
Journal of Machine Learning Research 24 (2023) 1-26 Submitted 5/22; Revised 11/22; Published 3/23

Inference for Gaussian Processes with Matern Covariogram
on Compact  Riemannian Manifolds

Didong  L i
Department of Biostatistics
University of North Carolina at Chapel Hill
Chapel Hill, NC 27599, USA

We n p i n  Ta n g
Department of Industrial Engineering and Operations Research,
Columbia University
New York, N Y  10027, USA

Sudipto Banerjee
Department of Biostatistics
University of California, Los Angeles
Los Angeles, C A  90095 USA

didongli@unc.edu

wt2319@columbia.edu

sudipto@ucla.edu

Editor:  Marc Peter Deisenroth

Abstract
Gaussian processes are widely employed as versatile modelling and predictive tools in spa-
tial statistics, functional data analysis, computer modelling and diverse applications of
machine learning. They have been widely studied over Euclidean spaces, where they are
specied using covariance functions or covariograms for modelling complex dependencies.
There is a growing literature on Gaussian processes over Riemannian manifolds in order to
develop richer and more exible inferential frameworks for non-Euclidean data. While
numerical approximations through graph representations have been well studied for the
Matern covariogram and heat kernel, the behaviour of asymptotic inference on the param-
eters of the covariogram has received relatively scant attention. We focus on the asymptotic
inference for Gaussian processes constructed over compact Riemannian manifolds. Building
upon the recently introduced Matern covariogram on a compact Riemannian manifold, we
employ formal notions and conditions for the equivalence of two Matern Gaussian random
measures on compact manifolds to derive the parameter that is identiable, also known as the
microergodic parameter, and formally establish the consistency of the maximum like-lihood
estimate and the asymptotic optimality of the best linear unbiased predictor. The circle is
studied as a specic example of compact Riemannian manifolds with numerical experiments
to illustrate and corroborate the theory.

Keywords:     Equivalence of Gaussian measures, Identiability and consistency, Laplace{
Beltrami operator, Microergodic parameters.

1 Introduction

Gaussian processes are pervasive in spatial statistics, functional data analysis, computer
modelling and machine learning applications because of the exibility and richness they
allow in modelling complex dependencies (Rasmussen and Williams, 2006; Stein, 1999;
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Gelfand et al., 2010; Cressie and Wikle, 2011; Banerjee et al., 2015). For example, in spatial
statistics Gaussian processes are widely used to model spatial dependencies in geostatistical
models and perform spatial prediction or interpolation (\kriging") (Matheron, 1963). In
non-parametric regression models Gaussian processes are used to model unknown functions

and, specically in Bayesian contexts, act as priors over functions (Ghosal and van der
Vaart, 2017). A  typical modelling framework assumes y (x) =  (x)  +  Z ( x )  +  (x)  for inputs x

(e.g., spatial coordinates; functional inputs) over a domain D, where y (x) is a dependent
variable of interest, (x)  is a mean function, Z ( x )  is a zero-mean Gaussian process and
(x)  is a noise process1.     These frameworks can also be adapted to deal with discrete
outcomes and applied to classication problems (Neal, 1999). Gaussian processes are also

being increasingly employed in deep learning and reinforcement learning (Damianou and
Lawrence, 2013; Deisenroth et al., 2013). The current manuscript focuses upon inferential
properties of Z ( x )  when D  is not necessarily Euclidean but a compact Riemannian manifold.

A  Gaussian process is determined by its covariogram, also known as the covariance
function. In Euclidean space, the Matern covariogram (Matern, 1986) is especially popular
in spatial statistics and machine learning (see, e.g., Stein, 1999, for an extensive discussion
on the theoretical properties of the Matern covariogram). A  key attraction of the Matern
covariogram is the availability of a smoothness parameter for the process. Several simpler
covariograms, such as the exponential, arise as special cases of the Matern.

This article is motivated by the emergence of non-Euclidean data, especially manifold
data, in a variety of scientic elds over the last decade. As a consequence, inference for
Gaussian processes on manifolds have been attracting attention in spatial statistics and
machine learning in the settings where the data generating process is more appropriately
modelled over non-Euclidean spaces. Taking climate science as an example, geographic data
involving geopotential height, temperature and humidity are measured at global scales and
are more appropriately treated as (partial) realisations of a spatial process over a sphere
(see, e.g., Banerjee, 2005; Jun and Stein, 2008; Jeong and Jun, 2015a). Data arising over
domains with irregular shapes or examples in biomedical imaging where the domain is a
three-dimensional shape of an organ comprise other examples where inference for Gaussian
processes over manifolds will be relevant (see, e.g., Gao et al., 2019, and references therein).
Motivated by isotropic covariograms in Euclidean space, it is natural to replace the Eu-
clidean distance by the geodesic distance to dene a \Matern" covariogram on Riemannian
manifolds. However, this formal generalisation is not valid for the squared exponential co-
variogram, or Matern with  =  1  (Feragen et al., 2015), unless the manifold is at. For
Matern with  2  (1=2; 1), this naive generalisation is not even valid on the sphere (Gneiting,
2013). Recently, valid covariograms for smooth Gaussian processes on general Riemannian
manifolds have been constructed based upon heat equations, Brownian motion and diusion
models on manifolds (Castillo et al., 2014; Niu et al., 2019; Dunson et al., 2020). However,
these covariograms lack exibility, especially in terms of modelling smoothness.

Whittle (1963) proposed a new representation of G P  by stochastic partial dierential
equations. Following this path, Lindgren et al. (2011) introduced a \Matern" family on
generic compact Riemannian manifold with three parameters involved in the covariogram.

1. In this paper, we do not consider the noise process, which will introduce essential diculty. This noise-free
assumption is common in existing literature, see (Tang et al., 2021) for related discussions on the
Euclidean space.
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Since such Matern covariograms involve the spectrum of the Laplace-Beltrami operator,
numerical approximation to the covariogram is needed for most nontrivial manifolds. There is
a rich literature focusing on the approximation to the covariogram using tools from
harmonic analysis, graph Laplacian, stochastic partial dierential equations, etc (Sanz-
Alonso and Yang, 2022a,b). However, the study of statistical inference for the parameters in
the Matern covariogram remains relatively sparse.

In Euclidean domains Rd  with d  3, while not all parameters in the Matern covariogram are
consistently estimable within the paradigm of \xed-domain" or \in-ll" asymptotic in-ference
(see, e.g. Stein, 1999; Zhang, 2004), certain parameters, customarily referred to as the
microergodic parameters, that can identify Gaussian processes specied by Matern co-
variograms are consistently estimable (see Section 2). Furthermore, the maximum likelihood
estimator of the spatial variance under any misspecied decay parameter is consistently and
asymptotically normally distributed (Du et al., 2009; Kaufman et al., 2008; Wang and Loh,
2011), while predictive inference is also asymptotically optimal using maximum likelihood
estimators (Kaufman and Shaby, 2013). Recently, Bevilacqua et al. (2019) and Ma and
Bhadra (2022) considered more general classes of covariance functions outside of the Matern
family and studied the consistency and asymptotic normality of the maximum likelihood
estimator for the corresponding microergodic parameters.

Our current contribution develops asymptotic inference for a exible and rich Matern-
type covariogram on compact Riemannian manifolds. We review the Matern covariogram
(Section 3.1) on general compact Riemannian manifolds from the perspective of stochastic
partial dierential equations with reasonably tractable covariograms and spectral densities
(Borovitskiy et al., 2020). Our specic results emanate from a sucient and necessary
condition for the equivalence of two Gaussian random measures on compact Riemannian
manifolds with Matern or squared exponential covariograms (Section 3.2). We subsequently
establish (Section 3.3) that for Gaussian measures with Matern covariograms the smooth-
ness parameter is identiable, while the spatial variance and decay parameters are not
identiable when d  3, where d is the dimension of the manifold. For d  4, all three pa-rameters
are identiable. For squared exponential covariograms on manifolds with arbitrary dimension
we show that both parameters are identiable. Again, this problem is still open in Euclidean
spaces. For Matern covariograms on manifolds with d  3, we formally es-tablish the
consistency of the maximum likelihood estimation of the spatial variance with a misspecied
decay parameter. Next, we turn to predictive inference (Section 3.4) and show that for any
misspecied decay parameter in the Matern covariogram, the best linear unbi-ased predictor
under the maximum likelihood estimate is asymptotically optimal. Finally, for spheres with
dimension less than 4, we explicitly study the Matern covariogram, the microergodic
parameter, the consistency of the maximum likelihood estimator and the op-timality of the
best linear unbiased predictor (Section 4). Proofs and mathematical details surrounding our
main results are provided in the Appendix.

