
LLM-ASSISTED CODE CLEANING FOR TRAINING AC-
CURATE CODE GENERATORS

Naman Jain, Tianjun Zhang, Wei-Lin Chiang, Joseph E. Gonzalez, Koushik Sen & Ion Stoica
University of California, Berkeley
{naman_jain,tianjunz,weichiang,jegonzal,ksen,istoica}@berkeley.edu

ABSTRACT

Natural language to code generation is an important application area of LLMS and
has received wide attention from the community. The majority of relevant studies
have exclusively concentrated on increasing the quantity and functional correct-
ness of training sets while disregarding other stylistic elements of programs. More
recently, data quality has garnered a lot of interest and multiple works have show-
cased its importance for improving performance. In this work, we investigate
data quality for code and find that making the code more structured and readable
leads to improved code generation performance of the system. We build a novel
data-cleaning pipeline that uses these principles to transform existing programs
by 1.) renaming variables, 2.) modularizing and decomposing complex code into
smaller helper sub-functions, and 3.) inserting natural-language based plans via
LLM based transformations. We evaluate our approach on two challenging algo-
rithmic code generation benchmarks and find that fine-tuning CODELLAMA-7B on
our transformed modularized programs improves the performance by up to 30%
compared to fine-tuning on the original dataset. Additionally, we demonstrate im-
proved performance from using a smaller amount of higher-quality data, finding
that a model fine-tuned on the entire original dataset is outperformed by a model
trained on 15% of our cleaned dataset. Even in comparison to closed-source mod-
els, our models outperform the much larger ALPHACODE models (Li et al., 2022).

1 INTRODUCTION

Natural language to code generation has witnessed considerable advances in recent years with the
advent of large language models (LLMS for brevity). These advances primarily arise from train-
ing on large web-scale data and are measured based on the functional correctness of the programs.
Thus, other aspects like readability, structuring, and styling and how they affect training and data
quality are largely ignored by these works. On the flip side, many recent works have demonstrated
the effectiveness of training on higher quality data during both pre-training (Li et al., 2023d) and
fine-tuning (Zhou et al., 2023; Cao et al., 2023) phases. Even within the code-generation domain,
Gunasekar et al. (2023) demonstrated the benefits of training on a “textbook” quality dataset, gener-
ated synthetically using the GPT-3.5-TURBO model (Ouyang et al., 2022). However, these works do
not provide an understanding of the factors that actually improve the data quality.

In this work, we show that using programs following good programming practices and allowing
for more readability leads to improved code generation performance compared to using programs
that do not follow these practices. We use these insights to build a novel automated code data-
cleaning pipeline that transforms programs while maintaining functional correctness using input-
output examples. In contrast to prior works that curate high quality datasets by directly generating
new data using LLMS, here we translate existing datasets into their parallel cleaned versions while
identifying attributes that actually improve data quality.

We use LLMS to perform the transformations used in our data-cleaning approach. We demonstrate
that instruction-tuned models can take a user-identified attribute of data quality as a natural language
instruction and perform the transformation accurately. Our approach leverages the disparity in diffi-
culty between generating a solution and editing an existing one. Therefore, it is particularly effective
in domains where the existing model struggles to generate a correct solution but can effectively edit

1

ar
X

iv
:2

31
1.

14
90

4v
1

 [c
s.L

G
]

25
 N

ov
 2

02
3

Figure 1: The overview of our code cleaning approach. We apply instruction-tuned LLMS to
transform existing datasets by providing natural language prompts and use input-output examples to
maintain function equivalence between original and transformed programs. Our cleaning approach
works in three steps. The top-left figure depicts the original program from the dataset. This program
first undergoes variable renaming (top-right figure). Next, the renamed program is decomposed into
constituent sub-functions and converted into a modularized program (bottom-right figure). Finally,
we generate a natural-language plan from the modularized program by summarizing the functions
in a top-down manner (bottom-left figure). This plan is prepended to the program as a comment.
The middle-left figure presents the truncated problem statement

a given solution. We perform our data-cleaning transformations in three iterations: 1) renaming
variables 2) modularizing complex code into subfunctions, and 3) adding planning annotations.

Figure 1 provides an overview of our approach. Notice that the variable renaming step at the top
adjusts the variable names to be contextually relevant (e.g. a to root_u and d to graph). The mod-
ularization step (depicted on the right) identifies and decomposes the original program into several
smaller subfunctions such as find_root, merge_trees, build_graph, etc. It then implements
these subroutines and assembles the modular program. Finally, our planning step (depicted at the
bottom) constructs a plan by summarizing functions in a top-down fashion (starting from the main).

We evaluate our approach in a niche, yet challenging, domain of algorithmic code generation. The
goal is to generate a program for a given problem statement. The task is challenging because it
requires both high-level algorithmic reasoning and low-level coding and is evaluated using a strict
functional correctness metric. We use two well-known algorithmic code generation benchmarks,
namely APPS (Hendrycks et al., 2021) and CODE-CONTESTS (Li et al., 2022). We transform the cor-
responding programs in the training sets and obtain parallel datasets from our cleaning approach.
Additionally, we utilize input-output examples to maintain functional equivalence between the orig-
inal and transformed programs. We qualitatively analyze the generated dataset and find that it uses

2

smaller helper sub-functions, each often implementing a standard algorithm or key program func-
tionality, and provide more in depth findings in Section 4.1. We further assess the impact of the
transformed datasets on the performance on our downstream code generation task. We fine-tune
CODELLAMA-7B model on the various collected datasets. Our findings reveal that the model fine-
tuned on our modularized dataset outperforms the model fine-tuned on the functionally equivalent
original dataset by up to 30%. Beyond, performance improvement, we also demonstrate that im-
proving data quality improves the data efficiency. In particular, a model fine-tuned on the entire
original dataset is outperformed by a model trained on just 15% of our cleaned dataset.

We next study improving planning in a supervised learning setup similar to prior works (Fu et al.,
2023; Li et al., 2023b). While we observe limited improvements in planning, we disentangle plan-
ning vs coding capabilities and find that our fine-tuned model is capable of using gold-annotated
plans, extracted from the ground-truth solutions to accurately generate solutions for the complex
programs. This highlights planning for complex problems remaining a key bottleneck that does not
seem to improve by merely increasing training datasets. Finally, in comparison to existing baselines,
our fine-tuned models outperform the larger ALPHACODE (Li et al., 2022) models.

2 METHODOLOGY

In this section, we present our general data transformation approach and then instantiate it for per-
forming code data cleaning.

2.1 TRANSFORMATIONS FOR DATA CLEANING

Given a dataset D consisting of N instances di, such that, D = {di}Ni=1. To achieve a desired data
cleaning specification, the user additionally provides a data-cleaning instruction I, which highlights
an attribute that needs to be modified. Optionally, we also use an oracle equivalence checker (O)
which ensures that the transformed data instance d̃i is consistent with the original input based on
some desired metric. For example, we can use edit-distance or functional equivalence based on
input-output examples as our oracle checker.

We use a pre-trained language model (denoted by M) to generate the transformed instance (d̃i) by
prompting the model with the transformation instruction (I) and the original answer (y). We can
perform either zero-shot or few-shot prompting for performing the data cleaning operation. Finally,
we extract the instance d̃i generated by M, and apply our oracle equivalence checker (O) to ensure
consistency with the original data. If O(d̃i,di) = 0, i.e., the oracle reports a failure, we reject the
generated output and retry the example within a sampling budget.

While our transformation approach does not provide any guarantees about the quality of the per-
formed transformation and relies on LLMS, we empirically observe that instruction-tuned LLMS

can perform various unstructured data cleaning steps quite effectively. We provide a detailed anal-
ysis of the generated outputs for our algorithmic code generation setting in Section 4.1. Finally, in
accordance with existing literature on prompting LLMS, we found that using simple and precise,
low-level instructions improves the performance and accuracy of the models in performing the oper-
ations. Thus, for complex data cleaning operations (refactoring), we find improvements by breaking
it down and performing multiple operations iteratively (renaming followed by modularization).

2.2 CODE DATA-CLEANING

We apply our transformations-based data cleaning approach to programming data. Coding requires
both – low-level programming and high-level reasoning or planning skills. Therefore, we propose a
three-step cleaning pipeline that improves the readability and program structuring targeting the low-
level coding skills and inserts natural-language based plans data targeting the high-level reasoning
skills. Our steps are detailed below.

1. Rename variables. This step renames the variables in the program, making them descrip-
tive and easier to follow. Figure 1 top provides an example of this transformation.

2. Modularize functions. Problem decomposition has been identified as a key approach for
improving the reasoning capabilities of models (Zhou et al., 2022; Wang et al., 2023). We

3

split APPS-INTRODUCTORY APPS-INTERVIEW APPS-COMPETITION CODE-CONTESTS

Problems count train 42 1247 361 7132
test 702 2699 309 165

Tests count train 1 1 9 200
test 10 19 39 200

Solutions count train 736 18394 5060 98582

Table 1: Details about the number of problems, the median number of test cases per problem, and
the number of solutions in the APPS and CODE-CONTESTS datasets.

identify program decompositions and transform the program by extracting their functional-
ity into smaller helper functions. Figure 1 right provides an example of this transformation.

3. Plan annotations. This step summarizes the helper functions in the already modularized
program and prepends it to the programs in the form of a natural language plan. These nat-
ural language descriptions are analogous to prompting approaches that are used for solving
reasoning problems like chain-of-thought prompting (Wei et al., 2022), parsel (Zelikman
et al., 2023), etc. Figure 1 bottom provides an example of this transformation.

Additionally, while performing these transformations, we use the test cases provided in the dataset
to construct our oracle equivalence checker (O). It ensures that our transformed programs maintain
functional equivalence to the original program.

3 EXPERIMENTAL SETUP

In this section, we detail our experimental setup and implementation. Section 3.1 outlines the bench-
marks and metrics used for the algorithmic code generation task, while Sections 3.2 and 3.3 delve
into the specifics of our code cleaning approach and fine-tuning experiments respectively.

