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Abstract

The ability to judge whether a caption correctly de-
scribes an image is a critical part of vision-language un-
derstanding. However, state-of-the-art models often mis-
interpret the correctness of fine-grained details, leading to
errors in outputs such as hallucinating objects in gener-
ated captions or poor compositional reasoning. In this
work, we explore Token-Level Confidence, or TLC, as a
simple yet surprisingly effective method to assess caption
correctness. Specifically, we fine-tune a vision-language
model on image captioning, input an image and proposed
caption to the model, and aggregate either algebraic or
learned token confidences over words or sequences to es-
timate image-caption consistency. Compared to sequence-
level scores from pretrained models, TLC with algebraic
confidence measures achieves a relative improvement in
accuracy by 10% on verb understanding in SVO-Probes
and outperforms prior state-of-the-art in image and group
scores for compositional reasoning in Winoground by a rel-
ative 37% and 9%, respectively. When training data are
available, a learned confidence estimator provides further
improved performance, reducing object hallucination rates
in MS COCO Captions by a relative 30% over the original
model and setting a new state-of-the-art.

1. Introduction

For vision-and-language models, grounding and the abil-
ity to assess the correctness of a caption with respect to an
image is critical for vision-language understanding. When
models have difficulties with these, the outputs can be er-
ror prone [45] or rely on biases [2, 20]. State-of-the-art
models, like CLIP [42] or OFA [62], demonstrate impres-
sive capabilities in a variety of settings, in part, thanks to
these properties. While these models have had much suc-
cess, recent efforts for probing state-of-the-art models have
revealed some weaknesses in these areas. For instance, the
recent Winoground task [53] illustrates that these models,
including large-scale pre-trained ones, can struggle to cor-
rectly associate image-caption pairs when the captions have
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Figure 1: Judging caption correctness is still a challenge
for large-scale models that operate at a sequence-level. We
show that both algebraic and learned confidences at a token-
level from a finetuned image captioning model improve
fine-grained estimates of caption correctness.

differences in word order. Similarly, SVO-Probes [21] has
shown that models can fail in situations that require un-
derstanding verbs compared to other parts of speech. The
observations from these probing tasks suggest that exist-
ing models have difficulties discerning fine-grained details
that can appear in multimodal data. This may hinder their
accuracy and reliability when used in real settings, which
presents significant issues in scenarios that require highly
correct outputs, such as assisting people with visual impair-
ments [19, 67].

We conjecture that these weaknesses may be related
to the granularity with which models perform image-text
matching (ITM). As shown in Fig. 1, many existing models
often operate at a sequence-level, pooling the representa-
tions of the image and caption to assess whether the text
correctly describes the image. This pretext task relies on
sequence-level supervision and data with sufficient scale to
learn finer-grained concepts, such as the difference between
“a cat jumping over a box” and “a box with a cat inside”.
Typical generative image captioning methods, on the other
hand, generate words token-by-token and produce confi-
dences for each one. They are supervised at a token-level
rather than sequence-level, which may emphasize the con-
sistency of each token in a sequence more explicitly.

Leveraging this observation, we explore Token-Level



Dataset & Task Winoground SVO-Probes Halh}cm'atlon in
[53] [21] Captioning [45]

Metric Acc Image (1)  Accuracy (1) CHi (})

Prior SoTA 19.75 [43] - 3.2 [32]

Baseline (ours) 10.25 81.23 2.0

Ours 27.00 89.47 1.4

Rel. Improvement 37% 10% 30%

Table 1: Summary of results. Despite its simplicity, the
relative improvement over the next best approach highlights
the significance of TLC for caption correctness.

Confidence, or TLC, for assessing image-caption correct-
ness. We input an image and proposed caption into a fine-
tuned captioning model, which produces a distribution over
the vocabulary at each time step. The base TLC method,
TLC-A, uses algebraic confidence measures (e.g., softmax
score) to compute confidence for a given token. To produce
a single score for image-caption correctness, we either ag-
gregate token confidences over the sequence (e.g., by taking
the average value), or over particular words, such as verbs
or objects. Next, we further investigate whether learned
confidences can outperform algebraic ones. We propose a
Learned confidence estimator, TLC-L, for use in the cap-
tion generation setting where training data is available. We
use existing annotations to model the likelihood that a pre-
dicted token matches reference tokens, and an additional
validation set to calibrate our estimated confidence to ac-
tual correct and incorrect concepts. Using TLC-L to re-rank
candidate captions, we reduce hallucination rates in the final
output captions.

Both TLC-A and TLC-L are simple to implement and
can be applied on top of any autoregressive image cap-
tioning model with an encoder and decoder, an archi-
tecture found to scale well with data and multimodal
tasks [10, 61, 66, 60]. In this work, we demonstrate
the effectiveness of token-level confidence across mul-
tiple model sizes of OFA [61], a recent Transformer-
based model [56] with strong performance on many vision-
language tasks. As summarized in Tab. 1, on the chal-
lenging Winoground [53] benchmark evaluating composi-
tional reasoning, we show that TLC-A more than doubles
accuracy over pretrained ITM scores, e.g., from 10.25%
to 27% on image score (Sec. 4.2). TLC-A additionally
shows a relative improvement of image and group scores of
37% and 9%, respectively, over the prior state-of-the-art on
Winoground [43], which used a regularization tailored for
multimodal alignment. TLC-A also outperforms I'TM on a
fine-grained verb understanding task [2 1] by a relative 10%
(Sec. 4.3). When using TLC-L to re-rank candidate cap-
tions on MS COCO [Y], we achieve a 30% relative reduction
in object hallucination rate over the original captions and
set a new state-of-the-art on a hallucination benchmark [45]

(Sec. 4.4). These results demonstrate that token-level confi-
dence, whether algebraic (TLC-A) or learned (TLC-L) are
a powerful yet simple resource for improving multimodal
reliability.