2 Gaussian Processes in Euclidean spaces

Let Z  =  f Z ( x )  : x  2  M   Rd g be a zero-mean Gaussian process on a bounded domain M .
The process Z ( )  is characterised by its covariogram k(x; y) =  E(Z (x)Z (y )) ,  x; y 2  M  so
that for any nite collection of points, say x1;  ; xn 2  M ,  we have (Z (x1 );  ; Z (x n ) ) T
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N (0; ), where  is the n  n covariance matrix with (i; j )-th entry i j  =  k(xi ; xj ). The
Matern process is a zero-mean stationary Gaussian process specied by the covariogram2,

k(x; y) =  
2 (kx yk) 

K  (kx yk) ; x; y 2  M   Rd ; (1)

where 2 >  0 is called the partial sill or spatial variance,  >  0 is the scale or decay
parameter,  >  0 is a smoothness parameter,  ()  is the Gamma function, and K ( )  is the
modied Bessel function of the second kind of order  (Abramowitz and Stegun, 1965, Section
10). The Matern covariogram in (1) is isotropic and its spectral density (also known as the
Hankel-Fourier transform, Genton (2002)) is given by

2     2
f (u) =  d=2(2 +  u2)+d=2 ; u  0:

2.1 Identiabi l i ty

Let P0 and P1 be Gaussian measures corresponding to Matern parameters f0 ; 0; g and
f1 ; 1; g, respectively. Two measures are said to be equivalent, denoted by P0  P1, if they are
absolutely continuous with respect to each other. Two equivalent measures cannot
be distinguished no matter how dense the observations are. Zhang (2004) showed that when d
<  4, P0 is equivalent to P1 if and only if 22 =  22. Hence, 2 and  do not admit asymptotically
consistent estimators, while 22, also known as a microergodic parameter, is consistently
estimable. For d >  4, Anderes (2010) proved that both 2 and  are consis-tently estimable.
The case for d =  4 remains unresolved. The integral test oers a sucient (but not necessary)
condition on the spectral densities to determine whether two measures are equivalent. While
nonidentiable parameters are never consistently estimable, identi-able parameters may be
consistently estimable. However, deriving an explicit construction for such a consistent
estimator is often extremely challenging and is beyond the scope of the current manuscript;
we identify this as an area of future research.

2.2 Parameter estimation

In practice, the maximum likelihood estimator is customarily used to estimate unknown
parameters in the covariogram. Let Ln (2 ; )  be the likelihood function:

Ln (2 ; )  =  (22) n=2 det( n ())  1=2 exp  
22 Z

T  n ()  1 Zn ; (2)

where Z n  =  (Z (x1 );  ; Z (x n ) ) T  and ( n ()) i ; j  =  (kx i  x j k )  
K  (kxi  x j k)  is indepen-

dent of 2. Given , the maximum likelihood estimation of 2 is given by (Stein, 1999)

b2 =  
Z T  n ()  1 Z n  :

Let f2; 0g be the data generating parameters with observations Z (x1 );  ; Z (xn ).  For any
misspecied 1, if b1;n is the maximum likelihood estimation of Ln (2 ; 1 ), then

2. Solin and Kok (2019) provides an alternative denition based on P D E s  with boundary conditions.
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b1;n
2 !  22 as n !  1  with probability 1 under P0 when [ n = 1 f x n g  is bounded and

innite (Zhang, 2004; Kaufman et al., 2008). Moreover, 
p  b1;n 1

 

1 !  N (0; 2) as
0     0

n !  1  (Du et al., 2009; Wang and Loh, 2011; Kaufman and Shaby, 2013). As a result,
even if we do not know the true parameters f0; 2g, we can choose an arbitrary, mostly
misspecied, decay parameter 1 and nd the maximum likelihood estimation of the spatial
variance b1;n. The resulting Gaussian measure is asymptotically equivalent to the Gaussian
measure corresponding to the true parameter.

2.3 Predict ion and kr ig ing

Gaussian processes are widely deployed to t spatial or nonparametric regression models and
to carry out model-based predictive inference. Given a new location x0, the best linear
unbiased predictor (BLUP)  for Z 0  =  Z (x 0 )  is given by

Z n ( )  =  n ( ) T  n ()  1 Zn ;

where (n ()) i  =  (kx0  x i k )  
K  (kx0 xi k). Then

E2 ; 0 (Zn (1 ) Z0 )2     
n ! 1

E
0 ; 0 (Zn (0 ) Z0 )2

Eb1 ; n ; 1 (Zn (1 ) Z0 )2     
n ! 1

E
0 ; 0 (Zn (1 ) Z0 )2

where E  is the expectation taken with respect to the measure characterised by the parameter or
spectral density (see Section 3) in the subscript. As a result, any misspecied  still yields
an asymptotically optimal B L U P  as long as 2 is replaced by its maximum likelihood estimator
(Stein, 1993; Kaufman and Shaby, 2013). In the current manuscript, we develop parallel
results for the d dimensional compact Riemannian manifold M .

3 Gaussian processes on compact Riemannian manifold

Henceforth, we assume that our domain of interest is a d-dimensional compact Riemannian
manifold M  equipped with a Riemannian metric g. We denote the Laplace{Beltrami op-
erator on M  by  g with eigenvalues n  and eigenfunctions fn ,  the volume form by dVg and
the volume of M  by V M  (see, e.g., Kobayashi and Nomizu, 1963; Lee, 2018; do Carmo, 1992,
for further details on operators and spectral theory on Riemannian manifolds).

3.1 Matern covariogram on compact Riemannian manifolds

On a Riemannian manifold, where the linear structure of Rd  is missing, the standard def-
inition of the Matern covariogram is no longer valid. A  natural extension of the Matern
covariogram to manifolds will consider replacing the Euclidean norm kx yk in (1) by the
geodesic distance d(x; y). Unfortunately, this naive generalisation is not valid for  =  1
(Feragen et al., 2015), unless the manifold is at. If we restrict ourselves to spheres, Matern
with  2  (1=2; 1)  is still invalid (Gneiting, 2013). Instead, some Matern-like covariograms
including chordal, circular and Legendre Matern covariograms and other families of covari-
ograms have been studied (Jeong and Jun, 2015b; Porcu et al., 2016; Guinness and Fuentes,
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2016; Guella et al., 2018; Clarke De la Cerda et al., 2018; Alegra et al., 2021). However,
these covariograms are constructed specically with respect to the geometry of the sphere and
do not generalise to generic compact Riemannian manifolds.

Whittle (1963) showed that the Matern covariogram on an Euclidean space admits a
representation through a stochastic partial dierential equation, which involves white noise
and the Laplace operator . Motivated by this representation, Lindgren et al. (2011) used the
stochastic partial dierential equation approach to dene the Matern covariogram on
manifolds involving the Laplace{Beltrami operator g. This idea was further developed, both
theoretically and practically, by several scholars (see, e.g., Bolin and Lindgren, 2011; Lang
and Schwab, 2015; Herrmann et al., 2020; Borovitskiy et al., 2020, 2021, among oth-ers). We
state the denition of the Matern covariogram in the stochastic partial dierential equation
sense, which is a valid positive denite function for any  on any compact Rie-mannian
manifold M .