3.1 BENCHMARKS

We use two standard algorithmic code generation benchmarks, APPS and CODE-CONTESTS. The
benchmarks provide a collection of problem statements described in natural language and corre-
sponding test cases. The goal is to generate a program that successfully solves the problem. The
evaluation is performed using a strict functional correctness metric.

APPS (Hendrycks et al., 2021). This benchmark includes 10,000 problems, evenly split between
training and test sets. It is sourced from multiple open-access competitive programming websites.
It is further divided into APPS-INTRODUCTORY, APPS-INTERVIEW, and APPS-COMPETITION subsets
based on problem difficulty. In this study, we only consider problems sourced from a subset of the
competition websites based on the number of test cases provided.

CODE-CONTESTS (Li et al., 2022). This benchmark includes 13,328 problems in the training set
and 165 problems in the test set. We only use a subset of the training split that includes python
solutions satisfying the provided test cases. Additionally, since the training set provides over a
hundred solutions per problem, we perform LSH based near-deduplication on the solutions and
limit them to a maximum of 25 solutions per problem.

Table 1 and Appendix A provide further details about our final datasets.

Metrics. We assess the code generation performance of the models using the PASS@K metric (Kulal
et al., 2019; Chen et al., 2021), which evaluates the functional correctness of generated programs.
For each problem, we generate N solutions (where N ≥ 2K) and compute the expected number
of scenarios in which the problem is solved at least once when sub-selecting a random sample of
K solutions. We vary K in {1, 10, 25} for APPS dataset and {1, 10, 100} for the CODE-CONTESTS

benchmark. We present more details about sampling hyperparameters in Appendix A.

3.2 DATA TRANSFORMATIONS

We apply our data transformation approach on the APPS and CODE-CONTESTS datasets. Unless
specified otherwise, we use GPT-3.5-TURBO as our default language model M to perform the trans-
formations and use a default temperature 0.3. In case of failure, we retry up to 5 iterations. We

4

Dataset Notation Applied On Transformation Instruction (I)
Base Doriginal - -
Rename Drename Doriginal Rename the variables in the program to be descriptive, meaningful, and consistent
Modularize Dmodular Drename Refactor the above program making it more modular with smaller and meaningful

helper functions with good descriptive names for the helper functions
Plan Dplanning Dmodular Generate a natural language description for the following functions in the program

Table 2: Transformed datasets generated by our code cleaning approach. For each transformation,
we have provided the corresponding notation, the transformation instruction used to perform the
cleaning step and the dataset the transformation was applied on.

obtain three parallel datasets at the end of our cleaning process, one for each of renaming, modu-
larization, and planning (note that the transformations are applied sequentially). Table 2 provides a
summary of the generated datasets along with the instructions used to generate them. We provide
complete details about the transformations in Appendix B.

We also simulate a simple direct synthetic data generation approach somewhat similar to Gunasekar
et al. (2023). Specifically, we generate solutions for the training problems using the GPT-3.5-TURBO

model. We use in-context learning with the two-shot prompt examples selected from our Dmodular

dataset. To ensure diverse solutions, we use three distinct few-shot examples and generate eight so-
lutions for every prompt at a temperature of 0.5. Additionally, we filter the solutions for correctness
based on the ground truth test cases provided in the dataset to ensure we are not training on incorrect
programs. Since it resembles a distillation-like setup, we refer to this dataset as Ddistill.

3.3 EXPERIMENT DETAILS

To evaluate the quality of the transformed datasets, we measure how they impact the test benchmark
accuracy. We study both in-context learning and fine-tuning using examples from our datasets.

Models. We use the CODELLAMA-7B model (Rozière et al., 2023) in all our experiments (referred
as CL-7B ahead). We use the model checkpoint from huggingface1 and perform batched inference
through VLLM (Kwon et al., 2023), necessary for computing the PASS@K metric. We also present
the numbers from CODE-DAVINCI-002 and GPT-3.5-TURBO whenever available.

In-context learning. We select two question-answer pairs from the Doriginal and Dmodular training
sets as our in-context learning example. For a fair comparison between the two evaluations, we use
the same problem and corresponding solutions from the two datasets as examples. The examples
are combined with appropriate delimiters and the model is then prompted with a new problem.
Note that these in-context learning examples increase the sequence length by over 2,000 tokens and
considerably slow the inference.

Fine-Tuning. We perform full fine-tuning over the base CL-7B model on the different datasets. We
train the models for two epochs on the APPS dataset and one epoch on the CODE-CONTESTS dataset
using a 5e−5 learning rate and an effective batch size of 256 on 4 A6000 GPUs.

4 EXPERIMENTAL RESULTS

We present our experimental results in this section. Section 4.1 first provides a qualitative overview
of the transformed programs and Section 4.2 presents the main code generation results.

4.1 ANALYSIS OF THE TRANSFORMED PROGRAMS

Data statistics. For the CODE-CONTESTS dataset, out of 98,582 programs extracted from the original
dataset (Doriginal), we can successfully transform 92,675 (94.0%) into our modularized dataset
(Dmodular). We obtain similar success rates for the APPS dataset (details deferred to the appendix).
On the contrary, the distilled dataset (Ddistill), which is constructed by generating solutions directly
using GPT-3.5-TURBO only finds a correct solution for about 50% of the problems.

Analysis of the transformed programs. We find that our transformation approach decomposes the
original programs by inserting three new functions on a median (∼2.6 functions on average).To get

1https://huggingface.co/codellama/CodeLlama-7b-hf
2Model generations were obtained from Chen et al. (2022a)

5

https://huggingface.co/codellama/CodeLlama-7b-hf

APPS-INTRODUCTORY APPS-INTERVIEW

PASS@1 PASS@10 PASS@25 PASS@1 PASS@10 PASS@25
In-context Learning
CL-7B + Doriginal 14.2 29.2 38.4 1.8 7.3 10.4
CL-7B + Dmodular 17.5 30.1 39.7 2.2 8.6 12.3

+3.3 +0.9 +1.3 +0.4 +1.3 +1.9
Fine-tuning
CL-7B + Doriginal 18.7 34.4 40.2 3.4 9.7 13.6
CL-7B + Dmodular 22.7 36.9 42.6 4.2 11.0 15.0

+4.0 +2.5 +2.4 +0.8 +1.3 +1.4
CL-7B + Dplanning 22.1 37.1 43.8 3.7 10.5 14.8
CL-7B + Drename 19.2 36.6 42.9 4.0 10.7 14.6
CL-7B + Ddistill 21.1 35.3 40.5 4.1 10.8 14.5
Closed models
CODE-DAVINCI-002 2 22.1 50.2 58.7 4.1 16.8 23.8

Table 3: Results on APPS dataset. We use the CODELLAMA-7B model (referred to as CL-7B) under
in-context learning and fine-tuning. We use samples from the original and our transformed datasets
and find that our cleaned datasets improve the performance of the model by over 20%. The green
highlighted numbers depict the improvements obtained from using Dmodular (over Doriginal). Simi-
larly, using Drename and Dplanning also provide improvements, usually lesser than using Dmodular.

a better understanding of the decomposition, we cluster the functions using their function names
and signatures. We find that these helper functions often implement key program logic, standard
algorithms, and utilities like handling inputs, outputs, and orchestrating the main function. Interest-
ingly, we also find that the helper functions are often reused across problems, with small variations
in implementations. For example, the top five most frequent helper functions, dfs, build_graph,
gcd, dp, and binary_search occur in about 3-8% of the problems. Additionally, we qualitatively
analyze a hundred random samples from Doriginal and Dmodular datasets to determine the quality
of performed transformations. Figures 4 to 11 in the appendix provide examples of such transfor-
mations. We find that most of the transformations are meaningful. They improve the readability of
the programs and also find suitable decomposition for the program logic encoded in the control flow
(see Figures 4, 5, 6, 14 as examples). However, in some cases, the generated helper functions can
have improper names (calculate_max_colors in Figure 11) or complex implementations copied
directly from the original program (count_sequences in Figure 12). Additionally, for simpler
programs (Figure 13), the entire program functionality can be implemented in a single function and
the decomposition does not provide any extra information. Finally, we use GPT-4 as judge (Zheng
et al., 2023) evaluation to quantitatively assess the transformations in regards to their meaningful-
ness and about the consistency of original and transformed programs. Appendix C.1 presents the
comprehensive setup. We find that over 99% of the transformations are regarded as helpful of which
only 3-5% of examples are judged as can do better. Similarly, 99.4% of the transformed programs
are judged as consistent with the original programs. More detailed evaluation results in Table 6.

Unlike, generated code, we cannot constrain or check the generated natural language plans. Thus, we
find that sometimes the plans can be imprecise and vary in detail. While using a stronger pretrained
model like GPT-4 could alleviate some of these issues, we believe this will be a good avenue for
applying something analogous to process supervision (Lightman et al., 2023).

4.2 MAIN RESULTS

Tables 3 and 4 provide our primary results on APPS and CODE-CONTESTS datasets respectively. We
defer the results for the APPS-COMPETITION subset to Appendix C and highlight our findings below.

4.2.1 EFFECT OF MODULARIZATION

We find that our data-cleaning approach improves the performance of the model on both APPS and
CODE-CONTESTS datasets in both in-context learning and fine-tuning settings.

