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Abstract

The evaluation of machine-generated image
captions poses an interesting yet persistent
challenge. Effective evaluation measures
must consider numerous dimensions of
similarity, including semantic relevance, visual
structure, object interactions, caption diversity,
and specificity. Existing highly-engineered
measures attempt to capture specific aspects,
but fall short in providing a holistic score that
aligns closely with human judgments. Here, we
propose CLAIR1, a novel method that leverages
the zero-shot language modeling capabilities
of large language models (LLMs) to evaluate
candidate captions. In our evaluations, CLAIR
demonstrates a stronger correlation with human
judgments of caption quality compared to
existing measures. Notably, on Flickr8K-
Expert, CLAIR achieves relative correlation
improvements over SPICE of 39.6% and over
image-augmented methods such as RefCLIP-S
of 18.3%. Moreover, CLAIR provides noisily
interpretable results by allowing the language
model to identify the underlying reasoning
behind its assigned score. Code is available at
https://davidmchan.github.io/clair/.

1 Introduction & Background

Automatically evaluating the quality of image
captions is challenging. There are many dimensions
to consider, such as grammatical quality, semantic
relevance, correctness, and specificity, among
others. To ensure fair evaluations, most image
captioning works employ a suite of measures,
each capturing different aspects. For instance,
n-gram-based measures like BLEU (Papineni
et al., 2002) or CIDEr (Vedantam et al., 2015)
broadly measure content overlap, SPICE (Anderson
et al., 2016) compares scene graph structures, and
CLIPScore, TIFA, SeeTrue and VPEval (Hessel

1Meaning “clear” in French, in line with other colorful
metric names (Papineni et al., 2002; Lin, 2004; Lita et al., 2005).

You are trying to tell if a
candidate set of captions is
describing the same image as a
reference set of captions.
Candidate set:
{candidate captions}
Reference set:
{reference captions}
On a precise scale from 0 to
100, how likely is it that the
candidate set is describing the
same image as the reference set?
(JSON format, with a key “score",
value between 0 and 100, and a key
“reason" with a string value.)

Figure 1: CLAIR: a (surprisingly simple) large language
model-based measure for image caption evaluation. We
find that CLAIR not only correlates strongly with human
judgments of caption quality but can also generate
interpretable reasons for the generated scores.

et al., 2021; Hu et al., 2023; Yarom et al., 2023; Cho
et al., 2023) directly incorporate visual information.
Unfortunately, while significant strides have been
made in automated evaluation, human preference
studies remain the most reliable (yet costly) source
of caption evaluation.

Fortunately, recent advances in large language
models (LLMs) have opened new avenues for
automatic evaluation. Models trained with
reinforcement learning from human feedback
(RLHF, Christiano et al. (2017)) or similar methods
are particularly useful for open-ended evaluation
tasks, including image captioning, due to their
explicit training to align with human preferences.

In our work, paralleling several recent works
which find that LLMs can act as effective “judges”
for selecting the better answer from two candi-
dates (Bubeck et al., 2023; Dettmers et al., 2023;
Chiang et al., 2023), we explore the ability of LLMs
to evaluate caption quality in the multimodal setting.
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We introduce CLAIR (Criterion using LAnguage
models for Image caption Rating), a measure
which scores a candidate caption based on the
likelihood that it describes the same image as a set
of references by directly asking an LLM to produce
a numeric rating. We further query the LLM to
provide a reason for its score, providing a level of
interpretability to the scalar rating. As far as we
are aware, this is the first paper to explore replacing
measures of semantic text quality with directly
obtained LLM judgments, however concurrently,
Zheng et al. (2023) have shown that directly provid-
ing an answer rating can align highly with human
preferences on a range of standard language-based
tasks, such as conversational instruction following.

Through several experiments on captioning
datasets such as MS-COCO (Xu et al., 2016),
Flickr8k (Mao et al., 2014), and PASCAL-
50S (Vedantam et al., 2015), we find that CLAIR
correlates surprisingly well with human preferences,
outperforming prior captioning measures. We
additionally propose CLAIRE , where we Ensemble
the outputs of several LLMs by taking the average
score, leading to further improvements.

Despite a simple pipeline using an LLM prompt
with minimal output parsing, CLAIR’s strong
correlation with human preferences suggests that it
captures multiple dimensions of caption similarity
at once – a feature that prior measures struggle
to achieve alone. More generally, CLAIR demon-
strates how language-only models can evaluate
vision-language tasks. We show LLMs can provide
not only reliable scalar ratings but also correspond-
ing reasoning for a given rating, offering a valuable
combination of accuracy and interpretability.