Denit ion 1 Let f l  be the orthonormal eigenfunctions of  g and l  0 be the corre-
sponding eigenvalues in ascending order. Then the Matern covariogram is given by

k(x; y) =  
2     X  2 +         d  

f  ( x ) f  (y); ; l = 0

where C;  =  
X

( 2  +  l )   d=2 is a constant such that the average variance is 2 =
l = 0

V M        M  k(x; x)dVg (x): The corresponding spectral density is given by

(l ) =  
2 

(2 +   )       2  : ;

Similarly, the squared exponential covariogram is given by

k(x; y) =
2 X

e      
22 f  ( x ) f  (y);

1 ;  l = 0

where C 1 ;  =  
X

e      
22 l  is a constant such that the average variance is 2 =   

M  

R
M  k(x; x)dVg (x): The

corresponding spectral density is given by

(n) =
2     

e     
22 : 1 ;

Remark 2 There are several commonly used parametric representations of the Matern co-
variogram. In particular, this article adopts the same parametric representation as the one in
Zhang (2004), but dierent from Borovitskiy et al. (2021).

When M  is a sphere, the covariograms dened above coincide with the Matern-like co-
variograms on spheres provided by Guinness and Fuentes (2016) and Kirchner and Bolin
(2022). As a result, we focus on a non-trivial generalisation to generic compact Riemannian

6



<  1 :

2

2 2

2 2

Gaussian Processes on C o m pac t  Riemannian Manifolds

manifolds. The relation between the three parameters (; 2; ) in the above denition and the
coecients in the stochastic partial dierential equation representation is not straight-forward
(see Lindgren et al., 2011, for details). Note that for any (; 2; ), the covariogram shares the
same eigenbasis with the Laplace{Beltrami operator g. This property is not deemed
restrictive for our ensuing development since we primarily focus on the Matern and
squared exponential covariograms. Furthermore, this property oers crucial analytic
tractability for several results developed subsequently. Hence, we refer to the Matern and
squared exponential covariograms as in Denition 1 in the following sections.

3.2 Identiabi l i ty

In Euclidean domains, the integral test (Yadrenko, 1983; Stein, 1999) is a powerful tool to
determine the equivalence of two Gaussian measures. However, such tests do not carry
through to non-Euclidean domains as the spectrum on such manifolds is discrete. Alegra et
al. (2021) studied the so called F  family of covariograms on spheres and numerically
deduced, without proof, the consistency of the maximum likelihood estimator of some pa-
rameters for this family. Arafat et al. (2018) derived the equivalence of Gaussian measures on
spheres and derived microergodic parameters of some covariograms excluding the Matern. All
of the above results are built upon the Feldman{Hajek Theorem (Da Prato and Zabczyk, 2014),
which is valid for any metric space and, hence, applicable to compact Riemannian
manifolds. Here, we generalise the above results to a Gaussian process with Matern and
squared exponential covariograms on arbitrary compact Riemannian manifolds, also moti-
vated by the Feldman{Hajek theorem. Therefore, we can still study the identiability of
these parameters by nding the microergodic parameters.

Lemma 3 Let P i  ( i  =  1; 2) be mean zero Matern/squared exponential Gaussian random
measures with spectral densities i .  Then, P1  P2 if and only if

X 2 ( l )  1(l) 2 
l

1 (l)

Proof See Appendix A.

From Denition 1, i  is strictly positive so the denominator is always non-zero. The series test
is a sucient and necessary condition. This is a signicant improvement over the integral
test in Euclidean spaces, which oers only a sucient condition. Its importance to us will
become clear after Theorem 4. Subsequently, we consider microergodic parameters of
Gaussian processes on a manifold with the Matern covariogram. This is analogous to
Theorem 2 in Zhang (2004) for compact Riemannian manifolds.

Theorem 4 Let P i ,  i  =  1; 2, denote two Gaussian measures with the Matern covariogram
parametrized by i  =  f i  ; i ; ig. Then the following results hold.

( A )  If d  3, then P1  P2 if and only if 1 =C1 ;1 =  2 =C2 ;2 , 1 =  2.

( B )  If d  4, then P1  P2 if and only if 1 =  2 and 1 =  2, 1 =  2.
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Proof See Appendix B.

Part (A)  of Theorem 4 implies that when d  3 neither 2 nor  are identiable or con-sistently
estimable, while  is identiable. Part (B)  implies that when d  4, all three parameters|2,
and | a r e  identiable. In Euclidean spaces, the smoothness parameter  is typically assumed
to be known and xed when discussing xed-domain asymptotic inference. In this specic
Euclidean setting, assuming 1 =  2 =  , (A)  still holds while (B)  holds for d >  4; d =  4 is
still an unresolved problem in Euclidean spaces unless the domain is assumed to be bounded
(Bolin and Kirchner, 2021). This dierence in behaviour between (A)  and (B)  can be
attributed to the integral test being a sucient condition in Euclidean spaces, which ensures
only the equivalence of measures when d  3; (see Zhang, 2004, for details). In d >  4, Anderes
(2010) estimated the principal irregular term without the integral test and constructed
consistent estimators for  and 2 directly. However, this construction does not hold for d =  4.

In contrast, the series test in Lemma 3 is a sucient and necessary condition so that
we can provide a condition for the equivalence of two measures with Matern covariograms
over any dimension. The dimension also plays an important role in the manifold setting
due to Weyl’s Law (Li,  1987; Canzani, 2013). That is, the growth of the eigenvalues and
their multiplicities are intertwined with the dimension d; further details are provided within
the proof in Appendix B. Another benet of the sucient and necessary condition is that the
series test can be applied to the squared exponential covariogram, also known as the
radial basis function, which can be viewed as a limiting case of the Matern covariogram
when  !  1 ,  as introduced in Denition 1. Since the spectral density is not a polynomial,
the integral test over Euclidean domains is invalid and the conditions for the equivalence of
two squared exponential covariograms are intractable. In contrast, the following theorem
resolves the equivalence of squared exponential covariograms on a compact manifold M .

Theorem 5 Let P i ,  for i  =  1; 2, be Gaussian measures with squared exponential covari-
ograms parametrised by i  =  f2 ; ig. Then P1  P2 if and only if 2 =  2 and 1 =  2.

Proof See Appendix C.

Theorem 5 shows that it is possible to have consistent estimators for both 2 and . So far
we have developed formal results on the identiability of parameters in the covariogram on a
compact Riemannian manifold. Inference for identiable parameters will proceed in
customary fashion so we turn our attention to non-identiable settings, i.e., the Matern
covariogram with known  on manifolds with dimension d  3.

3.3 Consistency of maximum likelihood estimation

Since M  is compact, there is no increasing-domain asymptotic framework and [ n = 1 f x n g  is
always bounded. In the remaining sections, we assume that [ n = 1 f x n g  is innite, which is the
standard assumption also known as the increasing sequence assumption (also see Stein, 1999;
Zhang, 2004; Kaufman and Shaby, 2013). Let f0; 0g be the data generating parameter
(oracle) and let b1;n be the maximum likelihood estimate of 2 obtained by maximising
Ln (2 ; 1 ) with a misspecied 1. The following theorem is analogous to Theorem 3 in
Zhang (2004) for compact Riemannian manifolds.
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Theorem 6 Under the setting of Theorem 4, assuming [ n = 1 f x n g  is innite, we obtain

b1;n n ! 1      0     ; P  a:s:
;1                                  ;0

Proof See Appendix D.

In Euclidean spaces, b1;n=C;1 is asymptotically Gaussian. We conjecture that this asymp-
totic normality still holds on Riemannian manifolds. However, this result relies on specic

constructions on Euclidean spaces (Wang, 2010), which become invalid for manifolds. A
formal proof is beyond the scope of the current manuscript and we intend to pursue this
development in future investigations. In Section 4 we present a numerical simulation ex-
periment to demonstrate the asymptotic (normal) behaviour of this parameter on spheres.

3.4 Predict ion

Given a new location x0 2  M nfx i g i = 1 ,  the best linear unbiased predictor for Z 0  =  Z (x 0 )
under a covariance function k characterised by its spectral density  is given by

Z n ( )  =  n ( ) T  n ()  1 Zn ;

where n () =    
2 k(x0 ; xi ) and f  n ()gi j  =    

2  k(xi ; xj ).
Kirchner and Bolin (2022) and Bolin and Kirchner (2021) generalise the results of asymp-

totic optimality of the B L U P  based on a misspecied scale parameter in Euclidean spaces
(Stein, 1993) to metric spaces. That is, the prediction error of the B L U P  under a mis-
specied scale parameter is asymptotically the same as the error of the B L U P  under the true
parameter. If the domain is a compact Riemannian manifold and the covariograms are
Matern, then two covariance operators share the same eigenbasis; this is the setting
described in Section 5.1 of Kirchner and Bolin (2022) as a special case of Theorem 3.1
therein. We rephrase it as the following lemma with some modications to t the Matern
covariograms on a compact Riemannian manifold with a dierent and simpler proof.