2. Related Work

Caption correctness. One of the desired properties of a
good caption is correctness, i.e., being faithful to an im-
age. [21, 41, 53] propose benchmarks to probe for sensi-
tivity to hard negatives of different types, such as compo-
sitional reasoning or action understanding. We use prob-
ing benchmarks in our work to demonstrate the effective-
ness of TLC-A. Within caption generation, [45] notes that
in practice, image captioning models suffer from object hal-
lucination [45], driven by visual misclassification and over-
reliance on language priors. Several recent works addressed
the issue of object hallucination [8, 32], in some cases re-
lying on causal inference-based approaches [33, 71, 70].
Other recent works pose a slightly distinct problem of cor-
recting errors in a caption provided for a given image
(i.e., not as part of the caption generation process) [46,
, 65]. Some works propose caption decoding meth-
ods such as constrained beam search [4], an uncertainty-
aware beam search using prediction entropy [68], or a non-
autoregressive caption decoding method [14] to target cri-
teria such as correctness. However, the original formula-
tion of beam search remains the dominant decoding method
used in modern multimodal architectures [10, 29, 61, 64].
We apply our approach on top of captions generated with
beam search and demonstrate that simply re-ranking beams
based on token confidences can reduce hallucinations.
Correctness estimation in language models. Similar is-
sues around correctness and hallucination are also relevant
for many language-only tasks that require autoregressive
prediction. Hallucination in particular has been studied for
tasks like abstractive summarization [37], e.g., one work
performs token-level hallucination detection [75]. A num-
ber of works study model uncertainty and aim to improve
model calibration for machine translation [15, 17, 63], dia-
log [38], question answering [74] and spoken language un-
derstanding [50], to name a few tasks. While our focus on
image captioning is similarly a conditional generation task,
estimating confidence in the multimodal setting can be chal-
lenging as errors are driven by factors from both modali-
ties [67].
Image captioning. Image captioning has seen signifi-
cant progress since the arrival of deep learning as a dom-

inant methodology [0, 13, 24, , , 58]. In recent
years Transformer-based architectures have gained partic-
ular prominence [31, 49, 73]. Many papers take the ap-

proach of pretraining large vision-and-language models and
then adapting them to downstream tasks, including caption-
ing [30, 66]. Recent efforts focus on further scaling these



pretraining-based methods [3, 23, 60, 72], while many also
aim to unify multiple vision-and-language tasks during pre-
training [10, 11, 61, 64]. Despite steady improvements in
image caption quality over the past years, even the best
models still make mistakes. Here, we study the reliability of
vision-language models, with the goal of assessing caption
correctness.

Reliability in multimodal models. With the adoption
of Large Language/Vision/Vision-and-Language Models
(LLMs, LVMs, LVLMs), it is increasingly important to
study their limitations and outline expectations regarding
their reliability. One of the first efforts in doing that for
LLMs and LVMs (unimodally) is [54], whose broad defi-
nition of reliability includes aspects from modeling uncer-
tainty to robust generalization and adaptation. A recent
work in multimodal learning outlines reliability of visual
question answering [07], defining it as a model’s ability to
ensure a low risk of error by means of abstaining from an-
swering. In our work, we approach reliability by improving
assessments of caption correctness, and incorporating these
estimates to reduce rates of error in generated captions.

3. TLC: Token-Level Confidence for Caption
Correctness

Overview. Given an image and a caption, TLC produces a
confidence score for each token and aggregates these scores
to produce an estimate of caption correctness, i.e., semantic
consistency with the image. First, we describe two forms
of confidences: algebraic (TLC-A, Sec. 3.1) and learned
(TLC-L, Sec. 3.2). Next, in Sec. 3.3, we describe how to
combine token confidences to measure caption correctness
and use token confidences to re-rank captions during gener-
ation. In our experiments, we will then verify TLC-A pri-
marily on out-of-domain probing benchmarks (Sections 4.2
and 4.3). We then evaluate TLC-L in a setting where in-
domain training data is available (Sec. 4.4).

Preliminaries. Let f,.. be a vision-language model pre-
trained on a large multimodal dataset, and f.,, be a model
initialized with f,,. and subsequently finetuned for autore-
gressive image captioning. Given an image x, a caption
consists of a sequence of n tokens t;.,, describing the im-
age. At each decoding time step k € {l..n}, feqp pro-
duces a distribution of token likelihoods z, € RIV! for a
vocabulary V, conditioned on previous outputs 27.5_1. Au-
toregressive captioning models are typically trained with a
token-level cross-entropy loss on Zj, often followed by self-
critical sequence training [44]. Decoding methods such as
sampling or beam search can then be used to select tokens
at inference time, typically aiming to maximize the image-
conditional sequence likelihood.

3.1. TLC-A: Algebraic Confidences

A simple method for measuring token-level confidence
is to use an algebraic function of the distribution zj di-
rectly, such as taking the logit or softmax value at the
selected token index. We refer to token confidences de-
rived from algebraic functions of 2}, as TLC-Algebraic, or
TLC-A. Prior works find simple measures such as soft-
max to be unreliable in both vision and vision-language
“one-of-K” classification tasks [18, 67]. In contrast, we
find that softmax scores from autoregressively-generated to-
kens perform surprisingly well, even on data that is out-of-
distribution from the image captioning training set used by
feap- This is aligned with findings in the language-only set-
ting [12, 52, 55], suggesting that token-level language mod-
eling may be key for reliable confidence measures.