2 CLAIR: LLMs for Caption Evaluation

In CLAIR, we adapt the zero-shot in-context
learning approach described in Brown et al. (2020)
to score candidate captions with large language
models (LLMs). This involves converting the
caption evaluation problem into a human-readable
text completion task which is solved by the LLM.
Using the prompt in Figure 1, CLAIR first generates
completions from the LLM and then parses those
completions into both candidate scores and an
explainable reason for the score. We use a greedy
sampling method (t=0) to encourage reproducibil-
ity in the results, while acknowledging the inherent
nondeterminism in LLMs (see section 4). CLAIR’s

experimental implementation is surprisingly simple:
it uses no in-context examples (is entirely zero-
shot), and default inference parameters for the APIs.
See Appendix B for further implementation details.

The choice of language model directly affects the
quality of the CLAIR measure – more accurate mod-
els should produce evaluations that align better with
human judgment. We explore three language mod-
els: GPT-3.5 (ChatGPT) (OpenAI, 2022), Claude
(Instant) (Bai et al., 2022), and PaLM (Chowdhery
et al., 2022). Unfortunately, we found for several
open-weight language models including Koala
(Geng et al., 2023) and Vicuna (Chiang et al., 2023)
that CLAIR aligned poorly with human judgment.

As CLAIR is language model-agnostic, we can
leverage the different distributions learned by each
model and combine their decisions in an ensemble
approach we term CLAIRE . We calculate individ-
ual CLAIR scores for each model and compute an
unweighted average to obtain the ensemble score.

Benchmark measures: We benchmark against
several existing measure of caption similarity.
BLEU (Papineni et al., 2002), ROUGE (Lin, 2004),
METEOR (Agarwal and Lavie, 2008) and CIDEr
(Vedantam et al., 2015) all primarily measure
n-gram overlap (however have different weighting
schemes between n-grams, and across precision/re-
call). We also compare against SPICE (Anderson
et al., 2016), which compares caption parse trees
and focuses on matching perceived action and
object relationships in addition to n-grams. While
the aforementioned measures are commonly re-
ported in image captioning works, we also compare
against several more modern measures, including
BERT-Score (Zhang et al., 2020) (which measures
the distance between BERT embeddings in the text),
BERT-Score++ (Yi et al., 2020) (which fine-tunes
BERT for image captioning), LEIC (Cui et al., 2018)
and NUBIA (Kane et al., 2020) (which are custom
trained models for image caption evaluation),
TIGEr (Jiang et al., 2019) (which is a model trained
for caption evaluation which takes into account the
original image context), and CLIP-Score (Hessel
et al., 2021) which uses the recent CLIP (Radford
et al., 2021) model for reference-free evaluation.

3 Evaluation & Discussion

To evaluate the quality of the measure, we run
several evaluations that compare scores generated



Person snowboarding at a ski slope.

The candidate caption mentions only 
one person snowboarding, while all the

reference captions mention multiple 
people skiing or climbing a mountain. 

Additionally, the candidate caption does 
not mention any details about the 

mountain or the surroundings, which are 
present in the reference captions.

Candidate

CLAIR Reason

2/5
Human

0.4
CLAIR

0.0
BLEU4

0.00
CIDEr

0.14
ROUGE

The candidate set only mentions a cyclist in a 
helmet and yellow jersey, while the reference set
 describes a man in a green shirt carrying a drink 
while riding a bicycle. Although there are some 

similarities, such as the fact that both sets mention 
a person riding a bike, the differences in the details 

make it uncertain whether they are describing 
the same image or not.

A cyclist in a helmet and yellow jersey.
Candidate

CLAIR Reason

2.7/5
Human

0.5
CLAIR

0.0
BLEU4

0.01
CIDEr

0.43
ROUGE

A boy jumps into the blue pool water.

The candidate set and reference set both 
mention a boy jumping into water, but the 
candidate set does not provide as much 
detail about the boy's appearance or the 

location of the pool. Additionally, the
reference set includes captions about diving
off a pier and holding one's nose, which are

not mentioned in the candidate set.

Candidate

CLAIR Reason

3/5
Human

0.7
CLAIR

0.0
BLEU4

0.55
CIDEr

0.61
ROUGE

"A blonde boy wearing a blue life vest and camo shorts 
jumps off a diveboard into a blue lake."