Lemma 7 Let 0; 1 be the spectral densities of two Gaussian measures on M  with Matern
covariograms. Given x0 2  M n fx i g i = 1 ,  let Z n ( i )  be the best linear unbiased predictor

of Z 0  =  Z (x 0 )  based on observations fZ (x 1 ) ;  ; Z (xn )g with fx i g i = 1  being innite and
having x  as an accumulation point, where  is the spectral density of Z ( ) .  If there exists 

a
r
eal number c such that lim 1(m) 

=  c, then:
0

E 0 (Zn (1 )  Z0 )2     n ! 1

E 0 (Zn (0 )  Z0 )2

E 1 (Zn (1 )  Z0 )2     n ! 1

E 0 (Zn (1 )  Z0 )2

Proof See Appendix E.

Focusing on the parameters in a Matern covariogram, let b1;n be the maximum likelihood
estimation of Ln (2 ; 1 ) and i  be the spectral density of the Matern covariogram with
decay parameter i .
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Theorem 8 Under the same conditions as in Theorem 4 and Lemma 7, let 1 =  0 C;1 =C;0 ,
then

E2 ; 0 (Zn (1 ) Z0 )2     
n ! 1 Eb1 ; n ; 1 (Zn (1 ) Z0 )2      

n ! 1

E
0 ; 0 (Zn (0 ) Z0 )2                                 E

0 ; 0 (Zn (1 )      Z0 )2P 0  a:s:

Proof See Appendix F.

Note that Lemma 7 and Theorem 8 is the manifold version of Theorems 3 and 4 in Kaufman
and Shaby (2013).

4 Matern on spheres

We now consider Gaussian processes with the Matern covariogram on the d-dimensional
sphere S d, including two popular manifolds in spatial statistics: the circle S 1 and sphere S 2.
We show that all theorems in the previous sections hold for S d with d =  1; 2; 3. As earlier,
we assume that Pi ; i  =  1; 2, are two Gaussian measures on S d with the Matern
covariogram parametrized by f i  ; i; g.

Theorem 9 For spheres with dimension d =  1; 2; 3, the following results are true:

1. P1  P2 if and only if 2=C;1 =  2=C;2 , so neither 2 nor  can be consistently estimated.

2. Let the data generating parameter be f0; 0g and b1;n be the maximum likelihood
estimation of Ln (2 ; 1 ) with misspecied 1 based on increasing sequence fx i g i = 1 .
Then,

b1;n     !   
2

 ; P  a:s:
;1                                  ;0

3. Given x0 2  M n fx i g i = 1 ,  let Z n  be the best linear unbiased predictor of Z 0  =  Z (x 0 )
based on observations fZ (x 1 ) ;  ; Z (xn )g with fx i g i = 1  being innite, then

E  2 ( Z  (  )  Z  )2

E
0 ; 0 (Zn (1 ) Z0 )2     

!  1; P0 a:s:

Proof See Appendix G.

Next, we consider two concrete examples: the circle S 1 and the sphere S 2.

4.1 Matern covariogram on circle

First we recall the simplied form of the Matern covariogram on S 1 (Borovitskiy et al.,
2020):

Lemma 10 When M  =  S 1  R2  and  =  1=2 + s, s 2  N, the Materm covariogram is given by

k(x; y) =  
2     X

a s ; k ( ( j x  yj 1=2))k hypk ((jx yj 1=2)); x; y 2  S 1; (3)
; k = 0

10
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(a) (b)

Figure 1: (a) Covariogram of Matern 1/2 on S 1; (b): Sample elds with 2 =  0:1,  =  1=2,  2
f0:01; 1; 100g.

where C;  is chosen so that k(x; x) =  2, hypk is cosh when k is odd and sinh when k is
even, as;k are constants depending on  and ; see Borovitskiy et al. (2020) for details.

Note that x y =  x  y mod 1 for x  =  e2ix  and y =  e2iy . Therefore, the Matern
covariogram is \stationary" with respect to this group addition instead of the standard
addition in Euclidean space. The corresponding spectral density is given by

(n) =  
2

 0
sinh(=2)  2 +  42n2  1=2 ; n 2  Z: (4)

In particular, when  =  1=2, the covariogram and spectral densities admit simple forms:

2
k(x; y) =  

cosh(=2) 
cosh ((jx yj 1=2)) ;

(n) =  22tanh(=2)(2 +  42n2) 1:

Figure 1 (a) depicts a covariogram with  =  1=2,  =  2, and 2 =  1. Note that jx  yj =  1=2 means
that x  and y are antipodal points so the correlation attains a minimum. Figure 1 (b) shows a
set of simulated Z ’s with dierent values of . It is clear that the smaller values of  generate
smoother random elds as the correlation grows larger.

Corol lary 11 Let  =  1=2, then P1  P2 if and only if 11 tanh(1=2) =  22 tanh(2=2), so neither
nor  can be consistently estimated.

For a general  =  1=2 +  s; s 2  N, the normalising constant is given by:

C;  =  
X

a s ; k (  =2)khypk( =2): k = 0

We point out that this C;  is dierent from the C;  in Denition 1 when M  =  S 1. Al-though
we cannot express C;  as an elementary function, we can still nd the microergodic parameter
for any  =  s +  1=2; s 2  Z:

Corol lary 12 Let  =  1=2 + s; s 2  Z ,  then P1  P2 if and only if 2
1 sinh(1=2)=C;     =  22

sinh(2=2)=C;2 , so neither  nor  can be consistently estimated.

11
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Figure 2: (a) b1;n v.s. 1; (b): Distribution of n
b1 ; n  1 .

Figure 2 shows that b1;n !  1 :      0 0 sinh(0=2) 
1 sinh(1=2) as shown by the horizontal line and

the empirical distribution of 
p

n      
b1 ; n       1      is N (0; 2), for  =  1=2, 0 =  0:1,

0 =  2 =  1 =  1. Panel (a) supports Theorem 9 empirically, that is, although (2; ; ) are
not consistently estimable, the microergodic parameter 

2sinh(=2) is. Panel (b) supports

our conjecture after Theorem 6 empirically.
;

4.2 Matern covariogram on the sphere

On a sphere S 2, the Matern covariogram is more complicated (Borovitskiy et al., 2020):

Lemma 13 The Matern covariogram on M  =  S 2 with  >  0 is

k(x; y) =  
2     X  2 +  l (l +  1)  1 c L  (cos(d (x; y))) ; l = 0

and its spectral density is given by

(l ) =  
2      2 +  l (l +  1)  1 ; ;

where dM (; ) is the geodesic distance on S 2 , L l  is the Legendre polynomial of degree l:

L l (z )  =  
bl=2c

( 1)k
 

l!
k!(l

 
 

 
2k)!

 ! (2z)n 2k ; and

(2l +  1) (3=2)
l 23=2 C;  =  

 (3=2) X
( 2 l  +  1)

 
22 +  l (l +  1)  1 

l = 0

Remark 14 The index l in the above covariance function is dierent from the index l in
Denition 1. In fact, each Legendre polynomial corresponds to multiple spherical harmonics, so
the spectral density does not contain the cl constants anymore.

12
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Unlike Lemma 10, where  is required to be a half-integer, here  can be any positive number.
However, the covariogram now involves an innite series, which needs to be approximated
when x  =  y. Approximating a function on S 2 is known as the \scatter data interpolation
problem" (Narcowich et al., 1998) and preserving the positive deniteness is known as the
stability problem (Kunis, 2009). For the Matern covargioram considered in this manuscript,
we adopt a natural and simple approximation using the partial sum of an innite series. The
following theorem controls the approximation error and guarantees the positive deniteness of
the approximated covariogram.