3.2. TLC-L: Learned Domain-Specific Confidences

Although we observe that TLC-A performs well on eval-
uation benchmarks out-of-distribution from the image cap-
tioning training data (Sections 4.2 and 4.3), we would
like to see whether learning a confidence estimator on in-
distribution training data could improve estimates of cor-
rectness, similar to [67]. However, we do not have direct
supervision to measure the correctness of a specific token
in an arbitrary predicted caption with an image, aside from
human evaluation. Instead, we leverage existing reference
captions to learn a binary classification task, measuring
whether a predicted token matches one or more reference
tokens at the same time step. Fig. 2 presents an overview of
this method, which we refer to as TLC-Learned, or TLC-L.
Forming the training set. We begin with a trained and
frozen f.q;, and use a heldout dataset X’ for training a con-
fidence estimator g. Compared to the training set for feqp,
X provides a better estimate of the captioning model’s per-
formance on test data. In this work, we simply use the fcqp
validation set. For each image in X', paired with one or more
references, we select one of the reference captions ¢;.,, and
time step k£ within the caption. We first input the prefix, or
t1:—1, into the f,, decoder to predict the next token, fk.
We assign a binary label c to #j, — it is correct (c = 1) if it
matches the reference token ¢j, or any token at k from other
reference captions with the same prefix. Otherwise, t;, is
labeled as incorrect (¢ = 0). For example, in Fig. 2, the
original reference token ¢ is “sleeping”, yet “asleep” and
“laying” are also considered correct, given that they share
the same prefix “a dog”. The predicted token #;, “standing”
is therefore labeled as incorrect. This provides proxy for
true consistency with the image, which may be noisy; for
example, “resting” would be considered incorrect in Fig. 2.
Nevertheless, these labels enable TLC-L to learn effective
in-domain confidences (Sec. 4.4). At each epoch, we re-
sample a reference caption and a time step k for each image
in order to leverage all available ground-truth tokens.
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for a pretrained autoregressive encoder-decoder captioning

model. We first use the captioning model to predict the next token (e.g., “standing”) after a partial reference caption (e.g.,
“a dog”), shown in the bottom left. We input this sequence along with the image and the rest of the reference caption to the
model, and obtain corresponding encoder and decoder features. These features become the inputs to our confidence estimator,
a Transformer encoder. For supervising correctness, we create a binary classification task to learn whether or not the model’s
predicted token matched any reference token at the same time step with the same prefix.

Training a confidence estimator. The output of g is a
scalar ¢, trained with binary cross-entropy loss with ¢ as
supervision. As input, g receives image features from the
model, such as those output by an encoder. It also receives
token-level features from the decoder (e.g., just before de-
coder features are projected into the vocabulary space). We
find that including the reference postfix, or tj4 1., in addi-
tion to the prefix ¢;.; and predicted token e improves the
confidence estimation. We pass the encoder features and
position-encoded decoder sequence into a Transformer en-
coder [56], and pass the output embedding of token #;, into
a small feed-forward network to produce ¢. We provide de-
tails on our specific choice of architecture in Sec. 4.1. At
inference time, we run our confidence estimator once per
time step within a predicted caption 1.,,.

A bidirectional confidence. Although we supervise confi-
dence for a single token ;, at a time, the full caption con-
text is given as input. Due to self-attention in the Trans-
former encoder within g, the final prediction ¢ represents
a bidirectional confidence estimate, in contrast to the orig-
inal autoregressive token predictions. This enables a use-
ful combination: generating tokens autoregressively scales
well with data and model size [601, 10], whereas estimat-
ing token confidence bidirectionally uses future context to
inform correctness.

3.3. From Confidence to Caption Correctness

3.3.1 Combining Confidences

In practice, we would like to measure correctness over an
entire caption or particular span, such as a word or phrase.
To obtain such a score from token-level confidences, we can
simply aggregate the confidences over a specific span of to-
kens ¢;.; or the full sequence t1.,, by taking, e.g., the mini-
mum or average confidence value. We exclude the end-of-

sentence (EOS) token, as its confidence is often poorly cal-
ibrated relative to previous tokens [27]. In our experiments,
we compare correctness between image-caption pairs by ag-
gregating over the full sequence (Sec. 4.2) or specific words
(Sections 4.3 and 4.4).

3.3.2 Confidence During Caption Generation

We can use token-level confidences to not only estimate cor-
rectness between an image and an existing caption but also
between a proposed caption candidate during generation.
By re-ranking candidates relative to estimated correctness,
we can reduce errors in the final selected captions.

When generating a caption, it is common to first predict a
set of B candidate captions using an autoregressive decod-
ing method such as beam search. Initially, the beams are
ranked according to their cumulative token log likelihoods
from the captioning model:

= Zlogp(tk | tig—1,2) Q)

k=1

P(t1.)

However, token likelihood can fail to rank captions that
are fully correct above those that contain an error. For ex-
ample, a fluent and detailed sentence with a single-word
hallucination may rank above a simpler, yet correct, cap-
tion. This is observed in [45], where captions with higher
CIDEr [57] could also have higher hallucination rates. It is
also similar to prior work in machine translation [ | 7], which
noted that errors can be “bad luck” from generation rather
than inherent model failure.

To alleviate this, we first define a set of words or concepts
S that we estimate correctness for. For example, in our ex-
periments, we consider only the tokens that correspond to
MS COCO [9] object categories, as we have annotations



for their correctness during validation and evaluation. Be-
ginning from the highest-likelihood beam, we estimate con-
fidence ¢ for each set of words in S that appear in the beam
(e.g., each MS COCO object that is mentioned). If any ¢ are
less than a threshold v, we reject the beam, and continue to
the next one until we reach a beam where all relevant tokens
are predicted to be correct (¢ > ~y), or where there are no
tokens from S. If none of the beams satisfy these criteria,
we output the original (highest-likelihood) caption. In that
setting, we could alternatively choose to abstain from pro-
viding a caption in order to avoid misleading a user, similar
to [67]. However, we instead choose the original caption in
our experiments to simplify the comparison between meth-
ods.

We choose the threshold « on a validation set to control
the rate of false positives. This is captured by the precision:
“out of all samples predicted as correct, what fraction are
actually correct?” We define a target precision «, such as
99%, and select  such that the binary decisions ¢ > v max-
imize the recall of correct samples in S on the validation set.

4. Experiments

After discussing the experimental setup (Sec. 4.1), we
demonstrate the effectiveness of TLC-A for identifying cor-
rect image-caption pairs that test understanding of compo-
sitionality (Sec. 4.2) and verbs (Sec. 4.3). We then evaluate
both TLC-A and TLC-L on reducing object hallucinations
in generated captions (Sec. 4.4).