"A boy diving backward off a pier in a large lake."
"A boy in a blue life jacket jumps into the water."

"A boy in a blue life jacket jumps off a board into the lake."
"A boy is holding his nose and jumping off a diving board 

backwards into a lake."

References
"A biker enjoys a coffee."

"A man in a bright green shirt and sunglasses is riding a bicycle through 
the streets whilst drinking a latte."

"A man in a bright green shirt riding a bicycle in a paved courtyard , cary-
ing a drink."

"A man rides on his bike with one hand and holds a drink with the other."
"A man riding a bike wearing a green shirt with a drink in his hand ."

References
"a group of skiers going up a mountain."
"Four cross-country skiers climb uphill."
"Four people climbing a hill in the snow."

"Four skiers walking up a snow covered hill."
"four skiers climbing snow drapped mountain."

References

Figure 2: Several qualitative examples of CLAIR from the Flickr8K-Expert dataset. CLAIR not only correlates better with
human judgments of caption quality but also provides detailed explanations for its score. CLAIR scores normalized by 100.

by CLAIR to both human judgments of caption
quality and other image captioning evaluation mea-
sures. We additionally provide several qualitative
examples in Figure 2. A unique benefit of CLAIR is
that it provides not only numeric scores but is also
introspectable, as it can identify which details in
the candidate caption set match the reference set.

Sample-level human correlation: We first ask
the question, how well does CLAIR correlate with
human judgments of caption quality at a sample
level? We do so by exploring the performance on
three datasets, COMPOSITE, Flickr8K-Expert, and
MS-COCO (See Appendix B for details).

The results of our sample-level correlation
experiments are shown in Table 1. We can see that
CLAIR outperforms language-only measures (e.g.,
0.604 to 0.449 for BERT-S++), and in most cases,
outperforms vision-augmented measures. CLAIRE

achieves strong sample-level correlation on all
datasets; for instance, CLAIRE closes the gap to
inter-human agreement by 0.097 over vision-based
measures and 0.132 over language-based measures.
The improvements of CLAIRE over CLAIR sug-
gest that each language model may have some bias
(similar to each human), yet the ensemble of models
correlates more strongly with human judgments.
A reasonable concern might be that the models
underlying existing approaches are significantly
smaller than those in CLAIR, and trained on less

Table 1: Sample-level correlation (Kendall’s τ ) with human
judgments. All p-values < 0.001. *: Model has access to
additional visual context. Results for LEIC, BERT-S++,
TIGEr, and NUBIA are drawn from their original work.

Dataset

Measure COMPOSITE Flickr8K MS-COCO

BLEU@1 0.313 0.323 0.265
BLEU@4 0.306 0.308 0.215
ROUGE-L 0.324 0.323 0.221
BERT-S 0.301 0.392 0.163
METEOR 0.389 0.418 0.239
CIDEr 0.377 0.439 0.262
SPICE 0.403 0.449 0.257
BERT-S++ 0.449 0.467 -
NUBIA - 0.495 -

LEIC* - 0.466 -
TIGEr* 0.454 0.493 -
CLIP-S* 0.538 0.512 0.217
RefCLIP-S* 0.554 0.530 0.305
RefCLIP-X* 0.523 0.549 0.274

CLAIR
+ GPT3.5 0.604 0.616 0.296
+ Claude 0.542 0.563 0.320
+ PaLM 0.580 0.546 0.355

CLAIRE 0.592 0.627 0.374

Inter-Human - 0.736 -

data. To address this, we introduce and compare
against RefCLIP-X, which replaces the CLIP model
in RefCLIP with a CLIP ViT-bigG/14 model trained
on LAION 2B (Ilharco et al., 2021). Even in this
case, CLAIR demonstrates significantly improved
performance.



Table 2: System-level correlation between the average CLAIR
score and human model evaluation for 5 models trained and
evaluated on MS-COCO. All p-values <0.05.

Measure Kendall’s τ Spearman’s ρ Pearson r

BLEU@1 0.399 0.600 0.706
BLEU@4 0.799 0.899 0.910
ROUGE-L 0.600 0.700 0.792
METEOR 0.600 0.700 0.666
CIDEr 0.399 0.600 0.856
SPICE 0.399 0.600 0.690

CLAIR
+ GPT3.5 0.799 0.899 0.869
+ Claude 1.000 1.000 0.868
+ PaLM 1.000 1.000 0.954

CLAIRE 1.000 1.000 0.903

Table 3: Accuracy of measures when matching human
decisions for PASCAL-50S (5 reference captions). *: Model
has access to additional visual context.