Theorem 15 For the partial sum

kL (x; y ) =  
2     X  2 +  l (l +  1)  1 c L  (cos(d (x; y))); ; l = 0

the approximation error is controlled by

jkL (x; y) k(x; y)j   =  P
l ( 2 l  +

 
1)(

2 +  
l (l

 
+

 
1))  1 L

 2:

Given observations x1;  ; xn with minimal separation q =  inf i = j  d(x i ; xj ),  the approxi-
mated covariance matrix fk L (x i ; x j )g i j  is positive denite for any

12n2 2 (q)      l (2l +  1)(2 +  l (l +

1))  1

where (q) is a constant depending on the spectral density  and minimal separation q, see the
proof for more details.

Proof See Appendix H.

The above result implies that the computational cost is of order      2 as  !  0. Larger values of
imply smoother random elds that require smaller values of N  to approximate the

covariogram. In practice, we can rst calculate (q), which is computationally practicable
because of the closed-form representation (see Appendix H for details), and then choose N .
Figure 3 (a) presents the covariogram with  =  1=2,  =  1, and 2 =  1. Note that d(x; y)

=   means that x  and y are antipodal points so the correlation reaches the minimum. Figure 3
(b) shows some simulated Z ’s with dierent ’s. Similar to M  =  S 1, smaller values

of  lead to smoother random elds.
However, due to the bias introduced by the partial sum, we do not have access to the

ground truth covariogram, so the analogue of Figure 2 is not available anymore. Similar
issues apply to approximations to Matern on compact manifold (Sanz-Alonso and Yang,
2022a). Instead, we show the theoretical results on microergodic parameters analogous to
Corollary 12:

Corol lary 16 P1   P2      if and only if 2=C;1 =  2=C;2 , so neither 2 nor  can be consistently
estimated.

13
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Figure 3: (a) Covariogram of Matern 1/2 on S 2; (b): Sample elds with 2 =  0:1,  =  1=2,  2
f0:01; 1; 100g.

5 Discussion

This article has formally developed some theoretical results on statistical inference for Gaus-
sian processes with Matern covariograms on compact Riemannian manifolds. Our focus has
primarily been on the identiability and consistency (or lack thereof) of the covariogram pa-
rameters and of spatial predictions. For the Matern and squared exponential covariograms,
we provide a sucient and necessary condition for the equivalence of two Gaussian random
measures through a series test and derive identiable and consistently estimable microer-
godic parameters for an arbitrary dimension d. Specically for d  3, we formally establish the
consistency of maximum likelihood estimates of the parameters and the asymptotic
normality of the best linear unbiased predictor under a misspecied decay parameter. The
circle and sphere are analysed as two examples with corroborative numerical experiments.

We anticipate that the results developed here will generate substantial future work
in this domain. For example, as we have alluded to earlier in the article, in Euclidean
spaces we know that the maximum likelihood estimate of 2 is asymptotically normal:
p

n C ; 1  
  C ; 0

!  N (0; 2). While our numerical experiments lead us to conjecture

that an analogous result holds for compact Riemannian manifolds, a formal proof may well
require substantial new machinery that we intend to explore further. Next, we conjecture
that two measures with the Matern covariogram are equivalent on R4  if and only if they
have the same decay and spatial variance parameters. We know this result holds for man-
ifolds with d =  4, but a formal proof for R4  has not yet been established. Based upon
similar reasoning we conjecture that two measures with squared exponential covariograms
are equivalent on Euclidean spaces if and only if they have the same decay and spatial
variance parameters.

Another future generalisation is to consider covariograms on compact Riemannian man-
ifolds that are not simultaneously diagonalisable, whose asymptotically optimal linear pre-
diction has been studied in Kirchner and Bolin (2022). Nevertheless issues pertaining to the
equivalence of measures, derivation of microergodic parameters and consistency of maxi-
mum likelihood estimates remain unresolved. Furthermore, such covariograms that are
interpretable in practical inference need to be explored. In this regard, it is worth re-
marking that although our results are primarily concerned with likelihood estimation, they

14
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will provide useful insights into Bayesian learning on manifolds. For example, the failure to
consistently estimate certain (non-microergodic) parameters will inform Bayesian modellers
that inference for such parameters will always be sensitive to the prior on non-micro-ergodic
parameters. This will open up new avenues of research in specifying prior distributions for
microergodic parameters. Formal investigations into the consistency of the posterior distri-
butions of Matern covariogram parameters on manifolds are of inferential interest and can be
built upon some of our developments in the current manuscript.

Other avenues for future developments will relate to computational eciency of Gaussian
processes on manifolds. Here, a natural candidate for explorations is the tapered covari-
ogram on manifold to introduce sparsity in the covariance matrix (Furrer et al., 2006).
Since our domain in the current manuscript is compact, unlike in Euclidean domains, fur-
ther compact truncation is redundant. One can explore the development of new \tapered"
covariograms that achieve positive-deniteness and sparsity. Other approaches that induce
dimension reduction based on conditional expectations, such as Gaussian predictive pro-
cesses (Banerjee et al., 2008), may be explored on compact Riemannian manifolds since
these low-dimensional processes are induced by any valid probability measure, although the
choice of inputs to dene the lower dimensional subspace will need to be addressed. On the
other hand, sparse processes resulting from approximations using directed acyclic graphs
(Datta et al., 2016b) are less natural for modelling data on manifolds since they depend on
well-dened neighbours of inputs, which are less obvious to dene outside of Euclidean spaces.
Nevertheless, Datta et al. (2016a) developed adaptive Nearest-Neighbour Gaussian processes
for massive space-time data sets on Euclidean spaces that selected neighbours using the
covariance kernel as a metric for proximity. Such an approach holds promise in modelling
massive data sets on manifolds.

In addition, asymptotic properties of estimation under tapering are of interest and
have, hitherto, been explored only in Euclidean domains (Kaufman et al., 2008; Du et al.,
2009) and without the presence of measurement error processes (\nuggets"). Inference for
Gaussian process models with measurement errors (nuggets) on compact manifolds also
present novel challenges and can constitute future work. Identiability and consistency of the
nugget in Euclidean spaces have only recently started receiving attention (Tang et al., 2021).
However, the developments for Euclidean spaces do not easily apply to compact
Riemannian manifolds; hence new tools will need to be developed. On complex or unknown
domains, the eigenvalues and eigenfunctions of the Laplacian operator need to be estimated
(Belkin and Niyogi, 2007). Asymptotic analysis of estimation in the spectral domain should
be closely related to the frequency domain. Finally, since compact manifolds are distinct
from non-compact manifolds, both geometrically and topologically, generalisation to non-
compact Riemannian manifolds is of interest, where the spectrum is not discrete. Analytic
tools on non-compact manifolds will need to be developed.
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Appendix A .  Proof of Lemma 3

Before proving Lemma 3, we recall the following lemma (Proposition B, Chapter I I I  Ya-
drenko, 1983), also known as the Feldman{Hajek theorem:

Lemma 17 P1  P2 if and only if

1. Operator D  =  B  1=2 B2 B  1=2 I  is Hilbert{Schmidt;

2. Eigenvalues of D  are strictly greater than  1,

where B i  is the correlation operator of P i  dened by:

(B i h)(x)  =  
ZX

i ( l ) f l (x ) f l (y )h(y )dV g (y ) ;  h 2  L 2 ( M ) :  M
l = 0

Proof of Lemma 3. By Lemma 17, it suces to check conditions 1 and 2. Let n  be the
eigenvalue of B i  and dn be the eigenvalue of D .  Observe that f n  is an eigenfunction of B i
with eigenvalue i (n):

Z
(B i f l ) ( x )  = i (m)fm (x)fm (y )fl (y )dVg (y)

M  m                         Z
= i (m)fm (x) fm (y)fl (y )dVg (y)

m                                       M

= i (m)fm (x)hfm ; f l iM

=  
X

i ( m ) f m ( x ) n m  m

=  i ( l )f l (x);

where  is the Kronecker delta and h; iM is the L 2  inner product on M  with f n  being
orthonormal basis.

