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• We predicted Chlorophyll-a levels, 
harmful algal bloom indicator, by ML 
algorithms. 

• We built models by multi-source phys
ical, geochemical, climate, and land use 
data. 

• One-month lead predictions are more 
accurate than current-month 
predictions. 

• Tree-based machine learning algorithms 
predicted Chl-a levels more accurately. 

• HAB in Biscayne Bay was impacted most 
by land use of upstream Miami and 
nutrients.  
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A B S T R A C T   

Coastal harmful algal blooms (HABs) have become one of the challenging environmental problems in the world's 
thriving coastal cities due to the interference of multiple stressors from human activities and climate change. Past 
HAB predictions primarily relied on single-source data, overlooked upstream land use, and typically used a single 
prediction algorithm. To address these limitations, this study aims to develop predictive models to establish the 
relationship between the HAB indicator – chlorophyll-a (Chl-a) and various environmental stressors, under 
appropriate lagging predictive scenarios. To achieve this, we first applied the partial autocorrelation function 
(PACF) to Chl-a to precisely identify two prediction scenarios. We then combined multi-source data and several 
machine learning algorithms to predict harmful algae, using SHapley Additive exPlanations (SHAP) to extract 
key features influencing output from the prediction models. Our findings reveal an apparent 1-month autore
gressive characteristic in Chl-a, leading us to create two scenarios: 1-month lead prediction and current-month 
prediction. The Extra Tree Regressor (ETR), with an R2 of 0.92, excelled in 1-month lead predictions, while the 
Random Forest Regressor (RFR) was most effective for current-month predictions with an R2 of 0.69. Addi
tionally, we identified current month Chl-a, developed land use, total phosphorus, and nitrogen oxides (NOx) as 
critical features for accurate predictions. Our predictive framework, which can be applied to coastal regions 
worldwide, provides decision-makers with crucial tools for effectively predicting and mitigating HAB threats in 
major coastal cities.  
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1. Introduction 

Large-scale algal blooms have evolved into a significant environ
mental challenge in many major water systems worldwide over recent 
decades (Paerl et al., 2014; Wells et al., 2015; Griffith and Gobler, 2020; 
Xia et al., 2020; Anderson et al., 2021). These coastal algal blooms are 
influenced by hydrological and geochemical factors, such as flow rate 
and nutrient concentrations, which are in turn affected by human ac
tivities and climate change (Hinder et al., 2012; Zhou et al., 2021; 
Medina et al., 2022). Certain harmful algae species, primarily diatoms 
and dinoflagellates, can proliferate rapidly under specific conditions like 
warm temperatures and excessive nutrients, leading to harmful algal 
blooms (HABs) (Glibert et al., 2018). HABs in coastal waters have been 
documented in numerous coastal zones within the United States (U.S.). 
For example, a coast-wide bloom of the toxic diatom Pseudo-nitzschia 
along the west coast of North America led to the largest recorded 
neurotoxin outbreak in spring of 2015, resulting in extensive closures of 
various economic seafood industries for prolonged periods (McCabe 
et al., 2016). Additionally, blooms of the dinoflagellate Karenia brevis are 
observed almost annually in Florida's Gulf of Mexico (Anderson et al., 
2021). These blooms sometimes drift from southwest Florida to its east 
coast causing fish and shellfish mortality, respiratory irritation in 
humans, and seawater discoloration (Weisberg et al., 2019). Given the 
associated risks HABs pose to human health, the economy, and the 
ecological environment, it is essential to predict HAB occurrences 
accurately. Identifying key influencing factors is crucial for imple
menting preventive measures well ahead to mitigate potential losses. 
(Fleming et al., 2011; Kouakou and Poder, 2019). 

The formation of HAB is usually the result of a combination of multi- 
factors reaching a suitable growth environment (Wells et al., 2015). The 
factors contributing to the development and persistence of many HABs 
include eutrophication and deterioration in water quality, especially 
excess nitrogen and phosphorus, and climate change (Glibert, 2020; 
Zhou et al., 2022). However, many studies focused on investigating the 
effects of nutrients and climate drivers, such as temperature and pH, on 
HABs individually (i.e., examining one factor at a time) or considered 
only a limited number of factors (Glibert, 2020). For example, Wang 
et al. (2021) applied Global Nutrient Model to simulate nutrient 
discharge and predict HAB persistence in Chinese coastal areas but 
overlooked various climate factors. Using a meta-analysis, Brandenburg 
et al. (2019) demonstrated that higher temperatures and elevated CO2 
would enhance marine harmful algae growth in temperate regions. 
However, these experiments typically used control variate approaches to 
alter a single factor like CO2 or water temperature - an overly simplistic 
assumption that may not hold true in complex estuarine environments. 
Vilas et al. (2014) incorporated several physical and climate factors, 
including temperature, salinity, and upwelling index, but excluded 
chemical variables. Maze et al. (2015) analyzed a few physical factors 
like wind speed, flow rate, and loop current without considering the 
impacts of nutrients or meteorological elements on Karenia brevis. These 
studies did not consider the synergistic effects of multiple interacting 
factors and or relied solely on single data sources such as onsite data or 
remote sensing data for predicting HABs, which could lead to increased 
prediction errors and inapplicability due to the oversimplification of 
complex environmental interactions (Yajima and Derot, 2017; Hill et al., 
2020; Izadi et al., 2021; Wells et al., 2015). 

The main prediction methods for HABs include biophysical process- 
based models and empirical-statistical models. Biophysical models 
quantify the physical, chemical, and biological processes that drive 
HABs (Flynn and McGillicuddy, 2018). For example, Walsh et al. (2016) 
developed a 2D dynamic ecological model including several HAB species 
with strict parameterization of the boundary conditions. Baek et al. 
(2021) employed the Environmental Fluid Dynamic Code (EFDC) model 
to produce ocean properties such as retention time to aid in predicting 
Alexandrium catenella blooms. Despite their potential, biophysical 
models are not readily applicable for predicting HABs due to the 

complex nature of these processes, many of which have yet to be 
accurately identified and characterized. Additionally, these models de
mand high data accuracy and intricate parameterization alongside 
specific initial and boundary conditions; therefore their development 
and application at this stage are relatively challenging and cannot ac
count for every essential feature (Roiha et al., 2010). Biophysical models 
for predicting HABs have evolved over time by incorporating a wider 
range of variables, improving parameterization techniques, and 
leveraging advancements in computational power and technology to 
better simulate the complex biological, chemical, and physical processes 
that drive HABs. On the other hand, traditional empirical-statistical 
models quantify relationships between observations by predicting a 
variable's value based on measurements of other variables (Franks, 
2018). Over time they have evolved with variations such as generalized 
linear models (GLM), which offer an advancement over traditional 
empirical-statistical approaches (Franks, 2018). In this case, Singh et al. 
(2014) applied a logistic GLM to categorize Dinophysis concentration in 
the coastal Arabian Sea as above or below a threshold concentration. 
Feki et al. (2013) utilized a mixed-effect GLM to characterize the Karenia 
selliformis blooms in the southwestern Mediterranean Sea. However, a 
significant limitation of these traditional empirical-statistical models is 
their lack of time dependence. While they demonstrate relationships 
between variables, they often fail to capture the underlying dynamics of 
the system (Flynn and McGillicuddy, 2018). Since these models were 
primarily designed to infer relationships between variables rather than 
making predictions directly, their accuracy varies, and sometimes their 
results contradict theoretical expectations (Díaz et al., 2016). Recently, 
new empirical-statistical models, particularly machine learning models, 
have emerged as powerful tools for predicting HABs. 