4.1. Experimental Setup

As a captioning model, we choose to experiment with
OFA [61], a recent open-source sequence-to-sequence mul-
timodal transformer that achieves state-of-the-art caption-
ing performance. OFA has a simple encoder-decoder archi-
tecture designed to unify multimodal tasks conditioned on
an image and specific input instruction (e.g., “What does the
image describe?” prompts the model to output a sequence
of tokens for captioning). We use the official implemen-
tation and checkpoints (f,r.) for OFALec, OFAp,, and
OFAry,y, pretrained on a dataset with 20M publicly avail-
able image-text pairs. As image-text matching was included
as a task in OFA pretraining, we use ITM in our results to
denote the image-text matching score from fy,,.. For feqp,
we finetune each scale of OFA model on MS COCO Cap-
tions [9], which has about 80k training images. We split
the validation set of 40k images into three parts for train-
ing, validation, and testing of g, following [67]. Additional
dataset details are in Appendix D.

For TLC-A, we use the softmax score at the selected to-
ken index. We experiment with several other choices of
algebraic function and report results in Appendix B. For
TLC-L, as input to the learned confidence estimator g, we
use multimodal image and instruction features output from

Model Conf. Text Image Group
MTurk Human [53] - 89.50 88.50 85.50
Random Chance [53] - 25.00 25.00 16.67
UNITERyyge [53] IT™ 38.00 14.00 10.50
VinVL [53] IT™ 37.75 17.75 14.50
CACRpyse [39] CACR 39.25 17.75 14.25
TAISLarge [39] IAIS *42.50 19.75 16.00
IT™ 30.75 10.25 7.25
OFALuge TLC-A 29.25 *27.00 *17.50
(A) (—=1.5) (+16.75) (+10.25)
IT™ 26.75 10.75 6.50
OFAgase TLC-A 24.50 23.50 13.75
(A) (=2.25) (+12.75)  (+7.25)
IT™M 22.75 7.75 4.50
OFAr;,y TLC-A 16.50 15.75 6.75
(A) (—6.25)  (+8.00) (+2.25)

Table 2: Accuracy on text, image, and group score for
the Winoground evaluation dataset [53]. Citations indicate
where scores are reported, and * indicates state-of-the-art.

the OFA encoder, as well as token embeddings from the de-
coder just before they are projected onto the logit space by
a linear layer. g itself is a 4-layer Transformer encoder [56],
followed by a 2-layer MLP. We add a learned positional en-
coding to the token features, and train g for 200 epochs on
8 V100 GPUs. Additional details are in Appendix E.

4.2. Correctness Around Compositional Reasoning

First, we assess the ability of TLC-A to select corre-
sponding image-caption pairs. We use Winoground [53],
a dataset curated to test the compositionality of vision-
language models. Each of the 400 examples contains two
image-caption pairs (Iy, Cp) and (I, C;). Captions Cy and
C} contain the same words and/or morphemes, yet differ
in order; for example, “there is a mug in some grass” and
“there is some grass in a mug”. There are three evaluations
per example: text score (given an image, select the correct
caption), image score (given a caption, select the correct
image), and group score (all text and image scores for an
example must be correct). A pairing is considered correct
if the image-caption matching score for the correct pair is
greater than that of the incorrect pair (i.e., cpos > CNEG)-
[53] find that the task is surprisingly difficult, with all mod-
els they test performing below random chance for image
and group score.

As correctness estimates, [53] use image-text matching
scores (ITM) from a range of pretrained vision-language
models. Other works [39, 43] design training losses specif-
ically targeting relation alignment. Using TLC-A, we pro-
duce a correctness estimate ¢ by simply averaging token-
level softmax scores for each proposed image-caption pair.
We present results in Tab. 2.



Confidence Model

FALarge OFABasc OF ATiny
I™ 81.23 78.44 65.25
TLC-A 89.47 89.64 81.34
(A) (+8.24)  (+11.20) (+16.09)

Table 3: Image-caption matching accuracy for verb under-
standing with a subset of SVO-Probes [21]. TLC-A uses
token-level softmax scores aggregated over the verb in each
example.

TLC-A outperforms prior SOTA image and group per-
formance. TLC-A with OFAp,,. reaches above random
chance for both image and group score, improving over
prior state-of-the-art. Despite its simplicity, with no addi-
tional training beyond standard image captioning, TLC-A
outperforms IAIS (proposed in [43]), a training method op-
timized for multimodal attention alignment. Compared to
ITM across OFA model sizes, TLC-A more than doubles
the image and group scores in all but one case (OFAr,,

group).
4.3. Correctness Around Verb Understanding

Next, we consider caption correctness when aggregat-

ing token confidences over a single word, rather than over
a full sequence as in Sec. 4.2. To evaluate this, we use
SVO-Probes, a dataset designed by Hendricks and Ne-
matzadeh [21] to test the verb understanding of vision-
language transformers. Each example contains an image
and a caption describing a (subject, verb, object) relation
in the scene. It also contains a negative image, where only
one part of the relation is different, such as (person, swim,
water) and (person, walk, water). We use a publicly avail-
able subset of about 6,500 examples for verb understanding,
and use a parser [22] to annotate the location of the verb in
each caption. We aggregate token confidences over the verb
tokens for TLC-A. Tab. 3 presents image-caption accuracy,
where a score is 1 if the confidence is greater for the correct
image (again, if cpos > cNEG)-
TLC-A outperforms image-text matching scores.
From Tab. 3, we see that TLC-A reaches higher image-
caption matching accuracy compared to the ITM scores
from pretrained models, across a range of model sizes
(e.g., 8.24% and 11.20% improvement for OFAp,.. and
OFAg,s. respectively). Therefore, when localized word or
token positions are available, they can be leveraged for a
finer-grained matching score than ITM operating on the
full sequence.

