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Abstract

We present an investigation into diffusion models for molecular generation, with the aim of better un-
derstanding how their predictions compare to the results of physics-based calculations. The investigation
into these models is driven by their potential to significantly accelerate electronic structure calculations
using machine learning, without requiring expensive first-principles datasets for training interatomic po-
tentials. We find that the inference process of a popular diffusion model for de novo molecular generation
is divided into an exploration phase, where the model chooses the atomic species, and a relaxation phase,
where it adjusts the atomic coordinates to find a low-energy geometry. As training proceeds, we show
that the model initially learns about the first-order structure of the potential energy surface, and then
later learns about higher-order structure. We also find that the relaxation phase of the diffusion model
can be re-purposed to sample the Boltzmann distribution over conformations and to carry out structure
relaxations. For structure relaxations, the model finds geometries with ∼ 10× lower energy than those
produced by a classical force field for small organic molecules. Initializing a density functional theory
(DFT) relaxation at the diffusion-produced structures yields a > 2× speedup to the DFT relaxation
when compared to initializing at structures relaxed with a classical force field.

1 Introduction

The potential energy surface (PES) is fundamental for understanding the behavior of atomic systems. Finding
stable geometries, estimating reaction rates, and predicting transition states all require an understanding of
the shape of the PES. Accurate first-principles methods for calculating points on the PES are computationally
expensive or even entirely infeasible for larger systems, so a number of cheaper alternatives have been
developed, such as classical force fields, semi-empirical tight-binding methods, and machine learning methods.

The vast majority of machine learning methods aimed at understanding the shape of the PES are learned
interatomic potentials, and state-of-the-art interatomic potentials currently consist largely of neural-network
interatomic potentials (NNIPs) [13, 15]. NNIPs are trained through supervised learning, and the most
common approach is to use a dataset of atomic geometries that are annotated with energies and forces.
These energies and forces are typically derived from a more expensive physics-based method. The result is
a machine learning model that can predict, given a particular geometry of atoms, the energy of that atomic
configuration and the forces experienced by each atom.
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While machine-learned interatomic potentials are powerful tools for understanding the shape of the PES,
they suffer from the major limitation that they require a supervised dataset of atomic geometries that
have been annotated with energies and forces. Relying on datasets based on first-principles physics-based
calculations is challenging for several reasons:

• Computational expense. It is extremely computationally expensive to create this sort of dataset.
For example, the OC20 dataset includes 1.3M relaxations, each of which was allowed up to 1728
core-hours of compute time [11].

• Lack of inclusion of all geometries. The space of off-equilibrium geometries is combinatorially
large, and there is no definitive way to choose which geometries to include in the dataset. If important
types of geometries are excluded, models trained on the dataset may generalize poorly.

• Limited by the level of theory. Because of how expensive it is to produce the dataset, we are
limited in the level of theory that can be used for generating the energies and forces. For example,
authors often generate geometries using tight-binding calculations, which are significantly less accurate
than density functional theory (DFT) [5, 6]. Generating a labeled dataset of energies and forces based
on experimental data is not feasible, so learned interatomic potentials will always be limited by the
training set’s level of theory.

To address these concerns, we investigate an alternative approach to understand the PES, which requires
only ground-state (i.e., lowest energy) geometries as training data, and which does not involve explicitly
learning an interatomic potential. Recently, several authors have trained non-NNIP machine learning models
to generate 3D atomic geometries, either from scratch or based on a molecular graph, by training a self-
supervised model on a dataset of known 3D geometries [26, 25, 16, 39]. In the self-supervised learning setting,
models are trained on data without labels, which in this case means 3D atomic geometries that have not been
annotated with energies or forces. With no labels to learn from, models are instead trained by corrupting
the training data with noise and then asking the model to predict the original, de-noised data. The intended
use of these models is to generate geometries (either from scratch or for conformer generation), rather than
to reason more generally about the PES. However, they are undoubtedly learning about the PES, given that
they are able to generate structures that lie near local energy minima. To our knowledge, there has not
been a comprehensive investigation into the degree to which these models acquire insights about the PES in
the vicinity of the local minima, as opposed to solely learning point estimates of where the local minima lie.
Existing evaluations only look at the generated geometries themselves to measure their quality.

The reason these models are worth exploring in more detail is that they provide a path forward to
accelerate electronic structure calculations, while avoiding the challenges of training NNIPs described above.
Instead of training on a dataset of structures with their corresponding energies and forces, these models
train in a self-supervised fashion on un-annotated ground-state geometries. Training in this manner offers a
number of advantages:

• Computational savings. It is computationally cheaper to generate a dataset of only ground state
configurations than to generate a training dataset for NNIPs, since we can initialize calculations at a
higher level of theory with the best guess from a lower level of theory. In contrast, NNIP training data
must include many off-equilibrium structures at a high level of theory so that they learn to generalize
beyond the immediate neighborhood of the ground state. For example, in order to ensure the dataset is
not “biased toward structures with lower energies”, the Open Catalyst 2020 (OC20) dataset specifically
includes DFT calculations on geometries “with higher forces and greater configurational diversity” than
strictly necessary to identify the ground state. [11].

• No need to select atomic geometries. There is no need to choose which off-equilibrium geometries
should be included, since a self-supervised dataset includes only ground state configurations.

• Can learn from experimental data. Self-supervised methods offer a distinct advantage over NNIPs
in that, in principle, they can be trained on experimental data. Training ML models on experimentally
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measured geometries is challenging, and we do not pursue experimental structures in this manuscript,
but we believe that even the possibility of leveraging experimental data for training is a major advantage
for self-supervised methods, when compared to NNIPs.