HAB prediction based on traditional statistical or biophysical models 
has not yet yielded convincing conclusions (Xia et al., 2020). As a result, 
data-driven machine learning models have emerged as ideal alternatives 
and have recently gained popularity due to their significant advantages 
such as the ability to capture temporal dynamics, handle complex in
teractions among variables effectively, process large datasets, and deal 
with non-linear relationships between predictors (Bergen et al., 2019). 
Numerous researchers have utilized machine learning algorithms for 
regression problems such as predicting HAB time series in various 
coastal regions including Tolo Habour (Muttil and Chau, 2006; Deng 
et al., 2021), Galician coast (Vilas et al., 2014), Calabash Bay (Coad 
et al., 2014), Gulf of Mexico (Gokaraju et al., 2011; Li et al., 2021), 
Genoa area (Asnaghi et al., 2017), East China Sea (Xu et al., 2014). These 
models, using data-driven algorithms, establish ‘black-box’ models with 
high accuracy, eliminating the need for representing unknown physical, 
chemical, and biological processes mathematically (Lary et al., 2016). 
However, it is crucial to acknowledge the inherent challenges with 
machine learning models. They can be prone to overfitting if not prop
erly tuned, which may lead to poor generalization of new data. In 
addition, the quality of training data is vital; noisy or incomplete data 
can introduce biases or inaccuracies, undermining model performance. 
Furthermore, selecting an optimal algorithm from a wide array of 
choices can be complex due to their differing assumptions and strengths. 
These challenges underline the importance of careful model develop
ment and validation in using machine learning for HAB prediction. 
There are two types of machine learning models for predicting algal 
blooms: (1) the classification problem of judging whether algal bloom 
occurs and (2) the regression problem of predicting Chl-a or cell con
centrations. In general, classification problems are generally straight
forward to solve but require the appropriate assignment of a “bloom or 
no bloom” threshold (Izadi et al., 2021; Valbi et al., 2019). On the other 
hand, while regression models are more complex, they provide more 
practical numerical results as defining thresholds can be challenging, 
particularly when multiple harmful algae types are present at a specific 
location (Asnaghi et al., 2017; Yu et al., 2021). Multiple studies, such as 
Deng et al. (2021) and Li et al. (2014), have employed lagging strategies 
for predicting HAB time series in advance. In the context of HAB 
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prediction, lagging strategies refer to the use of past data - or ‘lags’ - to 
predict future events. However, few studies have provided compre
hensive explanations for the choice of time lag, potentially diminishing 
the credibility of setting time lags based solely on experiential grounds 
without rigorous statistical testing. Despite the effectiveness of machine 
learning models in prediction, their nonlinear nature often complicates 
interpretability (Jordan and Mitchell, 2015). Therefore, understanding 
the factors influencing harmful algae growth remains pivotal for accu
rate prediction and prevention efforts. Certain applications failed to 
clarify the significance individual features hold or used absolute mean 
value feature importance which could potentially mislead decision- 
makers developing strategies to mitigate or prevent HABs in the 
absence of knowledge about the “crucial features” (Deng et al., 2021; Xia 
et al., 2020; Yajima and Derot, 2017). Hence, extracting the degree of 
positive or negative influences exerted by each factor on HAB growth is 
imperative, enhancing the practical applicability of predictive models. 

Biscayne Bay, our case study site, is located within Miami-Dade 
County in South Florida, and is essential to the quality of life for 
Miami-Dade County residents. Biscayne Bay supports the local economy, 
promotes tourism, and offers countless recreational options. Over the 
decades, rapid population growth in Miami-Dade County has led to 
intense urbanization, agricultural activity, and adjustments to water 
management systems, which are already showing signs of stress due to 
anthropogenic influences (Millette et al., 2019). A recent study found 
that chlorophyll-a (Chl-a) concentration, an accepted indicator of 
eutrophication and HABs, had dramatically increased in the Bay over 20 
years, exceeding the Florida Department of Environmental Protection 
(FDEP) nutrient criteria (Millette et al., 2019; Papenfus et al., 2020). 
Recent algal blooms in August 2020 led to a significant fish kill event in 
Biscayne Bay, resulting in thousands of dead fish. The seagrass coverage 
also was reported to drop considerably due to the excessive growth of 
algae (Santos et al., 2020). However, a noticeable research gap exists in 
predicting chlorophyll-a (Chl-a) concentrations in Biscayne Bay, with 
particularly few studies considering the impacts of upstream land use. 
This is a significant oversight since it is well-known that land use 
strongly influences physicochemical and hydrological factors which can 
exacerbate downstream algal blooms. Urbanization and agriculture can 
lead to increased nutrient runoff like nitrogen and phosphorus into 
water bodies like Biscayne Bay, nutrients essential for algal growth, 
triggering eutrophication leading to HABs. Moreover, alterations due to 
land use changes can modify hydrological flow patterns, potentially 
increasing water retention time and providing more opportunities for 
algae proliferation. While this correlation has been observed and studied 
extensively within freshwater systems (Kim et al., 2021; Norton et al., 
2012), it has been rarely considered in coastal HAB studies. Addressing 
this research gap would not only contribute valuable insights into how 
land use changes influence coastal eutrophication patterns but could 
also inform better resource management strategies aimed at mitigating 
HABs, ultimately protecting both the ecological health of Biscayne Bay 
and its value to the local community. 

Despite human and ecological health risks associated with HABs, 
there is a lack of holistic understanding of factors influencing HABs. 
Previous studies have often overlooked the crucial role of upstream land 
use in contributing to downstream coastal HABs. Additionally, research 
on coastal HABs has primarily relied on either on-site water quality data 
or remote sensing data, with limited integration of multiple data sour
ces. Furthermore, there is a lack of studies that have conducted pre- 
analysis for autocorrelation and comparative testing of machine 
learning model performance, specifically regarding time-series data and 
in-depth feature importance analysis. To address these gaps, we devel
oped a framework to predict coastal HABs considering multiple influ
encing factors including physiochemical parameters, upstream land use, 
and meteorological variables. In an innovative approach, our study 
specifically incorporated upstream Miami-Dade County land use as an 
essential feature impacting the adjacent downstream HABs in Biscayne 
Bay. Our framework integrated data from multiple sources including 

water quality stations, remote sensing assimilation, and upstream land 
use. This comprehensive data integration enhanced the accuracy of Chl- 
a predictions in Biscayne Bay. Water quality station data include the 
features/factors detectable on-site influencing HAB growth, and remote 
sensing assimilation data can provide additional information about 
climate, adding depth to the dataset (Wells et al., 2015). To determine 
the appropriate time lag for our model and avoid relying on uncertain 
experiences that may introduce errors, we applied a statistically quan
tified method called partial autocorrelation function (PACF) during the 
model establishment phase. Furthermore, this study utilized eight ma
chine learning algorithms to identify the best algorithm for the data 
structure in our case study and explainable tools, SHAP values, to 
explore the important features influencing HABs. Given the gaps iden
tified in previous research, the objectives of this research are (1) 
determining the autoregressive characteristics of chlorophyll-a and the 
proper time lag for prediction; (2) identifying the best performance 
machine learning algorithm for predicting HAB in Biscayne Bay while 
considering multiple data sources and land use; and (3) discovering the 
important features of harmful algae growth and bloom formation. The 
developed HAB prediction framework with a clear and distinct flow 
chart can be easily applied to any other coastal area worldwide. We 
expect that the HAB prediction framework established in Biscayne Bay 
can help scientists and stakeholders understand the formation mecha
nisms of HABs and provide an applied reference, and theoretical guid
ance, or even a prediction standard framework, for the protection of 
coastal ecological systems around the world. 

2. Materials and methods 

This study predicts Chl-a concentrations in Biscayne Bay, an 
accepted indicator of HABs, by employing data-driven methods and 
integrating multiple data sources. Our approach is based on two pre
diction scenarios. In doing so, we employed eight machine learning al
gorithms incorporating 24 years of monthly field observations, climate 
data, and land use data to predict chlorophyll-a from 1997 to 2020. 
Since HAB may exhibit autoregressive characteristics, where past values 
influence future ones, we constructed two distinct prediction scenarios. 
The first scenario involved predicting Chl-a concentrations for the cur
rent month, while the second scenario aimed at predicting Chl-a levels 
one month in advance. These scenarios were designed after determining 
the autoregressive properties of HABs. Finally, we analyzed the key 
drivers of the best-performing models in both scenarios separately. 

2.1. Study area, modeling variables, and data collection 

Our study focuses on Biscayne Bay, the largest oligotrophic estuary 
on the southeast Florida coast bordering Miami-Dade County along the 
Atlantic Ocean, covering about 700 km2 (see Fig. 1). We divided the 
northern, central, and southern watersheds based on a combination of 
sub-watersheds provided by the South Florida Water Management Dis
trict (SFWMD). Based on available data on Biscayne Bay, we selected 
hydrogeological and geochemical, climate, and land use drivers as 
representative features and chlorophyll-a as the target for machine 
learning modeling (Table 1). Chlorophyll-a (Chl-a) is one of the essential 
components of algal cells used in oxygenic photosynthesis, which is a 
predominant surrogate to reflect the algal abundance in HAB in
vestigations (Deng et al., 2021; Ly et al., 2021). Physiochemical vari
ables include ammonia nitrogen, nitrate/nitrite, dissolved oxygen, pH, 
water temperature, total phosphorus, and turbidity. Climate drivers 
include air temperature, wind speed, shortwave radiation, specific hu
midity, and precipitation. Land use drivers include percent developed 
land use and percent agricultural land use (Table 1). We addressed 
multicollinearity, a statistical phenomenon that distorts the interpreta
tion of the model, inflates the standard errors of the coefficients, and 
makes estimates extremely sensitive to minor changes in the model. We 
carefully evaluated the correlation among our independent variables to 
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mitigate these risks. As illustrated in Supplementary information Fig. S2, 
we found a perfect negative correlation (correlation coefficient r =