Since B i  share the same eigenfunctions and hence commutes, we have dl =   l     1 =
2 ( l )    1 >   1, so condition 2 holds by the denition of i . For condition 1, observe that

2 (l )  1 ( l )
1 ( l )

D  is Hilbert{Schmidt ( )  
X

d 2  <  1  ( )  
X 2 ( l )  1(l) 2 

<  1 :  l

l 1
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Appendix B .  Proof of Theorem 4

Proof We start with (A). First assume that 1 =  2 =   and 1 =C;1 =  2 =C;2 , then observe

2 (l)      1 (l)       (2 +  l )+d=2             1 (l)
(2 +  l )+d=2

 (2 +  l )+d=2 (2 +  l )+d=2 =+d=2

 ((2=l +  1)+d=2 ((2=l +  1)+d=2:

Note that (1=x + 1)a =  1 + a=x + O (x  2) as x  !  1 ,  then when l is suciently large so that l
>  0,

(2=l +  1)+d=2 (2=l +  1)+d=2   (  +  d=2)(2 2) 1 +  O( 2) =  O( 1):

As a result,

X 2 ( l )  1(l) 2 X  
 2

l 1 (l)                    
l

l

By Weyl’s law (equation (4.1) in Grebenkov and Nguyen (2013)),   l2=d, so we have  2

l  d=4 hence  4=d <   1 when d  3. By the series test in Lemma 3, P1  P2.
For the other direction, observe that

2 (l) 2C1 ;1 (2 +  l )1 +d=2 < 1

1(l) 1 C2 ;2 (2 +  l )2 +d=2 >
0

1 <  2 1 =

2 : 1 >  2:

As a result, if 1 =  2, 
P

l
 2

( l )  1 !  1  so P1  P2 by the series test.

Then assume 1 =  2 =   and 2=C;1 =  2=C;2 . Let 2 =  2 C
; 2  

=  2, then

0 =C;1 =  2 =C;2 ;

so k(; 2; 1) and k(; 2; 2) dene two equivalent measures, denoted by P0 and P2. Ob-serve
that

2
k(x; y; 1 ; 1) =  2 k(x; y; 0 ; 1);

then the corresponding spectral densities 0 and 1 only dier by a multiplicative scalar  1 so
P

l
 1 ( l )  0 (l ) 2 

=  
P

l
  1 0 

2 
=  1 .  So by Lemma 3, P0 is orthogonal to P1, so is P2,

which is equivalent to P0. Now we conclude that P1  P2 if and only if 1 =C;1 =  2 =C;2 and 1 =
2.
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Then we show (B). As proved in (A), P1  P2 if 1 =  2 so we assume 1 =  2 =  . Recall
that n  !  1 ,  so when n is suciently large, n  >  2, then

2(l)      1 (l)        2C;1 (2 +  l )+d=2             1 (l)

1 C;2 (2 +  l )+d=2

2C;1 (2 +  l )+d=2 2C;2 (2 +  l )+d=2

1 C;2 (2l )+d=2

=  2  d=2 
2 C;1 

 2= +  1+d=2 (2= +  1)+d=2

 1     ;2

=  2  d=2  2     ;1 1 +  + 2     ;1 2 2  1 +  O( 2): (5)
1     ;2                                                                       1     ;2

When 2 =  2 or 1 =  2, the constant term 2 C ; 2  
 1 and the linear coecient 2 C ; 2  

2

2 in Equation (5) do not vanish at the same time hence 2 ( l )  1 ( l )  &  1. Then

X 2 ( l )  1(l) 2 X  
 2

X  
 4=d

l 1 (l)                    
l

l                 
 l

since d  4. By the series test, P1  P2.
When 1 =  2 and 1 =  2, P1 =  P2 so P1  P2, which nises the proof of (B).

Appendix C .  Proof of Theorem 5

Proof First assume 1 =  2, or 1 <  2 without loss of generality, then

2 (l)      1 (l)       2 C1       
     l        

2       2                       1 (l)
2 C2

since l  !  1 .  As a result,
X 2 ( l )  1(l) 2

l 1 (l)

Then assume 1 =  2 but 1 =  2, similarly,

X 2 ( l )  1(l) 2 
=  

X 2  
1

2 

=  1 :  
l

1                                 
 l 1

Then the series test applies.
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Appendix D .  Proof of Theorem 6

Proof Let 2 =  C ;
1       so P0  P1 by Theorem 4. It suces to show b1;n !  2, P1 a.s. Recall

that b1;n =  Z T       1 ( 1 ) Z n  and Z n   N (0; 2  n (1 )) under P1, where ( n ()) i ; j  =  C
;            l = 0  22 +  l 

  2

f l (x i ) f l (x j ) .  As a result, b1;n =  1 n  !  1, P1 a.s., as n !  1 .

Appendix E .  Proof of Lemma 7

Proof The logic of the proof is similar to the proof of Theorem 1 and 2 in Stein (1993).
However, these two theorems are not directly applicable due to the discreteness of spec-
trum in our case. To  be more specic, the key construction in the proof of Stein (1993) is
the following. By the assumption, for any " >  0, there exists M" >  0 such that
supmM" c0 (m) 1 <  ". We dene

(

"(m) =
0(m) 

) m  M"

m >  M"

That is, " diers from 0 only on a bounded subset of N. Note that in Stein (1993), the key step is
to show P "   P0 , and the rest of the proof will not rely on any special structure of the
Euclidean domain anymore. That is, it suces to show P "   P0 , which is a direct consequence
of the series test in Lemma 3. The rest of the proof of (i) naturally follows the proof of
Theorem 1 in Stein (1993) while the proof of (ii) follows the proof of Theorem 2 in Stein
(1993), where e(x0; n; f1) in Stein (1993) corresponds to Z 0  Zn (1 )  in our paper.

Appendix F .  Proof of Theorem 8

Proof     For 2 =  0 
;
1  , let 1 and 0 be the spectral density of the Gaussian process

parametrized by (1; 1 ) and (0; 2) hence 1=0 !  1. Then by (ii) in Lemma 7,

E2 ; 1 (Zn (1 )      Z0 )2

E
0 ; 0 (Zn (1 )      Z0 )2

Then observe that

Eb1 ; n ; 1 (Zn (1 ) Z0 )2 Eb1 ; n ; 1 (Zn (1 ) Z0 )2 E 2 ; 1
( Z n ( 1 )

Z 0 ) 2

E
0 ; 0 (Zn (1 ) Z0 )2 E

1 ; 1 (Zn (1 ) Z0 )2 E
0 ; 0 (Zn (1 ) Z0 )2

(6)

The second term in Equation (6) tends to 1. For the rst term, by the denition of Zn ,  we
have

Eb1 ; n ; 1 (Zn (1 ) Z0 )2 =  b1;n     1 n (1 )T  n (1 ) 1
n(1) :
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So the rst term in Equation (6) is 
b1;n  . Similar to the proof of Theorem 6, b1;n =  2 n  !

2, P1 =  P2 ;     a.s. By Theorem 4, P0  P1, so the left hand side of Equation (6) tends to 1, P0
a.s.

Appendix G .  Proof of Theorem 9

Proof d-dimensional spheres are compact Riemannian manifolds. The eigenfunctions of
Laplace operator on S d are known as spherical harmonics, denoted by S l  , m =  0; 1; , l =
1;  ; td(m). The corresponding eigenvalues are l (l +  d   1) =  O(l2) with multiplicity (Mu•ller,
1966; Efthimiou and Frye, 2014)

2l +  d 1 l +  d 2
 
=  O(ld 1):

So 1, 2, 3 follow directly from Theorem 4, 6 and 8 respectively.