In this manuscript, we choose one of these models trained with self-supervised methods—an E(3) Equiv-
ariant Diffusion Model (EDM) [25]—and we probe the model’s understanding of the PES 1) by inspecting
more closely the model’s predictions when generating structures as intended, 2) by examining the predictions
when applied to downstream applications that it was not trained on, and 3) by comparing the predictions
with the results of physics-based calculations (§4). Following this analysis, we investigate a practical approach
to use EDM to accelerate structure relaxations of atomic systems (§5).

Our goal is not to train a better interatomic potential; prior work has already investigated denoising as a
way to improve supervised learning, including for NNIPs [52, 20, 32]. We are also not proposing a new way
to train self-supervised models on chemical systems, rather opting for an off-the-shelf EDM model. Instead,
our objectives are: first, to understand, from a scientific standpoint, what these models are learning about
the PES using only a denoising objective; and second, to propose a practical way to use models trained in
this manner to accelerate electronic structure calculations.

To summarize, we make the following contributions. We undertake a study of a pretrained EDM model,
finding that its inference procedure can be roughly divided into an “exploration” regime and a “relaxation”
regime (§4.1). For small organic molecules, we demonstrate that the relaxation regime of the EDM model
finds geometries with significantly lower energies than those found using a classical force field (§4.2). When
“relaxing” structures, EDM’s predictions for how to de-noise the atomic positions preferentially follow the
forces to the ground state early in training, and preferentially move straight towards the ground state later
in training (§4.3). We use EDM to sample from a molecule’s Boltzmann distribution over conformations,
establishing a correspondence between diffusion steps and temperature (§4.4). We re-purpose EDM to
accelerate DFT structure relaxations, and we find that it can significantly speed up these calculations by
proposing better initial geometries (§5.1). We attain a small speedup to structure relaxations on a dataset
of larger drug-like molecules; for these more complex PESs, EDM’s predictions align better with the ground-
truth forces than with the direct path to the ground state (§5.2).

2 Related Work

There is a long history of empirical force fields that sacrifice accuracy on molecular mechanics tasks to
achieve computational efficiency. Simple potentials like the Lennard-Jones [27], Mie [34], and Kihara [28]
potentials require only a few parameters to be tuned to match experiment or ab initio simulations. More
complex potentials, such as the Merck Molecular force field (MMFF) [22], the Universal Force Field (UFF)
[38], Assisted Model Building with Energy Refinement (AMBER) [50, 51, 12], Generalized AMBER force
field (GAFF) [49], the “Molecular Mechanics” force fields (MM1 through MM4) [1, 2, 4, 3], the “Chem-
istry at Harvard Macromolecular Mechanics” force field (CHARMM) [33], and others model more complex
interactions explicitly using many parameters, which must be fit to data.

More recently, neural network interatomic potentials (NNIPs) have taken this trend to the next level,
introducing models that predict the energy of atomic configurations using millions of parameters, which must
be trained using techniques from machine learning. These NNIPs tend to be based on graph neural network
architectures [43, 48, 18, 17], and many NNIPs are equivariant, meaning that rotating the input geometry
leads to a deterministic and easy-to-calculate transformation of the output [42, 8, 36, 10, 46, 21, 35]. Energies
predicted by an equivariant neural network are scalar quantities, so they are invariant to rotations of the
input geometry. Predicted forces are vector quantities, subject to any rotation that is applied to the input
geometry. See Geiger and Smidt [19] for a more in-depth primer on equivariance in neural networks.

All of these approaches—from the two-parameter Lennard-Jones potential to the largest GemNet [17]
model with millions of parameters—follow the traditional paradigm of predicting energies and forces. These
predicted energies and forces are then used to carry out structure relaxations, molecular dynamics simu-
lations, Markov chain Monte Carlo simulations, etc. In contrast, in this work we propose executing these
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tasks by training a machine learning model using a denoising objective on ground-state geometries, with no
energy or force data in the training set.

Prior work has used denoising objectives in this domain for other purposes. Hoogeboom et al. [25],
whose model we use in this work, trains an equivariant denoising diffusion model to generate molecules from
scratch. Godwin et al. [20] use a denoising objective as a regularization term for property prediction and
one-shot structure relaxations. Zaidi et al. [52] is most similar to this work, as they use a similar denoising
objective to pretrain a graph neural network for molecular property prediction. They do not investigate
the pretrained models themselves, focusing instead on using evaluating them only as starting points for
fine-tuning a property prediction model. The success of their method motivates further study into what is
learned via the denoising pretraining step.

3 Background

Denoising diffusion models were recently popularized on the task of natural image generation [24]. The
following offers a very high level and intuitive explanation of these models that leaves out important details.
For a complete treatment, please refer to [24] and [25].

To train a diffusion model to generate images, the model is repeatedly given images from the training
set that have been corrupted with Gaussian noise, and it is tasked with predicting what noise was added.
During training, the inputs to the model are corrupted with different amounts of noise. Sometimes, it faces
images with only a small amount of noise, while at other times, the noise is so pronounced that the original
image is nearly unrecognizable. Each time, the model is tasked with predicting what noise was added. The
amount of noise added is controlled by the “diffusion step”, n, which ranges from n = 1 (low noise) to n = N
(high noise), and the model takes n as an input, in addition to the corrupted image.1 During training, every
iteration samples a random diffusion step uniformly from n = 1 to N . Consequently, the model learns to
make any image less noisy—whether it is already very noisy or only a bit noisy. To generate a new image
during inference, the model is first given completely random Gaussian noise as the image, and n = N . The
noise predicted by the model is subtracted from the image (after appropriate scaling), and the result is fed
back into the model with n = N −1. This process continues until reaching n = 1, at which point the original
“image” has been completely denoised to obtain a purely generated image.

