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Abstract

Range counting (e.g., counting the number of data points falling into a given query
ball) under differential privacy has been studied extensively. However, the current
algorithms for this problem are subject to the following dichotomy. One class of
algorithms suffers from an additive error that is a fixed polynomial in the number
of points. Another class of algorithms allows for polylogarithmic additive error, but
the error grows exponentially in the dimension. To achieve the latter, the problem
is relaxed to allow a “fuzzy” definition of the range boundary, e.g., a count of the
points in a ball of radius r might also include points in a ball of radius cr for some
c > 1. In this paper we present an efficient algorithm that offers a sweet spot
between these two classes. The algorithm has an additive error that is an arbitrary
small power of the data set size, depending on how fuzzy the range boundary is,
as well as a small (1 + o(1)) multiplicative error. Crucially, the amount of noise
added has no dependence on the dimension. Our algorithm introduces a variant of
Locality-Sensitive Hashing, utilizing it in a novel manner.

1 Introduction

Differential Privacy (DP) [DMNS06, DKM+06, DMNS16] is a widely used tool for preserving the
privacy of sensitive personal information. It allows a data structure to provide approximate answers
to queries about the data it holds, while ensuring that the removal or addition of a single database
entry does not significantly affect the outcome of any analysis. The latter guarantee is accomplished
by adding some amount of noise to the answers, so that the data cannot be "reverse-engineered" from
the answers to the queries. See Definition 2.1 for the formal setup. The notion has been deployed in
many important scenarios in industry [DKY17, EPK14, BEM+17, Sha14, G+16] as well as the U.S.
census [Abo18].

One of the key data analysis problems studied under differential privacy is range counting. Here, the
goal is to construct a data structure that answers queries about the total number of data items in a
database satisfying a given property. Formally, given a multiset X of n elements from a universe U ,
the goal of range counting queries is to report the number of points within a given range Q ∈ Q from
a prespecified class of query ranges Q. For example, this could correspond to retrieving the number
of users in a particular geographic location, or a number of patients with given symptoms.

Differentially private range counting has been studied extensively, for many classes of queries. For
example, the case of Q = U , i.e., when the queries ask for the number of occurrences of a given
element in the database, this correspond to the well-known histogram problem [HKR12, EPK14].
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Figure 1: An illustration of approximate near neighbor query, with parameters c and r.

More generally, a large body of research has focused on the case where universe U is the d-dimensional
space Rd (or its discretization), and Q consists of natural geometric objects, like rectangles, half-
planes or balls. The seminal work of [MN12] demonstrated a strong relationship between the amount
of additive noise necessary to guarantee the privacy, and the discrepancy of the space of queries
Q. Unfortunately, except for a few classes of queries such as axis-parallel rectangles, most natural
geometric objects have discrepancy that is polynomial in the number of data points n. This means
that, in order to guarantee privacy, it is necessary to distort the counts by an additive term Θ(nρ), for
a fixed constant ρ > 0 that depends on Q.

To alleviate this issue, [HY21] introduced differentially private data structures for approximate
range queries. For simplicity, we recap their notion for the special case of ball queries that we
consider in the rest of the paper. We assume that U is a metric space equipped with a distance
function dist. For a radius parameter r, we define the query family Q = {B(q, r) : q ∈ U}, where
B(q, r) = {p ∈ U : dist(p, q) ≤ r} is the ball of radius r around q. In other words, in the exact
problem, the goal is to count the number of data points that are “near” the given query point. In turn,
the approximate problem is parameterized by an approximation factor c ≥ 1, and the algorithm is
allowed to report any number between |X ∩ B(q, r)| and |X ∩ B(q, cr)|. Figure 1 illustrates this
notion. We will refer to the approximate version as the (c, r)-near neighbor counting problem.

The main result of [HY21] shows that, if one allows approximate queries as defined above, then one
can construct a data structure that guarantees privacy while adding much less noise. Specifically,
if U = [u]d (i.e., the universe is the discrete d-dimensional space) for some fixed d = O(1) and
dist(p, q) = ∥p− q∥s for some ℓs norm, then their algorithm achieves privacy while adding noise
of magnitude roughly (O(1/α))d · polylog(u+ n), where 0 < α < 1 is a constant that depends on
c > 1. This guarantees that the noise amount is only polylogarithmic, as long as the dimension d is
constant. However, the exponential dependence of the noise bound on the dimension precludes the
applicability of this algorithm to the common case of high-dimensional data sets.

Our contribution Our main result is an efficient data structure that can approximate the number
of near neighbors to any query point over Euclidean (ℓ2) space, with differential privacy (see
Preliminaries for the formal of definition of privacy). Specifically, for any fixed radius r, and any
series of query points q, the data structure can privately answer (c, r)-near neighbor counting queries,
where we are allowed a small additive error (nρ for a small constant ρ) and multiplicative error
1± o(1)). Let Bp(q, r) denote the ℓp ball of radius r around q.
Theorem 1.1. Fix a radius r > 0 and constant c ≥ 1, and privacy parameters 1 > ϵ, δ > 0. For any
integer n and dimension d, there exists a differentially private algorithm that, on a dataset X ⊂ Rd

of at most n points, creates a data structure that can answer m (non-adaptive) queries and that
satisfies the following properties.