4.4. Reducing Object Hallucinations

We now test our approach described in Sec. 3.3.2, where
we select a caption from a set of candidates to lower the

likelihood of error. We also evaluate learned confidences
from TLC-L, now that we can use domain-specific training
data for g with the image captioning validation set. Prior
work [45] provides a framework for measuring object hal-
lucination on MS COCO data. [45] provides a method to
enumerate MS COCO objects mentioned in references for
a given image and enumerate objects mentioned in an ar-
bitrary, predicted caption. We also add part-of-speech tag-
gers [7, 22] to exclude predicted words that are not nouns;
however, when comparing directly to prior work, we use the
original implementation. A hallucination is flagged when a
prediction mentioned an object not present in the reference
set. This is evaluated by sentence-level and object instance-
level CHAIRs and CHAIRIi metrics [45]:

# captions with > 1 hallucination

CHAIR, = . (@)
# captions
CHAIR, — # objejcts halluc%nated 3)
# objects mentioned
We report standard captioning metrics [5, 57] as well

as CHAIRs and CHAIRIi (or CHs and CHi). We also re-
port several caption diversity measures [51, 69] to examine
whether captions with lower hallucination rates reduce cap-
tion diversity: Vocab Size measures unique unigrams across
predictions, % Novel measures the percentage of generated
captions which do not appear in the training set annotations,
Div-2 measures the ratio of unique bigrams to the number of
generated words, and Re-4 measures the repetition of four-
grams.

For both TLC-A and TLC-L, we choose a threshold v on
the validation set. This threshold is used at test time to make
binary decisions on the correctness of a given object in a
predicted caption. We extract all objects from the validation
set predictions, as well as corresponding token confidences
and ground-truth hallucination scores. Then, we choose a
confidence level +y that reaches at least 99% precision when
separating correct vs. hallucinated objects. This precision
is intentionally very high; the OFA captioning models have
fairly low rates of hallucination on MS COCO already (as
seen in Tab. 4), yet we are interested in pushing the caption
reliability as far as possible. When aggregating token con-
fidences over object words, we select the minimum value
for TLC-A and the average value for TLC-L based on the
validation set recall. We use a large beam size of B = 25 to
observe the behavior of our caption selection method when
given many possible candidates.

We show results from the following methods. Standard
uses the original top caption, that is, the caption from the
beam ranked highest by f.q,. Standard-Aug uses the top
caption from a captioning model f’__, where its training set

cap’
is augmented by the training set for g. This tests whether



Baseline (b=1)
A rear view mirror on the side
of acar

TLC-L (b=2)
A rear view mirror on the side
of a vehicle

Baseline (b=1)
A blender with chopped
apples in it on a table

TLC-L (b=11)

A blender filled with fruit on a
table

Baseline (b=1)
A large pile of luggage on a
cruise ship.

TLC-L (b=2)
A large pile of luggage sitting
in aroom

Baseline (b=1)

A black bird sitting on a metal
chair

TLC-L (b=5)
A black bird sitting on a
wrought iron fence.

Baseline (b=1)
A brown and white cow
standing next to a person

TLC-L (b=5)

A brown and white cow
looking at the ground

Baseline (b=1)
A person cutting a sandwich
with a pair of scissors

TLC-L (b=2)
A person cutting a sandwich
with a knife

Baseline (b=1)

A plate with a sandwich and a
salad on a table

TLC-L (b=2)
A white plate topped with a
sandwich and a salad

Baseline (b=1)
A hot dog in a paper
container on a table
TLC-L (b=25)

A hot dog covered in toppings
in a paper tray

Baseline (b=1)
A parking meter with a
drawing of a person on it

TLC-L (b=4)
A parking meter with a
drawing on it

Figure 3: Qualitative examples from our test set in which TLC-L avoided hallucinations in the original (Baseline) captions.
In the rightmost column, we show cases where the MS COCO object annotations did not exhaustively include all objects
present. Captions are generated with OFAp . and a beam size of 25, and (b = i) refers to the index i of the beam as ranked

by the Baseline.

the improvements from TLC-L result from using token con-
fidence itself or from additional training data. More details
on Standard-Aug are in Appendix E. ITM uses fj. to re-
rank the B candidate captions from Standard based on their
image-text matching score, and selects the highest-ranked
caption as output. TLC-A and TLC-L use the respective
algebraic or learned confidences over the MS COCO object
words to re-rank captions as described in Sec. 3.3.2.

Learned confidences lead to the least hallucinations.
From Tab. 4, we can see that both TLC-A and TLC-L
lower the CHs and CHi hallucination rates across all model
sizes compared to the original (Standard) captions. TLC-
L reaches the lowest rates in each case; for example, it
lowers CHs and CHi for OFAp . by a relative 37.6% and
34.3% respectively. Additionally, TLC-L lowers hallucina-
tion rates compared to Standard-Aug as well (e.g., a relative
20.9% lower CHs for OFA[ ). This indicates that reserv-
ing a portion of data to train g can have a bigger impact
on reducing hallucinations than does using the data for aug-
mentation. Using ITM scores slightly lessens hallucination
rates over Standard, yet at the cost of large degradation in
CIDEr and SPICE, and underperforms TLC in all metrics.
In Tab. 6, we further evaluate hallucination rates on the sub-
set of images where the top beam from Standard was not
selected by TLC-L with OFA[ 4¢— in other words, samples
where using TLC-L made a difference. This occurred in al-
most a quarter of the captions. Standard hallucination rates
are much higher on this subset (e.g., 6.78% CHs), whereas
TLC-L reduces this by at least half.