−1.00, SI Fig. S2) between the percent of developed land use and the 
percent of agricultural land use. Considering the more severe HABs in 
the northern Biscayne Bay (Fig. 3) and the highly urbanized nature of its 
upstream areas (Fig. 1), we excluded the agricultural percent from our 
analysis to mitigate multicollinearity issues. Regarding other instances 
of high correlation (r > 0.8, SI Fig. S2), these are primarily observed 
among climatic variables. However, considering that our dataset has a 
significantly larger number of samples compared to features, we were 
cautious about reducing features further to avoid losing valuable in
formation. This approach allows us to maintain a balance between 
capturing a comprehensive set of influencing factors and ensuring the 
robustness of our model. It ensures that our model, including the 
interpretation of SHAP values, accurately reflects the contribution of 
each feature, thus providing more reliable insights into the dynamics 

influencing HABs. 
All collected data have been subjected to thorough Quality Assur

ance and Quality Control (QA/QC) processes by their respective orga
nizations. Additionally, we assessed extreme outliers, defined as data 
points exceeding 3* the interquartile range (IQR), and set the extreme 
outliers as missing values to ensure the highest data integrity. We 
received 12 station water quality data provided by the Miami-Dade 
Division of Environmental Resources Management (DERM). The data 
includes chlorophyll-a (Chl-a), ammonia nitrogen, nitrate/nitrite (NOx), 
dissolved oxygen (DO), pH, water temperature, total phosphorus (TP), 
and turbidity, provided by the Miami-Dade Division of Environmental 
Resources Management (DERM). Limited missing values were primarily 
found in the even-numbered months of the data provided by DERM from 
1997 to 1999. We implemented the autoencoder (a neural network al
gorithm) to fill in missing data within this dataset. The average Chl-a 
concentrations of 12 water quality stations have a boosting trend in 

Fig. 1. The study area of Miami-Dade County and Biscayne Bay, including the locations of 12 water quality stations and various land use areas within Miami-Dade. 
Please note that the northern, central, and southern watersheds were divided by the combination of sub-watersheds provided by the South Florida Water Man
agement District (SFWMD). 
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the bay during our study period (SI Fig. S1). We acquired climate data, 
including air temperature, wind speed, shortwave radiation, specific 
humidity, and precipitation, from North American Land Data Assimi
lation System (NLDAS) Primary Forcing Data L4 Monthly 0.125 * 0.125 
degree V002, Greenbelt, Maryland, USA, Goddard Earth Sciences Data 
and Information Services Center (GES DISC), Accessed: February 2022 
(Xia et al., 2012). We obtained land use data from the National Land 
Cover Database (NLCD) in 2001, 2004, 2006, 2008, 2011, 2013, 2016, 
and 2019 (Dewitz and U.S. Geological Survey, 2021). We calculated the 
developed percent and agricultural percent by the sub-watershed data 
from the South Florida Water Management District and the NLCD from 
the U.S. Geological Survey for each of the three regions. To bridge the 
gaps between these years with available land use data, we employed 
methods of linear interpolation and polynomial extrapolation. Devel
oped/agricultural percents are the developed/agricultural area divided 
by the total area except for open water and wetlands, which account for 
a large portion of the regions. If they were not removed, the data would 
not be comparable across watersheds. After addressing missing values, 
we assigned the calculated yearly developed and agricultural percent
ages to each month within the same year for the respective sub- 
watersheds. 

2.2. Autoregressive analysis of chlorophyll-a time series data in predictive 
modeling 

Autoregressive characteristics refer to the regression relationship 
between a current value in a time series and its immediate predecessor. 
Given that many time series datasets possess autoregressive traits, we 
aimed to determine the optimal scenario for predicting Chl-a through 
autoregressive analysis. Identifying these autoregressive characteristics 
in Chl-a time series data is crucial for our study as it helps us capture 
temporal dependencies that can improve prediction accuracy. The Par
tial Autocorrelation Function (PACF) provides partial correlation, which 
is different from simple autocorrelation, by defining the relationship 
between time series observations and preceding observations while 
eliminating interference from other lags. This is particularly beneficial 
when analyzing time series data with autoregressive characteristics as it 

allows us to isolate and understand each lag's unique contribution rather 
than their combined effect as captured by simple correlation. We used 
Chl-a time series data to verify if they exhibited autoregressive traits 
using PACF. To illustrate the results of the autoregression analysis, we 
applied the ‘graphics.tsaplots.plot_pacf’ function from Python's ‘stats
models’ package. This enabled us to describe the PCCs of Chl-a's 1–12 
month time steps across 12 stations (Seabold and Perktold, 2010). When 
PCC is close to +1/−1, it indicates a strong positive/negative correlation 
signifying pronounced autoregressive characteristics. Conversely, when 
PCC approaches zero, it suggests an absence or minimal presence of 
autoregressive characteristics. Significant autocorrelation at specific 
lags was identified where p < 0.05 or where confidence intervals did not 
cross zero at the 95th percentile. 

2.3. Application and performance evaluation of machine learning models 

We analyzed the monthly PCC results for each station. Only the PCCs 
that either passed the significance test (p < 0.05) or fell outside the 
established confidence interval were deemed to exhibit autoregressive 
characteristics (Coad et al., 2014; Deng et al., 2021; Li et al., 2014; Xia 
et al., 2020). Upon identifying these significant lags using PACF, we 
carefully integrated this information into our next step, developing ML 
models. This was achieved by using the lags as inputs for the models, 
allowing them to capture the temporal dependencies and patterns in the 
time-series Chl-a data. By incorporating the lags, the ML models are 
better equipped to understand and predict the temporal dynamics of 
HABs in Biscayne Bay. Based on this, we choose to implement two 
prediction scenarios for the HAB of Biscayne Bay: current month Chl-a 
prediction and specific month lead Chl-a prediction. Given the incom
plete understanding of complex physiochemical processes in HAB spe
cies, we utilized data-driven machine-learning algorithms for HAB 
prediction. Limited studies have focused on the monthly prediction of 
Chl-a concentrations, which presents unique challenges due to the 
complex nature of environmental data, including non-linearity, high 
dimensionality, and variable interactions. To address these challenges, 
we aimed to identify the best-performing ML algorithms for predicting 
Chl-a concentrations in Biscayne Bay. Common supervised machine 
learning algorithms for regression encompass linear models like Linear 
Regression, tree-based methods such as Decision Trees (fundamental) 
and Random Forests (ensemble learning), Support Vector Machines 
adept at complex function mapping with kernel function selection, 
Neural Networks, known for their adaptability and ability to handle 
noisy data, and Gaussian Process Models, valued for their probabilistic 
approach and capability to estimate uncertainty in predictions (Gra
macy, 2020; Ray, 2019). Our selection process involved five represen
tative ML algorithm categories, encompassing eight algorithms in total, 
each chosen for its distinct advantages in environmental analysis. (1) A 
linear model (Multivariable Linear Regression – MLR). This model, 
assuming a linear relationship between input and output variables, is 
straightforward and provides a baseline for comparison. The scenario of 
predicting HABs may be too complex for the MLR. However, it still 
serves as an excellent benchmark to determine the extent of improve
ment offered by other non-linear ML algorithms compared to a linear 
model. (2) Tree-based models including Decision Tree Regression 
(DTR), Extreme Gradient Boosting Regression (XGBR), Random Forest 
Regression (RFR), and Extra-Trees Regression (ETR). These models excel 
in handling complex environmental datasets due to their high inter
pretability and ability to manage numerical and categorical data. They 
are particularly effective in capturing non-linear relationships and in
teractions among variables and common in environmental data (Yajima 
and Derot, 2017). (3) Support Vector Machine in the form of Support 
Vector Regression (SVR), often chosen for its effectiveness in high- 
dimensional spaces. SVR is adept at handling the intricate patterns 
found in environmental datasets, making it a robust choice for complex 
data analysis (Vilas et al., 2014). (4) Gaussian Process Model through 
Gaussian Process Regression (GPR). This non-parametric method is 

Table 1 
Summary of the target (dependent variable) and features (independent vari
ables) in the prediction of HAB.  

Variable and unit Definition Data 
source 

Chlorophyll-a (ug/L) Representative of HABs DERM 
Ammonia nitrogen 

(mg/L) 
Concentration of ammonia nitrogen at gage 
location 

DERM 

Nitrate/nitrite (mg/ 
L) 

Concentration of NOx at gage location DERM 

Dissolved oxygen 
(mg/L) 

Concentration of dissolved oxygen at gage 
location 

DERM 

pH pH at gage location DERM 
Water temperature 

(◦C) 
Water temperature at gage location DERM 

Total phosphorus 
(mg/L) 

Concentration of the sum of all phosphorus 
compounds that occur in various forms at gage 
location 

DERM 

Turbidity or water 
clarity (NTU) 

Cloudiness of a fluid caused by suspended 
solids 

DERM 

Air temperature (◦C) 2-m above ground air temperature for an area NLDAS 
Wind speed (m/s) 10-m above ground wind speed for an area NLDAS 
Shortwave radiation 

(W/m2) 
Shortwave radiation flux downwards for an 
area 

NLDAS 

Specific humidity 
(kg/kg) 

2-m above ground specific humidity for an 
area 

NLDAS 

Precipitation (kg/m2) Precipitation monthly total for an area NLDAS 
Percent developed 

land use (%) 
Ratio of developed area to total land area NLCD 

Percent agricultural 
land use (%) 

Ratio of agricultural area to total land area NLCD  
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valuable for its provision of uncertainty measures along with pre
dictions. GPR offers advantages for environmental data with consider
able uncertainty (Gramacy, 2020). (5) A neural network approach via 
Multi-layer Perceptron Regression (MLPR). MLPR is suitable for 
capturing the intricate and often non-linear patterns present in large 
environmental datasets (Huang et al., 2019). By encompassing a diverse 
range of machine learning approaches, our study provides a compre
hensive comparison in Chl-a concentration prediction across different 
types of models. 