3Result sourced from Li et al. (2022)
4Result sourced from Zhang et al. (2023b)
5Result sourced from Li et al. (2023c)

6

CODE-CONTESTS

PASS@10 PASS@25 PASS@100
In-context Learning
CL-7B + Doriginal 5.1 6.5 7.2
CL-7B + Dmodular 4.9 6.6 9.3

-0.2 +0.1 +2.1
Fine-tuning
CL-7B + Doriginal 5 6.4 10.9
CL-7B + Dmodular 6.1 8.3 12.4

+1.1 +1.9 +1.5
CL-7B + Dplanning 5.3 7.0 10.8
CL-7B + Drename 4.7 6.3 10.5
Closed models
ALPHACODE-9B 3 5.0 7.0 10.0
ALPHACODE-41B3 5.0 7.0 10.0
CODE-DAVINCI-002 4 3.0 - 7.5
GPT-3.5-TURBO5 - - 18.2
+ BRAINSTORM5 - - 29.3

Table 4: Result on the CODE-CONTESTS
dataset. Similar to findings on the APPS dataset,
we find that our data cleaning approach generally
improves the performance with modularization
working particularly well while planning and re-
naming providing marginal to no improvements.

CODE-CONTESTS-PLAN

PASS@10 PASS@25 PASS@100

CL-7B + Doriginal 6.5 9.5 15.0
CL-7B + Dmodular 8.8 11.8 17.8
CL-7B + Dplanning 6.9 10.5 15.4
CL-7B + DGT

plan 17.9 22.3 28.1
+9.1 +10.5 +11.3

Table 5: Effect of using ground-truth plans.
We disentangle the high-level reasoning vs
coding capabilities by extracting ground-truth
plans from solutions corresponding to the test
problems. We find significant improvement in
the performance on the CODE-CONTESTS-PLAN

dataset, indicating that the model trained on the
Dplanning dataset while incapable of building
correct plans, can follow such plans accurately.

In-context Learning. We first evaluate the performance of the model when provided with parallel
two-shot in-context learning examples from Doriginal and Dmodular datasets each. We find that the
PASS@1 improves from 14.2 to 17.5 (a 23% relative improvement) on the APPS-INTRODUCTORY

dataset and PASS@100 improves from 7.2 to 9.3 (a 29% relative improvement) on the CODE-
CONTESTS dataset. These results indicate that more readablity and better-structured coding is helpful
to the model in solving more problems.

Fine-tuning. Next, we fine-tune the model on the Doriginal and Dmodular datasets and again find
strong performance improvements from our transformation approach. Specifically, on the APPS-
INTRODUCTORY dataset, the PASS@1 improves from 18.7 to 22.7 (a 23% relative improvement).
Similarly, the CODE-CONTESTS dataset PASS@25 metric improves from 6.4 to 8.4 (30% relative
improvement). These results cement our above findings about the effect of cleaning the data.

Interestingly, we also note that fine-tuning only provides modest improvements over the in-context
learning performance. We hypothesize that this is due to the challenging nature of our task. 6

4.2.2 EFFECT OF PLANNING ANNOTATIONS

Prior work has demonstrated considerable successes in improving reasoning in LLMS (Yue et al.,
2023; Magister et al., 2022; Fu et al., 2023) by performing supervised learning on natural language
reasoning or planning steps. We perform similar experiment, fine-tuning the model on Dplanning

dataset consisting of plans generated by our approach on top of Dmodular. We find that planning
only provides a modest improvement over the Dmodular dataset (PASS@25 improved from 42.6 to
43.9 on the APPS-INTRODUCTORY dataset) or often no improvements at all.

Upon inspection of the generated solutions, we find that often the generated plans are imprecise
or incorrect, highlighting that planning still remains a bottleneck. To disentangle the high-level
planning from the coding component, we analyze the performance of the model when provided with
ground-truth plans on the CODE-CONTESTS dataset. We extract these ground-truth plans by applying
our data transformation approach on the test set (similar to how Dplanning training set was created).
Table 5 provides results on this subset of 109 problems from the CODE-CONTESTS dataset for which
we were able to extract the ground truth plans (since some problems don’t have a valid python
solutions). While our model trained on the Dplanning dataset is incapable of synthesizing new
plans, it can follow the generated plans correctly. All metrics improve significantly, e.g. PASS@100
improving from 17.8 to 28.1, well over the performance of GPT-3.5-TURBO, a much larger model!

6Note that the in-context examples add over 2,000 tokens to the prefix and lead to much slower decoding

7

def read_grid():
n,m = input().split()
...

def remove_white_rows(grid):
row_indices = []
...
return grid

def remove_white_columns(grid):
column_indices = []
...
return grid

def main():
grid = read_grid()
grid = remove_white_rows(grid)
grid = remove_white_columns(grid)
print_grid(grid)
...

Figure 2: Example of a program gener-
ated by our model trained on the Dmodular

dataset. It solves the problem by using helper
functions acting on rows and columns.

5000 10000 15000 20000
Number of training samples

14

16

18

20

22

PA
S

S
@

1

Dmod
Dorig

Figure 3: Effect of quality on data-efficiency
of the model. Finetuning on 15% of clean
Dmodular dataset results in similar performance
as finetuning on the entire Doriginal dataset.

Our mixed results raise critical questions for future work on improving planning in LLMS. In par-
ticular, poor performance might be attributed to any imprecision in automatically generated plans.
Future data curation techniques that filter or augment this imprecision would be valueable. Alterna-
tively, the supervised learning paradigm followed in this work might be insufficient for models to
generalize planning in complex domains. Future work can explore alternative learning algorithms,
possibly over our modularization approach which naturally decomposes programs.

4.2.3 ABLATIONS

Effect of data size. Beyond improving the quality of the resulting model, data quality is also
attributed to improving the data efficiency. We evaluate this aspect by fine-tuning our model on
different fractions of Doriginal and Dmodular datasets and find similar results. Figure 3 presents the
performance of the model as a function of training set size. As shown in the figure, training on just
15% of Dmodular dataset achieves similar PASS@1 as fine-tuning on the entire Doriginal.

Effect of renaming. We use variable renaming as an intermediate step in our cleaning process. We
evaluate the performance of the model fine-tuned only on the Drename dataset and find that renaming
provides some performance improvements when compared to fine-tuning on Doriginal dataset. For
example, PASS@1 improved from 17.2 to 19.1 on APPS-INTRODUCTORY. However, renaming still
performs worse in comparison to fine-tuning on the Dmodular. This highlights that beyond just
readable code, functional decomposition is also a key aspect of improving our performance.

Cleaning Transformations vs Distillation. We compare our transformation approach with a direct
distillation baseline where we directly generate solutions using GPT-3.5-TURBO, referred to as the
Ddistill dataset7. This corresponds to various LLM instruction or fine-tuning approaches (Xu et al.,
2023; Li et al., 2023b) providing a strong baseline for data cleaning. On the APPS-INTRODUCTORY

dataset, we find that fine-tuning on the Dmodular dataset achieves better performance compared to
the Ddistill dataset demonstrating the advantage of cleaning over the generation baseline.

Choice of transformation model. To evaluate how the choice of transformation model affects
performance, we use the GPT-4-TURBO model to transform on a subset of the training set (detailed
setup in Appendix C.3). GPT-4-TURBO, a stronger model, performs the transformations successfully
and the resulting model trained on this version of the modularized dataset achieves even higher
accuracy. For instance, PASS@10 improves from 33.0 when using Dmodular constructed with GPT-
3.5-TURBO to 34.3 when using the Dmodular constructed with GPT-4-TURBO (full results in Table 8).

4.2.4 COMPARISON TO OTHER BASELINES

Beyond CL-7B, fine-tuned models outperform strong baselines like ALPHACODE on the CODE-
CONTESTS dataset but still lag behind larger CODE-DAVINCI-002 and GPT-3.5-TURBO models.

7Note that we generate these solutions using in-context examples from the Dmodular dataset

8

4.2.5 CASE STUDY OF GENERATED MODULARIZED PROGRAM

Figure 2 provides an example of a program correctly generated by a model fine-tuned on our
Dmodular dataset. The problem requires removing rows and columns containing cells with certain
attributes (i.e., if the cell is white) The modularized solution correctly identifies the steps required
to solve the problem and implements them as separate helper functions, providing readable code.

5 RELATED WORK

Instruction tuning. Instruction tuning refers to the process of finetuning a base pretrained LLM
to perform general-purpose tasks and follow instructions. Recent works, Zhou et al. (2023); Cao
et al. (2023); Chen et al. (2023a) have demonstrated that a small high-quality instruction corpus is
sufficient for achieving good instruction tuning performance. Here, we perform task-specific fine-
tuning of LLMS and observe similar performance improvements.

Synthetic data for LLMS. Recent works have explored using synthetic datasets for general-
purpose or task-specific finetuning of LLMS. These approaches work by generating synthetic
datasets from a strong LLM (like GPT-3.5-TURBO or GPT-4) using a set of existing tasks (Taori
et al., 2023; Chiang et al., 2023) or generating new tasks using self-instruct (Wang et al., 2022) or
evol-instruct (Xu et al., 2023) approaches. This has been also applied for task-specific finetuning –
in common-sense reasoning (West et al., 2022), text-summarization (Sclar et al., 2022), mathemat-
ical reasoning (Luo et al., 2023a; Yue et al., 2023), tool use (Patil et al., 2023), coding (Luo et al.,
2023b), and general-purpose reasoning Li et al. (2023b); Zelikman et al. (2022).

More specifically, Yue et al. (2023) curates diverse corpus of mathematics problems with chain-of-
thought or program-of-thought (Chen et al., 2022b) annotations for mathematical reasoning analo-
gous to our plans. Gunasekar et al. (2023) proposed pre-training models on programming “text-
books” generated synthetically from GPT-3.5-TURBO. Haluptzok et al. (2023) similarly generates
programming puzzles and corresponding solutions from language models. Our work also studies cu-
rating synthetic data for code-generation space. However, instead of directly generating data using
LLMS, we identify good programming patterns and clean existing datasets using them.