1. (Privacy) The full output of the algorithm is (ϵ, δ)-differentially private.

2. (Accuracy) With high probability, for every non-adaptive query q, the output ans(q) is
between

(1− o(1)) · |X ∩B2(q, r)| − nρ+o(1) · log(logm/δ) · logm
ϵ

and

(1 + o(1)) · |X ∩B2(q, cr)|+ nρ+o(1) · log(logm/δ) · logm
ϵ

,
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where ρ = 4c2

(c2+1)2 = O( 1
c2 ).

3. (Runtime) The preprocessing time is O(n1+o(1) · d · logm), and the expected runtime for
answering each query is O(nρ+o(1) · d · logm).

The key two features of the above result are as follows. First, the amount of additive noise is controlled
by the amount of allowed approximation: the exponent ρ tends to 0 as c grows large. This makes
it possible to trade the “proximity” error c and the “privacy” error nρ to achieve the best results.
Second, the magnitude of added noise does not depend on the dimension; in particular, it avoids the
exponential dependence of [HY21].

Finally, we remark that our algorithm can be extended to alternative/more general settings:

1. ℓ1 metric: If we considered the balls B1(q, r) rather than B2(q, r), we can still obtain a
similar result, at the cost of having ρ ≈ 4c

(c+1)2 = O( 1c ). This is based on the fact that the ℓ1
metric embeds near-isometrically into the squared ℓ2 metric.

2. Pure differential privacy: We can modify our algorithm to handle pure-DP queries (i.e.,
when ϵ = 0), while still having good accuracy. In this case, however, the algorithm, while
fast in expectation, has some small probability of being very slow.

3. Large ϵ: Our results also hold even when 1 ≤ ϵ ≤ no(1).
4. Adaptive queries: Our method also extends to adaptive queries, at the expense of the

runtime and additive error multiplying by a factor of poly(d logR/r), where R is some
promised bound on the radius of the dataset.

5. k-NN queries: Finally, we note that using similar approach to that of [HY21], one can get
a data structure for finding an approximation to the distance of the query to its k-nearest
neighbor. However, as opposed to [HY21], our data structure works only for a fixed value
of r, and thus one needs to build separate data structures for various choices of r leading to
worse privacy guarantees which depend on the aspect ratio.

We discuss extensions 1–4 more formally in Appendix C.

A natural question is whether the tradeoff between approximation ratio c and additive error nρ is
necessary, or whether one can obtain c = O(1) and ρ to be an arbitrarily small constant. While we
are unable to prove such a lower bound in the Euclidean setting, we show that under the closely
related ℓ∞ norm for approximation ratio c = 3− o(1), one must have an additive error of nΩ(1).
Theorem 1.2. For sufficiently large n, there exists d = C log n for a large constant C, fixed
constants 1 > ϵ, δ, ρ > 0, and n query points Q = {q1, . . . , qn}, with the following property. For any
(arbitrarily small) α > 0 and any differentially private algorithm A that acts on a dataset X ⊂ Rd

of at most n points, and outputs {ans(q)}q∈Q, must have

P
(
∀q ∈ Q, |B∞(q, 0.5)| − nρ ≤ ans(q) ≤ |B∞(q, 1.5− α)|+ nρ

)
<

2

3
.

Theorem 1.2 provides some evidence that a tradeoff may be necessary even in the ℓ2 case: proving
such a result is an interesting open problem. We defer the proof of Theorem 1.2 to Appendix B.

Overview of the techniques. Our high-level approach is similar to that of the low-dimensional
approximate range query data structure of [HY21], and consists of the following steps. First, we
design a partition of Rd, and count the number of points that fall into each cell in the partition. Then
we add Laplace noise to each cell to ensure the privacy of the counts. Finally, for each query q, we
approximate the ball B(q, r) using the cells in the partition, and report the sum of the (noisy) counts
of the approximating cells.

However, applying this approach as described requires using an exponential (in d) number of partition
cells to approximate a query ball B(q, r), leading to the exponential error bound. To overcome this
issue, we resort to randomized space partitions obtained using Locality-Sensitive Hashing (LSH)
techniques [IM98]. These partitions have the property that, for any two points p and q, the probability
that both of them belong in the same partition cell depends on the distance ∥p − q∥2. As shown
in [Pan06] in the context of (non-private) approximate near neighbor search, enumerating a bounded
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number (nρ) of cells in such partition makes it possible to report each data point from the range
B(q, r) with probability at least 1/poly(log n). To amplify the probability of correctness, the process
is repeated O(poly log n) times, using a different random partition in each repetition.