Recently, Hoogeboom et al. [25] extended this technique to generating small organic molecules instead
of natural images. Intuitively, their model works the same way as is described above. However, instead of
generating images, the model generates molecules: the 3D coordinates of each atom, the chemical species of
each atom, and the formal charge on each atom. The 3D coordinates are represented simply as the usual
scalar-valued x, y, and z coordinates, and the atomic charges are also represented as scalars. To represent
the chemical species, the authors assign each atom in the training set a vector, where all values in the vector
are zero except the entry corresponding to the true atom type, which is set to one (i.e., a one-hot vector). At
train time, the model receives these three quantities, each corrupted with Gaussian noise. At test time, the
model iteratively denoises what was originally an entirely random input until a plausible molecule emerges.
In order to respect translational symmetry, EDM translates all structures so that the center of mass is at
the origin. In order to respect rotational symmetry, EDM uses an equivariant neural network called EGNN
to predict what noise was added [41].

4 Investigation Into Equivariant Diffusion Models

4.1 Physical Intuition Behind EDM

As a first step, and to motivate the subsequent discussion in this manuscript, we investigate in more detail
how a trained EDM model generates 3D geometries. We look at how structures evolve over the course of the

1The diffusion step is usually referred to as t ∈ [1, T ], but we reserve T for temperature and use n ∈ [1, N ] for the diffusion
step instead.
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diffusion process, with the aim of gaining a physical understanding of the model’s behavior that will inform
what other chemical tasks we might be able to carry out besides the intended de-novo molecular generation.

Methods. As discussed in §3, to carry out inference with an EDM model, first, we sample standard normal
distributions for the atomic coordinates, for the values of the one-hot atomic species vector, and for the atomic
charges. To ensure translation invariance, we subtract out the center of mass from the 3D coordinates, as
described above. Then, for each of N steps, from n = N down to n = 1, we use an equivariant neural
network to predict how the atomic coordinates, atomic species distribution, and charges should change, and
we adjust the sampled molecule accordingly.

We train the EDM model on Quantum Machines 9 (QM9), a dataset of small molecules with up to
nine heavy atoms among carbon, nitrogen, oxygen, and fluorine [40, 37], using the same hyperparameters
used by Hoogeboom et al. [25]. We train the model for 6200 epochs and choose the model with the best
validation loss, which occurs at epoch 5150. In comparison, Hoogeboom et al. [25] train the same model for
1100 epochs. We find that the validation loss improves consistently until epoch ∼3000, after which it mostly
levels off.

To match QM9, we carry out all DFT calculations at the B3LYP/6-31G(2df,p) level of theory [9, 45, 14,
23, 29]. We use Psi4 [44] version 1.8, and relaxations are carried out with the Atomic Simulation Environment
(ASE) [31] version 3.22.1 using the BFGS algorithm for geometry optimizations with fmax of 0.03 eV/Å.

Results. At the beginning of the inference process, the atomic species and 3D positions are completely
scrambled, but by the end, the model has decided on which atomic species to use and where to place them.
This progression is shown in Figure 1, which plots as a function of diffusion steps the fraction of atomic
species that have been finalized, the fraction of atoms that have the correct valence, and how close the
interatomic distances are to their final values.

We first consider the plot of what fraction of molecules have all atomic species finalized (“Mol. Elem.
Final”). Here, it is clear that the diffusion process can be divided into two regimes: an “exploration”
regime, from diffusion step 1000 to ∼50, where the model is still figuring out the atomic identities, and a
“relaxation” regime, from diffusion step ∼50 to 0, where the model is moving around the atoms while holding
the atomic species fixed. The transition in “Atom Elem. Final” from 0% finalized to 100% finalized is fairly
abrupt, suggesting that the model decides on all the atomic species at once, instead of first deciding on,
e.g., the carbon structure and then deliberating about which functional groups to add. Note also that the
model finalizes geometries decidedly after choosing the atomic species: the curve showing which fraction of
molecules have every atom’s valence finalized (“Mol. BO Final”) doesn’t increase at all until after almost all
molecules’ atomic species have been decided on (“Mol. Elem Final”), and the RMSD of interatomic distances
rapidly decreases starting at diffusion step 50, right after the atomic species have mostly been decided upon.

Looking more closely at the relaxation regime, we calculate the energy of each structure along the diffusion
path using DFT, starting with the first structure where all atom types are finalized. As seen in Figure 2,
the energy decreases during the relaxation regime fairly consistently, suggesting that the diffusion process is
largely following the potential energy surface to the ground state rather than moving atoms through each
other or taking a more erratic path. For reference, the DFT-computed energies of the geometries along a
linearly interpolated path from the starting structure to the final structure are shown by the dashed lines in
Figure 2. We investigate this further in §4.3.

4.2 EDM Can Relax Structures

Noting the separation of the diffusion process into these two regimes (“exploration” and “relaxation”), and
that the energy of generated structures consistently decreases during the relaxation regime, a natural question
to ask is: can we successfully relax arbitrary structures by running diffusion steps ∼50 → 0, starting at a
user-chosen unrelaxed structure? During training, the model only sees structures that are (roughly speaking)
a Gaussian perturbation away from the ground state. Any initial structure we provide the model that is not
generated in this way may be outside of the training distribution. As such, there’s no guarantee that the
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Figure 1: Examining EDM Inference. Left: ℓ2 norm of the step size taken at each step in diffusion (“Step
Size”, Å); root-mean-squared deviation between interatomic distances of the current structure compared
to the final structure, considering only distances between atoms bonded in the final structure (“Bond Len.
RMSD”, Å); fraction of atoms whose chemical species is finalized (“Atom Elem. Final”); fraction of molecules
where every atom’s chemical species is finalized (“Mol. Elem. Final”); fraction of atoms that have the same
number of bonds as they do in the final structure (“Atom BO Final”); fraction of molecules where all bond
orders have been finalized (“Mol. BO Final”); fraction of atoms that have a valid number of bonds (e.g. 4
for carbon, “Atom Valid BO”). Solid lines are the average of these quantities across 100 generated molecules,
with shaded regions representing one standard deviation above/below. Right: Zoom of figure on the left.