Each algorithm was employed to develop two models: a) predicting 
the current month's Chl-a levels and b) predicting a specific month lead's 
Chl-a levels. All models were developed under the framework of 
‘sklearn’, ‘numpy’, and ‘pandas’ packages and used grid search to find 
the best hyperparameters for each model (Pedregosa et al., 2011). In this 
process, grid search was employed to systematically explore a wide 
range of hyperparameter values, enhancing the likelihood of identifying 
the optimal global solution for all critical parameters. This method 
proved effective in our context, allowing for a thorough yet efficient 
tuning given the small size of our dataset. The XGBR additionally 
employed the ‘xgboost’ package (Chen and Guestrin, 2016). The training 
set consisted of data from 1997 to 2015, accounting for approximately 
79 % of the total dataset, while the test set comprised data from 2016 to 
2020, representing approximately 21 % of the dataset. The 79 %–21 % 
split between the training and test sets was chosen to ensure a robust 
learning process while still maintaining an adequate set for validation. A 
larger training set (79 %) provides ample data for the models to learn 
effectively, while the test set (21 %) allows us to assess how well these 
models perform on unseen data, ensuring they can generalize beyond 
their training period. To determine the effectiveness of predictive ma
chine learning models, we selected five metrics designed specifically for 
regression problems, including R2 (coefficient of determination), MAE 
(mean absolute error), MSE (mean squared error), MAPE (mean absolute 
percentage error), and MedAE (median absolute error). 

2.4. Relative importance of factors influencing chlorophyll-a 
concentrations 

Machine learning models often pose challenges in terms of explain
ability, with a general trend of decreased interpretability as accuracy 
increases (Gilpin et al., 2018; Lipton, 2018). To bridge this gap, we 
employed SHAP values from the game theory-based ‘shap’ package to 
assess the relative importance of each feature influencing HAB (Lund
berg et al., 2020; Pedregosa et al., 2011). The ‘shap.explainer’ function 

enabled us to plot feature importance for global explainability, facili
tating a better understanding of decision-making within our models. 

3. Results 

3.1. Spatiotemporal variations of chlorophyll-a levels in Biscayne Bay 

This study aimed to develop predictive models for HABs using multi- 
source data and machine learning algorithms, focusing on the rela
tionship between the HAB indicator - chlorophyll-a (Chl-a) and various 
environmental stressors. We identified key influencing features and 
established accurate prediction scenarios, thereby aiding decision- 
makers in the early detection of potential HAB threats. We analyzed 
Chl-a concentrations measured at 12 Biscayne Bay stations from 1997 to 
2020 on yearly (Fig. 2a) and monthly scales (Fig. 2b). As shown in 
Fig. 2a, there was a noticeable increase in Chl-a concentrations during 
2005–2007, with 2006 experiencing the highest average concentration 
at 3.1 μg/L, indicating a substantial outbreak of HABs during this period. 
Notable peaks also occurred in 2014 (1.7 μg/L), 2017 (1.8 μg/L), and 
2020 (1.9 μg/L). In contrast, lower averages were recorded in years like 
1998 (0.9 μg/L) and 2009 (1.0 μg/L). In addition, SI Fig. S1a displays the 
average Chl-a concentrations and their linear fit collected from the 12 
stations in Biscayne Bay between 1997 and 2020, illustrating an upward 
trend in average Chl-a concentration throughout the research period. 
Substantial outbreaks were noted in 1999, followed by an extended 
bloom from 2005 to 2007. Further outbreaks were observed in subse
quent years: specifically, in 2010, 2014, 2017, and 2020. Overall, an 
increasing trend of Chl-a concentrations was observed throughout the 
study period, particularly after 2005, with the majority of average 
concentrations above 1.0 μg/L (see Fig. 2a and SI Fig. S1a). Similarly, 
after 2005, outliers became more pronounced and were characterized by 
more extreme values. 

Analysis of the monthly averaged Chl-a concentration, as shown in 
Fig. 2b, indicates that the period from late spring to early fall may be 
particularly susceptible to high occurrences of HABs and ecosystem 
vulnerability. Specifically, from May to November, Chl-a concentrations 
were substantially elevated, exhibiting an increase of 31 % compared to 
other months within the year. The elevated Chl-a concentrations from 
late spring to early fall, as shown in Fig. 2b, are likely due to several 
seasonal environmental factors that favor the growth of HABs. During 
these months, warmer temperatures can stimulate algal growth by 
accelerating their metabolic and reproductive rates. This period often 
coincides with increased rainfall, which can lead to higher nutrient 

Fig. 2. Box and whisker plot of average chlorophyll-a concentrations in Biscayne Bay from 1997 to 2020. (a) Yearly scale, (b) monthly scale. The box portion of the 
box plot includes the 25th to 75th percentile data, and the horizontal line is the median. The square symbol stands for the mean value. The rhombus symbol 
represents the outlier. Any value that is 1.5 * IQR greater than the third quartile is designated as an outlier. 
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runoff from surrounding lands into the bay, further fueling algal blooms. 
Spatial variation in Chl-a concentration over two twelve-year periods, 
1997–2008 (Fig. 3a) and 2009–2020 (Fig. 3b), is detailed in Fig. 3. The 
highest Chl-a concentrations were observed in northern Biscayne Bay 
(2.1 μg/L), while the southern and central regions recorded relatively 
lower concentrations at 1.1 μg/L and 0.7 μg/L respectively. Over time, 
an increase in Chl-a concentrations was noted in the northern and cen
tral areas of Biscayne Bay, whereas a decrease was observed in the south 
(see Fig. 3 and Table S1). This spatial-temporal trend underscores po
tential HAB issues during late spring to early fall, especially in northern 
and central regions where upstream areas are highly urbanized. There
fore, these findings highlight both temporal vulnerability (late spring to 
early fall) due to seasonality factors like temperature increases and 
nutrient availability; as well as spatial vulnerability with more 

urbanized northern and central regions showing higher Chl-a concen
trations over time. 

3.2. Autoregressive characteristics of chlorophyll-a concentrations 

We investigated the presence of autoregressive characteristics, which 
refer to the regression relationship between a current value in a time 
series and its immediate predecessor, in Chl-a concentrations from water 
quality stations in Biscayne Bay. In our analysis of Chl-a concentrations 
in Biscayne Bay, we relied on the Partial Autocorrelation Function 
(PACF) to determine the optimal lead time for HAB predictions. The 
partial autocorrelation coefficients (PCCs) from each station demon
strated significant autoregressive characteristics for Chl-a concentra
tions at a one-month interval (n = 11 out of 12) instead of more than it, 

Fig. 3. Spatial distribution of average chlorophyll-a concentration (μg/L) at water quality stations in Biscayne Bay. (a) From 1997 to 2008, (b) from 2009 to 2020. 
The inverse distance weighting (IDW) was employed as the spatial interpolation method to visualize the spatial variation. Average Chl-a concentrations for each site 
during their respective study periods are provided in parentheses. An upward-pointing red triangle indicates an increase in average concentration, while a 
downward-pointing green triangle denotes a decrease. 
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primarily because the autoregressive features for intervals beyond one 
month did not consistently pass the significance tests (Fig. 4). The 
autoregressive relationship's predictive strength and statistical signifi
cance diminished for longer intervals (Fig. 4). This trend indicated that 
while Chl-a levels of a given month are significantly influenced by the 
preceding month, this influence does not extend as consistently to 
further past months. Therefore, focusing on a one-month lead time for 
HAB predictions is statistically justified for capturing the dynamics of 
Chl-a concentrations in Biscayne Bay. This pattern was evidenced by a 
high correlation between current and subsequent month Chl-a levels 
across nearly all stations (p < 0.05), as depicted in Fig. 4. Therefore, we 
designed a 1-month lead prediction scenario where we predict the next 
month's Chl-a concentrations using the historical data. While certain 

time steps have passed significance tests at specific sites, such as two 
months for BB14, three months for BB51, and four months for BB38, 
choosing a 1-month time step that most sites passed the significance test 
is the most rational approach for the entire bay. However, at station 
CD01A, no significant autoregressive pattern was found. This means that 
there was not a strong correlation between the current month's Chl-a 
levels and the subsequent month's levels at this station. This may be 
because many studies have found that the life cycle of coastal harmful 
algae is less than or inconsistent with one month (see details in Sections 
4.1 and 4.2). As a result, relying solely on past data to predict future 
values may not be effective. In light of this, we introduced a second 
scenario where we predict current-month Chl-a concentrations. This 
allowed us to develop more accurate predictions by leveraging 

Fig. 4. Partial Autocorrelation Function (PACF) results of chlorophyll-a concentrations across all stations. The dark blue shade represents the 95 % confidence 
interval. If partial correlation coefficients lie outside this confidence interval, it indicates a strong correlation between the current value in a time series and its 
immediate predecessor. 
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autoregressive characteristics where they were present while also ac
commodating situations where such patterns were absent or less 
pronounced. 