Unfortunately, the aforementioned approach does not appear to yield an efficient algorithm for
approximately counting the number of points in B(q, r). The main issue is that, as indicated above,
when enumerating the nρ cells corresponding to a query’s ball, we are guaranteed to include only a
1/poly(log n) fraction of points, leading to a large approximation factor. The standard way to deal
with this — using multiple partitions — yields inconsistent counts which are difficult to aggregate. A
number of follow-up works showed improved bounds on exponent ρ, but all of them similarly have a
guarantee of identifying only a ≤ 1/poly(log n) fraction of points [LJW+07, AI06, Kap15, Chr17,
ALRW17]. To overcome these obstacles, we show how we can adapt the algorithm from [ALRW17],
which yield an approximate near neighbor data structure with the best known tradeoff between space
and time. However, their randomized algorithm does not yield partitions (technically, they construct
so-called locality-sensitive filters, which are not partitions).

Our main technical contribution is two-fold. First, we show it is possible to “force” the algorithm of
[ALRW17] to construct proper partitions. The quality of those partitions is comparable to the original
structures, at the price of a more involved analysis. We then use those partitions to compute the
counts and approximate the query ball as outlined at the beginning of this section. Second, we show
that it is also possible to modify the algorithm so that the probability of including each qualifying
point into the count is at least 1− o(1). This is of separate interest, as this yields the most efficient
algorithm for approximate nearest neighbor search with space O(nd), improving over [Kap15].

1.1 Related work

The problem of range counting when the query classQ is arbitrary, can be solved with an optimal error
bound of

√
n · poly(1/ϵ, log |Q|·|U|

δ )[HR10]. In the setting of approximate near-neighbor queries,
the size of Q and U can be thought of as at most exponential in the dimension d, by using a standard
ϵ-net technique. Hence, their error is in fact smaller than ours when 4c2

(c2+1)2 ≥
1
2 , or equivalently,

when c ≤ 1 +
√
2. However, whenever an approximation of c > 1 +

√
2 is acceptable, our error is

smaller than [HR10]. Moreover, our approach is computationally efficient, whereas their method has
runtime linear in the size of U , which is very inefficient.

When the query class is restricted to points in U , i.e., histogram queries, then the best achievable
error is O( 1ϵ · min{log |U|, log(1/δ)})[Vad17]. When the points are in 1-dimensional Euclidean
space taking values in [u], and Q is a set of intervals, [DNPR10] got an (ϵ, 0)-DP algorithm with
error O( 1ϵ · log

1.5 u) and a lower bound of Ω( log u
ϵ ). When resorting to (ϵ, δ)-DP, [BNSV15] showed

an algorithm with error 2(1+o(1)) log∗ u log(1/δ)/ϵ and a lower bound of Ω(log∗ u · log(1/δ)/ϵ) for
e−ϵn/ log∗ n ≤ δ ≤ 1/n2. The problem for the axis-parallel rectangles have been further studied
[CSS11, DNRR15] where polylogarithmic error bounds were obtained.

More generally, [MN12, NTZ13] showed an equivalence between the error and the discrepancy of
the range space Q. Given that the discrepancy of many natural range spaces such as half-spaces,
simplices, and spheres is nα(d) where α(d) ∈ [1/4, 1/2] is a constant depending on d [Mat99], it
rules out such a polylogarithmic error for these range spaces. For non-convex ranges, the discrepancy
already becomes

√
n reaching the threshold for arbitrary query ranges.

There are a number of papers based on space decompositions that provide a DP data structure for
range counting that perform relatively well in practice [CPS+12, HRMS09, LHMW14, QYL13a,
QYL13b, XWG10, ZXX16] but perform poorly on high-discrepancy point sets.

Finally, we note that several prior works used LSH for differentially private kernel estimation
[CS20, WNM23]. However, those works do not seem to be applicable to ball range queries, which
correspond to uniform kernels.
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2 Preliminaries

Range Counting: In the range counting problems, given a point set X ⊆ U , where U is a universe,
the goal is to construct a differentially private data structure that for any query Q ⊆ U from a certain
query family Q, one can compute |Q ∩X|.
Here we focus on Near Neighbor counting queries in high dimensions. In particular U is a metric
space equipped with a distance function dist. Given a prespecified radius parameter r, the query
family Q = {B(q, r) : q ∈ U}, where B(q, r) = {p ∈ U : dist(p, q) ≤ r} is the ball of radius r
around q. In other words, in this problem the goal is to count the number of neighbors of a given
query point.

Similar to the work of [HY21], we consider the approximate variant of the problem where the
points within distance r and cr of the query can be either counted or discarded. In particular for an
approximation factor c ≥ 1, any number between |X ∩B(q, r)| and |X ∩B(q, cr)| is valid.