050
Diffusion Step

0

25

50

75

100

Re
la

tiv
e 

En
er

gy
 (k

ca
l/m

ol
)

050
Diffusion Step

0

50

100

150

050
Diffusion Step

0

20

40

60

80

025
Diffusion Step

0

20

40

60

050
Diffusion Step

0

20

40

60

80

100 Diffusion
Direct
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geometries.
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relaxation regime will actually find a low-energy geometry if it is initialized at one of these out-of-distribution
states.

Methods. To test this, we initialize the diffusion process with the ground state produced by running a
structure optimization using the Merck Molecular Force Field (MMFF94) [47] on molecules from the QM9
validation set, and then we run the last n steps of diffusion. To find the MMFF ground state, we use RDKit
[30] to generate an initial guess for the 3D structure of the molecule given only the molecular graph, and
then we relax this structure using MMFF.

The MMFF-optimized structures are already reasonable approximations of the DFT ground state, but
we seek to further improve them using EDM. To evaluate the diffusion-generated structures, we compare the
DFT-computed energies of the diffused structures with that of the MMFF structures. Figure 13 in Appendix
A shows a random sample of the molecules used in this section.

The question remains what diffusion step n to start at when carrying out the relaxation. As shown in
Figure 1, the model consistently makes smaller/larger steps for earlier/later diffusion steps, so we need to
choose n carefully: too small, and the model won’t have enough steps to move the distance required to
reach the ground state; too large, and the model will drastically re-arrange the molecule instead of finding
the nearest local minimum. Most likely, we should use n <∼ 50, since before this point, the model has not
finalized atom species. As such, we try three values of n: 50, 30, and 20.

Results. Figure 3 shows DFT-computed relative energies between the DFT-relaxed structure and all struc-
tures along the diffusion path for each of these values of n. The diffused structures are on average equally
good for all values of n, on average about 1 kcal/mol worse than the DFT-computed ground state. In
contrast, the MMFF-optimized structures are nearly 10 kcal/mol higher in energy than the DFT-optimized
structure. On the low end, at n = 20, the model immediately begins improving the structures, whereas on
the high end, at n = 50, the model first worsens the structures, increasing the energy, but eventually finds
as good or better final structures as the lower values of n. This is the same kind of behavior that we would
expect from a more traditional optimization process, such as gradient descent with a learning rate inversely
proportional to the optimization timestep. As long as the initial learning rate is within a reasonable range,
gradient descent will always converge to the local minimum, but a higher initial learning rate may cause
the optimizer to initially worsen the objective. Because in practice we do not know how far away our initial
state is from the true ground state, it is important that this method is robust to choosing too many steps,
since if so, we can safely overestimate n and still arrive at high-quality ground states.

4.3 Alignment of Denoising Steps with Forces

As seen in Figure 2, the relaxation regime of the diffusion process consistently improves structures down
to the ground state. However, although the energy mostly decreases as diffusion proceeds, and the final
structure is close to the DFT-computed ground state, it is unclear which relaxation path the model takes to
the ground state. One simple hypothesis is that it follows the forces down to the minimum; another is that
it takes the most direct path to the minimum, compensating for the curvature of the PES along the way.
It is also possible that the model’s predictions align neither with the forces nor with the direct path to the
ground state, instead taking an erratic or circuitous path to the ground state.

Methods. To differentiate between these hypotheses, we compute the cosine similarity between the steps
that the EDM model makes (“∆”), the DFT-computed forces at each geometry along the diffusion path
(“f”), and the direction straight from each geometry to the DFT-relaxed ground state (“gs”). If the model
tends to follow the forces down to the minimum, then we expect the angle between ∆ and f , (“θ∆,f”) to be
small, or cos θ∆,f to be large. In particular, it should be large compared to cos θ∆,gs. Similarly, if the model
heads straight for the ground state, ignoring bumps in the PES along the way, then we expect cos θ∆,gs to be
large compared to cos θ∆,f . We plot a third quantity, cos θf,gs, as a point of reference, since the forces tend
to be somewhat aligned with the path directly to the ground state, especially for the simple PESs of QM9
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Figure 3: Energies of EDM structural “relaxations”. Left: DFT-computed energies relative to
the ground state for all structures on the diffusion-generated “relaxation” paths, for 45 randomly chosen
molecules from the QM9 validation set. Each color is a different molecule from the QM9 validation set.
Linestyle indicates how many diffusion steps were used (n = 20, 30, and 50). Black lines are averages over
all molecules. Right: Zoom of left figure.

molecules. If ∆ is less aligned both with f and with gs than f is aligned with gs, then we may conclude
that the model’s predictions are not particularly aligned with either the DFT-computed forces or with the
path directly to the ground state.

However, noting that the diffusion process is inherently noisy, we also plot results when we consider the
model prediction to be the sum of the subsequent k steps of diffusion. In other words, given k ≥ 1, f and
gs remain unchanged, but instead of comparing these quantities to ∆, we compare to ∆k, which is the sum
of the next k ∆ vectors. This idea is depicted schematically in Figure 4. For the smallest value of k = 1, we
expect the randomness in the diffusion steps to be most significant, so cosine similarities will likely be low.
Higher values of k average out this noise, but raising k also artificially increases cos θ∆k,gs, as compared to
cos θ∆k,f , since if the model does eventually find a structure near the DFT ground state, regardless of which
path it takes, ∆k approaches gs as k increases. For this reason, we plot three values of k: k = 1, where the
noise dominates, k = 30, where k is likely high enough that much of the similarity between ∆k and gs can
be attributed to this effect, and k = 10, which we hope strikes a good balance.