Algorithmic Code Generation. Code generation is a broad domain and is covered in Appendix D.
We only discuss pertinent algorithmic code generation works here. Hendrycks et al. (2021) released
the APPS dataset while Li et al. (2022) released the CODE-CONTESTS dataset with the ALPHACODE

models. Zhang et al. (2023c) proposed a lookahead-search-based decoding algorithm for improving
reasoning in LLMS and is orthogonal to our work. Chen et al. (2022a); Zhang et al. (2023b)
proposed CODET and ALGO, that use generated tests (using LLM or brute-force solution) to re-rank the
generated solutions. Zelikman et al. (2023) proposed the PARSEL approach which used the CODE-
DAVINCI-002 model to first generate a plan in their high-level problem-specification language and
then generate a program using it. Li et al. (2023a) also study disentangling the planning and code
generation capabilities for closed source LLMS, similar to our experiments on open models. Finally,
recent work Le et al. (2023) proposed a prompting based approach for modular code-generation.

6 DISCUSSION AND CONCLUSION

Traditionally, data quality has been linked to functional correctness, ignoring the rich stylistic as-
pects differing across programs. In this work, we demonstrate that these aspects like readability,
and program structuring actually impact the performance of the trained model on downstream tasks
and thus also contribute to data quality. Next, we proposed a novel data-cleaning pipeline demon-
strating that LLMS can be used for transforming existing datasets to improve their quality based on
user-instructions and oracle equivalence checker. While our evaluations focused on the algorith-
mic code generation task, we believe that this approach would also be useful for other domains for
improving data quality as well. In particular, even in the absence of symbolic checkers (like test
cases), we believe that there is an opportunity to use learned “oracles” for ensuring consistency and
quality in other domains akin to how used in Sclar et al. (2022). Finally, beyond improving algorith-
mic code generation, we believe our modularization approach can be beneficial for general software
engineering use cases (test generation, debugging, verification) where modularity is beneficial.

9

Acknowledgement This work was supported in part by NSF grants CCF-1900968, CCF-1908870
and by SKY Lab industrial sponsors and affiliates Astronomer, Google, IBM, Intel, Lacework, Mi-
crosoft, Mohamed Bin Zayed University of Artificial Intelligence, Nexla, Samsung SDS, Uber, and
VMware. Any opinions, findings, conclusions, or recommendations in this paper are solely those of
the authors and do not necessarily reflect the position of the sponsors. Additionally, we thank Alex
Gu, Manish Shetty, and anonymous reviewers for helpful discussion and feedback on the paper.

REFERENCES

Ramakrishna Bairi, Atharv Sonwane, Aditya Kanade, Vageesh D C, Arun Iyer, Suresh Parthasarathy,
Sriram Rajamani, B. Ashok, and Shashank Shet. Codeplan: Repository-level coding using llms
and planning. In Neural Information Processing Systems Workshop on Foundation Models for
Decision Making (FMDM-NeurIPS), November 2023.

Yihan Cao, Yanbin Kang, and Lichao Sun. Instruction mining: High-quality instruction data selec-
tion for large language models. arXiv preprint arXiv:2307.06290, 2023.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu
Chen. Codet: Code generation with generated tests. arXiv preprint arXiv:2207.10397, 2022a.

Hao Chen, Yiming Zhang, Qi Zhang, Hantao Yang, Xiaomeng Hu, Xuetao Ma, Yifan Yanggong,
and Junbo Zhao. Maybe only 0.5% data is needed: A preliminary exploration of low training data
instruction tuning. arXiv preprint arXiv:2305.09246, 2023a.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588, 2022b.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models
to self-debug. arXiv preprint arXiv:2304.05128, 2023b.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

Yao Fu, Hao Peng, Litu Ou, Ashish Sabharwal, and Tushar Khot. Specializing smaller language
models towards multi-step reasoning. arXiv preprint arXiv:2301.12726, 2023.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, et al. Textbooks are
all you need. arXiv preprint arXiv:2306.11644, 2023.

Patrick Haluptzok, Matthew Bowers, and Adam Tauman Kalai. Language models can teach them-
selves to program better. In The Eleventh International Conference on Learning Representations,
2023.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding challenge
competence with apps. NeurIPS, 2021.

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo, David Lo, John
Grundy, and Haoyu Wang. Large language models for software engineering: A systematic litera-
ture review. arXiv preprint arXiv:2308.10620, 2023.

Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan Natarajan, Suresh Parthasarathy, Sriram
Rajamani, and Rahul Sharma. Jigsaw: Large language models meet program synthesis. In ICSE
2022.

10

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/

Xue Jiang, Yihong Dong, Lecheng Wang, Qiwei Shang, and Ge Li. Self-planning code generation
with large language model. arXiv preprint arXiv:2303.06689, 2023.

Darren Key, Wen-Ding Li, and Kevin Ellis. I speak, you verify: Toward trustworthy neural program
synthesis. arXiv preprint arXiv:2210.00848, 2022.

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken, and Percy S
Liang. Spoc: Search-based pseudocode to code. Advances in Neural Information Processing
Systems, 32, 2019.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Scott Wen
tau Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for
data science code generation. ArXiv, abs/2211.11501, 2022.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Hoi. CodeRL: Master-
ing code generation through pretrained models and deep reinforcement learning. In Alice H. Oh,
Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information
Processing Systems, 2022.

Hung Le, Hailin Chen, Amrita Saha, Akash Gokul, Doyen Sahoo, and Shafiq Joty. Codechain: To-
wards modular code generation through chain of self-revisions with representative sub-modules.
arXiv preprint arXiv:2310.08992, 2023.

Jierui Li, Szymon Tworkowski, Yingying Wu, and Raymond Mooney. Explaining competitive-level
programming solutions using llms. arXiv preprint arXiv:2307.05337, 2023a.

Liunian Harold Li, Jack Hessel, Youngjae Yu, Xiang Ren, Kai-Wei Chang, and Yejin Choi. Symbolic
chain-of-thought distillation: Small models can also “think” step-by-step. In Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 2665–2679, Toronto, Canada, July 2023b. Association for Computational Linguistics.

Xin-Ye Li, Jiang-Tian Xue, Zheng Xie, and Ming Li. Think outside the code: Brainstorming boosts
large language models in code generation. arXiv preprint arXiv:2305.10679, 2023c.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
Textbooks are all you need ii: phi-1.5 technical report. arXiv preprint arXiv:2309.05463, 2023d.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Chao Liu, Xuanlin Bao, Hongyu Zhang, Neng Zhang, Haibo Hu, Xiaohong Zhang, and Meng Yan.
Improving chatgpt prompt for code generation. arXiv preprint arXiv:2305.08360, 2023a.

Jiate Liu, Yiqin Zhu, Kaiwen Xiao, Qiang Fu, Xiao Han, Wei Yang, and Deheng Ye. Rltf: Rein-
forcement learning from unit test feedback, 2023b.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng, Qing-
wei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical reasoning
for large language models via reinforced evol-instruct. arXiv preprint arXiv:2308.09583, 2023a.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. arXiv preprint arXiv:2306.08568, 2023b.

11

Lucie Charlotte Magister, Jonathan Mallinson, Jakub Adamek, Eric Malmi, and Aliaksei Severyn.
Teaching small language models to reason. arXiv preprint arXiv:2212.08410, 2022.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez. Gorilla: Large language model
connected with massive apis. arXiv preprint arXiv:2305.15334, 2023.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

Melanie Sclar, Peter West, Sachin Kumar, Yulia Tsvetkov, and Yejin Choi. Referee: Reference-
free sentence summarization with sharper controllability through symbolic knowledge distillation.
arXiv preprint arXiv:2210.13800, 2022.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik R Narasimhan, and Shunyu Yao. Re-
flexion: Language agents with verbal reinforcement learning. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023.

Parshin Shojaee, Aneesh Jain, Sindhu Tipirneni, and Chandan K. Reddy. Execution-based code gen-
eration using deep reinforcement learning. Transactions on Machine Learning Research, 2023.
ISSN 2835-8856.

Disha Shrivastava, Hugo Larochelle, and Daniel Tarlow. Repository-level prompt generation for
large language models of code. In International Conference on Machine Learning, pp. 31693–
31715. PMLR, 2023.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model,
2023.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large language
models. arXiv preprint arXiv:2305.04091, 2023.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language model with self generated instructions.
arXiv preprint arXiv:2212.10560, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022.

Peter West, Chandra Bhagavatula, Jack Hessel, Jena Hwang, Liwei Jiang, Ronan Le Bras, Ximing
Lu, Sean Welleck, and Yejin Choi. Symbolic knowledge distillation: from general language
models to commonsense models. In Proceedings of the 2022 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.
4602–4625, Seattle, United States, July 2022. Association for Computational Linguistics.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and
Daxin Jiang. Wizardlm: Empowering large language models to follow complex instructions.
arXiv preprint arXiv:2304.12244, 2023.

Pengcheng Yin, Wen-Ding Li, Kefan Xiao, Abhishek Rao, Yeming Wen, Kensen Shi, Joshua How-
land, Paige Bailey, Michele Catasta, Henryk Michalewski, Oleksandr Polozov, and Charles Sut-
ton. Natural language to code generation in interactive data science notebooks. In Anna Rogers,
Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 126–173, Toronto,
Canada, July 2023. Association for Computational Linguistics.

12

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
Mammoth: Building math generalist models through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653, 2023.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. STar: Bootstrapping reasoning with rea-
soning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances
in Neural Information Processing Systems, 2022.

Eric Zelikman, Qian Huang, Gabriel Poesia, Noah D Goodman, and Nick Haber. Parsel: A (de-
) compositional framework for algorithmic reasoning with language models. arXiv preprint
arXiv:2212.10561, 2023.

Fengji Zhang, Bei Chen, Yue Zhang, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and Weizhu
Chen. Repocoder: Repository-level code completion through iterative retrieval and generation.
arXiv preprint arXiv:2303.12570, 2023a.

Kexun Zhang, Danqing Wang, Jingtao Xia, William Yang Wang, and Lei Li. Algo: Synthesizing
algorithmic programs with generated oracle verifiers. arXiv preprint arXiv:2305.14591, 2023b.

Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu Ding, Joshua B Tenenbaum, and Chuang Gan.
Planning with large language models for code generation. arXiv preprint arXiv:2303.05510,
2023c.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023.