Differential Privacy (DP): For two datasets X and X ′, we use X ∼ X ′ to mean that they are
neighboring datasets, i.e., one of them can be obtained from the other by an addition of a single
element (in our problem a point).
Definition 2.1. (Differential Privacy [DR+14]). For ϵ > 0, δ ≥ 0, a randomized algorithm A is
(ϵ, δ)-differentially private ((ϵ, δ)-DP) if for any two datasets X ∼ X ′, and any possible outcome of
the algorithm S ⊆Range(A), P [A(X) ∈ S] ≤ eϵ · P [A(X ′) ∈ S] + δ. When δ = 0, the algorithm
is said to have pure differential privacy.

The sensitivity of a function f is defined to be ∆f = maxX∼X′ |f(X)− f(X ′)|.

We use Lap(λ) to denote the Laplace distribution with parameter λ with PDF P [Z = z] = 1
2λe

−|z|/λ,
which has mean 0 and variance λ2. We also use TLap(∆, ϵ, δ) to denote the Truncated Laplace dis-
tribution with PDF proportional to e−|z|·ϵ/∆ on the region [−B,B], where B = ∆

ϵ · log
(
1 + eϵ−1

2δ

)
.

Lemma 2.2 ((Truncated) Laplace Mechanism [DR+14, GDGK20]). Given a numeric function f
that takes a dataset X as the input, and has sensitivity ∆, the mechanism that outputs f(X) + Z
where Z ∼ Lap(∆/ϵ) is (ϵ, 0)-DP. In addition, if ϵ, δ ≤ 1

2 , f(X) + Z, where Z ∼ TLap(∆, ϵ, δ),
is (ϵ, δ)-DP. Moreover, the Truncated Laplace mechanism is always accurate up to error B.

3 Upper Bound

In this section, we describe the algorithm and perform the majority of the analysis for Theorem 1.1.
We defer certain parts to Appendix A, and finish the proof there.

3.1 Setup

The algorithm we develop is inspired by the data-independent approximate nearest neighbor algorithm
in [ALRW17]. We will use similar notation to their paper as well.

Define Sd−1 to be the (d − 1)-dimensional unit sphere in Rd. For any parameter r ∈ (0, 2), let
α(r) = 1− r2

2 and β(r) =
√
1− α(r)2 be the cosine and the sine, respectively, of the angle between

two points in Sd−1 of distance r. For any parameter η > 0, define
F (η) := P

g∼N (0,I)
[⟨g, u⟩ ≥ η],

where u ∈ Sd−1 is an arbitrary point on the unit sphere. Note that F (η) is independent of u by the
spherical symmetry of Gaussians, and in fact equals the probability that a univariate standard Normal
exceeds η. Next, for any parameters r ∈ (0, 2) and ηq, ηu ∈ R, we define

G(r, ηq, ηu) := P
g∼N (0,I)

[⟨g, q⟩ ≥ ηq and ⟨g, p⟩ ≥ ηu],

where p, q ∈ Sd−1 are points that have distance exactly r between them. As with F, G has no
dependence on the specific points p, q but only on the distance r = ∥p− q∥2 between them. Note
also that G(r, ηq, ηu) is non-increasing in r, even if ηq or ηu is negative.

Next, we note the following well-known bounds for F .
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Algorithm 1 Data Structure

1: Input: data X of size at most n, privacy parameters ϵ, δ, parameters T,K, ηu.
2: Output: data structure D = (T , {gv}v∈T , {cv}v leaf ∈T ).
3: Create T : T -ary tree of depth K, with root vroot.
4: for each node v ∈ T do
5: gv ← N (0, Id). {Random d-dimensional Gaussian}
6: cv ← ∅. {Counts number of points assigned to each node}
7: for point p ∈ X do
8: v ← vroot.
9: for ℓ = 0 to K − 1 do

10: if depth(v) < ℓ then
11: BREAK {Break out of “for ℓ = 0 to K − 1” loop (p failed to map to a child)}
12: for i = 1 to T do
13: vi ← ith child of v
14: if ⟨gvi , p⟩ ≥ ηu then
15: cvi ← cvi + 1
16: v ← vi
17: BREAK {Break out of “for i = 1 to T ” loop}
18: for each leaf node v ∈ T do
19: cv ← cv +TLap(1, ϵ

2 ,
δ
2 ).

20: if cv ≤ 2
ϵ · log

(
1 + eϵ/2−1

δ

)
then

21: cv ← 0

Proposition 3.1. For η ≥ 1,

Ω

(
1

η

)
· e−η2/2 ≤ F (η) ≤ e−η2/2.

In addition, as η →∞, F (η) ≤ o(1) · e−η2/2.