Results. The results for the cosine similarity analysis are plotted in Figure 5. The left plot shows results
after only 50 epochs of training, and the right plot shows results after the full 5150 epochs. As expected, for
k = 1, the green lines show cos θ∆,f and cos θ∆,gs are both fairly low throughout the inference process, due
to the inherent randomness of diffusion. However, as k increases, alignment increases between the model
prediction and both the forces and the direct path to the ground state.

Considering the fully trained model (5150 epochs), the model predictions ∆ are consistently more aligned
with the direct path to the ground state than with the DFT-predicted forces. This holds true even for low
k, suggesting that the model is finding a path to the ground state that is more efficient than following the
forces gradient-descent style. There is reasonably high alignment between the model predictions and the
forces, but this can be explained by the fact that the forces themselves are somewhat aligned with the direct
path to the ground state (black dotted line in Figure 5). cos θ∆k,f is never substantially higher than cos θf,gs,
so any alignment between the model predictions and the forces can be explained by the alignment between
the forces and the straight path to the ground state. Given that these results are on molecules that were
unseen during training, the fact that the diffusion path aligns better with the direct path to the ground state
than with the forces suggests that the model has learned about local curvature of the PES, rather than only
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Figure 4: Diagram explaining force comparisons. Schematic showing what different values of k mean.
The origin of the plot is the current geometry under consideration, and the grey contours signify the DFT
PES. ∆k is the sum of the next k diffusion steps taken by the model; f is the DFT-computed forces on the
atoms in the current geometry; gs is the vector pointing from the current geometry to the ground state.
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Figure 5: QM9 Model/Force Comparison. Left: cosine of the angles between the sum of the next k
steps predicted by diffusion (∆k), the DFT-computed forces (f), and the path directly from the current
geometry to the DFT-computed ground state (gs). Curves are averaged across atoms from 45 molecules
from the QM9 validation set. Shaded regions represent one standard deviation above and below the mean.
(The shaded region can exceed 1.0 because the distribution is not Gaussian.)
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learning about local gradients. Note that many non-learning-based relaxation methods also compensate for
the curvature of the PES instead of strictly following the gradients down to a local minimum. For example,
BFGS preconditions the gradients with second-order information in order to take a straighter path towards
the minimum than would be achieved by following the gradients directly.

Surprisingly, the situation is nearly the reverse for the model that has only been trained for 50 epochs
(left plot of Figure 5). Here, particularly later on in the diffusion process, ∆k aligns better with f than
with gs, suggesting that the model is more so following the forces down to the ground state, rather than
heading directly towards the ground state. When training any model, early on in training, the model first
picks up on the easiest way to get the answer mostly right, and later on in training learns to recognize more
nuanced aspects of the input to make more nuanced predictions. In this case, early on in training, the model
moves the atoms preferentially in the same direction as the forces experienced by the atoms, despite having
never seen any energy or force data during training. In other words, the model has discovered “following the
forces” as the easiest way to find a low-energy geometry (at least to the extent that the solid lines are higher
than the dashed lines in the left side of Figure 5). In contrast, by the end of training, the model learns to
compensate for the curvature of the PES and to move directly towards the ground state, but learning to do
so takes significantly more epochs of training.

4.4 EDM as Boltzmann Generator

Figure 1 shows that diffusion takes monotonically decreasing step sizes as n decreases. Because there is
inherent stochasticity in the diffusion process, the model does not always move directly towards a local
minimum of the PES (this is shown experimentally by the bumpiness in Figure 2). But given that the model
has a preference for low-energy geometries, there is a potential for repeated application of the same diffusion
step to a structure to result in sampling low-energy geometries more often than high-energy geometries. In
particular, we might hope that the distribution of geometries follows the Boltzmann distribution, and that
different diffusion steps n would correspond to particular temperatures T .

Methods. To investigate this possibility, we carry out Markov chain Monte Carlo (MCMC) simulations on
ten molecules randomly from the QM9 validation set after filtering to select for flexible and linear molecules,
where we expect more interesting behavior at non-zero temperature.2 We run the Metropolis-Hastings
algorithm for 24,000 steps with an isotropic Gaussian proposal distribution—initialized at the DFT ground
state with 5,000 steps of burn-in—using eighteen temperatures T between 10 K and 400 K. On the diffusion
side, we repeatedly apply a single step of diffusion to the structures 20,000 times, initialized at the DFT
ground state with 1,000 steps of burn-in (we observed that the chain stabilizes significantly faster than for
Metropolis-Hastings). We try fourteen different steps n, from the n = 1 up to n = 40. In both cases, we use
GFN2-xTB [7] to measure energies, as implemented in the xtb-python package (version 22.1).

For very low T and n, we expect both the MCMC simulation at temperature T and the diffusion chain
with step n to have an energy of ∼ 0 relative to the ground state. However, because there is sometimes
disagreement between GFN2-xTB and the DFT-calculated ground states that the model was trained on,
the diffusion chains at low n settle to an xTB-computed energy slightly above zero. To compensate for this,
for each molecule we subtract a constant energy (< 2 kcal/mol) from each chain to equalize the minimum
energies achieved by the two chains at the lowest values of T and n.

Results. Histograms of the chain energies for selected values of T and n are shown in Figure 6. These
values of T and n were chosen to maximize the overlap between the distributions, but they are the same for
each of the nine molecules,3 suggesting that there may be a correspondence between n and T that generalizes
across molecules. Within each molceule, as T and n increase, we see the same trend of the mean relative
energy increasing and the variance of the distribution increasing.

2In particular, we use a simple filter based on the molecules’ SMILES strings: we filter out SMILES containing “=” or “#”,
SMILES containing numbers, and SMILES with more than 15 “(” (to bias towards more linear molecules).