3.3. Predictive modeling of coastal algal blooms by multiple machine 
learning algorithms 

We predicted Chl-a concentrations in Biscayne Bay using Environ
mental Stressors integrated into eight machine-learning algorithms. 
Building on the autoregressive characteristics of Chl-a levels outlined in 
Section 3.2, we hypothesized that predictive models incorporating data 
on Chl-a concentrations from one month prior could enhance prediction 
accuracy. To validate this hypothesis and identify the most effective 
machine learning algorithms, we deployed these eight algorithms to 
predict Chl-a concentrations in Biscayne Bay under two scenarios: 
current-month prediction and one-month lead prediction, which resul
ted in a total of 16 models for evaluation. 

The prediction results for each algorithm under both scenarios, the 
current-month prediction and 1-month lead prediction, are presented in 
Tables 2 and 3, respectively. Our findings indicated that RFR performed 
best for current-month predictions (Table 2), while ETR excelled at one- 
month lead predictions (Table 3). Fig. 5 summarizes the performance of 
each algorithm (based on R2 for the test) under both scenarios and in
cludes an efficiency frontier plot to visually represent their relative 
performances. According to Caro et al. (2010), entities operating on the 
efficiency frontier are considered optimal within a given system; thus 
indicating RFR and ETR as top-performing algorithms in our study. In 
addition, the ETR model for one-month lead prediction outperforms all 
other models across both scenarios, indicating that 1-month lead pre
diction is achievable in our case study. 

Fig. 6 depicts the performance of the two most effective models (i.e., 
ETR for 1-month lead prediction and RFR for current-month prediction) 
alongside differences between predicted and observed values across the 
entire dataset. Scatter density plots (Fig. 6a for ETR and Fig. 6c for RFR) 
indicate the concentration of data points and display the overall linear 
fits for both algorithms, while scatter training/test plots (Fig. 6b for ETR 
and Fig. 6d for RFR) provide separate visualizations of the training set 
and test set alongside their respective linear fits, facilitating a better 
understanding of the data distribution and model performance in the 
context of test versus train scenarios. As shown in Fig. 6, the ETR in the 
1-month lead prediction slightly outperformed RFR in the current- 
month prediction, indicated by higher R2 and lower scores in other 
evaluation metrics. Generally, the predicted values are found to be lower 
than the observed ones. In addition, both models appear to struggle with 
accurately predicting extreme values. Overall, The prediction results are 
generally satisfactory, with R2 values surpassing 0.4 for both test data
sets using ETR and RFR under both scenarios. We presented the time 
series plots of the two best-performing models for each scenario for all 
stations, where most data points fall within the 50 % error range (see SI 
Fig. S3 and SI Fig. S4). In light of our findings, 1-month lead prediction 
with the ETR model provides a reliable approach for predicting Chl-a 
concentrations, despite the inherent challenges in predicting extreme 

values. 

3.4. Identification of important features for coastal algal blooms in 
Biscayne Bay 

Machine learning models can generate accurate predictions. How
ever, understanding the underlying signals that these models rely on for 
decision-making can often be challenging. To better understand the key 
inputs influencing Chl-a predictions in our models, we evaluated feature 
importance using the ‘shap’ package that can explain the importance 
based on game theory. Fig. 7 visualizes the relative importance of input 
features on the output of the two best-performing models (ETR for 1- 
month lead prediction and RFR for current-month prediction). Fig. 7a 
indicates that the developed percent, total phosphorous, and NOx are 
the three most influential features in both models. Fig. 7b reveals that 
for the ETR model predicting 1-month ahead, the current month's Chl-a 
concentration is the most significant feature, followed by developed 
percent and precipitation. Fig. 7c presents that in the RFR model pre
dicting for the current month, developed percent, total phosphorus, and 
NOx hold maximum importance. In both models, wind speed appears to 
be the least important feature among all considered inputs. 

4. Discussion 

4.1. The spatiotemporal distribution and autoregressive characteristics of 
chlorophyll-a 

Our study's primary objective was to examine the spatiotemporal 
distribution and autoregressive properties of Chl-a in Biscayne Bay, 
aiming to understand potential temporal and spatial scales of HABs and 
improve their prediction. Our analysis revealed distinct periods with 
higher median and extreme Chl-a concentrations, specifically 
2005–2007, 2010, 2014, 2017, and 2020, as compared to other times 
(Fig. 2a). The increase in Chl-a concentrations has been associated with 
seagrass degradation and macroalgae takeover as reported by Rudnick 
et al. (2006), Collado-Vides et al. (2013), and Santos et al. (2020). 
Fig. 2b indicates elevated levels of Chl-a concentrations from June to 
November (i.e., the wet season), implying an increased likelihood of 
HAB occurrences in Biscayne Bay during summer and autumn. However, 
this does not rule out the possibility of HABs occurring in South Florida's 
dry season from December to May. For example, Santos et al. (2020) 
applied satellite data to suggest that Anadyomene spp blooms peaked 
during February (dry season) and November, which indicates that 
blooms can occur even in the dry season. However, their study did not 
investigate blooms throughout all months but focused only on the dry 
season to allow for image selection with minimal cloudiness and sun
light reflection effects. In addition, their findings revealed that a post- 
bloom stage was reached in November 2014 and 2015, suggesting that 
the blooms likely peak before November, the end of the wet season. 
Therefore, based on the collective evidence from both studies, it can be 
concluded that the wet season continues to be the most probable time
frame for the occurrence of large-scale algal blooms. This knowledge is 

Table 2 
Current-month prediction results for each algorithm with metrics.  

Algorithm R2 MAE MSE MAPE MedAE 

Training Test Training Test Training Test Training Test Training Test 

MLR  0.26  0.21  0.90  1.00  2.22  2.22  1.37  1.23  0.56  0.74 
DTR  0.47  0.40  0.67  0.78  1.57  1.69  0.89  0.63  0.31  0.44 
SVR  0.41  0.37  0.64  0.78  1.77  1.78  0.64  0.66  0.29  0.47 
GPR  0.68  0.31  0.56  0.84  0.95  1.95  0.74  0.77  0.29  0.51 
XGBR  0.62  0.42  0.60  0.78  1.12  1.65  0.83  0.67  0.33  0.45 
RFR  0.69  0.44  0.45  0.74  0.92  1.59  0.48  0.58  0.18  0.38 
ETR  0.75  0.41  0.45  0.76  0.75  1.66  0.50  0.65  0.20  0.43 
MLPR  0.62  0.37  0.59  0.76  1.13  1.79  0.76  0.63  0.31  0.36a  

a Note: the metrics of the best-performing algorithm are bolded. 
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crucial as it helps us identify potential high-risk periods for HABs, thus 
informing timely preventive measures. 

Recent changes to Biscayne Bay's condition have raised concerns 
about ongoing ecological deterioration (Collado-Vides et al., 2011). 
Eutrophication is widely believed to be a factor in causing HAB occur
rence, and developed areas are prone to produce more pollutants that 
cause eutrophication (Anderson et al., 2002; Heisler et al., 2008; Glibert, 
2020). As shown in Fig. 3, Chl-a concentrations are higher in the 
northern bay than in other regions. This pattern likely results from 
excessive pollution from Miami-Dade County, which is located upstream 
of northern Biscayne Bay and is characterized by high urbanization and 
population density (Fig. 1 and SI Fig. S1b). Carey et al. (2011) further 
suggested a connection between land use in Miami-Dade County and 
nutrient levels in the bay and canals. Evidence supporting this includes 
reported fish kills in the northern bay and signs of seagrass cover loss 
over recent years (Santos et al., 2020). Millette et al. (2019) reported a 
significant increase in Chl-a concentrations throughout Biscayne Bay 
from 1995 to 2014. However, our study found varied degrees of increase 
across all regions except for South Bay, comprising Barnes Sound and 
Card Sound, during different periods compared to findings from Millette 
et al. (2019). While development in the northern watershed reached its 
peak with minimal increase during our study period, development 
within central and southern watersheds increased substantially (SI 
Fig. S1b). In this case, there was a considerable decrease in Chl-a con
centration in the south bay, which is likely due to a substantial decline in 
agricultural land area. During the period from 1997 to 2008, many 
fertilizers were washed into South Bay by rainfall, potentially leading to 

algal proliferation. However, between 2009 and 2020, as developed 
areas increased and agricultural land decreased, the severity of eutro
phication might have lessened due to a reduction in total pollutants. This 
change could explain the observed decrease in Chl-a levels during this 
period. This finding underscores the need for targeted environmental 
management strategies in these areas to mitigate eutrophication and 
prevent HAB occurrence. 