3.2 Algorithm for data on the sphere

We now present an algorithm that obtains the desired privacy and accuracy guarantees, assuming
both the data points and query points are on a unit sphere and the radius r is not too small. The initial
algorithm description will not necessarily run in polynomial time, but we will later describe a simple
modification to make this algorithm efficient. Finally, in Appendix A.2 we will modify the algorithm
to work for general r and in Euclidean space, rather than just on the unit sphere. This follows from
known embedding methods [BRS11], which is why we defer it to the Appendix.

Data Structure: We describe the data structure in words here, provide pseudocode in Algorithm 1.
Fix K and T to be positive integers, to be set later. We generate a data structure, which is a T -ary
tree of depth K. We index the levels as 0, 1, . . . ,K , where level 0 is the root and level K consists of
the TK leaves. For each node v except the root, we generate an independent d-dimensional standard
Gaussian gv ∼ N (0, I). In addition, we will define two parameters ηq and ηu, to be set later.

The tree nodes at level ℓ will partition the unit sphere Sd−1 into T ℓ regions, plus an extra “remainder”
region of points that are not mapped into any of the T ℓ regions. At level 0, all points in Sd−1 are
sent to the single region indexed by the root. For any node v in the tree of depth 0 ≤ ℓ ≤ K − 1
and with children v1, . . . , vK , the region Pv is partitioned into Pv1 , . . . , PvT

1 as follows. A point
p ∈ Pv is sent to Pvi

if i ≤ T is the smallest index such that ⟨gvi
, p⟩ ≥ ηu. Note that some points

in Pv may not be sent to any of Pv1
, . . . , PvT

. For each leaf node v, we store an approximate count
cv = |X ∩ Pv|+TLap (1, ϵ, δ), where we added Truncated Laplace noise. If the noised count cv is
too small (at most ∆

ϵ · log
(
1 + eϵ−1

δ

)
), we replace the count cv with 0.

1We remark that the partition is technically not a full partition, because some data points may not be sent to
any Pvi .
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Algorithm 2 ANSWER(D, ηq, q, v): Answering a query

1: Input: data structure D = (T , {gv}v∈T , {cv}v leaf ∈T ), parameter ηq , query point q, node v.
2: if ⟨gv, q⟩ ≥ ηu then
3: if v is a leaf node then
4: Return cv
5: else
6: ans = 0
7: for i = 1 to T do
8: vi ← ith child of v
9: ans← ans+ ANSWER(D, ηq, q, vi)

10: Return ans

Answering a query: We describe the algorithm in words here, provide pseudocode in Algorithm 2.
Given a query q, we “send” q to every leaf node v = vK such that the path v1, v2, . . . , vK from the
root vroot satisfies ⟨gvi

, q⟩ ≥ ηq for all 1 ≤ i ≤ K. Hence, each query q will correspond to a subset
Vq of leaf nodes. The response to the query q will be∑

v∈Vq

cv.

To improve the accuracy of the algorithm, we repeat this procedure O(logm) times if there are
m queries, each initialized to (ϵ′, δ′)-DP for ϵ′ = ϵ/O(logm) and δ′ = δ/O(logm). The overall
algorithm will still be (ϵ, δ)-DP, by the well-known Basic Composition theorem [DR+14, Corollary
3.15]. For each query, we output the median response of the individual data structure responses. In
the analysis, we will ignore this amplification procedure, as by a Chernoff bound it suffices to show
that each individual query is answered accurately with at least 2/3 probability.

3.3 Analysis

Privacy: The analysis of privacy is quite simple. First, note that the responses to all of the queries
do not depend on the data directly, but only depend on the counts {cv}. If we let ĉv(X) := |X ∩ Pv|
and c̃v(X) := |X∩Pv|+TLap(1, ϵ, δ), then note that cv(X) is entirely dependent on c̃v(X). Hence,
it suffices to show the following.
Lemma 3.2 (Privacy). The set {c̃v(X)}v leaf ∈T is (ϵ, δ)-DP with respect to the data X . Hence, the
entire algorithm is also (ϵ, δ)-DP, even if we have an arbitrary number of queries.

Proof. Consider two adjacent datasets X,X ′, i.e., where we either removed or added a single data
point from X to obtain X ′. Note that the construction partitioning of the dataset into leaves is not
dependent on the data, but merely on random vectors gv over all nodes v. Therefore, if we condition
on the partitioning of the entire space, the values ĉv(X) = |X ∩ Pv| and ĉv(X

′) = |X ′ ∩ Pv| are the
same for all but at most one leaf v, which changes by at most 1. The sensitivity of each such ĉv(X)
is at most 1, which means that we have (ϵ, δ)-privacy loss from c̃v(X). Because this happens for a
single choice of v, we have (ϵ, δ)-privacy loss in total.

Accuracy: We will only consider the accuracy with respect to a fixed query q and a single copy of
the data structure, and show accuracy holds in expectation. For a set of m queries, since we repeat
this data structure O(logm) times and use the median estimate, a Chernoff bound implies all queries
will be answered accurately with at least 99% probability.