Measure HC HI HM MM All

BLEU@1 51.20 95.70 91.20 58.20 74.08
BLEU@4 53.00 92.40 86.70 59.40 72.88
ROUGE-L 51.50 94.50 92.50 57.70 74.05
METEOR 56.70 97.60 94.20 63.40 77.98
CIDEr 53.00 98.00 91.50 64.50 76.75
SPICE 52.60 93.90 83.60 48.10 69.55

TIGEr* 56.00 99.80 92.80 74.20 80.70
CLIP-S* 56.50 99.30 96.40 70.40 80.70
RefCLIP-S* 64.50 99.60 95.40 72.80 83.10

CLAIR
+ GPT3.5 52.40 99.50 89.80 73.00 78.67
+ Claude 57.90 98.50 91.30 62.90 77.65
+ PaLM 54.70 98.30 87.30 64.00 76.08

CLAIRE 57.70 99.80 94.60 75.60 81.93

System-level human correlation: In addition
to computing the sample-level correlation on the
MS-COCO dataset, we use the annotations from the
five models considered by Rohrbach et al. (2018) to
compute the system-level correlation. For each of
the methods, we compute the mean human score on
the test samples, and mean metric score on the test
samples, followed by the Kendall’s rank correlation
coefficient (Kendall’s tau, strength of ordinal asso-
ciation) between these values (the set of five mean
human scores, and the set of five metric scores). Our
results, given in Table 2, demonstrate that CLAIR
ranks the five methods in a novel way that is more
accordant with human rankings of the methods.
These results further suggest that CLAIR has the
potential to redefine which methods are preferable
to humans compared to existing n-gram approaches.

Decision Making: In addition to evaluating the
correlation with human judgments, we also evaluate
the capability of the measure to perform discrimina-

Table 4: Pearson correlation with human judgments when
evaluating sets of captions on MS-COCO (N=794).

Measure Coveragep-value Correctnessp-value

BLEU@4 0.004 0.816 0.003 0.888

ROUGE-L 0.011 0.563 0.038 0.184

METEOR 0.016 0.398 0.006 0.765

CIDEr 0.004 0.844 0.026 0.173

TRM-METEOR 0.128<0.001 0.108<0.001

TRM-BLEU 0.127<0.001 0.151<0.001

MMD-BERT 0.129<0.001 0.124<0.001

FID-BERT 0.081 0.011 0.098<0.001

CLAIR
+ GPT3.5 0.195 0.011 0.187 0.014

+ Claude 0.110 0.099 0.124 0.145

+ PaLM 0.129 0.081 0.085 0.172

CLAIRE 0.183 0.027 0.156 0.018

Inter-Human 0.225<0.001 0.274<0.001

tive analysis. The PASCAL-50S dataset (Vedantam
et al., 2015) contains a set of 4000 human-annotated
caption pairs. For each pair of captions, humans
label which caption in the pair is closest to the
reference set for the image. The caption pairs fall
into four groups: “HC:" two human-written cap-
tions matching the image, “HI:" one human caption,
and one machine-generated caption, with only one
matching the image, “HM:" a matching human cap-
tion and a matching machine-generated caption and
“MM:" two matching machine-generated captions.
See Appendix B for more dataset information.

The performance on PASCAL-50S is given in
Table 3. We can see that CLAIRE outperforms
all existing text-only measures (e.g., by 5.18%
overall score over CIDEr), and in many cases,
even outperforms measures that have access to the
image at test time. Note that it is relatively weaker
than image-augmented models in the HC setting;
however, since both captions are correct, the model
often cannot judge which is better purely the text.
Models such as RefCLIP-S that have access to
the image are naturally better discriminators in
this case. We suspect that CLAIR’s discriminative
performance could be further improved by giving
the LLM a choice between the two captions;
however, we leave this optimization to future work.

Groups of Captions: While CLAIR is capable
of comparing a single candidate caption to a set of
reference captions, it is also capable of comparing
sets of candidate captions to sets of reference
captions. This task is necessary when evaluating
the ability of a model to generate captions that are
diverse and that fully describe the conditional text



distribution. We evaluate on the COCO-Sets dataset
(Chan et al., 2022), 794 caption sets rated by AMT
workers on two scales: how closely a candidate
set matches the reference set in terms of both
correctness and content coverage (See Appendix B
for details). The results of this experiment are given
in Table 4. We can see that CLAIR outperforms well
when measuring the quality of a group of captions,
and approaches the inter-human correlation on the
(very) challenging task. CLAIR also outperforms
TRM-METEOR and TRM-BLEU (Chan et al.,
2022), suggesting that LLMs can judge both the
content and diversity of the caption sets.