Investigating the autoregressive characteristics of algal concentra
tions is crucial for predicting HABs. Previous studies have shown that 
different algal species may reach peak concentrations at varying time 
intervals. For instance, experiments conducted by Wang et al. (2017) 
indicated that algal density typically peaks around 21 days. Similarly, 
Hasegawa et al. (2001) found that Closterium aciculare enters the sta
tionary phase after 2 weeks. In addition, Xia et al. (2020), Deng et al. 
(2021), and Izadi et al. (2021) applied a time-lag strategy to improve 
prediction results, which found 10 days, 7 days, and 8 days ahead 
models yielding the best accuracy, respectively. These findings suggest 
that the period for algae to reach peak concentrations following nutrient 
intake can range from 7 to 21 days. This finding is significant as it un
derscores the importance of considering species-specific growth dy
namics when predicting HABs. However, many studies have overlooked 
examining the autoregressive characteristics of the specific algae of in
terest, relying heavily on previous research to improve predictive ac
curacy. Different types of algae exhibit varying growth rates in various 
environments (Brandenburg et al., 2019). Given Biscayne Bay's complex 
mix of chlorophytes, cyanobacteria, and diatoms, the life cycle of its 
HABs remains unclear (Wachnicka et al., 2020). In addition, previous 
studies have reported significant variations in residence times across 
different regions of Biscayne Bay (Wang et al., 2003; Wang and Kreeke, 
1986). Specifically. Barnes Sound has been reported to have residence 
times that extend over several months. In the western sections of South 
Biscayne Bay, the typical residence time is around one month. 
Conversely, in the northern bay areas, residence times are generally 
shorter, often lasting less than half a month. Consequently, we propose 
that HABs in the bay exhibit autoregressive characteristics useful for 
prediction purposes. Our PACF results confirmed the autoregressive 
characteristics of a 1-month lag for Chl-a concentrations at most water 
quality stations (Fig. 4), suggesting a correlation between Chl-a con
centrations one month apart. It was worth noting that the autoregressive 
characteristics were particularly evident in the results for three water 
quality stations—BB47, BB50, and BB51—with BB51 achieving a PCC of 
approximately 0.9 (Fig. 4). These three stations are located in the 
southernmost part of Biscayne Bay, within Barnes Sound and Card 
Sound, which have limited water exchange with the ocean and Florida 
Bay, resulting in longer residence times than other stations (Sengupta 
et al., 1978). This phenomenon contributes to the higher PCC values 
observed. 

Our study offers a comprehensive examination of the spatiotemporal 
distribution and autoregressive properties of Chl-a in Biscayne Bay. The 
insights gained not only advance our understanding of HAB dynamics 
but also contribute directly towards improving their prediction; a key 
step towards better management strategies for preserving marine 

Table 3 
1-month LEAD prediction results for each algorithm with metrics.  

Algorithm R2 MAE MSE MAPE MedAE 

Training Test Training Test Training Test Training Test Training Test 

MLR  0.48  0.35  0.70  0.77  1.56  1.88  0.90  0.65  0.39  0.42 
DTR  0.57  0.39  0.60  0.75  1.27  1.76  0.67  0.56  0.30  0.35 
SVR  0.55  0.42  0.73  0.84  1.34  1.69  1.19  0.88  0.54  0.58 
GPR  0.56  0.42  0.64  0.75  1.32  1.68  0.79  0.63  0.34  0.40 
XGBR  0.72  0.42  0.53  0.76  0.85  1.68  0.65  0.66  0.28  0.39 
RFR  0.73  0.44  0.47  0.75  0.80  1.63  0.54  0.63  0.23  0.39 
ETR  0.92  0.47  0.21  0.72  0.28  1.54  0.20  0.58  0.08  0.37 
MLPR  0.55  0.42  0.67  0.79  1.32  1.67  0.94  0.74  0.39  0.46 

Note: the metrics of the best-performing algorithm are bolded. 

Fig. 5. Performance of algorithms (R2 for test) in current-month prediction and 
1-month lead prediction and the efficiency frontier. 
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resources and protecting public health. Our findings enable us to predict 
when and where HABs are most likely to occur. With this information, 
authorities can implement timely preventive measures such as increased 
water quality monitoring during high-risk periods or targeted mitigation 
efforts in high-risk regions. Furthermore, the recognition of a one-month 
autoregressive pattern at most stations enables us to predict potential 
algal blooms one month ahead based on the current month's data. This 
provides valuable lead time for implementing appropriate response 
strategies before a bloom event occurs. In conclusion, our study's find
ings provide critical insights that can inform proactive management 
strategies aimed at preventing or mitigating the impacts of HABs in 
Biscayne Bay. 

4.2. Prediction of coastal algal blooms by machine learning methods 

Given the diversity, interaction, and intricacy of the multiple envi
ronmental factors that control algal blooms, developing a robust model 
that provides precise predictive ability can be a formidable challenge 
(Xia et al., 2020). Machine learning methods, emerging as viable alter
natives to traditional biophysical process-based and statistical-empirical 
models, are increasingly applied in environmental studies, particularly 
in predicting HABs (Friedel et al., 2020; Izadi et al., 2021; Cruz et al., 

2021). Machine learning models offer a feasible strategy for simulating 
HABs in complex coastal environments. These data-driven approaches 
provide higher prediction accuracy and can handle multi-dimensional 
datasets and nonlinear problems, avoiding the need for complicated 
and unresolved mathematical formulas f (Bergen et al., 2019; Jordan 
and Mitchell, 2015). For instance, SI Fig. S2 indicated that the Chl-a 
concentration was not correlated with any feature with a relatively 
high coefficient except for the 1-month lag Chl-a, stating the importance 
of including Chl-a's autoregressive characteristics in prediction and 
highlighting the inherent challenges in predicting monthly HABs. 
Nevertheless, our development of the ETR and RFR nonlinear predictive 
models has been successful. These models surpass the accuracy of linear 
counterparts, addressing the regression issue associated with algal 
blooms in Biscayne Bay effectively. This suggests that machine learning 
can serve as a practical means for nonlinear prediction, even when 
predicting the occurrence of algal blooms in coastal areas. Tables 2 and 
3, along with Fig. 5, indicate that the 1-month lead prediction is more 
accurate than the current month prediction, with higher R2 and lower 
error metrics. The optimal models for these scenarios are RFR for 
current-month predictions and ETR for 1-month lead predictions (Caro 
et al., 2010). In this study, ETR and RFR, both tree-based machine 
learning algorithms, excelled in predicting Chl-a concentrations in 

Fig. 6. Scatter density plot (left) and scatter training/test plot (right) for 1-month lead prediction in Extra-Trees Regressor (top) and current-month prediction in 
Random Forest Regressor (bottom). (a) Scatter density plot, ETR, 1-month lead prediction; (b) Scatter test/train plot, ETR, 1-month lead prediction; (c) Scatter 
density plot, RFR, current-month prediction; (d) Scatter test/train plot, RFR, current-month prediction. Note that: scatter density plots are composed of all data 
points, while the scatter plots are composed of training and test sets separately. 
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Biscayne Bay, suggesting that these types of algorithms may be partic
ularly effective for datasets like ours, which are characterized by thou
sands of samples and tens of features (Mienye et al., 2019). 