We prove the following lemma to bound accuracy.
Lemma 3.3 (Accuracy, assuming parameters are set properly). Suppose the following hold, for some
fixed choice of parameters c, ρ,K, T, ηq, ηu:

1. (T · F (ηq))
K ≤ nρ+o(1). (Additive error due to Laplace noise).

2. e−TF (ηu) = o(1/K), and G(r,ηq,ηu)
F (ηu)

= 1 − o(1/K). (Multiplicative error due to not
including points within r of q).
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3.
(

G(cr,ηq,ηu)
F (ηu)

)K

≤ n−1+ρ+o(1). (Additive error due to including points not within cr of q).

Then, if ans is the response when querying a fixed q on a dataset X , with probability at least 2/3,
ans is between

(1− o(1)) · |X ∩B2(q, r)| −O

(
1

ϵ
· log 1

δ
· nρ+o(1)

)
and

(1 + o(1)) · |X ∩B2(q, cr)|+O

(
1

ϵ
· log 1

δ
· nρ+o(1)

)
.

In other words, we solve the (c, r)-near neighbor counting problem with probability at least 2/3, up
to a multiplicative 1± o(1) factor and an additive O

(
1
ϵ · log

1
δ · n

ρ+o(1)
)

factor.

In Subsection 3.4, we will show how to set T,K, ηq, ηu so that the three conditions above hold.

Proof. Our error comes from two sources. The first is the Truncated Laplace noise that we add,
which we add in |Vq| locations to compute the answer to query q. This adds an additive noise of at
most O( 1ϵ · log

1
δ · E|Vq|) in expectation, as |cv − |X ∩ Pv|| ≤ O( 1ϵ · log

1
δ ) with probability 1.

To bound E|Vq|, note that it simply equals the sum of the probabilities that q ∈ Pv for each leaf v,
which is TK times the probability that q ∈ Pv for a fixed v. This probability is just F (ηq)

K since
each Gaussian along the path to v is independent. Hence, the first source error has magnitude at most
O
(
1
ϵ · log

1
δ · (T · F (ηq))

K
)
≤ O

(
1
ϵ · log

1
δ · n

ρ+o(1)
)

in expectation.

Hence, if we let âns be the response we would have received if we did not add Laplace noise (i.e.,
if we used ĉv instead of cv), then E[|ans − âns|] ≤ O

(
1
ϵ · log

1
δ · n

ρ+o(1)
)
, so |ans − âns| ≤

O
(
1
ϵ · log

1
δ · n

ρ+o(1)
)

with probability at least 0.9 by Markov’s inequality.

The second source of error is that âns counts the number of points in X that are in Pv for some
v ∈ Vq, whereas we actually want to count the number of points in X that are within distance r of q
(tolerating the inclusion of points up to distance cr of q). Hence, we need to make sure of two things,
corresponding to not underestimating or overestimating, respectively:

1. Most points in X within distance r of q are mapped to some Pv where v ∈ Vq .

2. Few points in X that are not within distance cr of q are mapped to some Pv where v ∈ Vq .

This way, we will show that with high probability,

(1− o(1)) · |X ∩B2(q, r)| ≤ âns ≤ |X ∩B2(q, cr)|+O
(
nρ+o(1)

)
,

which is sufficient.

For any point p of distance s from q, we compute the probability that p ∈ Pv for some v ∈ Vq.
Let’s start by assuming K = 1, i.e., we have a depth-1 tree with leaves labeled 1, 2, . . . , T . In this
case there are two possibilities for failure: either p is not mapped to any Pi for 1 ≤ i ≤ T , or p is
mapped to some Pi but q is not sent there. Suppose p is mapped to P1: this means ⟨g1, p⟩ ≥ ηu.
Conditioned on this event, the probability that ⟨g1, q⟩ ≥ ηq is precisely P[⟨g1, q⟩ ≥ ηq|⟨g1, p⟩ ≥
ηu] =

P[⟨g1,q⟩≥ηq,⟨g1,p⟩≥ηu]
P[⟨g1,p⟩≥ηu]

=
G(s,ηq,ηu)

F (ηu)
. Suppose p is mapped to Pi for i ≥ 2. Then, the probability

that ⟨gi, q⟩ ≥ ηq is P[⟨gi, q⟩ ≥ ηq|⟨gi, p⟩ ≥ ηu, ⟨gj , p⟩ < ηu∀j < i]. But even if p, q are fixed, then
the values of ⟨gj , p⟩ for j < i are independent of (⟨gi, p⟩, ⟨gi, q⟩). Hence, we may remove the
conditioning on ⟨gj , p⟩ < ηu∀j < i, to again say that the conditional probability is G(s,ηq,ηu)

F (ηu)
. Hence,

the probability that p ∈ Pv for v ∈ Vq, conditioned on p being in some Pv, is G(s,ηq,ηu)
F (ηu)

. The

probability that s ̸∈ Pv for any v is (1− F (ηu))
T , so the overall probability that p ∈ Pv for v ∈ Vq ,

for K = 1, is (
1− (1− F (ηu))

T
)
· G(s, ηq, ηu)

F (ηu)
.