Captioning metrics do not capture hallucinations.
CIDEr and SPICE decrease across all TLC-based ap-

Model Confidence Hallucination Quality
CHs(}) CHi()) CIDEr(f)  SPICE (1)
Standard-Aug 220 138 153.3 26.7
OFA Standard 279 178 1444 25.8
Lage  TM 2.57 1.76 126.5 24.4
TLC-A 1.81 124 140.7 25.5
TLC-L 174 117 141.8 25.4
Standard-Aug 3.00 1.89 148.8 26.1
Standard 378 239 1429 25.6
OFApse 1M 322 2.15 127.1 243
TLC-A 247 175 1375 252
TLC-L 2.05 148 137.5 24.9
Standard-Aug 1058 6.83 119.8 2.1
Standard 11.01 7.23 1174 217
OFAmny 1M 9.42 6.51 106.6 20.6
TLC-A 9.87 6.86 115.8 215
TLC-L 8.79 6.43 113.9 213

Table 4: Hallucination rates and captioning metrics on our
test set when generating captions with a beam size of 25.

proaches, despite having dramatic reductions in hallucina-
tion rates. This effect was also observed by [45], which
described how standard metrics can often fail to penalize
hallucinations. For instance, the majority of a sentence
might overlap with a reference caption, yet still, misclas-
sify an object. [36] nevertheless find that some visually-
impaired users of captioning systems prefer correctness
above possibly-wrong detail, motivating the drive for low
hallucination rates.

TLC improves caption diversity. From Tab. 5, our method
achieves higher performance on diversity metrics across all
model sizes. For instance, TLC-A consistently increases
bigram uniqueness score Div-2, and decreases the repeti-



Vocab % Novel Div-2 Re-4
Size (1) 1) 1) ‘)
Std. 2822 77.07 6.97 66.34

Model Conf.

OFALyg TLC-A 2980 7897 137 64.74
TLC-L 2915 7770 7.3 65.54
Std. 2272 75.43 568 71.14
OFAp;e  TLC-A 2453 7849 6.3 69.28
TLC-L 2452 77.53 6.03 69.76
Std. 1130 74.80  2.73 83.29
OFAriyy TLC-A 1211 75.71 291 82.68

TLC-L 1243 77.05  3.01 82.12

Table 5: Caption diversity metrics, evaluated on our test set.

Subset #1 Method CHs () CHi()

Standard 2.79 1.78
TLC-L 1.74 1.17

Standard 6.78 3.22
TLC-L 2.81 1.61

Full test set 20,252

TLC-L,b>1 5,401

Table 6: Top: Results on the full test set reported in Tab. 4.
Bottom: Hallucination rates on a subset of images where
TLC-L did not choose the top beam. # I denotes the num-
ber of images in each set. Results are shown for OFA[ ;.

tion measure Re-4. Incorporating confidence into caption
selection may help overcome language priors, where co-
occurrence statistics from training influence token likeli-
hoods. Diversity can improve as a result, where captions
are driven more by consistency with the image rather than
language. For example, the top center sample in Fig. 3
shows the baseline hallucinating a “metal chair”, compared
to the correct yet uncommon words “wrought iron fence”
described by TLC-L.

Qualitative analysis. We show several qualitative exam-
ples in Fig. 3. In the left column, we see two exam-
ples where TLC-L “backed-off” to a more general con-
cept, whereas the baseline was specific, yet the image did
not contain enough information to determine whether the
specificity was indeed correct (e.g., “car” vs. “vehicle”
and “apples” vs. “fruit”). A prior work [16] explicitly
optimized for this hierarchical generalization of unknown
concepts, whereas here it emerges when considering confi-
dence. TLC-L also avoids misclassification errors, such as
“person” or “scissors” in the middle column. On the right
column, we show examples influenced by incomplete object
annotations. For example, the reference segmentations and
captions might overlook the object “table”. TLC-L rejects
captions that mention “table” in some of these cases, re-
flecting its training objective where correctness was judged
based on faithfulness to the reference distribution. We in-

clude additional examples, including several failure cases,
in Appendix C.

TLC-L with OFAy,.g sets a new state-of-the-art. We
compare to previous results on MS COCO object hallucina-
tion in Tab. 7. We re-train our captioning models and con-
fidence estimators on a dataset split that does not overlap
with the Karpathy test split used for evaluation [25]. [45]
show that training with a self-critical (SC) loss after train-
ing with cross-entropy (XE) [44] can improve captioning
metrics, yet worsen hallucination rates compared to training
with XE alone. We find that the baseline OFA[ ;e has sim-
ilar hallucination rates for XE and SC, yet TLC-L indeed
produces the least hallucinations on top of the XE model.
This leads to a new state-of-the-art of 2.0% and 1.4% for
CHs and CHi respectively. Notably, TLC-L reduces hal-
lucination without requiring any architecture changes to its
captioning model, in contrast to the prior SOTA of COS-
Net, where specific modules were introduced to capture im-
age semantics.

5. Discussion and Limitations

While TLC-L provides effective confidence estimates for
caption generation, it requires domain-specific training data
for learning a confidence estimator from scratch on top of
captioning model features. TLC-A, on the other hand, uses
the captioning model outputs directly, which leverages gen-
eralization ability from large-scale pretraining. Thus, TLC-
A can be effectively applied in settings where in-domain
training data for captioning is not available. To combine
these advantages, future research could explore unsuper-
vised methods for learning correctness. Additionally, we
use algebraic confidence estimates from uncalibrated output
distributions, where output probabilities do not necessarily
match actual probabilities of correctness. Potential future
work may apply calibration methods to token-level confi-
dence for improving caption correctness. Finally, learned
confidences may also be incorporated into decoding meth-
ods that are not autoregressive.

6. Conclusion

In this work, we have explored a simple method using
Token-Level Confidence (TLC) for determining whether
a caption correctly describes an image, a critical part of
vision-language understanding. We find that judging cap-
tion correctness at a finer granularity than existing ap-
proaches leads to improvements in several settings, such
as evaluating compositional reasoning with image-caption
pairs or reducing object hallucinations in generated cap-
tions. To do so, TLC uses a vision-language model fine-
tuned on image captioning to produce token confidences,
and then aggregates either algebraic (TLC-A) or learned to-
ken confidences (TLC-L) over words or sequences to esti-