The life cycle of algae, particularly harmful varieties, often does not 
align with a monthly duration, typically spanning only a few weeks or 
days (Liang et al., 2023; Liu et al., 2020; Pelusi et al., 2020). This 
discrepancy presents challenges when utilizing monthly data to accu
rately predict Chl-a concentrations for subsequent time steps in this 
study. Specifically, constraints related to labor costs and observational 
equipment often limit the availability of time series data to semi- 
monthly or monthly frequencies. Such limitations can lead to inevi
table errors in predicting HABs due to significant gaps between data 
collection frequencies and the actual life cycles of algae. To address 
these issues, prior studies leveraged daily or weekly remote sensing data 
directly or employed techniques such as linear interpolation to convert 
monthly data into a daily format. For example, Deng et al. (2021) suc
cessfully utilized neural networks to obtain satisfactory results by 
interpolating monthly and biweekly data into daily data. Izadi et al. 
(2021) demonstrated that XGBoost outperformed random forests and 
support vector machines, achieving an overall accuracy of 96 % by 
applying daily satellite data from MODIS (Moderate Resolution Imaging 
Spectroradiometer) using remote sensing techniques. While the imple
mentation of data interpolation to obtain more frequent data intervals is 

a feasible strategy (Lee et al., 2003; Li et al., 2014), there is a potential 
risk of increased errors associated with this approach, especially when 
the dataset is non-linear. An alternative strategy is the direct use of 
monthly data for predictions to minimize potential risks associated with 
interpolated datasets and possible overestimations in predictive out
comes. Although this approach might yield lower accuracy and result in 
longer prediction intervals that do not align with the life cycle of 
harmful algae, it benefits from being based on relatively “authentic and 
accurate” data. Furthermore, it offers the advantage of providing pro
active warnings for HAB management and mitigation over extended 
periods while also providing broader trend assessments through its 
predictive outcomes. For instance, Yajima and Derot (2017) applied 
random forest to predict monthly Chl-a, with the R2 around 0.4–0.5. In 
addition, Jackson-Blake et al. (2022) predicted monthly and seasonal 
Chl-a with an R2 value close to 0.4 by the Gaussian Bayesian network. 
Considering the aforementioned points, although we maintain that the 
1-month lead prediction in our study has performed well and within 
acceptable limits (see SI Fig. 3 and SI Fig. 4), a shorter lead prediction 
would have yielded better accuracy. 

Our analysis reveals that ETR generally performed better in the 1- 
month lead prediction than RFR in the current-month prediction. 
Overall, the effectiveness of tree-based machine learning algorithms, 
such as ETR and RFR, over other algorithms such as Support Vector 

Fig. 7. Relative feature importance from ETR and RFR models. (a) Standardized SHAP importance of models in both scenarios. (b) SHAP value of features and the 
impact on the model output in the 1-month lead prediction of ETR. (c) SHAP value of features and the impact on the model output in the current-month prediction 
of RFR. 
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Regression (SVR), Gaussian Process Regression (GPR), and Multi-layer 
Perceptron Regression (MLPR) can be attributed to several factors. 
ETR and RFR excel in handling complex non-linear relationships be
tween predictors and the target variable, which is crucial in environ
mental studies where relationships are often non-linear. They naturally 
account for interactions between features, are less sensitive to outliers, 
offer good interpretability alongside prediction accuracy, and handle 
high dimensional spaces well without requiring feature scaling or 
transformation. While each algorithm has its strengths, ETR and RFR 
were particularly effective for our study due to these attributes. 

Our predictions tended to be slightly lower than the observed Chl-a 
concentrations, and the model's performance decreased when predicting 
extreme values (see Fig. 6). Similar challenges associated with predict
ing extreme values were also observed in the study by Yajima and 
Derot's (2017). These difficulties can be due to various factors including 
nonlinear relationships between variables, poor data quality or inap
propriate data structure, and overfitting of the model (Ying, 2019). In 
light of these observations, further refinement of our approach is war
ranted. A potential strategy involves developing a hybrid predictive 
framework that integrates time series decomposition with machine 
learning to capture the seasonality and trends of HABs, enhancing pre
dictive accuracy. Despite applying grid search techniques for tuning 
hyperparameters and considering regularization parameters to prevent 
overfitting, there are still flaws evident in our prediction metrics. To 
address these issues more effectively in future work, we may explore 
several strategies including error correction (Kim et al., 2022), clus
tering (Du et al., 2017), decomposition-ML hybrid models (Zhu et al., 
2023), ensemble ML models (Zhang and Mahadevan, 2019), and addi
tional or alternative regularization techniques (Srivastava et al., 2014). 

To prevent and manage the occurrence of more severe HAB events, it 
is necessary to make reliable early warning predictions of algal blooms 
by considering key environmental variables (Xia et al., 2020). However, 
a lack of understanding of complex physical-biological processes and 
limited data availability have hindered the development and application 
of process-based modeling for early warning of algal blooms (Park et al., 
2015). Our study indicates that the 1-month lead prediction model 
outperformed the current month prediction model, highlighting the 
potential for providing early warnings for HAB occurrences. Therefore, 
this finding suggests that data-driven machine-learning models could be 
a promising alternative approach when process-based modeling for 
early warning of algal blooms is not feasible. Particularly in scenarios 
where the data structure is similar to our case study, we strongly 
recommend a tree-based lead prediction model, especially since they 
have demonstrated superior accuracy and practical predictability 
compared to other methods and thus they can significantly enhance 
early warning decision systems for managing coastal HAB risks. 

4.3. Important features regulating coastal algal blooms in Biscayne Bay 

The occurrence of coastal HABs is attributed to a variety of factors, 
such as chemical factors (nitrogen and phosphorus), physical factors 
(salinity, dissolved oxygen, and pH), and meteorological factors (tem
perature and precipitation) (Anderson et al., 2021; Deng et al., 2021; 
Glibert, 2020; Griffith and Gobler, 2020). These factors influence the 
synthesis of proteins, nucleic acid, chlorophyll, and numerous processes, 
including metabolism, respiration, etc. (Glibert, 2020; Wells et al., 
2015). In addition, phytoplankton predators, such as zooplankton, and 
physical factors, such as residence time or flow rate, have an impact on 
HAB formation (Glibert, 2020). While our current study in Biscayne Bay 
primarily focused on chemical, physical, land use, and meteorological 
factors influencing HABs, we recognize the potential impact of addi
tional ecological and hydrological variables, such as predator pop
ulations and flow rates, which were not integrated into our ML-based 
predictive model because of the absence of long-term measurements for 
these biological and physical variables. Given this limitation in our 
study's scope due to data availability constraints, future research could 

focus on incorporating these variables. Specifically, including these 
available region-specific data is essential when adapting our predictive 
framework for HAB prediction in other regions. Integrating such 
comprehensive data in the ML model and feature importance analysis 
not only enhances predictive accuracy but also aids in developing a more 
nuanced understanding of HAB occurrences. Encompassing a wide array 
of relevant factors is crucial for our predictive framework. It ensures a 
robust and effective model to form region-specific prevention strategies 
and measures, thereby addressing the unique challenges posed by 
diverse environmental conditions. 

Utilizing available data, we conducted a quantitative analysis with 
SHAP values. This analysis assessed the importance of each feature in 
the RFR and ETR models. Our findings indicated that in Biscayne Bay, 
Chl-a concentration is primarily influenced by the developed percentage 
of upstream Miami-Dade County, the current month's Chl-a concentra
tion, total phosphorus, and NOx. Previous studies have demonstrated 
that Chl-a concentrations in the next period are strongly associated with 
Chl-a in the last period (Deng et al., 2021; Kim et al., 2014; Li et al., 
2014). Consistent with these findings, our ETR model indicated that the 
current month Chl-a has a significant impact on the prediction for next 
month's levels, indicating a trend where an increase in the current 
month's Chl-a is likely to lead to a corresponding increase in the 
following month (Fig. 7a). In addition, total phosphorus and NOx are 
key indicators of eutrophication and crucial nutrient sources for algae 
proliferation, as reported by several studies highlighting their signifi
cance in HAB occurrence (Anderson et al., 2002; Deng et al., 2021; 
Glibert, 2020; Li et al., 2014). Similarly, our results suggested that in
creases in total phosphorus and NOx correspondingly lead to increases 
in Chl-a concentrations (i.e., positive correlation) (Fig. 7a and b). These 
findings align with the fact that eutrophication leads to HAB occurrence 
(Anderson et al., 2002), a phenomenon we have effectively confirmed 
for Biscayne Bay. Biscayne Bay is typically considered oligotrophic, and 
phosphorus is crucial in maintaining seagrass (Alexandre et al., 2021). 
Our findings indicate that phytoplankton tend to thrive better in con
ditions of low ammonia nitrogen and high phosphorus by SHAP values 
(Fig. 7). A study indicated that the seagrass Thalassia testudinum, as 
opposed to macroalgae like Anadyomene sp., is more resilient in high 
ammonium concentration environments (Alexandre et al., 2021). 
Additionally, both seagrass and macroalgae exhibit strong competi
tiveness for phosphorus. Interestingly, the northern bay has noted a 
slight downward trend in ammonium levels (Millette et al., 2019). Given 
that all micro and macro algae grow better in low ammonia nitrogen 
conditions and are competitive for phosphorus sources, and considering 
the observed decrease in ammonium in the northern bay, it can be 
inferred that algae could become formidable competitors to seagrass. 
This competition tends to lead to algal blooms in the northern and even 
expand to the central bay. While these blooms might be non-toxic, their 
proliferation could gradually replace the seagrass, as has already been 
observed, significantly disrupting the ecological balance of the system 
(Santos et al., 2020). 