3We tested on ten molecules, but we discarded one because GFN2-xTB disagrees strongly with DFT about where the local
minimum of the PES is.
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Figure 6: Comparing MCMC and diffusion. Violin plots showing the distribution of energies obtained
with a Metropolis-Hastings MCMC simulation (orange), along with energies obtained by repeatedly applying
a single diffusion step to a structure (blue). Temperatures used for the MCMC simulation are on the top
axis, and diffusion steps used are on the bottom axis.

As a point of reference, when repeatedly perturbing atomic coordinates with an isotropic normal distribu-
tion instead of the diffusion model, the energy diverges, even for extremely small step sizes. Unlike repeated
Gaussian perturbations, which have no preferred direction, the diffusion model preferentially moves the
geometries closer to a local minimum of the PES, even without the Metropolis-Hastings acceptance crite-
rion, which uses a ground-truth energy oracle. The model was trained only on geometries, with no energy
supervision either on the ground-state geometries or on any non-equilibrium geometries. Despite this, we
never observed a diffusion chain diverging, even for high values of n, and there is even reasonable agreement
between the distributions of energies within the MCMC and diffusion chains.

Next we investigate the relationship between T and n as well as the average and variance of the resulting
energy distributions. Figure 7 plots, for a single molecule, the average energy ± the standard deviation of
the energy for each of the n and T values we considered. As expected, the energy increases linearly with
temperature. On the other hand, the energy increases quadratically with increasing n. This is unsurprising:
near the end of inference, the step size decreases roughly linearly, as seen in Figure 1, and near a local
minimum, we expect the PES to be modeled well as a harmonic oscillator. The left side of Figure 7 plots
both chains with a linear scale on T and n. The right side of the figure instead uses a quadratic scale for
n, and the x-axis is linearly scaled by a constant µ to equalize the slope between the two chains. Note that
any linear and quadratic functions can be made to line up using this method, so their alignment in this plot
is unsurprising. Figure 8 plots the same quantities, but repeated for each of the nine molecules considered.
In this case, we use the same linear scaling µ for each molecule, so there is no guarantee that the lines will
all line up. Even though there is some variation in the heat capacities of the nine molecules (i.e. the slope
of the MCMC lines), the diffusion chain consistently generates very similar average energies as the MCMC
chain at the corresponding temperature.

The variances of the distributions are also similar, though the diffusion chain consistently results in a
wider distribution of energies than the MCMC chain. The energy distributions for these simple molecules
from QM9 are unimodal, but it would be interesting to see whether the diffusion chain can reproduce
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multi-modal energy distributions for more complex molecules.

5 Using Equivariant Diffusion Models To Accelerate Relaxations

5.1 Diffusion-relaxed Structures Accelerate DFT Relaxations

This completes our investigation of what EDM models are learning about the PES. Next, we turn to a
practical application that, to our knowledge, has not been explored with this sort of self-supervised model:
the acceleration of DFT structure relaxations by proposing better initial geometries than those obtained
with a classical force field. In §4.2, we show that the geometries predicted by EDM have significantly lower
energy than those predicted by MMFF. We may therefore hope that DFT relaxations starting at the EDM
geometries will converge faster than relaxations starting at the MMFF-produced geometries.
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Figure 9: QM9 DFT relaxation speedup. Left: Each point is a structure that we relaxed using DFT.
x values are the number of relaxation steps required to converge when initializing DFT with the MMFF
ground state. y values are the number of steps when initializing with the structure predicted by diffusion.
Orange/blue dots used n = 50/n = 20 steps of diffusion. Arrows indicate the difference between the energy of
the DFT-relaxed structure when starting from the MMFF structure vs. starting from the diffused structure.
Downward-pointing arrows indicate that the relaxed structure had lower energy when the DFT relaxation
was initialized with diffusion rather than with MMFF. The area of each circle is proportional to the number
of atoms in the structure. Right: median speedup attained when using checkpoints throughout training.
The left plot shows results for epoch 5150.

Methods. To test this, we compare the number of DFT relaxation steps required to relax structures when
initialized at the MMFF ground state vs. at the diffusion-generated geometry. We perform DFT relaxations
from three different starting points: the MMFF-optimized structure, and the structures obtained by further
“relaxing” this MMFF-optimized configuration using diffusion with both n = 20 and n = 50. We also
compare the energies of the DFT-relaxed structures when starting at each of these starting configurations.

In addition to measuring the speedup obtained by starting at the diffusion-generated structure instead of
the MMFF-relaxed structure, we also compare the energies of the final structures themselves after undergoing
DFT relaxation. In most cases, DFT finds nearly identical structures, regardless of which of the two initial
structures were used. However, in some cases, the two structures do differ, and we quantify this difference
using the relative energy between the two structures. In the following sections, we refer to this relative energy
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Figure 10: Schematic showing what DFT relaxations we carry out and how we calculate the energy delta.

as the “energy delta.” An energy delta greater than zero indicates that the DFT relaxation converged to
a higher-energy structure when initialized at the MMFF-relaxed structure than at the diffusion-generated
structure. Figure 10 shows a schematic of the overall calculation workflow, with the structures used to
calculate the energy delta circled in red.

Results. The number of DFT-based geometry optimization steps required for n = 20 and n = 50 are
shown on the left of Figure 9, plotted vs. the number of steps required when starting at the MMFF-
optimized structure. For both n = 20 and n = 50, the DFT relaxations are consistently faster: the median
number of steps required is 40% lower for n = 20 and 57% lower for n = 50. On each point in Figure 9, we
plot an arrow that indicates the energy delta (positive values correspond to upward-pointing arrows). If the
diffusion-generated geometries stay within the same local minimum of the DFT potential energy surface as
the MMFF-relaxed structures, then we expect the energy delta to be approximately zero (the scale bar for
the arrows is shown in the lower right of the figure). A downward-pointing arrow means that the structure
obtained by relaxing the diffusion-generated structure using DFT resulted in a lower energy than that of the
structure obtained by relaxing the MMFF-relaxed structure. In other words, a downward-pointing arrow
indicates that diffusion moved the geometry into a deeper basin of the DFT potential energy surface than
the basin found by MMFF.