Daniel Fried Zhiruo Wang, Shuyan Zhou and Graham Neubig. Execution-based evaluation for
open-domain code generation. 2022.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat,
Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. arXiv preprint arXiv:2305.11206, 2023.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
mans, Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex
reasoning in large language models. arXiv preprint arXiv:2205.10625, 2022.

Terry Yue Zhuo. Large language models are state-of-the-art evaluators of code generation. arXiv
preprint arXiv:2304.14317, 2023.

13

A EXPERIMENTAL SETUP

APPS benchmark. Since some of the problems in the APPS dataset are sourced from websites that
provide insufficient or absent test cases, we filter the problems from those platforms. Specifically,
we only retain problems from the codeforces, codechef, and atcoder competition websites.
This also removes the disparity/domain-shift between the training and test splits which has been
observed as an issue in the APPS dataset in prior works (Section 4.1 in Li et al. (2023c)). While
we considerably reduced the size of our training set, our test set is still quite close to the test set
containing around 3800 problems instead of the default 5000.

CODE-CONTESTS benchmark. The original CODE-CONTESTS benchmark consists of 13,328 prob-
lems in the training dataset. We restrict the dataset to only problems with valid python solutions
that pass the test cases. Next, since the original dataset provides over 100 solutions per problem, we
perform minhash-based deduplication on the solutions (hash size=64, num bands=60, band size=5)
from gaoya8 and retain a maximum of 25 solutions per problem. This results in about 7k problems
in the training set spanning about 98.5k solutions. We do not perform any filtering on the test set.

Additionally, we note that some of the provided solutions in both APPS and CODE-CONTESTS

datasets do not pass the test cases. These cases are sometimes caused by incorrect programs, corre-
sponding to solutions in the wrong programming language. However, more often this is caused by
problems in these datasets supporting multiple correct solutions (for instance solutions can return a
list of elements in any order). The provided test cases only check for a single correct solution and
thus result in many solutions failing the test cases. We retain such samples for the smaller APPS
dataset and use original correct programs for matching output behavior instead of provided outputs.

Metrics We use the PASS@K to perform our evaluations. We perform nucleus sampling using
VLLM with p = 0.95. We outline the default sampling configurations used for computing the
metrics

1. PASS@1 - We use a sampling budget (N) = 10 and temperature = 0.1.
2. PASS@10 - We use a sampling budget (N) = 50 and temperature = 0.6.
3. PASS@25 - We use a sampling budget (N) = 50 and temperature = 0.6.
4. PASS@100 - We use a sampling budget (N) = 200 and temperature = 0.8.

Finetuning details We finetune the CODELLAMA-7B model using deepspeed huggingface trainer.
We use the following training configuration for our main experiments -

Training Parameters Values
LR 5e−5

Epochs 1 or 2 depending on the dataset
Batch Size 256 (combing grad. accumulation)
Dtype bf16

8https://github.com/serega/gaoya

14

https://github.com/serega/gaoya

B CODE TRANSFORMATIONS IMPLEMENTATION

We implement our code transformation approach using zero-shot prompting with GPT-3.5-TURBO

model. After transformation, we extract the generated code and evaluate its functional correctness
using the provided test cases. In case the program does not pass, we retry the process with up to a
maximum of 5 attempts. In our experience, instruction-tuned models can follow precise commands
and transform programs very well.

B.1 RENAMING

We use the following prompt to perform renaming.

QUESTION :
{ p r o b l e m _ s t a t e m e n t }

ANSWER:
‘ ‘ ‘ py thon
{ s o l u t i o n }
‘ ‘ ‘
Rename t h e v a r i a b l e s i n t h e program t o be d e s c r i p t i v e , mean ing fu l , and c o n s i s t e n t . Do n o t
change t h e o r i g i n a l s e m a n t i c s o f t h e program . E n c l o s e t h e program w i t h i n b a c k t i c k s a s shown
above and remember t o use d e s c r i p t i v e v a r i a b l e names .

B.2 MODULARIZATION

Unlike renaming, we perform two rounds of modularization in case the generated program consists
of long function implementations (hinting that the function can be decomposed further). We use the
following prompt to perform the first round of modularization

QUESTION :
{ p r o b l e m _ s t a t e m e n t }

ANSWER:
‘ ‘ ‘ py thon
{ r e n a m e d _ s o l u t i o n }
‘ ‘ ‘
R e f a c t o r t h e above program . Fol low t h e g u i d e l i n e s
* make t h e program more modular wi th s m a l l e r and m e a n i n g f u l h e l p e r f u n c t i o n s
* good d e s c r i p t i v e names f o r t h e h e l p e r f u n c t i o n s
* have an e n t r y f u n c t i o n c a l l e d ‘ main () ‘
* ‘ main () ‘ i s c a l l e d i n s i d e ‘ i f __name__ == ’ __main__ ’ ‘

Do n o t change t h e o r i g i n a l s e m a n t i c s o f t h e program s i g n i f i c a n t l y and no need t o pe r fo rm
o p t i m i z a t i o n s . E n c l o s e t h e program w i t h i n b a c k t i c k s as shown above

Next, in case the modularized program contains a function with the number of lines greater than 20,
we further prompt the model while signaling which functions to further decompose. This occurs in
about 20-40% of modularized solutions and we use the following prompt.

QUESTION :
{ p r o b l e m _ s t a t e m e n t }

ANSWER:
‘ ‘ ‘ py thon
{ m o d u l a r i z e d _ s o l u t i o n }
‘ ‘ ‘
R e f a c t o r t h e above program by m o d u l a r i z i n g i t and b r e a k i n g down long and complex f u n c t i o n s
i n t o s m a l l e r m e a n i n g f u l h e l p e r f u n c t i o n s . P a r t i c u l a r l y r e f a c t o r and decompose t h e f o l l o w i n g
f u n c t i o n (s) i n t o s m a l l e r h e l p e r f u n c t i o n s − { f u n c t i o n _ n a m e s _ s t r i n g }
Only r e t u r n t h e r e f a c t o r e d program e n c l o s e d i n b a c k t i c k s as shown above . " " "

B.3 PLANNING

We use the following prompt to generate natural language plans

15

QUESTION :
{ p r o b l e m _ s t a t e m e n t }

ANSWER:
‘ ‘ ‘ py thon
{ m o d u l a r i z e d _ s o l u t i o n }
‘ ‘ ‘
G e n e r a t e a summary f o r t h e f o l l o w i n g f u n c t i o n s and c l a s s e s i n t h e program w i t h i n f o u r l i n e s
each . The summaries s h o u l d be d e s c r i p t i v e and h e l p f u l f o r u n d e r s t a n d i n g t h e program (however
y e t c o n c i s e i n f o u r l i n e s) .
The f u n c t i o n s and c l a s s e s a r e −
{ l i s t _ o f _ f u n c t i o n _ n a m e s }
Fol low t h e p r o v i d e d f o r m a t f o r t h e summaries w h i l e b e i n g i n f o r m a t i v e and c o n c i s e . E n c l o s e t h e

s i g n a t u r e s i n b a c k t i c k s as shown above .

16

C ADDITIONAL RESULTS

C.1 GPT-4 JUDGE EVALUATION FOR THE TRANSFORMATIONS

We here present some quantitative evidence of the improvements made from our transformation
approach. However, since the transformations are free-form code generation, we rely on using
GPT-4 as judge, an evaluation approach gaining popularity for evaluating free-form language out-
puts (Zheng et al., 2023; Zhuo, 2023). Specifically, we ask the language model to answer whether the
modularized refactored code has better variable names, better function decomposition, and is con-
sistent with the original program. The model can provide answers on a key of 1-3 from comparison
questions and 0-1 for the consistency question. The following prompt depicts our approach

SYSTEM PROMPT:
P l e a s e a c t a s an i m p a r t i a l j u d g e and e v a l u a t e t h e code r e f a c t o r i n g below . You need t o
e v a l u a t e whe the r t h e r e f a c t o r e d program u s e s b e t t e r and c o r r e c t v a r i a b l e names , r e f a c t o r s t h e

i m p l e m e n t a t i o n i n t o c o r r e c t s m a l l e r h e l p e r f u n c t i o n s and c o n s i s t e n c y wi th t h e o r i g i n a l
program . Your e v a l u a t i o n s h o u l d be based on c o r r e c t n e s and h e l p f u l n e s s o f t h e r e f a c t o r i n g i n
b e t t e r u n d e r s t a n d i n g t h e problem and a l s o i f i t i s s t i l l c o n s i s t e n t w i th t h e o r i g i n a l program
, i . e . i t f o l l o w s s i m i l a r program l o g i c and a l g o r i t h m .