4 Limitations

While CLAIR correlates well with human judg-
ments of caption quality, it has several limitations:

Non-Determinism and Parsing Errors: Because
CLAIR depends on the output of a language model,
the measure can be non-deterministic and noisy. For
instance, it may fail to elicit a judgment (e.g., “As an
AI language model, I cannot see, and thus, cannot de-
termine if the image captions match the references”),
or rarely, generate malformed JSON output. To ad-
dress these issues, we perform multiple queries to
the LLM, sometimes at higher temperatures if nec-
essary. As a consequence, the measure may differ
between runs, although we found the variance to be
relatively insignificant (<0.01 in many of the exper-
iments). Additionally, since the language models
used are not open-source, the models are subject to
arbitrary change, replacement, or removal, which
limits the efficacy of the measure as a long-term com-
parable measurement. We hope that increasing open
access to language models with efforts such as Koala
(Geng et al., 2023) and Vicuna (Chiang et al., 2023),
will help to alleviate these challenges in the future.

Increased Cost: CLAIR relies on language models
which contain many billions of parameters. These
language models have not only monetary cost but
also human and environmental costs (Bender et al.,
2021) which can reduce its utility as a target during
training, such as for self-critical sequence training
(Rennie et al., 2017). While API-based LLMs
may be considered costly, even open-source LLMs
have a cost (which can often be hard to quantify).
CLAIR on the MS-COCO dataset uses an average
of 226.148 tokens per sample (on OpenAI’s API),
representing a cost of $0.0067 per sample (GPT-4),
or $0.00033 per sample (GPT 3.5). For PALM,

this drops to $0.000113 per sample. We hope
that over time, advances in LLM inference (such
as quantization and distillation), coupled with
improvements in architecture will continue to yield
lower-cost alternatives with strong performance on
the caption evaluation task.

Hallucination: While CLAIR does suffer from
potential hallucination, we strongly believe that this
weakness does not diminish the fact that CLAIR
still correlates strongly with human judgment. In
CLAIR, hallucinations in the score manifest as
“incorrect” judgements of similarity, while hallu-
cinations in the explanations manifest as poorly
grounded explanations of the score/quality. Hal-
lucinations in the score should be considered false
negatives (blind spots instead of hallucinations). In
the case of hallucinations in the explanations, such
hallucinations may lead to misinterpretation, but
arguably less misinterpretation than a black box
method, and may even indicate misunderstandings
in the model. Hallucination is a well-known chal-
lenge of current LLMs and is the subject of a great
amount of research on instruction-tuning, RLHF,
RLAIF, and other methods. As hallucination and
instruction-following performance of the base mod-
els improves, CLAIR inherit similar improvements.

Explainability: While CLAIR generates explana-
tions for each rating, CLAIR has no strict scoring
rubric. Much like human judgments, there is no
direct way of attributing changes in score to changes
in caption quality. For similar reasons, it is difficult
to evaluate the quality of the generated explanations.
Qualitatively, the explanations are generally
reasonable and consider multiple axes of judgment.

5 Conclusion

This work introduces CLAIR, an LLM-based
evaluation measure for image captioning. CLAIR’s
superior performance compared to highly-
engineered measures indicates a remarkable fact:
LLMs are well aligned with human judgments of
caption quality, even more so than some measures
designed specifically for semantic similarity.
CLAIR is only a glimpse into how LLMs can be
used for evaluation tasks, and image captioning is
only the beginning. We hope that our work will
inspire further exploration of similar measures in
other vision and language domains, such as visual
storytelling (Huang et al., 2016), where human eval-
uation of generated text remains a challenging task.
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B Additional Experimental Details

In this section, we provide several additional details
for the experiments in section 3 run with the CLAIR
measure.

B.1 Input Prompt Formatting

The CLAIR prompt is given in its entirety in
Figure 1. During run-time, candidate and reference
captions are prefixed with a “- " and inserted into
the prompt, one per line. The resulting query is
passed to the large language model. In addition,
for models which were not RLHF-tuned to perform
conversation (such as PaLM), we found that it was
helpful to append an additional prefix {"score": to
the beginning of the output, to encourage the correct
output formatting. CLAIR is surprisingly simple: it
uses no in-context examples (is entirely zero-shot),
and default inference parameters for the APIs. The
model checkpoint metadata is generally unknown
(as the APIs are somewhat fluid and evolving).