Appendix H .  Proof of Theorem 15

Proof First we re-formulate the covariogram as

k(x; y) =  
2     X  2 +  l (l +  1)  1 c L  (cos(d (x; y))) =  C  

1  

a (z); ; l
= 0

l
= 0

where C  =   (3=2)
 
=  P

l

(
2 l

+
1

)(
2

+
l
(
l
+
1

))
          1  , z =  cos(dM (x; y)) and al (z) =

2 +  l (l +  1)  1 (2l +  1)Ll (z ):

Then observe that L l (z )  2  [ 1; 1], then

jal(z)j  
 2 +  l (l +  1)  1 (2l +  1):

As a result,

jkL (x; y) k(x; y)j  C  
X  

jal(z)j  C  
X   2 +  l (l +  1)  1 (2l +  1) l = L + 1

l = L + 1

 C  
X  

(l2 )  1 (3l) =  3C 
X  

l  2 1  3C
1  

t 2 1dt
l = L + 1 l = L + 1                                       L + 1

 
3C 

L  2 =   P
l ( 2 l  +

 
1)(2

 
+

 
l (l

 
+

 
1))  1 L

 2:

That is, if the target approximation error is , then we can truncate the innite sum at 
L

=  b P
l ( 2 l  +

 
1)(2

 
+

 
l (l

 
+

 
1))  1 

2 

c +  1:
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To  prove the positive deniteness, we rst nd the lower bound of the minimal eigenvalue of the
covariance matrix  =  fk (xi ; x j )g i j ,  denoted by min. By Theorem 2.8 (i) in Narcowich et al.
(1998),

min  (q) =   ( K ) 1   
3

4q
q) sin(q=2) K

;

where

k(q) =  max
82 

; 
25

; K  =  arg min m : 1   
3k(q) sin(q=2) m 

>  0; m2N

and  ( K )  is determined by the spectral density , K  and the B-spline, see Equation (2.41) in
Narcowich et al. (1998) for more details (where m =  2 in our setting). Let the truncated
covariance function be L  =  fk L (x i ; x j )g i j  with minimal eigenvalue N      , then by the rst half
of the proof,

min  min k L k   (q) nk Lkmax  (q)    P
l ( 2 l  +

 
1)(2 +  

l (l
 
+

 
1))  1

The second inequality is due to matrix norm equivalence: kAkmax  kAk  nkAkmax for any n by n
matrix A. The rst inequality relies on the fact that eigmin(A)  eigmin(B)  kA  B k for any
symmetric matrices A  and B .  Observe that eigmin(A) =  minkxk=1 x  Ax,  then let x0 be the
eigenvector of A  associated with the smallest eigenvalue, that is, Ax0  =  eigmin(A)x0. By the
same observation, x0 B x 0   eigmin(B). Then we have

eigmin(A) =  x0 Ax0  =  x0 ( B + A  B )x 0  =  x0 B x 0 + x 0  ( A  B )x 0   eigmin (B ) + x0 ( A  B )x0 :

For the last term, since kA  B k =  maxkxk=1 j x > ( A  B )xj,  we have j x > ( A  B )x0 j   kA B k,
hence x0 ( A  B )x 0    kA B k  as desired.

Then let (q)    
P

l

(
2 l

+
1

)(
2

+
l
(
l
+
1

))
          1  >  0, we have

6n2 2 (q)      l (2l +  1)(2 +  l (l +

1))  1

References

M. Abramowitz and A. Stegun. Handbook of Mathematical Functions: with Formulas,
Graphs, and Mathematical Tables. Dover, 1965.

A. Alegra, F.  Cuevas-Pacheco, P. Diggle, and E.  Porcu. The F -family of covariance func-
tions: a Matern analogue for modeling random elds on spheres. Spat. Stat., 43:Paper No.
100512, 25, 2021.

Ethan Anderes. On the consistent separation of scale and variance for Gaussian random
elds. Annals of Statistics, 38(2):870{893, 2010.

21



L i ,  Ta n g  and Banerjee

Ahmed Arafat, Emilio Porcu, Moreno Bevilacqua, and Jorge Mateu. Equivalence and
orthogonality of Gaussian measures on spheres. Journal of Multivariate Analysis, 167:
306{318, 2018.

Sudipto Banerjee. On geodetic distance computations in spatial modeling. Biometrics, 61
(2):617{625, 2005.

Sudipto Banerjee, Alan E.  Gelfand, Andrew O. Finley, and Huiyan Sang. Gaussian predic-
tive process models for large spatial data sets. Journal of the Royal Statistical Society:
Series B  (Methodology), 70(4):825{848, 2008.

Sudipto Banerjee, Bradley P. Carlin, and Alan E.  Gelfand. Hierarchical modeling and
analysis for spatial data, volume 135 of Monographs on Statistics and Applied Probability.
C R C  Press, Boca Raton, F L ,  second edition, 2015.

Mikhail Belkin and Partha Niyogi. Convergence of Laplacian eigenmaps. In NIPS, pages
129{136, 2007.

Moreno Bevilacqua, Tarik Faouzi, Reinhard Furrer, and Emilio Porcu. Estimation and pre-
diction using generalized Wendland covariance functions under xed domain asymptotics.
Annals of Statistics, 47(2):828{856, 2019.

David Bolin and Kristin Kirchner. Equivalence of measures and asymptotically optimal
linear prediction for Gaussian random elds with fractional-order covariance operators.
arXiv, 2021. arXiv:2101.07860.

David Bolin and Finn Lindgren. Spatial models generated by nested stochastic partial
dierential equations, with an application to global ozone mapping. Annals of Applied
Statistics, 5(1):523{550, 2011.

Viacheslav Borovitskiy, Alexander Terenin, Peter Mostowsky, and Marc Deisenroth. Matern
Gaussian processes on Riemannian manifolds. In NIPS, pages 12426{12437, 2020.

Viacheslav Borovitskiy, Iskander Azangulov, Alexander Terenin, Peter Mostowsky, Marc
Deisenroth, and Nicolas Durrande. Matern Gaussian processes on graphs. In A I S TAT S ,
pages 2593{2601, 2021.

Yaiza Canzani. Analysis on manifolds via the Laplacian, 2013. U R L  https://www.math.
mcgill.ca/toth/spectral%20geometry.pdf.

Isma•el Castillo, Gerard Kerkyacharian, and Dominique Picard. Thomas Bayes’ walk on
manifolds. Probab. Theory Related Fields, 158(3-4):665{710, 2014.

Jorge Clarke De la Cerda, Alfredo Alegra, and Emilio Porcu. Regularity properties and
simulations of Gaussian random elds on the sphere cross time. Electronic Journal of
Statistics, 12(1):399{426, 2018.

Noel Cressie and Christopher K .  Wikle. Statistics for spatio-temporal data. Wiley Series in
Probability and Statistics. John Wiley & Sons, Inc., Hoboken, NJ, 2011.

22

https://www.math.mcgill.ca/toth/spectral%20geometry.pdf
https://www.math.mcgill.ca/toth/spectral%20geometry.pdf


Gaussian Processes on C o m pac t  Riemannian Manifolds

Giuseppe Da Prato and Jerzy Zabczyk. Stochastic equations in innite dimensions, volume 152
of Encyclopedia of Mathematics and its Applications. Cambridge University Press,
Cambridge, second edition, 2014.

Andreas Damianou and Neil D  Lawrence. Deep Gaussian processes. In A I S TAT S ,  pages
207{215, 2013.

A. Datta, S. Banerjee, A. O. Finley, N. A. S. Hamm, and M. Schaap. Non-separable
dynamic nearest-neighbor gaussian process models for large spatio-temporal data with an
application to particulate matter analysis. Annals of Applied Statistics, 10:1286{1316,
2016a.

Abhirup Datta, Sudipto Banerjee, Andrew O. Finley, and Alan E.  Gelfand. Hierarchical
nearest-neighbor Gaussian process models for large geostatistical datasets. Journal of the
American Statistical Association, 111(514):800{812, 2016b.

Marc Peter Deisenroth, Dieter Fox, and Carl Edward Rasmussen. Gaussian processes for
data-ecient learning in robotics and control. I E E E  Transactions in Pattern Analysis and
Machine Intelligence, 37(2):408{423, 2013.

Manfredo Perdig~ao do Carmo. Riemannian geometry. Mathematics: Theory & Applica-
tions. Birkha•user Boston, Inc., Boston, MA, 1992.

Juan Du, Hao Zhang, and V.  S. Mandrekar. Fixed-domain asymptotic properties of tapered
maximum likelihood estimators. Annals of Statistics, 37(6A):3330{3361, 2009.

David B. Dunson, Hau-Tieng Wu, and Nan Wu. Diusion based Gaussian processes on
restricted domains. arXiv, 2020. arXiv:2010.07242.

Costas Efthimiou and Christopher Frye. Spherical harmonics in p dimensions. World
Scientic Publishing Co. Pte. Ltd., Hackensack, NJ, 2014.

Aasa Feragen, Francois Lauze, and Sren Hauberg. Geodesic exponential kernels: When
curvature and linearity conict. In 2015 I E E E  Conference on Computer Vision and
Pattern Recognition ( C V P R ) ,  pages 3032{3042, 2015. doi: 10.1109/CVPR.2015.7298922.