* For e v a l u a t i n g v a r i a b l e names and f u n c t i o n d e c o m p o s i t i o n , p l e a s e g i v e a s c o r e from 1 t o 3
where 1 means t h e r e f a c t o r i n g i s n o t h e l p f u l a t a l l , 2 means t h e r e f a c t o r i n g i s somewhat
h e l p f u l and 3 means t h e r e f a c t o r i n g i s v e r y h e l p f u l . Example f o r m a t

V a r i a b l e names r e a s o n i n g : [[r e a s o n i n g f o r t h e v a r i a b l e names s c o r e , o f t e n a s s e s s i n g whe the r
t h e v a r i a b l e names a r e more d e s c r i p t i v e and m e a n i n g f u l and c o r r e c t l y r e f l e c t t h e v a r i a b l e ’ s
p u r p o s e]]
V a r i a b l e names : [[1]] o r [[2]] o r [[3]]

F u n c t i o n d e c o m p o s i t i o n r e a s o n i n g : [[r e a s o n i n g f o r t h e d e c o m p o s i t i o n s c o r e , o f t e n a s s e s s i n g
whe the r some f u n c t i o n i s t o o long , p o s s i b i l i t y t o pe r fo rm f u r t h e r a b s t r a c t i o n s , c h o i c e o f
a b s t r a c t i o n s , h e l p e r f u n c t i o n names]]
F u n c t i o n d e c o m p o s i t i o n : [[1]] o r [[2]] o r [[3]]

* For e v a l u a t i n g c o n s i s t e n c y , p l e a s e g i v e a s c o r e o f 0 i f t h e r e f a c t o r e d program i s n o t
c o n s i s t e n t w i th t h e o r i g i n a l program and 1 i f i t i s c o n s i s t e n t . Example f o r m a t

C o n s i s t e n c y r e a s o n i n g : [[r e a s o n i n g f o r t h e c o n s i s t e n c y s c o r e , o f t e n a s s e s s i n g whe the r t h e
r e f a c t o r e d program f o l l o w s s i m i l a r program l o g i c and a l g o r i t h m as t h e o r i g i n a l program]]
C o n s i s t e n c y : [[0]] o r [[1]]

QUESTION :
{ p r o b l e m _ s t a t e m e n t }

ORIGINAL SOLUTION :
{ s o l u t i o n }

REFACTORED SOLUTION :
{ s o l u t i o n }

While this evaluation might portray certain subtle biases, we believe it still provides us a signal to
assess the quality of the transformations. To reduce costs, we the GPT-4 as judge evaluation to 1000
problems in the APPS dataset 9. GPT-4 followed the proposed format for 998 solutions and we
present results on them in Table 6. Results demonstrate that most of the applied transformations are
meaningful while remaining consistent with the original ground truth solutions.

Score distribution Average
Variable names {3 : 967, 2 : 28, 1 : 3} 2.96

Function decomposition {3 : 938, 2 : 59, 1 : 1} 2.93
Consistency {1 : 994, 0 : 4} 0.994

Table 6: GPT-4 as a judge evaluation for quality of 998 transformed examples. We compared
the original and unmodified solution using GPT-4 for variable names used, function decomposition,
and consistency of the modified and original solution. Results demonstrate that most of the trans-
formations are successful and meaningful while being consistent with the original program.

9Our prompt spans around 1.5-2k tokens including problem, original, and refactored programs leading to
high costs

17

To get better insights into GPT-4 evaluations, we look at the examples which receive lower scores.
The scores and associated reasoning appear meaningful. For example, in Figure 14, the modularized
program is already significantly more readable than original renamed program. However, GPT-4
identifies that the calculate_permutation_even and calculate_permutation_even helper
functions are virtually the same and can be abstracted further. Note that this transformation is an
artifiact of the fact that original program consisted of same program logic distributed across two far
apart if conditions. Similarly, in Figure 15, GPT-4 identified some unmodified variable names like
t while acknowledging other improvements such as sky to heights giving it a rating of 2. The
rating of 1 is provided when the transformation does not modify any variable names or does not
decompose existing functions, as evidenced by score distributed, a rare occurrence. Indeed, often
the examples marked with a rating 2 actually improve upon orignal code in non-trivial ways.10

C.2 APPS-COMPETITION RESULTS

We present the results on APPS-COMPETITION dataset here.

APPS-COMPETITION

PASS@1 PASS@10 PASS@100
Fine-tuning
CL-7B + Doriginal 0.2 1.7 3.1
CL-7B + Dmodular 0.5 2.3 3.2

+0.3 +0.6 +0.1
CODE-DAVINCI-002 0.3 2.9 5.7

Table 7: Results on the APPS-COMPETITION dataset.

C.3 ABLATION ON CHOICE OF MODEL

We use GPT-3.5-TURBO as the default model for performing the transformations in the main exper-
iments since it provides a nice balance between the accuracy and cost of performing the transfor-
mations. Here, to demonstrate the generality of our approach we perform an ablation by replacing
the transformation model with GPT-4-TURBO. Since this model is about 8-10x more expensive than
GPT-3.5-TURBO, we perform this ablation on a subset of 5k programs sampled from the dataset.

Experimental setup. We repeat the renaming and modularization steps described in Section 3.2
using the GPT-4-TURBO model. We call the resulting transformed dataset as D4

modular. Next,
fairly compare the resulting dataset with the original and modularized dataset generated using GPT-
3.5-TURBO, we sample the corresponding parallel original and transformed programs and call them
Doriginal and D3.5

modular datasets.

APPS-INTRODUCTORY

PASS@1 PASS@10 PASS@100
CL-7B + Doriginal 16.3 31.6 37.6
CL-7B + D3.5

modular 18.8 33.0 38.2
CL-7B + D4

modular 19.4 34.3 40.0
+0.6 +1.3 +1.8

Table 8: Ablation on the choice of model used for performing the transformations. D3.5
modular

represents the dataset generated using GPT-3.5-TURBO and D4
modular represents the dataset gener-

ated using GPT-4-TURBO. We find that the performance of the model trained on the D4
modular dataset

is better than the model trained on the D3.5
modular dataset.

10Curiously, GPT-4 sometimes returned a rating of 2.5 instead of integer 2 or 3. We rounded it to 2, thus
making our evaluation harsher!

18

D ADDITIONAL RELATED WORK

Code LLMS have been used for multiple domains in various lines of approaches. Here, we present
a few key approaches and recommend the reader to Hou et al. (2023) for a detailed survey. Chen
et al. (2021) released the CODE-DAVINCI-002 model and evaluate it for code generation. Since then,
LLMS have been used for a variety of domains such as data science (Jain et al.; Lai et al., 2022; Yin
et al., 2023), APIs (Zhiruo Wang & Neubig, 2022; Patil et al., 2023), and repositories (Zhang et al.,
2023a; Bairi et al., 2023; Shrivastava et al., 2023). (Le et al., 2022; Shojaee et al., 2023; Liu et al.,
2023b) use reinforcement learning with compilation/execution feedback to fine-tune code LLMS for
(algorithmic) code generation task.

Other works have approached code generation from different fronts, exploring planning (Jiang et al.,
2023), repair (Chen et al., 2023b; Shinn et al., 2023), test generation (Key et al., 2022; Chen et al.,
2022a), and prompt optimization (Liu et al., 2023a).

19

E EXAMPLES OF TRANSFORMED PROGRAM

def main():
import sys
input=sys.stdin.readline

n,k=map(int,input().split())

ab=[list(map(int,input().split())) for _ in
[0]*n]

g=[[] for _ in [0]*10]
[g[b-1].append(a) for a,b in ab]
[g[c].sort(reverse=True) for c in range(10)]

for c in range(10):
g[c]=[0]+g[c]

for c in range(10):
for i in range(2,len(g[c])):

g[c][i]+=g[c][i-1]+2*(i-1)

dp=[0]*(k+1)

for c in range(10):
dp2=[0]*(k+1)
for i in range(len(g[c])):

for j in range(k+1-i):
dp2[i+j]=max(dp2[i+j],dp[j]+g[c][i

])
dp=dp2

print(max(dp))

if __name__==’__main__’:
main()

(a) Original program

def read_input():
... (TRUNCATED)
return num_books, num_sell, book_info

def group_books_by_genre(num_books, book_info):
genre_books = [[] for _ in range(10)]
for price, genre in book_info:

genre_books[genre-1].append(price)
return genre_books

def sort_books_by_price(genre_books):
for genre in genre_books:

genre.sort(reverse=True)
return genre_books

def calculate_purchase_prices(genre_books):
for genre in genre_books:

genre.insert(0, 0)
for genre in genre_books:

for i in range(2, len(genre)):
genre[i] += genre[i-1] + 2*(i-1)

return genre_books

def calculate_max_purchase_price(num_sell,
genre_books):

dp = [0] * (num_sell+1)
for genre in genre_books:

dp2 = [0] * (num_sell+1)
for i in range(len(genre)):

for j in range(num_sell+1-i):
dp2[i+j] = max(dp2[i+j], dp[j] +

genre[i])
dp = dp2

return max(dp)

def main():
num_books, num_sell, book_info = read_input()
genre_books = group_books_by_genre(num_books,
book_info)

genre_books = sort_books_by_price(genre_books)
genre_books = calculate_purchase_prices(
genre_books)

max_purchase_price =
calculate_max_purchase_price(num_sell,
genre_books)

print(max_purchase_price)

if __name__ == ’__main__’:
main()

(b) Transformed program

Figure 4: Original and transformed programs

20

for _ in range(int(input())):
p, q = map(int,input().split())
c = q
d = p

i = 1
factor = []
while i*i <= q:

if q % i == 0:
factor.append(i)
if q//i != i:

factor.append(q//i)
i += 1

factor.sort(reverse=True)
factor.pop()
m = 1
for i in factor:

d = p
while d % c == 0:

d //= i
m = max(m, d)

print(m)

(a) Original program

def get_factors(q):
factors = []
i = 1
while i*i <= q:

if q % i == 0:
factors.append(i)
if q//i != i:

factors.append(q//i)
i += 1

factors.sort(reverse=True)
factors.pop()
return factors

def get_largest_divisor(p, q, factors):
largest_divisor = 1
for i in factors:

dividend_copy = p
while dividend_copy % q == 0:

dividend_copy //= i
largest_divisor = max(largest_divisor,

dividend_copy)
return largest_divisor

def main():
t = int(input())
for _ in range(t):

p, q = map(int, input().split())
factors = get_factors(q)
largest_divisor = get_largest_divisor(p, q,

factors)
print(largest_divisor)

if __name__ == ’__main__’:
main()

(b) Transformed program

Figure 5: Original and transformed programs

21

def ncr(n, r, p):
initialize numerator
and denominator
num = den = 1
for i in range(r):

num = (num * (n - i)) % p
den = (den * (i + 1)) % p

return (num * pow(den,
p - 2, p)) % p

a,b,n=map(int,input().split())
ans=0
p=10**9+7
num=1
den=1
for i in range(n+1):

s=a*i+b*(n-i)
if i!=0:

num=(num*(n-i+1))%p
den=(den*(i))%p

am=True
while s!=0:

if s%10!=a and s%10!=b:
am=False
break

s//=10
if am:

ans=(ans+(num*pow(den,p-2,p))%p)%p
print(ans%p)

