} ()]
kS £12.5
R —
o 60 <
8 < 10.0
(] a
g o
E 40 g 7.5
< &
20 5.0
2.5
% 1000 2000 3000 4000 5000 6000 0.0

Training Timesteps 0 1000 2000 3000 4000 5000 6000
Logging Timestep
(a) Average length of the training episodes. CLUTR converges
sooner than PAIRED to a shorter episode length. (b) Average solution length of the solved training tasks.

Figure 32: Comparison of CLUTR and PAIRED curriculum based on properties of the generated grids.

We also compare the average solution length of the solved training grids. Both PAIRED and CLUTR show a similar pattern.
However, PAIRED converges to a larger value than CLUTR. This might indicate that CLUTR is solving the environments

29

CLUTR: Curriculum Learning via Unsupervised Task Representation Learning

more efficiently. This might also mean that CLUTR is solving some easier tasks (e.g., fewer obstacles, as we noticed from
Figure 31) even after convergence lowering its average solved path length slightly.

E.4.3. CLUTR CURRICULUM VS. RANDOM LATENT CURRICULA

We further compare CLUTR curriculum with two different domain randomized curriculums. First we compare CLUTR
curriculum with a uniform random (i.e., Domain Randomization) curriculum on the latent space by repeatedly sampling
the trained VAE (the same VAE used by CLUTR) with a uniform random distribution. Second, we generate a curriculum
generated by a random teacher acting on the pretrained latent space. The random teacher uses the same architecture
and intialization procedure as the original CLUTR teacher it is being compared to. Figure 33 shows the comparison
characterizing the grids by the number of obstacles they contain similarly as the previous section. As expected, we can see
that the DR and random teacher curriculum generates grids with obstacles ranging from 0 to 50 without showing any pattern,
showing significant difference in the curricula generated by CLUTR and the domain randomized baselines.

er of
Number of
Sampled Grids

Numbe
Sampled Grids

Number of
Training Grids

(b) Domain Randomization on the pre-(c) Random Teacher on pretrained Latent
(a) CLUTR trained Latent Space Space

Figure 33: 3D Histograms showing the frequency of the CLUTR generated grids against the total number of blocks they
contain vs. Domain Randomization on the latent space vs. A random teacher curriculum on the pretrained latent space. The
figures clearly show that CLUTR generates a curriculum significantly different from random curriculums.

E.4.4. CLUTR vS DOMAIN RANDOMIZED ENVIRONMENTS

To further compare how CLUTR generated grids, differ from Domain Randomized grids: we trained a PCA on a combined
set of grids generated from both the methods and projected them into a 2D space. The resulting plot (Figure 34) shows that
the projections of CLUTR-generated grids form a distinct pattern in the embedded space, while DR-generated grids are all
clustered together. The projections are almost entirely disjoint, indicating that the two sets of grids exhibit distinctively
different distributions or patterns of variations. This observation suggests that CLUTR and DR generate fundamentally
different types of grids. We also not that, he color of the grids intensifies linearly as the training progresses, e.g., grids
generated at the early stage of training are of lighter intensity.

E.4.5. ANALYSIS OF THE LATENT TASK MANIFOLD
Visualization of Training Progress using the Latent Space

We trained a 2D t-SNE model on a set of latent vectors, which are sampled during training in the MiniGrid domain. We
divided the training into 10 equally sized phases and sampled approximately 20K latent vectors from the CLUTR teacher
at each phase, resulting in a total of 200K (approximately) latent vectors. We trained the t-SNE model over this entire
latent-vector dataset but plotted the embeddings separately in Figure 35 for each phase to visualize the evolution of latent
vectors during training.

We observe that, early in the training (< 30%), as the protagonist agent is not trained well yet, the teacher easily finds
a region towards the far right where the REGRET is maximum. As the protagonist agent improves, the teacher begins
exploring new regions (at around 30 — 40%) to maximize the REGRET again, leading to a shift in the embeddings towards
the far left (up to around 60%). After around 60% training steps, both the antagonist and protagonist agents learn well and
the REGRET gets close to zero; embeddings also become relatively wider, and training starts converging.

30

CLUTR: Curriculum Learning via Unsupervised Task Representation Learning

CLUTR vs. DR Generated Grids - PCA Embedding

—— CLUTR
— DR

400 1

—200 4

~400 -

—400 —200 o] 200 400

Figure 34: PCA embedding of the combined set of grids generated by CLUTR and Domain Randomization. CLUTR-
generated grids form a distinct pattern in the embedded space, while DR-generated grids are all clustered together indicating
that these methods generate distiinctively different set of grids.