Note that 1− e−TF (ηu) ≤ 1− (1− F (ηu))
T ≤ 1.

8



For general depths, note that the Gaussians selected at each level are independent of the previous
levels. Hence, the success probability simply raises to the power of K, or equals(

1− (1− F (ηu))
T
)K

·
(
G(s, ηq, ηu)

F (ηu)

)K

.

Note that 1 ≥ (1−e−TF (ηu))K ≥ 1−K ·e−TF (ηu). Hence, the probability that a point p of distance

s from q is mapped to some Pv where v ∈ Vq is between
(
1−K · e−TF (ηu)

)
·
(

G(s,ηq,ηu)
F (ηu)

)K

and(
G(s,ηq,ηu)

F (ηu)

)K

.

Because G(s, ηq, ηu) is an increasing function in s, the probability at any point of distance s ≤ r

from q is not included in the count âns is at least
(
1−K · e−TF (ηu)

)
·
(

G(r,ηq,ηu)
F (ηu)

)K

= 1− o(1),

as we are assuming that e−T ·F (ηu) = o(1/K) and G(r,ηq,ηu)
F (ηu)

= 1 − o(1/K). Thus, by Markov’s
inequality, with probability at least 0.9, âns ≥ (1 − o(1)) · |X ∩ B2(q, r)|. Next, the probability

that any point of distance s ≥ cr from q is included in the count âns is at most
(

G(cr,ηq,ηu)
F (ηu)

)K

,

which we assume is at most n−1+ρ+o(1). Because there are at most n points, by Markov’s inequality,
âns ≤ |X ∩B2(q, cr)|+ nρ+o(1) with probability at least 0.9.

Runtime: While we have written the algorithm to create a TK-sized tree, we can speed up the
implementation by only including the necessary parts of the data structure.

We can bound the runtime as follows. Naively, for preprocessing, it takes space and time O(TK · d)
to construct the tree and generate and store the Gaussians. Next, for each point p, if p ∈ Pv, it takes
up to O(T · d) time to determine which child of v is that p will be sent to. Since p is sent to only one
node in each partition, this takes total time O(K · T · d) per point, which means O(n ·K · T · d) total
time to partition the points in X . To improve the preprocessing time, we do not generate the full tree:
rather, we only generate a node of the tree (with a corresponding Gaussian gv) if we need to check
whether some data point p ∈ X is sent to the node, which means we can improve the preprocessing
time to O(n ·K · T · d), without the extra term of O(TK · d). Note that if some leaf node v was not
created in our modified implementation, then no point would have been sent to some partition piece
Pv, which means |X ∩ Pv|+ TLap(1, ϵ

2 ,
δ
2 ) ≤

2
ϵ · log

(
1 + eϵ/2−1

δ

)
. So, we would have set cv to

be 0 anyway, which means that this modification does not affect any of the responses to queries.

To answer a query q, if q ∈ Pv (where v is possibly not a leaf node) it takes O(T ·d) time to determine
all of the children of v that q will be sent to. In expectation, q is sent to (TF (ηq))

ℓ nodes at level ℓ,
which means at level ℓ+ 1 we need to check up to (TF (ηq))

ℓ · T nodes in expectation. (If a node w
is not created in our implementation, we do not have to check it, since we know cv = 0 for any leaf v
that is a descendant of w.) Therefore, the total time it takes to determine all leaf nodes q is sent to, in
expectation, is O

(
d ·

∑K−1
ℓ=0 (TF (ηq))

ℓ · T
)
= O((TF (ηq))

K ·K · T · d). Finally, we can add cv

over all leaf nodes v that q is sent to, which takes an additional O((TF (ηq))
K) time in expectation.

Hence, we have the following lemma.
Lemma 3.4 (Runtime). The total preprocessing time of the data structure is O(n ·K · T · d), and
the expected time needed to answer each query is O((TF (ηq))

K ·K · T · d).

3.4 Parameter Settings and Finishing the Accuracy/Runtime Analysis

In this section, we set parameters properly so that Lemmas 3.3 and 3.4 match the goals of Theorem
1.1. We recall that c > 1 is a fixed constant representing the approximation ratio. We assume that
d = (log n)O(1) and r = Θ

(
1

(log n)1/8

)
. For fixed c and r as set above, we set the parameters as

follows:

• K :=
√
lnn.

• ηu :=
√

lnn
K · λr , for some constant λ = λ(c), that we will set later.

9



• ηq := α(r) · ηu − 2β(r) ·
√
lnK. Recall that α(r) = 1− r2

2 and β(r) =
√
1− α(r)2.

• T := 10 lnK/F (ηu).