The energy deltas are approximately zero in every structure but one, in which diffusion with n = 50
steps moved the geometry to a better local minimum than MMFF found, as indicated by the negative arrow
of magnitude ∼1 kcal/mol. This structure is also one of the few where the relaxation takes longer when
starting from the diffusion-generated geometry. We visualize this particular structure in Appendix B, where
it becomes clear that diffusion has rotated the hydrogen atoms of a methyl group just far enough around the
central carbon to get relaxed by DFT to a more favorable position. Interestingly, when using only n = 20
steps on the same structure, diffusion does not stray from the PES basin found by the MMFF relaxation,
which is unsurprising given the results in Figure 3.

We also calculate the median speedup obtained using EDM checkpoints throughout training. Results are
shown on the right of Figure 9. The improvement slows down over the course of training, but there may still
be further improvements possible by simply training longer. By the end of training, while in some cases the
diffusion-generated structure leads to a slowdown rather than a speedup, even the 25th percentile speedup
is nearly 2×. For 25% of structures, the speedup is at least 4× (75th percentile is at 75% speedup).

5.2 Exploring Larger Molecules with GEOM

Clearly, for the very small molecules in the QM9 dataset, diffusion-generated structures are generally sig-
nificantly better initialization points for DFT relaxations. Now, we turn to the larger and more realistic
structures found in the Geometric Ensemble Of Molecules (GEOM) dataset [5]. We use the “drugs” subset
of GEOM, which consists of drug-like molecules, most of which are significantly larger than the molecules
in QM9. The typical number of heavy atoms in a conformation drawn from the drugs subset of the GEOM
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Figure 11: Speedup results for DRUGS. Figures are analogous to those in Figure 9.

dataset is 22 − 29 (25th-75th percentile), whereas QM9 contains structures with only up to 9 heavy atoms.
In this manuscript, we refer to the drugs subset of the GEOM dataset as simply the DRUGS dataset.

Methods. We carry out the same speedup analysis as in §5.1 but using structures from the DRUGS dataset.
Instead of calculating energies and performing relaxations using DFT, we use GFN2-xTB, both to match how
the DRUGS dataset was created and to save on computational cost. As above, all relaxations are carried out
with fmax = 0.03. We train an EDM model on the DRUGS dataset using the same hyperparameters as used
by Hoogeboom et al. [25]. However, Hoogeboom et al. [25] train for only 13 epochs, or 1.2 million iterations,
whereas we train for an additional 250 epochs, or about 23 million iterations, starting at their pretrained
model. Training takes 2.8 hours per epoch on 8 NVIDIA Quadro RTX 6000 GPUs. The validation loss
continues to improve throughout training, so additional training time is likely to increase the quality of the
model. Figure 14 in Appendix A shows a random sample of the molecules used in this section.

Results. As when trained on QM9, EDM finds structures with lower energies than those found by relaxing
with MMFF. However, the reduction in energy is smaller than for QM9: the diffusion-generated structures
have an average energy relative to the xTB ground state of 8.3 kcal/mol vs. MMFF’s 14.3 kcal/mol—a 42%
reduction, compared to nearly 90% for QM9. The median speedup to xTB relaxations by starting at these
diffusion-generated structures instead of the MMFF structures is correspondingly smaller, at 7%, compared
to a 57% speedup to DFT relaxations for QM9. Figure 11 shows results for DRUGS analogous to Figure
9. The speedup attained increases nearly linearly with the number of training epochs, but it does appear
to start tapering off by epoch 250. As with the model trained on QM9, structures generated by diffusion
sometimes cause the DFT relaxation to find a different local minimum of the PES; this can be seen by the
points with high-magnitude arrows in the left side of Figure 11. However, the speedup we observe is not
due to the model finding worse local minima that take fewer steps to reach the bottom: when excluding any
structure that led to an absolute energy delta > 0.2 kcal/mol, the right side of Figure 11 remains nearly
unchanged except a slight reduction in variance (see Appendix C). Although further training is likely to lead
to some improvements, most likely, improvements in model architecture or training hyperparameters would
be needed to attain significantly higher speedups.

Lastly, we carry out a similar analysis of how the steps taken by diffusion align with the ground-truth
forces on the atoms, using xTB to calculate forces instead of DFT. For QM9 structures, early in training
the model’s predictions align better with the DFT-computed forces, and later in training they align better
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Figure 12: Force alignment plot, analogous to the plots in Figure 5 but for the EDM model trained on
DRUGS for 250 epochs, and using xTB to calculate forces instead of DFT.

with the direct path to the ground state (§4.3). In the case of DRUGS, the model behaves similarly to how
the QM9 model behaves early in training; the model’s predictions are more aligned with the xTB-computed
forces than with the path directly to the ground state. This is shown Figure 12, where the solid lines tend
to go higher than the dashed lines.