Reported in Method Beam XE Loss SC Loss

Size | B@4 S M C CHs() CHi()) | B@4 S M C CHs() CHi({))
[45]EMNLP 2018 NBT [35] 5 - 194 262 105.1 7.4 54 - - - - - -
[45] EMNLP 2018 TopDown [0] (no Boxes) 5 - 199 267 107.6 8.4 6.1 - 204 270 1172 13.6 8.8
[45] EMNLP 2018 TopDown [0] 5 - 204 27.1 1137 8.3 59 - 214 277 1206 104 6.9
[711 CVPR 2021 Transformer unk - - - - - -] 386 220 285 1285 12.1 8.1
[711 CVPR 2021 Transformer+CATT unk - - - - - -1 394 228 293 1317 9.7 6.5
[70] PAMI 2021 UD-DICv1.0 5 - - - - - -| 387 219 284 1282 10.2 6.7
[8] WACV 2022 UD-L no 344 207 273 1127 6.4 4.1 377 221 28.6 1247 59 3.7
[8] WACV 2022 UD-L + Occ no 339 203 27.0 110.7 5.9 38 | 37.7 222 287 1252 5.8 3.7
[33] CVPR 2022 CIICq 3 37.3 215 285 119.0 53 36 | 402 232 295 133.1 7.7 4.5
[32] CVPR 2022 COS-Net 3 39.1 227 297 1274 4.7 32| 420 246 306 141.1 6.8 4.2
This work OFA Large [01] 5 41.8 244 313 140.7 3.1 20| 423 255 31.6 145.0 3.1 2.0
This work OFA{ 45 + TLC-L 5 412 241 309 1384 #2.0 *1.4 | 420 252 314 1438 2.3 1.5

Table 7: Comparison to prior work for hallucination in image captioning on the MS COCO Karpathy test split. Although
we add a noun parser for our results in Tables 4, 5, and 6, we remove this step here and use the original evaluation provided

by [
and C (CIDEr [

mate image-caption consistency. Increasing the confidence
granularity with TLC-A improves over prior state-of-the-
art image and group scores on Winoground [53] by a rel-
ative 37% and 9%, respectively, and improves accuracy in
verb understanding on SVO-Probes [21] by a relative 10%.
When training data are available to learn and calibrate con-
fidences with TLC-L, we reduce object hallucination rates
on COCO Captions by a relative 30%, setting a new state-
of-the-art. Overall, our results demonstrate that token-level
confidence, whether algebraic or learned, can be a powerful
yet simple resource for reducing errors in captioning output
and assessing image-caption consistency.
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Appendix
A. Overview

Appendix B presents an ablation showing several al-
ternative algebraic confidence estimates, and compares the
precision-recall curve for the learned TLC-L to that of alge-
braic confidences when separating correct and hallucinated
objects. Appendix C presents additional qualitative exam-
ples of both success and failure cases, comparing TLC-L to
the Baseline model. Appendix D and Appendix E provide
further details on datasets and models respectively.

B. Alternative Confidence Estimates

We compare several other choices of algebraic confi-
dence estimates for TLC-A besides softmax score used in
the main paper. All are derived from the likelihood (logit)
distribution 2}, as mentioned in Sec. 3.1. Logit is the logit
value for the selected token directly from Zj, whereas Soft-
max is the corresponding value after a softmax function.
Again, in our main paper, TLC-A is based on this softmax
score confidence. Entropy is the negative entropy of the
log-softmax distribution, as a higher entropy should indi-
cate higher uncertainty. Entropy has been previously used
as a direct estimate of model uncertainty [59] as well as a
penalty in image caption decoding [68]. Finally, we con-
sider the Energy score [34], originally proposed as a mea-
sure for OOD detection that theoretically correlates with the
probability density of the in-domain samples. We use a tem-
perature of 1, and negate the energy score so positive values
indicate confident samples.

In Fig. 4, we show the precision-recall curve for var-
ious confidence estimates to separate correct and halluci-
nated objects. We compute these results on our MSC-Main
validation set for g (see Tab. 8). Specifically, we are not
interested in the exact values of confidence estimates them-
selves, but rather how well they can rank correct objects
over those that are hallucinated. When using confidence es-
timates in practice, we need a threshold to make a binary
decision about whether an object in a caption is considered
hallucinated or not (Sec. 3.3.2). We choose this threshold
for a specific precision level, above the accuracy that the
model achieves on its own. For instance, on the validation
set for g, about 98.3% of the captioning model’s predicted
objects are correct (and the rest hallucinated). To push re-
liability further, we choose a threshold ~ for each method
that achieves a precision of 99%. In Fig. 4 (left), we there-
fore only show recall rates above 98% precision, yet show
the overall area-under-the-curve (AUC) in Fig. 4 (right).

From Fig. 4, we can see that TLC-Learned (i.e., TLC-
L) achieves the highest AUC of 99.48%, and TLC-Softmax
achieves the second-highest of 99.07%. The precision-
recall plot shows that all algebraic confidences reach 0%

Dataset Use Case #Images # Captions
Train feq;, and féap 82,783 414,113

. . Validate fcqp, Train g and f(’,u,) 16,202 81,065
MSC-Main  \.idate g and fhaps Select g thresholds 4,050 20,268
Evaluation 20,252 101,321

Train feqp 82,783 414,113

. Validate fcqp, Train g 28,403 142,120
MSC-Prior v kidate g, Select g thresholds 7,101 35,524
Evaluation 5,000 25,010

Winoground ~ Evaluation 800 800
SVO-Probes  Evaluation 12,958 6,479

Table 8: Overview of datasets used in our work. MSC indi-
cates MS COCO Captions [9].

recall before 99.5% precision, whereas TLC-L still retains
about 60% recall at this high precision rate. In our main pa-
per, we use TLC-A to denote TLC-Softmax, as it performed
the best among the algebraic confidences.

C. Additional Qualitative Examples

In Fig. 5, we present qualitative examples (in addition
to those in Fig. 3) where the Baseline model caption con-
tained a hallucination, yet the caption selected by TLC-L
did not. Note that “Baseline” refers to “Standard” as in
Tab. 4. In Fig. 6, we show several failure cases of TLC-L.
On the left is a case where the Baseline model selects a more
general caption, whereas TLC-L erroneously rejects it for
one with a hallucinated “carrot”. On the middle and right,
TLC-L selects captions that include other hallucinations of
objects. Nevertheless, TLC-L corrected 44.5% (252/566)
of captions that contained a hallucination from the Baseline
model, whereas TLC-L introduced a hallucination in only
0.2% (38/19, 686) of captions that did not contain a hallu-
cination from the Baseline model.