(a) Original program

def ncr(n, r, p):
calculate nCr modulo p
initialize numerator and denominator
numerator = denominator = 1
for i in range(r):

numerator = (numerator * (n - i)) % p
denominator = (denominator * (i + 1)) % p

return (numerator * pow(denominator, p - 2, p))
% p

def is_good_number(number, a, b):
check if a number is a good number
while number != 0:

if number % 10 != a and number % 10 != b:
return False

number //= 10
return True

def count_excellent_numbers(a, b, n):
ans = 0
p = 10**9 + 7
numerator = 1
denominator = 1

for i in range(n + 1):
sum_of_digits = a * i + b * (n - i)

if i != 0:
numerator = (numerator * (n - i + 1)) %

p
denominator = (denominator * i) % p

if is_good_number(sum_of_digits, a, b):
ans = (ans + (numerator * pow(

denominator, p - 2, p)) % p) % p

return ans % p

def main():
a, b, n = map(int, input().split())
result = count_excellent_numbers(a, b, n)
print(result)

if __name__ == ’__main__’:
main()

(b) Transformed program

Figure 6: Original and transformed programs

22

import bisect
rev=[]
for i in range(1,10002):

if str(i)==str(i)[::-1]:rev.append(i)
n=int(input())
ind= bisect.bisect_left(rev,n)
if abs(n-rev[ind-1])<=abs(n-rev[ind]):

print(rev[ind-1])
else:

print(rev[ind])

(a) Original program

import bisect

def generate_palindromes():
palindromes = []
for num in range(1, 10002):

if str(num) == str(num)[::-1]:
palindromes.append(num)

return palindromes

def find_closest_palindrome(palindromes, n):
index = bisect.bisect_left(palindromes, n)
if abs(n - palindromes[index - 1]) <= abs(n -
palindromes[index]):

return palindromes[index - 1]
else:

return palindromes[index]

def main():
palindromes = generate_palindromes()
n = int(input())
closest_palindrome = find_closest_palindrome(
palindromes, n)

print(closest_palindrome)

if __name__ == ’__main__’:
main()

(b) Transformed program

Figure 7: Original and transformed programs

23

N = int(input())
T = [int(input()) for i in range(N)]
T.sort()
if N == 1:

ans = 0
else:

y = T[-1]
R = []
for x in range(1, y+1):

if y % x == 0:
R.append(x)

cur = ans = 0
for t in T:

while R[cur] < t:
cur += 1

ans += R[cur] - t
print(ans)

(a) Original program

def find_divisors(max_interval):
divisors = []
for divisor in range(1, max_interval+1):

if max_interval % divisor == 0:
divisors.append(divisor)

return divisors

def calculate_min_sum(intervals, divisors):
current_index = min_sum = 0
for interval in intervals:

while divisors[current_index] < interval:
current_index += 1

min_sum += divisors[current_index] -
interval

return min_sum

def main():
num_metronomes = int(input())
intervals = [int(input()) for i in range(
num_metronomes)]

intervals.sort()
if num_metronomes == 1:

min_sum = 0
else:

max_interval = intervals[-1]
divisors = find_divisors(max_interval)
min_sum = calculate_min_sum(intervals,

divisors)
print(min_sum)

if __name__ == ’__main__’:
main()

(b) Transformed program

Figure 8: Original and transformed programs

24

def main():
from collections import defaultdict
n, colors = int(input()), input()[::2]
dsu, edges, d = list(range(n)), [], defaultdict
(list)

for _ in range(n - 1):
u, v = map(int, input().split())
u -= 1
v -= 1
if colors[u] == colors[v]:

a, b = dsu[u], dsu[v]
while a != dsu[a]:

a = dsu[a]
while b != dsu[b]:

b = dsu[b]
if a < b:

dsu[b] = dsu[v] = a
else:

dsu[a] = dsu[u] = b
else:

edges.append(u)
edges.append(v)

for u, v in enumerate(dsu):
dsu[u] = dsu[v]

while edges:
u, v = dsu[edges.pop()], dsu[edges.pop()]
d[u].append(v)
d[v].append(u)

def bfs(x):
nxt, avail, t = [x], [True] * n, 0
while nxt:

t += 1
cur, nxt = nxt, []
for y in cur:

avail[y] = False
for y in d[y]:

if avail[y]:
nxt.append(y)

return t if x else cur[0]

print(bfs(bfs(0)) // 2)

if __name__ == ’__main__’:
main()

(a) Original program

from collections import defaultdict

def find_root(vertex, dsu):
while vertex != dsu[vertex]:

vertex = dsu[vertex]
return vertex

def merge_trees(u, v, dsu):
root_u = find_root(u, dsu)
root_v = find_root(v, dsu)
if root_u < root_v:

dsu[root_v] = dsu[v] = root_u
else:

dsu[root_u] = dsu[u] = root_v

def build_graph(num_vertices, colors, edges):
dsu = list(range(num_vertices))
graph = defaultdict(list)
for u, v in edges:

if colors[u] == colors[v]:
merge_trees(u, v, dsu)

else:
graph[dsu[u]].append(dsu[v])
graph[dsu[v]].append(dsu[u])

return dsu, graph

def bfs(x, num_vertices, graph):
next_vertices = [x]
available = [True] * num_vertices
t = 0
while next_vertices:

t += 1
current_vertices, next_vertices =

next_vertices, []
for y in current_vertices:

available[y] = False
for neighbor in graph[y]:

if available[neighbor]:
next_vertices.append(neighbor)

return t if x else current_vertices[0]

def main():
num_vertices = int(input())
colors = input()[::2]
edges = []
for _ in range(num_vertices - 1):

u, v = map(int, input().split())
u -= 1
v -= 1
edges.append((u, v))

dsu, graph = build_graph(num_vertices, colors,
edges)

print(bfs(bfs(0, num_vertices, graph),
num_vertices, graph) // 2)

if __name__ == ’__main__’:
main()

(b) Transformed program

Figure 9: Original and transformed programs

25

import heapq

def dfs(graph, start):
n = len(graph)
dist = [-0 for i in range(n + 1)]
visited = [False for i in range(n + 1)]
visited[start] = True
stack = []
dist[start] = 0
heapq.heappush(stack, start)
while stack:

u = heapq.heappop(stack)
for v in graph[u]:

if not visited[v]:
visited[v] = True
dist[v] = dist[u] + 1
heapq.heappush(stack, v)

return dist

def solution():
n, m, d = map(int, input().strip().split())
p = list(map(int, input().strip().split()))
graph = [[] for i in range(n + 1)]
for i in range(n - 1):

a, b = map(int, input().strip().split())
graph[a].append(b)
graph[b].append(a)

dist = dfs(graph, 1)

max_distance = -1
u = -1
v = -1
for i in p:

if dist[i] > max_distance:
max_distance = dist[i]
u = i

distu = dfs(graph, u)

max_distance = -1
for i in p:

if distu[i] > max_distance:
max_distance = distu[i]
v = i

distv = dfs(graph, v)

affected = 0
for i in range(1, n + 1):

if 0 <= distu[i] <= d and 0 <= distv[i] <=
d:

affected += 1

print(affected)

solution()

(a) Original program

import heapq

def calculate_distances(graph, start):
n = len(graph)
distances = [-0 for i in range(n + 1)]
visited = [False for i in range(n + 1)]
visited[start] = True
stack = []
distances[start] = 0
heapq.heappush(stack, start)
while stack:

current_node = heapq.heappop(stack)
for neighbor in graph[current_node]:

if not visited[neighbor]:
visited[neighbor] = True
distances[neighbor] = distances[

current_node] + 1
heapq.heappush(stack, neighbor)

return distances

def find_possible_book_locations():
n, m, d = map(int, input().strip().split())
affected_settlements = list(map(int, input().
strip().split()))

graph = [[] for i in range(n + 1)]
for i in range(n - 1):

a, b = map(int, input().strip().split())
graph[a].append(b)
graph[b].append(a)

return calculate_possible_locations(n, m, d,
affected_settlements, graph)

def calculate_possible_locations(n, m, d,
affected_settlements, graph):

distances = calculate_distances(graph, 1)
max_distance, u = find_max_distance(distances,
affected_settlements)

distances_u = calculate_distances(graph, u)
max_distance, v = find_max_distance(distances_u
, affected_settlements)

distances_v = calculate_distances(graph, v)
return count_possible_locations(n, d,
distances_u, distances_v)

def find_max_distance(distances,
affected_settlements):

max_distance = -1
u = -1
for settlement in affected_settlements:

if distances[settlement] > max_distance:
max_distance = distances[settlement]
u = settlement

return max_distance, u

def count_possible_locations(n, d, distances_u,
distances_v):

possible_locations = 0
for i in range(1, n + 1):

if 0 <= distances_u[i] <= d and 0 <=
distances_v[i] <= d:

possible_locations += 1
return possible_locations

def main():
possible_locations =
find_possible_book_locations()

print(possible_locations)

if __name__ == ’__main__’:
main()

(b) Transformed program

Figure 10: Original and transformed programs

26

n = int(input())
dividers = list()
i = 2

while i * i <= n:
if n % i == 0:

dividers.append(i)

while n % i == 0:
n /= i

i += 1

if n > 1:
dividers.append(n)

if len(dividers) == 1:
print(dividers[0])

else:
print(1)

(a) Original program

def find_dividers(path_length):
dividers = []
divisor = 2

while divisor * divisor <= path_length:
if path_length % divisor == 0:

dividers.append(divisor)
while path_length % divisor == 0:

path_length //= divisor
divisor += 1

if path_length > 1:
dividers.append(path_length)

return dividers

def calculate_max_colors(path_length):
dividers = find_dividers(path_length)
if len(dividers) == 1:

return dividers[0]
else:

return 1

def main():
path_length = int(input())
max_colors = calculate_max_colors(path_length)
print(max_colors)

if __name__ == ’__main__’:
main()