B.2 LLM Output Post-Processing

Because CLAIR relies on an LLM to produce
output, there is no guarantee that the output will be
in the format we expect (i.e. valid, parsable JSON).
To extract both the score and the reason, we first
extract the first set of paired braces from the output
of the LLM and attempt to parse the result as JSON.

In most cases (99.997% for GPT-3, 99.991% for
Claude, and 99.94% for PaLM during the course of
our experiments), this is successful, and the score
and reason are returned. In the case that the JSON
output is malformed, we attempt to extract any
sequence of digits from the LLM to use as a score,
and set the reason to “Unknown.” When this fails, as
can be the case when the models produce an output
such as “As an AI language model, I cannot see,
and thus, cannot determine if the image captions
match the references”, we retry the prompt at a
higher temperature (t=1.0) several times. Failing
this (which occurred only three times in the entire
evaluation of this paper, across several hundred
thousand calls), we set the score to 0 for the caption.

B.3 Datasets

In this section, we provide additional detail regard-
ing the datasets used in the evaluations in section 3.

COMPOSITE: The COMPOSITE dataset
(Aditya et al., 2015) contains machine-generated
test captions for 3995 images spread across the
MS-COCO (Xu et al., 2016), Flickr8K (Mao et al.,
2014) and Flickr30k (Young et al., 2014) datasets.
Each image has three test captions, one written by
a human, and two that are model generated. The
candidate captions are graded by annotators on
Amazon Mechanical Turk (AMT) on a scale of
1 (not relevant) to 5 (very relevant). Inter-human
correlations are not available for this dataset.

Flickr8K-Expert: The Flickr8K-Expert dataset
(Hodosh et al., 2013) contains 5822 captions asso-
ciated with 1000 images. The dataset is annotated
with expert human judgments of quality, where
images are rated from 1 (caption is unrelated to the
image) to 4 (caption describes the image without
errors). Unlike the composite and MS-COCO
datasets, the captions here are selected using an
image retrieval system, instead of generated using
a learned image captioning model. Following Jiang
et al. (2019), we exclude any candidate captions
that overlap the reference set.

MS-COCO: Following experiments by
Rohrbach et al. (2018), we compute the sample-
level correlation between our method and human
ratings on a 500-image subset of the MS-COCO
Karpathy test set. Each image in the subset contains
candidate captions generated by 5 models, and each
caption is labeled with the average three human



ratings generated by AMT workers which range
from 1 (very bad) to 5 (very good). Inter-human
correlations are not available for this dataset.

PASCAL-50S: PASCAL-50S contains 1000
images drawn from the PASCAL sentence dataset.
Each image is associated with at least 50 (and as
many as 120) reference captions. In addition to
the reference captions, PASCAL-50S contains a
set of 4000 human annotated image/caption pairs
containing an image, and two candidate captions.
The caption pairs fall into four groups:

1. HC: In the HC group, both captions in the pair
are human written, and describe the content
of the target image correctly.

2. HI: In the HI group, both captions in the pair
are human written, but one caption correctly
describes the content of the image, and the
other caption describes the content of a
different image.

3. HM: In the HM group, one caption is written
by a human, and one caption is written by
a machine, but both correctly describe the
content of the image.

4. MM: In the MM group, both captions are
written by a machine, and both correctly
describe the image content.

In PASCAL-50S, the task is to decide which caption
in the pair humans prefer more (a subjective task,
hopefully indicating caption quality). Following
previous work (Jiang et al., 2019; Hessel et al.,
2021), we limit the number of reference sentences
to five during evaluation.

COCO-Sets: The COCO-Sets dataset (Chan
et al., 2022) is a set of samples that are designed
to evaluate the correlation of distribution-aware
image captioning measures with human judgments
of distributional distance. In this dataset, humans
were presented with two candidate caption sets
(two image captioning models, OFA (Wang et al.,
2022) and BLIP (Li et al., 2022) using different
temperatures), and asked which candidate caption
set correlated better with a reference caption set on
two measures: how much they overlapped factually
(correctness), and how much information they pro-
vided about the references (coverage). It consists of
794 AMT worker-generated judgments of caption
quality for images in the MS-COCO dataset.