This result helps paint a picture of how these models improve throughout training. Early on, the QM9
model’s predictions align better with the forces than with the direction to the ground state, and the structures
produced by the model are only slightly better than those produced by MMFF: after 50 epochs of training,
the QM9 model reduces energy relative to the DFT ground state by 2× compared to MMFF, and using the
diffusion-produced structure yields no speedup to DFT relaxations whatsoever (after 100 epochs, the energy
reduction is 3×, the median DFT speedup is 4%, and the force alignment plot looks similar to the plot
for 50 epochs). Later on in training, the model’s predictions trend towards pointing straight to the ground
state instead of aligning with the forces, the energy improvement is close to 10×, and the median speedup
to DFT relaxations is nearly 60%. The DRUGS results mimic the QM9 results early on in training: the
model predictions align better with the forces than with the path to the ground state, the energy relative
to the xTB ground state is reduced by a factor of ∼ 2 compared to MMFF, and there is only a few percent
speedup to xTB relaxations. With a better model—whether through further training of this same EDM or
after improving the model architecture—we might expect the model to behave more like the QM9 model
behaves at the end of training.

6 Conclusions

We investigate how much can be learned about the PES by training a diffusion model on only ground
state geometries. Our investigation is motivated by the need to lessen our reliance on supervised datasets
generated via physics-based calculations. The trained model is able to relax QM9 structures to 10x lower
relative energy than MMFF, and it can produce structures that require 57% fewer DFT steps to relax than
MMFF-relaxed geometries. When “relaxing” QM9 structures, the model follows a noisy estimate of the
path directly to the ground state rather than taking the path of steepest descent, suggesting that it has
learned about at least the second-order curvature of the PES near the local minimum. The model can also
sample geometries around a local minimum in the PES from a distribution that resembles the Boltzmann
distribution, and it can model the varying heat capacity of different materials.

In contrast, for more complex and larger GEOM-DRUGS molecules, the model’s predictions align better
with the ground-truth forces on the atoms, suggesting the model has not yet learned beyond first-order

16



information about the PES. Correspondingly, geometries predicted by EDM are of lower quality, both in
terms of the energy improvement over MMFF and in terms of the speedup in DFT relaxations when starting
at the EDM-predicted structures.

Although we present some of our findings in terms of capabilities that the model has, we are not proposing
that a self-supervised model could outperform state-of-the-art supervised NNIPs on tasks like structure
relaxations or MCMC simulations. After all, the training data for the diffusion model used in this manuscript
consists of only a single point on the PES for each molecule or conformation. NNIP training datasets, in
contrast, contain many points on the PES for each molecule, all labeled with energies and forces. Rather,
we investigate the model’s capabilities as a way both to see how far it is possible to get with self-supervision
alone, and to gain insight into what information these models are learning about the PES from a training
set of only ground-state geometries.

We see a number of avenues for future work. One exciting direction is to explore new tasks that have
traditionally required an interatomic potential but that could be carried out with a self-supervised model
instead. For example, in Section 4.4, we establish a correspondence between diffusion steps and temperature;
future work could make use of this correspondence to use EDM for replica exchange MCMC. In a similar
vein, repeatedly applying EDM to a structure while progressively increasing the diffusion step could allow the
model to accelerate reaction prediction calculations and/or transition state estimation. Future work could
also explore whether our findings generalize to different types of materials, such as crystals and glasses.
Lastly, on the modeling side, future work could explore other existing denoising models, and could also
develop new model architectures and training paradigms designed specifically to improve performance on,
e.g., structure relaxations.
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[38] Anthony K Rappé et al. “UFF, a full periodic table force field for molecular mechanics and molecular
dynamics simulations”. In: Journal of the American chemical society 114.25 (1992), pp. 10024–10035.

[39] Danny Reidenbach and Aditi S Krishnapriyan. “CoarsenConf: Equivariant Coarsening with Aggregated
Attention for Molecular Conformer Generation”. In: arXiv preprint arXiv:2306.14852 (2023).

19

https://doi.org/10.5281/zenodo.8254217
https://doi.org/10.5281/zenodo.8254217
http://stacks.iop.org/0953-8984/29/i=27/a=273002
http://stacks.iop.org/0953-8984/29/i=27/a=273002


[40] Lars Ruddigkeit et al. “Enumeration of 166 billion organic small molecules in the chemical universe
database GDB-17”. In: Journal of chemical information and modeling 52.11 (2012), pp. 2864–2875.

[41] Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. “E (n) equivariant graph neural net-
works”. In: International conference on machine learning. PMLR. 2021, pp. 9323–9332.
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A Sample Molecules

We visualize sample molecules that were used in the analyses from the main text. All structures shown are
the geometries from the respective datasets (QM9 and DRUGS). Colors are as follows: Hydrogen (white),
Carbon (grey), Oxygen (red), Nitrogen (blue), Chlorine (light green), Fluorine (dark green), Sulfur (yellow),
Bromine (brown).

Figure 13: Samples from QM9
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Figure 14: Samples from DRUGS
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B Figure 9 Outlier Structure
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Figure 15: Example molecule where the DFT-relaxed structures differed by ∼ 0.9kcal/mol when starting at
the MMFF structure vs. the diffused structure. Diffusion rotates the hydrogens on the top methyl group
slightly, which leads the subsequent DFT relaxation to find a better local minimum of the PES. Arrows
between structures indicate which structure was used to initialize each calculation. Energies indicated are
relative to the MMFF-relaxed structure and were computed using single-point DFT calculations.
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C Speedup Excluding Large Energy Gaps

Figures 9 and 11 show how the speedup in DFT relaxation time increases as the model is trained. Because
some structures have a nonzero energy gap, it is possible that some speedup in DFT results from diffusion
finding structures that lie within shallower basins of the DFT PES. To investigate this possibility, we repro-
duce the right-hand side of these figures when excluding any structure for which the absolute value of the
energy gap is greater than 0.2kcal/mol. Results are shown in Figure 16.
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Figure 16: Speedup in number of DFT geometry steps required to converge as a function of how many
epochs the model was trained for. Left: EDM trained on QM9. Right: EDM trained on DRUGS. Structures
were excluded from this plot if the absolute energy gap is greater than 0.2 kcal/mol.
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