(b) Transformed program

Figure 11: Original and transformed programs

27

import sys
readline = sys.stdin.readline

N, M = map(int, readline().split())
mod = 10**9+7
dpscc = [[0]*(N+1) for _ in range(N+1)]
dpus = [[0]*(N+1) for _ in range(N+1)]
dpscc[1][0] = 1

for m in range(M):
dpscc2 = [[0]*(N+1) for _ in range(N+1)]
dpus2 = [[0]*(N+1) for _ in range(N+1)]
for i in range(1, N+1):

for j in range(N+1-i):
kscc = dpscc[i][j]
kus = dpus[i][j]
dpscc2[i][j] = (dpscc2[i][j] + i*kscc)

% mod
dpus2[i][j] = (dpus2[i][j] + j*(kus+

kscc)) % mod
dpscc2[i+j][0] = (dpscc2[i+j][0] + i*

kus) % mod
if N-i-j:

dpus2[i][j+1] = (dpus2[i][j+1] + (N
-i-j)*(kus+kscc)) % mod

dpscc = [d[:] for d in dpscc2]
dpus = [d[:] for d in dpus2]

print(dpscc[N][0])

(a) Original program

import sys

def count_sequences(num_towns, num_days):
mod = 10**9+7
dp_same_city_count = [[0]*(num_towns+1) for _
in range(num_towns+1)]

dp_unique_city_count = [[0]*(num_towns+1) for _
in range(num_towns+1)]

dp_same_city_count[1][0] = 1

for day in range(num_days):
dp_same_city_count2 = [[0]*(num_towns+1)

for _ in range(num_towns+1)]
dp_unique_city_count2 = [[0]*(num_towns+1)

for _ in range(num_towns+1)]
for i in range(1, num_towns+1):

for j in range(num_towns+1-i):
same_city_count =

dp_same_city_count[i][j]
unique_city_count =

dp_unique_city_count[i][j]
dp_same_city_count2[i][j] = (

dp_same_city_count2[i][j] + i*same_city_count
) % mod

dp_unique_city_count2[i][j] = (
dp_unique_city_count2[i][j] + j*(
unique_city_count+same_city_count)) % mod

dp_same_city_count2[i+j][0] = (
dp_same_city_count2[i+j][0] + i*
unique_city_count) % mod

if num_towns-i-j:
dp_unique_city_count2[i][j+1] =

(dp_unique_city_count2[i][j+1] + (num_towns-
i-j)*(unique_city_count+same_city_count)) %
mod

dp_same_city_count = [d[:] for d in
dp_same_city_count2]

dp_unique_city_count = [d[:] for d in
dp_unique_city_count2]

return dp_same_city_count[num_towns][0]

def main():
num_towns, num_days = map(int, input().split())
result = count_sequences(num_towns, num_days)
print(result)

if __name__ == ’__main__’:
main()

(b) Transformed program

Figure 12: Original and transformed programs

28

n,m = [int(i) for i in input().split()]
seg = {i:[] for i in range(1,n+1)}
for j in range(m):

a,b = [int(i) for i in input().split()]
seg[a].append(b)
seg[b].append(a)

tail = [0]*(n+1)
tail[1] = 1
for i in range(2,n+1):

temp = [tail[j] for j in seg[i]]+[0]
tail[i] = max(temp)+1

temp = [len(seg[i])*tail[i] for i in range(1,n+1)]
print(max(temp))

(a) Original program

def calculate_beauty(num_points, num_segments,
segments):

tail_length = [0]*(num_points+1)
tail_length[1] = 1
for i in range(2, num_points+1):

temp = [tail_length[j] for j in segments[i
]]+[0]

tail_length[i] = max(temp)+1
spine_length = [len(segments[i])*tail_length[i]

for i in range(1, num_points+1)]
return max(spine_length)

def main():
num_points, num_segments = [int(i) for i in
input().split()]

segments = {i:[] for i in range(1, num_points
+1)}

for j in range(num_segments):
point1, point2 = [int(i) for i in input().

split()]
segments[point1].append(point2)
segments[point2].append(point1)

result = calculate_beauty(num_points,
num_segments, segments)

print(result)

if __name__ == ’__main__’:
main()

(b) Transformed program

Figure 13: Original and transformed programs

29

for i in range(int(input())):
n,k=[int(i) for i in input().split()]
if(n%2==0):
if(k<(n*(n+1))//2 - 1 or k>3*((n//2)**2) -
1):
print(-1)

elif(k==(n*(n+1))//2 - 1):
for i in range(1,n+1):
print(i,’’,end=’’)

print()
else:
k,count,p,l,x = k-(n*(n+1))//2 + 1,0,0,[0 for
i in range(n)],1
while(k>0):
p+=2 ;k,
count = k-n+p ,count+1

for i in range(n,n-count+1,-1):
l[x]=i ;x+=2

k=-k ;
l[2*count - 1 +k],p = n-count+1 ,1
for i in range(n):
if(l[i]==0):
l[i]=p
p+=1

for i in l:
print(i,’’,end=’’)

print()
else:
if(n==1):
print(1) if(k==0) else print(-1)

elif(k<(n*(n+1))//2 - 1 or k>3*(n//2)*(n//2 +
1)):
print(-1)

elif(k==(n*(n+1))//2 - 1):
for i in range(1,n+1):
print(i,’’,end=’’)

print()
else:
k,count,p,l,x = k-(n*(n+1))//2 + 1,0,0,[0 for
i in range(n)],1
while(k>0):
p+=2 ; k,count = k-n+p ,count+1

(a) Original program

def find_permutation
(n, k):

if n % 2 == 0:
if k < n * (n + 1) // 2 - 1 or k > 3 * (n

// 2) ** 2 - 1:
return None

elif k == n * (n + 1) // 2 - 1:
return list(range(1, n + 1))

else:
permutation =

calculate_permutation_even(n, k)
return permutation

elif n == 1:
return [1] if k == 0 else None

elif k < n * (n + 1) // 2 - 1 or k > 3 * (n //
2) * (n // 2 + 1):

return None
elif k == n * (n + 1) // 2 - 1:

return list(range(1, n + 1))
else:

permutation = calculate_permutation_odd(n,
k)

return permutation

def calculate_permutation_even(n, k):
k, count, p, l, x = k - n * (n + 1) // 2 + 1,
0, 0, [0 for i in range(n)], 1

while k > 0:
p += 2
k, count = k - n + p, count + 1

for i in range(n, n - count, -1):
l[x] = i
x += 2

k = -k
l[2 * count - 1 + k], p = n - count + 1, 1
for i in range(n):

if l[i] == 0:
l[i] = p
p += 1

return l

def calculate_permutation_odd(n, k):
k, count, p, l, x = k - n * (n + 1) // 2 + 1,
0, 0, [0 for i in range(n)], 1

while k > 0:
p += 2
k, count = k - n + p, count + 1

for i in range(n, n - count, -1):
l[x] = i
x += 2

k = -k
l[2 * count - 1 + k], p = n - count + 1, 1
for i in range(n):

if l[i] == 0:
l[i] = p
p += 1

return l

def main():
t = int(input())
for _ in range(t):

n, k = map(int, input().split())
permutation = find_permutation(n, k)
if permutation is not None:

print(*permutation)
else:

print(-1)

main()

(b) Transformed program

Figure 14: Original and transformed programs

30

import sys

num=int(sys.stdin.readline())
s=sys.stdin.readline().split()
sky=list(map(int,s))
sky.reverse()
cuts=0
change=0
t=False
i=1

while i<len(sky):
if sky[i]<=sky[i-1]:
for j in range(i-1,-1,-1):

if sky[j]<=sky[i]-(i-j):
break

else:
change+=sky[j]-(sky[i]-(i-j))

if change>=sky[i]:
change=sky[i]
t=True
break

cuts+=change

if t:
del sky[i]
t=False
i-=1

else:
for j in range(i-1,-1,-1):
if sky[j]<sky[i]-(i-j):
break
else:
sky[j]=sky[i]-(i-j)

i+=1

change=0

print(cuts)

(a) Original program

import sys

def count_operations(heights):
cuts = 0
change = 0
t = False
i = 1
while i < len(heights):

if heights[i] <= heights[i - 1]:
change = calculate_change(heights, i)
cuts += change
if t:

del heights[i]
t = False
i -= 1

else:
update_heights(heights, i)

i += 1
change = 0

return cuts

def calculate_change(heights, i):
change = 0
t = False
for j in range(i - 1, -1, -1):

if heights[j] <= heights[i] - (i - j):
break

else:
change += heights[j] - (heights[i] - (i

- j))
if change >= heights[i]:

change = heights[i]
t = True
break

return change

def update_heights(heights, i):
for j in range(i - 1, -1, -1):

if heights[j] < heights[i] - (i - j):
break

else:
heights[j] = heights[i] - (i - j)

def main():
num_sky_scrappers = int(sys.stdin.readline())
heights = list(map(int, sys.stdin.readline().
split()))

heights.reverse()
cuts = count_operations(heights)
print(cuts)

main()

(b) Transformed program

Figure 15: Original and transformed programs

31

	Introduction
	Methodology
	Transformations for data cleaning
	Code Data-Cleaning

	Experimental Setup
	Benchmarks
	Data Transformations
	Experiment Details

	Experimental Results
	Analysis of the transformed programs
	Main Results
	Effect of modularization
	Effect of planning annotations
	Ablations
	Comparison to Other Baselines
	Case study of generated modularized program

	Related Work
	Discussion and Conclusion
	Experimental Setup
	Code Transformations Implementation
	Renaming
	Modularization
	Planning

	Additional Results
	GPT-4 Judge Evaluation for the transformations
	APPS-Competition Results
	Ablation on choice of model

	Additional Related Work
	Examples of Transformed Program