Structure of the Latent Space

To further investigate the structure of the latent space, we trained a 2D PCA model on a set of latent vectors generated with
the VAE from 100K grids sampled uniformly from the VAE training dataset. The resulting 2D embeddings are displayed in
Figure 36, with their colors transitioning from light to dark blue as the number of obstacles increases from 0 to 50. We
observe that the latent vectors show a smooth and gradual pattern in the PCA embedded space as the number of obstacles
increases.

Additionally, we constructed a sample maze one obstacle at a time, obtained their latent representation from the VAE,
and plotted their 2D PCA embedding using the same PCA model. The incremental construction of the maze is shown in
Figure 37 and the corresponding embeddings, transitioning from light to dark green as more obstacles are added, are shown
in Figure 38. The latent vectors form a clear and smooth trajectory in the embedding space as the maze grows.

The above analysis indicate that CLUTR VAE learns a smooth manifold in terms of different grid properties, e.g., number of
obstacles and structure.

Linear Interpolation in the Latent Space

To grow a sense of the latent task manifold, we linearly interpolate in the latent space between an empty grid and a 15x15
version of the FourRoom grid (shown in Figure 39). Figure 40 visualizes the interpolation results. We first get the latent
vectors of the empty grid and the target FourRoom task using the VAE encoder. We then linearly interpolate 23 equidistant
points between them. At last, we reconstruct the grids from these vectors using our decoder. From Figure 40 we see that, as
we interpolate in the latent space, the reconstructed grid incrementally adds more obstacles and the grids start to look more
like the FourRoom target grid. We note that the reconstruction is not perfect. We also note that the increase in the number of
obstacles is not uniform, e.g., the first 5 reconstructed grids are all empty grids, and more obstacles are added near the target
point. Overall, this experiment provides an insight that the latent space holds a useful structure, which CLUTR teacher
utilizes to generate the curriculum.

31

CLUTR: Curriculum Learning via Unsupervised Task Representation Learning

Training Progress: 0% - 10% Training Progress: 10% - 20%

-30

-60 -40 -20 3 20 40 60 -60 40 -20 0 20 40 60
Training Progress: 20% - 30% Training Progress: 30% - 40%

60 40 -20 3 20 40 60 -60 40 -20 0 20 40 60
Training Progress: 40% - 50% Training Progress: 50% - 60%

-60 -40 -20 [20 40 60 -60 -40 -20 o 20 a0 60
Training Progress: 60% - 70% Training Progress: 70% - 80%

-60 -40 -20 [20 40 60 -60 -40 -20 [20 a0 60
Training Progress: 80% - 90% Training Progress: 90% - 100%

Figure 35: t-SNE embedding of the generated tasks during different phase of training. During the initial phase of training
the teacher moves from the central region to far right and then moves to far left. We hypothesize, as the protagonist agent
is not well-trained during the intial phase, the teacher easily finds regions in the latent space to maximize the REGRET,
however as the traing progresses and the agent learns better, the teacher converges its search into a wider region.

32

CLUTR: Curriculum Learning via Unsupervised Task Representation Learning

PCA embeddings of Training Grids

10.0 A 50
7.5 1
40
5.0 4
2.54
- 30
0.0
—2.5 F20
5.0
10
?.5

Figure 36: PCA Embedding of VAE training dataset. The color intensity represents the number of obstacles in a grid, as
indicated by the color bar on the right.

Figure 37: An example grid constructed by adding one obstacle at a time (from top left to bottom right). The correcponding
2D PCA embedding can be found in Figure 38.

CLUTR: Curriculum Learning via Unsupervised Task Representation Learning

10.0
7.5 1
5.0 4

2.5

0.0
woo!

—2.5

—5.0

—7.5

T T
=75 -5.0 —-2.5 0.0 25 5.0 15 10.0

Figure 38: PCA emneddings of the grids—constructed by adding one obstacle at a time— shown in Figure ??. The color
intensity increases with the number of obstacles. We observe a clear and smooth trajectory in the embedding space formed
by the latent vectors, indicating the smooth and incremental properties of the latent space.

Figure 39: 15x15 FourRooms

34

CLUTR: Curriculum Learning via Unsupervised Task Representation Learning

A
|

Figure 40: A linear interpolation between an empty grid and 15x15 version of the Four-Room grid (Figure 39) in the latent
space. The grids are organized from top-left to bottom-right in row-major order.

35