Climate change is projected to result in fluctuations in water and air 
temperature, as well as pH levels, with a specific projection of increased 
temperature and decreased pH in future scenarios for Biscayne Bay 
(Hinder et al., 2012). Although not all harmful algae species will exhibit 
increased activity due to climate change, a majority of species, partic
ularly dinoflagellates, are likely to experience higher reproduction rates 
due to factors such as increasing temperatures, ocean acidification, etc. 
(Fu et al., 2012; Glibert, 2020; Wells et al., 2015). Our findings suggest 
that high temperatures and low pH levels positively influence the 
growth of HABs in Biscayne Bay (Fig. 7b and c). The projected increase 
in temperature and decrease in pH induced by climate change in the bay 
are expected to create more favorable conditions for the growth and 
proliferation of HABs. Consequently, HABs will likely become more 
prosperous in the future climate scenario within Biscayne Bay. 

Upstream land use (i.e., developed percent) was the critical feature 
for HAB prediction in our study. Since water quality in Biscayne Bay is 
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closely linked to land use patterns in the upstream Miami-Dade County 
watersheds (Caccia and Boyer, 2005; Carey et al., 2011), and the 
northern bay corresponding to the most urbanized northern watershed 
is also the area with the most severe HAB (Fig. 3), we speculated that 
upstream land use may be related to downstream HAB. Although the 
“developed percent” is a relatively static dataset with minor short-term 
variations, it has long-term impacts on the downstream aquatic envi
ronment and ecosystems (Wang et al., 2022). While previous studies 
have focused on various aspects of coastal HAB prediction, the specific 
consideration of upstream land use as an independent factor has been 
less emphasized or explored in detail. In response to this gap, our study 
introduced an approach by incorporating the developed percentage of 
each of the three sections of upstream Miami-Dade County into the 
analysis of chlorophyll-a concentrations in the respective downstream 
portion of the bay. Surprisingly, the percentage of development emerged 
as one of the top two significant factors in both the current month and 1- 
month lead predictions. This suggests that incorporating the developed 
percentage adds valuable information to the prediction model, poten
tially providing insight into nutrient data. This is because areas with a 
higher proportion of impervious surfaces typically indicate an increase 
in pollutant levels, particularly during periods of heavy rainfall (Liu 
et al., 2014). Based on our findings, we strongly recommend that future 
studies and predictive models of coastal HABs consider upstream land 
use as a significant factor. Incorporating this into the prediction model 
may enhance its accuracy. While some models may exhibit overfitting, 
this does not necessarily equate to a loss of interpretability or predict
ability; such models can be beneficial in guiding further data collection 
or in developing more robust models. Additionally, It is important to 
note that overfitting is a relative concern rather than an absolute one 
(Hawkins, 2004). In this context, the other simpler models created in 
this study failed to achieve the same level of fitting quality as our 
developed RFR and ETR, thereby justifying their acceptance despite 
potential overfitting concerns. 

4.4. Implications for prevention of coastal algal blooms 

The diversity of HAB species coupled with the varying impacts, pose 
significant challenges for the authorities and stakeholders involved in 
coastal resource management. (Anderson, 2009). The factors impacting 
the formation mechanism of HABs are still unknown in many coastal 
areas, which presents a significant challenge in regulating or controlling 
these factors. Thus, it is essential to conduct more in-depth research on 
all aspects of HABs, especially in identifying the key factors affecting 
algal growth (Anderson, 2009). This study sheds light on the crucial 
factors influencing HABs and provides a predictive model for Chl-a 
concentrations in the following month, which can be used for the con
trol implementation strategies and provides practical information for 
decision-makers. Our findings indicate that precipitation, total phos
phorus, NOx, pH, water temperature, and notably upstream land use, 
specifically the degree of development, are the prominent features 
impacting Chl-a concentrations. This novel observation about upstream 
land use opens new avenues for both future research and policy-making. 
Future studies could focus on how specific aspects of urban development 
contribute to nutrient runoff and subsequent HABs. This interdisci
plinary approach could merge urban planning with ecology and water 
management to fully comprehend these dynamics. From a policy 
perspective, this understanding can inform more effective coastal 
resource management strategies. Urban planning policies could be 
reevaluated with an emphasis on reducing impervious surfaces and 
enhancing green spaces to mitigate nutrient runoff. Given the 
complexity of managing climatic factors associated with HABs, we 
recommend directing regulatory efforts towards other manageable as
pects such as nutrient levels linked with urbanization processes. In 
Miami-Dade County, the implementation of watershed management 
strategies must be prioritized to reduce impervious surfaces and lower 
the concentration of pollutants discharged into the bay from this highly 

urbanized watershed. This can be effectively achieved by consistently 
monitoring effluent from wastewater treatment plants and promoting an 
increase in green infrastructure implementation. Although we focused 
on Biscayne Bay, the framework developed in this study can be easily 
adapted for other coastal areas that are proximate to large cities. Our 
study not only deepens our understanding of Chl-a dynamics in coastal 
areas but also presents a robust predictive tool for future studies and 
management strategies. Given that the feature importance identified 
through machine learning and SHAP analyses does not indicate causal 
effects, we recommend conducting sensitivity analyses after developing 
a predictive model using this framework (PACF+ML + SHAP). Such 
analyses will help ensure that stakeholders and decision-makers can 
confidently rely on and act upon the model's predictions. For instance, 
one could adjust the most important features identified by SHAP values 
by ±20 %, observing how changes in input impact positive or negative 
shifts in Chl-a concentration. This approach would validate whether the 
real-world impacts align with the interpretations provided by SHAP 
analyses before the decision-making implementation. 

5. Conclusions 

Predicting coastal algae patterns is critical for governmental 
decision-making due to the significant risks and consequences associ
ated with HABs including a decrease in biodiversity, disruption of food 
chains, seafood contamination, fish kill, food poisoning, and respiratory 
issues. Thus, accurate prediction of coastal algae patterns allows gov
ernments to take proactive measures against these potential hazards. 
Biscayne Bay, our case study site bordering Miami-Dade County, is 
already showing signs of stress due to anthropogenic influence from 
rapid urbanization and the growing population in the region. In this 
study, we developed a framework to predict Chl-a concentrations (an 
indicator of HABs) in Biscayne Bay, Florida, for 24 years (1997–2020) 
using eight machine learning algorithms, including two prediction sce
narios. Our findings suggest that the Extra Trees Regressor (ETR) algo
rithm performed the best in predicting Chl-a concentrations one month 
in advance. Therefore, we strongly recommend using tree-based models 
for future studies aiming to predict Chl-a concentrations. Our analysis 
revealed that several factors significantly influenced the Chl-a concen
trations in the downstream Biscayne Bay. The most influential factors 
identified in our study were the current month's Chl-a concentration, the 
percentage of developed area in the upstream Miami-Dade County 
watershed, phosphorus levels, and NOx. Our analysis suggests a corre
lation between increases in these factors and rising Chl-a concentrations, 
highlighting a potential link that warrants further investigation. These 
findings emphasize the need for careful management and control of 
these factors to potentially mitigate algal blooms in the downstream bay. 

While the overall predictive results provided valuable insights, it is 
important to acknowledge certain limitations within our study. We 
observed that predicted values were frequently lower than observed 
values, indicating potential room for model improvement, and 
achieving accurate prediction models poses a significant challenge when 
relying on monthly data due to variable proliferation periods of algal 
blooms not consistently aligning with monthly data intervals. Future 
improvements could include incorporating extreme value prediction 
methods into our model which can help better predict unusual but 
highly impactful events; selecting additional relevant features such as 
flow rate or predators of phytoplankton might improve model perfor
mance; exploring other machine learning algorithms, ensemble 
methods, or hybrid models as different algorithms might offer improved 
accuracy; utilizing novel data processing methods such as anomaly 
detection and decomposition techniques can help refine predictions by 
identifying outliers that deviate from expected behavior based on pre
vious data trends. This study has significant implications for environ
mental management and policy; the identified influential factors, such 
as developed percent, phosphorus levels, and NOx, can be managed 
through strategic policy decisions. For instance, urban planning policies 
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could be revised to limit the percentage of developed lands in sensitive 
watershed areas. Similarly, stricter regulations could be imposed on 
industries to control NOx and practices that contribute to increased 
phosphorus levels. By doing so, we can better manage the health of our 
coastal ecosystems and mitigate the impact of harmful algal blooms. Our 
study establishes a crucial framework for predicting coastal algal blooms 
by integrating various data sources and multiple features. This frame
work includes time lag determination, machine learning regressors for 
HAB prediction, and the identification of key influencing factors using 
SHAP value. The procedures used in this framework are standardized 
and extendable to other coastal regions due to the use of generalizable 
environmental and climate factors as model inputs. The successful 
application of this framework in other coastal areas will lead to the 
identification of crucial factors influencing HABs, thereby establishing 
an early warning system for HABs across similar coastal regions. 
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