Reinhard Furrer, Marc G. Genton, and Douglas Nychka. Covariance tapering for interpola-
tion of large spatial datasets. Journal of Computational and Graphical Statistics, 15(3):
502{523, 2006.

Tingran Gao, Shahar Z  Kovalsky, and Ingrid Daubechies. Gaussian process landmarking
on manifolds. S IAM Journal of Mathematics of Data Science, 1(1):208{236, 2019.

Alan E.  Gelfand, Peter J .  Diggle, Montserrat Fuentes, and Peter Guttorp, editors. Handbook of
spatial statistics. Chapman & Hal l/CRC Handbooks of Modern Statistical Methods. C R C
Press, Boca Raton, F L ,  2010.

Marc G. Genton. Classes of kernels for machine learning: a statistics perspective. Journal
of Machine Learning Research, 2(2):293{312, 2002.

23



L i ,  Ta n g  and Banerjee

Subhashis Ghosal and Aad van der Vaart. Fundamentals of nonparametric Bayesian infer-
ence, volume 44 of Cambridge Series in Statistical and Probabilistic Mathematics. Cam-
bridge University Press, Cambridge, 2017.

Tilmann Gneiting. Strictly and non-strictly positive denite functions on spheres. Bernoulli,
19(4):1327{1349, 2013.

Denis S Grebenkov and B - T  Nguyen. Geometrical structure of laplacian eigenfunctions.
SIAM Review, 55(4):601{667, 2013.

Jean Carlo Guella, Valdir Antonio Menegatto, and Emilio Porcu. Strictly positive denite
multivariate covariance functions on spheres. Journal of Multivariate Analysis, 166:150{
159, 2018.

Joseph Guinness and Montserrat Fuentes. Isotropic covariance functions on spheres: some
properties and modeling considerations. Journal of Multivariate Analysis, 143:143{152,
2016.

Lukas Herrmann, Kristin Kirchner, and Christoph Schwab. Multilevel approximation of
Gaussian random elds: Fast simulation. Mathematical Models and Methods in Applied
Sciences, 30(01):181{223, 2020.

Jaehong Jeong and Mikyoung Jun. A  class of Matern-like covariance functions for smooth
processes on a sphere. Spatial Statistics, 11:1{18, 2015a.

Jaehong Jeong and Mikyoung Jun. Covariance models on the surface of a sphere: when
does it matter? Stat, 4(1):167{182, 2015b.

Mikyoung Jun and Michael L .  Stein. Nonstationary covariance models for global data.
Annals of Applied Statistics, 2(4):1271{1289, 2008.

C.  G. Kaufman and B. A. Shaby. The role of the range parameter for estimation and
prediction in geostatistics. Biometrika, 100(2):473{484, 2013.

Cari G. Kaufman, Mark J .  Schervish, and Douglas W. Nychka. Covariance tapering for
likelihood-based estimation in large spatial data sets. Journal of the American Statistical
Association, 103(484):1545{1555, 2008.

Kristin Kirchner and David Bolin. Necessary and sucient conditions for asymptotically
optimal linear prediction of random elds on compact metric spaces. Annals of Statistics,
50(2):1038{1065, 2022.

Shoshichi Kobayashi and Katsumi Nomizu. Foundations of dierential geometry. Vol I.
Interscience Publishers, New York-London, 1963.

Stefan Kunis. A  note on stability results for scattered data interpolation on euclidean
spheres. Advances in Computational Mathematics, 30(4):303{314, 2009.

Annika Lang and Christoph Schwab. Isotropic Gaussian random elds on the sphere: reg-
ularity, fast simulation and stochastic partial dierential equations. Annals of Applied
Probability, 25(6):3047{3094, 2015.

24



Gaussian Processes on C o m pac t  Riemannian Manifolds

John M. Lee. Introduction to Riemannian manifolds, volume 176 of Graduate Texts in
Mathematics. Springer, Cham, 2018.

Peter Li.  Book Review: Eigenvalues in Riemannian geometry. Bulletin of the American
Mathematical Society (N.S.), 16(2):324{325, 1987.

Finn Lindgren, Ha vard Rue, and Johan Lindstr•om. An explicit link between Gaussian elds and
Gaussian Markov random elds: the stochastic partial dierential equation approach. Journal
of the Royal Statistical Society: Series B  (Methodology), 73(4):423{498, 2011.

Pulong Ma and Anindya Bhadra. Beyond matern: On a class of interpretable conuent
hypergeometric covariance functions. Journal of the American Statistical Association, 0
(0):1{14, 2022. doi: 10.1080/01621459.2022.2027775.

Bertil Matern. Spatial variation, volume 36 of Lecture Notes in Statistics. Springer-Verlag,
Berlin, second edition, 1986.

Georges Matheron. Principles of geostatistics. Econ. Geol., 58(8):1246{1266, 1963.

Claus Mu•ller. Spherical harmonics, volume 17 of Lecture Notes in Mathematics. Springer-
Verlag, Berlin-New York, 1966.

Francis J .  Narcowich, N. Sivakumar, and Joseph D. Ward. Stability results for scattered-
data interpolation on euclidean spheres. Advances in Computational Mathematics, 8(3):
137{163, 1998.

Radford M. Neal. Regression and classication using Gaussian process priors. In Bayesian
Statistics, 6 (Alcoceber, 1998), pages 475{501. Oxford Univ. Press, New York, 1999.

Mu Niu, Pokman Cheung, Lizhen Lin, Zhenwen Dai, Neil Lawrence, and David Dunson.
Intrinsic Gaussian processes on complex constrained domains. Journal of the Royal Sta-
tistical Society: Series B  (Methodology), 81(3):603{627, 2019.

Emilio Porcu, Moreno Bevilacqua, and Marc G. Genton. Spatio-temporal covariance and
cross-covariance functions of the great circle distance on a sphere. Journal of the American
Statistical Association, 111(514):888{898, 2016.

Carl Edward Rasmussen and Christopher K .  I. Williams. Gaussian processes for machine
learning. Adaptive Computation and Machine Learning. MIT  Press, Cambridge, MA,
2006.

Daniel Sanz-Alonso and Ruiyi Yang. The S P D E  Approach to Matern Fields: Graph Rep-
resentations. Statist. Sci., 37(4):519{540, 2022a.

Daniel Sanz-Alonso and Ruiyi Yang. Finite Element Representations of Gaussian Processes:
Balancing Numerical and Statistical Accuracy. S IA M/ A S A  Journal of Uncertainty Quan-
tication, 10(4):1323{1349, 2022b.

Arno Solin and Manon Kok. Know your boundaries: Constraining Gaussian processes by
variational harmonic features. In A I S TAT S ,  pages 2193{2202, 2019.

25



L i ,  Ta n g  and Banerjee

Michael L .  Stein. A  simple condition for asymptotic optimality of linear predictions of
random elds. Statistics and Probability Letters, 17(5):399{404, 1993.

Michael L .  Stein. Interpolation of spatial data. Springer Series in Statistics. Springer-Verlag,
New York, 1999. Some theory for Kriging.

Wenpin Tang, Lu Zhang, and Sudipto Banerjee. On identiability and consistency of the
nugget in Gaussian spatial process models. Journal of the Royal Statistical Society: Series B
(Methodology), 83(5):1044{1070, 2021.

Daqing Wang. Fixed domain asymptotics and consistent estimation for Gaussian random
eld models in spatial statistics and computer experiments. Technical Report: National
University of Singapore, 2010.

Daqing Wang and Wei-Liem Loh. On xed-domain asymptotics and covariance tapering in
Gaussian random eld models. Electronic Journal of Statistics, 5:238{269, 2011.

P. Whittle. Stochastic processes in several dimensions. Bulletin of the International Statis-
tical Institute, 40:974{994, 1963.

M. I. Yadrenko. Spectral theory of random elds. Optimization Software, Inc., Publications
Division, New York, 1983.

Hao Zhang. Inconsistent estimation and asymptotically equal interpolations in model-based
geostatistics. Journal of the American Statistical Association, 99(465):250{261, 2004.

26