D. Dataset details

MS COCO Captions. We use the same dataset splits
as [67] for training and validating the captioning model f.,,
and confidence estimator g, as [67] similarly reserves vali-
dation data in MS COCO for training a confidence estimator
(yet for the visual question answering task, rather than im-
age captioning). For the Standard-Aug model f/,,, in Tab. 4,
we include the training set for g as part of the training set
for fi,,. In Tab. 8, we refer to these splits as MSC-Main
(for MS COCO Main), and use them for results in Tabs. 4,
5, and 6, and Figs. 3, 4, 5, and 6. For comparison to prior
work that uses the Karpathy test split (Tab. 7), we re-split
the validation set to prevent overlap. These details are pre-
sented as MSC-Prior in Tab. 8.

Winoground. We use the original data and evaluation setup
for Winoground as in the original paper [53], which con-
sisted of 800 unique images and captions. This leads to

400 examples, each consisting of two image-caption pairs,
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Figure 4: Precision-recall curve (left) and AUC (right) with different confidence estimates for separating correct and halluci-
nated objects. Results are shown on our validation set using OFALyge.

Baseline (b=1)

A living room with a couch
and atv

TLC-L (b=15)
A living room filled with
furniture and a rug

Baseline (b=1)

A stir fry dish with broccoli
carrots and other vegetables

TLC-L (b=6)
A dish with broccoli and other
vegetables in it

Baseline (b=1)

A basket with bananas apples
and pears in it

TLC-L (b=3)
A basket with bananas and
pearsin it

Baseline (b=1)

A dress shirt and tie sitting on
top of a chair

TLC-L (b=2)
A striped tie sitting on top of
a piece of clothing

Baseline (b=1)

A'sandwich in a plastic bag
on a desk

TLC-L (b=7)
A plastic bag with food inside
of it

Baseline (b=1)

A black and white cat sitting
on altable

TLC-L (b=7)
A black and white cat with
green eyes

Figure 5: Additional qualitative examples on our test set for TLC-L on OFA[ 4, where the Baseline model caption contained

a hallucination, yet the caption selected by TLC-L did not.

where the captions contain the same words and/or mor-
phemes yet a different word order.

SVO-Probes. For SVO-Probes [21], we use the authors’
public code to access a subset of data where the images
were available. As discussed in Sec. 4.3, each image is an-
notated with a (subject, verb, object) relation, e.g., {girl, sit,
shore) relation. We take the available data that contrasts two
verbs, e.g., a “positive” or image-consistent relation (girl,
sit, shore) and a “negative” or inconsistent relation (girl,
walk, shore). For each image, we take the provided “pos-
itive” caption (e.g., “A girl sits on the shore”), and use a
part-of-speech tagger [22] to localize the verb (e.g., “sit”) in
the sentence. We do not use images where the tagger failed
to identify the verb, often in cases where the verb did not
appear in the caption itself (e.g., a triplet of (person, wear,
glasses) with a caption of “The glasses fogged up”). The fi-

nal split contains about 6,500 image-caption pairs (Tab. 8),
half of which are correct pairs. This evaluation is not di-
rectly comparable to prior work [21], which used the full
set of data, chose a threshold of 0.5 to indicate whether or
not an individual sample matched an image, and was per-
formed at a sequence-level rather than word-level. In our
work, we contrast a positive and negative image for a given
caption, and label a sample as correct if the confidence for
the positive pair is larger than the confidence for the nega-
tive pair, similar to Winoground.

Overlap with training data. All OFA models were not ex-
posed to any MS COCO validation or test data during pre-
training [61]. Winoground was hand-curated from the Getty
Images API [1, 53], which is not used by OFA pretraining.
Data from SVO-Probes was collected via the Google Im-
age Search API and de-duplicated against Conceptual Cap-



Baseline (b=1)

A giraffe is eating something
from a persons hand

TLC-L (b=2)
A person feeding a carrot to a
giraffe

Baseline (b=1)

A laptop computer sitting on
top of a desk

TLC-L (b=4)
A laptop computer on a desk
with a cell phone

Baseline (b=1)

A dog is sitting in the back of
a boat

TLC-L (b=2)
A dog is sitting in the back of
a truck

Figure 6: Failure cases on our test set for TLC-L on OFA{ 4., where TLC-L selected a caption with a hallucination, yet the

Baseline did not.

tions [21, 48]. As OFA models used Conceptual Captions
during pretraining, we assume there is no further overlap.

E. Model details

Captioning. To complement the details in Sec. 4.1, we pro-
vide additional experimental details for the captioning mod-
els. We use publicly available checkpoints for pretrained
models provided by [61]. Parameter counts are 930M for
OFALgrge, 180M for OFAgye, and 33M for OFAr,, [61].
To finetune the pretrained models on MS COCO Captions,
we follow the same settings from [61], where we train with
cross entropy loss for 2 epochs for OFAL ., and 5 epochs
for OFAg,s. and OFAr;,y,. We then train with CIDETr opti-
mization for 3 epochs.

TLC-L. In addition to details in Sec. 4.1, we provide further
information on the learned confidence estimator g. We use
a 4-layer Transformer encoder [56] with 4 attention heads
each. The embedded output corresponding to the token of
interest t; (Sec. 3.2) is passed to a 2-layer MLP, with hid-
den dimensions of size 512. The embedding dimension is
1024 for OFAL e, 768 for OFAggse, and 512 for OFATjyy.
We train g for 200 epochs, with a batch size of 256, starting
learning rate of 0.001, warm up ratio of 0.06 and polyno-
mial learning rate decay to 2e-7. We use the Adam op-
timizer [26] and clip gradients over 1.0. For aggregating
tokens over objects for caption generation (Sec. 3.3.2), we
use the minimum score for softmax and average for TLC-L,
found on our validation set.