First, we must show that our parameter choices imply that the algorithm is accurate. We prove the
following lemma, for which the proof is deferred to Appendix A.

Lemma 3.5 (Accuracy, completed). For an appropriate choice of λ(c) = 2
√
2c

c2+1 , all three conditions

in Lemma 3.3 hold, with ρ = 4c2

(c2+1)2 = O( 1
c2 ). Hence, Lemma 3.3 holds without the conditions, for

ρ = 4c2

(c2+1)2 .

Finally, we show that the runtime is good, under our parameter choices.

Lemma 3.6 (Runtime, completed). For the parameters we have defined, assuming r = Θ
(

1
(log n)1/8

)
,

the total preprocessing time is n1+o(1) · d and the expected time to answer each query is nρ+o(1) · d,
for ρ = 4c2

(c2+1)2 .

Proof. The preprocessing time is O(n ·K · T · d). We know that T = 10 lnK
F (ηu)

, and that 1
F (ηu)

≤
Ω(ηu) ·eη

2
u/2 ≤ (log n)O(1) ·elnn·λ2/(r2·K). By our settings of r = Θ((log n)−1/8) and K =

√
lnn,

and since λ is a constant, this equals nΘ(1/(log n)1/4) = no(1). Hence, 1/F (ηu) = no(1), and since
K = O(

√
log n), the total preprocessing time is n1+o(1) · d.

The time to answer each query is O((TF (ηq))
K · K · T · d). By Lemma 3.5, we know that

(TF (ηq))
K = nρ+o(1). Moreover, we know that K = (log n)O(1), and we already saw that

T = 10 lnK/F (ηu) = no(1). Hence, the time to answer each query is nρ+o(1) · d.

Lemmas 3.2, 3.5, and 3.6 will end up being sufficient to prove Theorem 1.1 if we assume the data
lies on a d = (log n)O(1)-dimensional unit sphere, and if r = Θ((log n)1/8). To finish the analysis,
we must show that this assumption can be made without loss of generality, which will follow from
an embedding argument of [BRS11]. We defer this argument, and the proof of the remainder of
Theorem 1.1, to Appendix A.2.
Remark. We note that the data structure can be implemented so that extra space is only O(nd).
Instead of generating and storing the Gaussians gv independently, we note that in each level ℓ, each
group of T siblings can reuse exactly the same random set of T Gaussians. The analysis goes through
mutatis mutandis as independence between different branches is not needed.
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A Omitted Proofs from Section 3

A.1 Completion of Accuracy Analysis

Here, we complete the accuracy analysis by proving Theorem 3.5.

Proof of Theorem 3.5. To bound (T · F (ηq))
K , note that (10 lnK)K ≤ no(1) by our setting of K =√

lnn. Therefore, it suffices to show that (F (ηq)/F (ηu))
K ≤ nρ+o(1). However, by Proposition

3.1, we can upper bound F (ηq)/F (ηu) ≤ O(ηu) · e(η
2
u−η2

q)/2. But we know that ηu ≤ (log n)O(1),

which implies that O(ηu)
K ≤ no(1). Hence, it suffices to bound (e(η

2
u−η2

q)/2)K . Indeed, we can
write

η2u − η2q = η2u − (α(r) · ηu − 2β(r) ·
√
lnK)2

≤ (1− α(r)2) · η2u + 4α(r)β(r)
√
lnK · ηu

≤ λ2 · lnn
K

+ 4λ ·
√

lnn · lnK
K

≤
(
λ2 · lnn

K

)
· (1 + o(1)).

Above, the third line follows from the fact that 1− α(r)2 ≤ r2 and α(r) · β(r) ≤ β(r) ≤ r, and the
fourth line follows from our definition of K. Therefore,

(T · F (ηq))
K ≤ no(1) · exp

(
1

2
·
(
λ2 · lnn

K

)
· (1 + o(1))

)K

= no(1) · exp
(
λ2

2
· lnn · (1 + o(1))

)
= nλ2/2+o(1).

Next, note that e−TF (ηu) = e−10 logK = K−10 = o(1/K), since K = ω(1).

Next, we bound G(r,ηq,ηu)
F (ηu)

. Since G(r, ηq, ηu) = P[⟨g, q⟩ ≥ ηq and ⟨g, p⟩ ≥ ηu] for ∥p− q∥2 = r,

we can rewrite this as G(r,ηq,ηu)
F (ηu)

= P[⟨g, q⟩ ≥ ηq|⟨g, p⟩ ≥ ηu] for ∥p − q∥2 = r. Since p, q are
unit vectors, we can write q = α(r) · p + β(r) · p′, where p′ is a unit vector orthogonal to p.
Hence, if we let Y = ⟨g, p⟩ and Z = ⟨g, p′⟩, then Y,Z are independent standard Gaussians and
our goal is to bound P[α(r) · Y + β(r) · Z ≥ ηq|Y ≥ ηu]. But, ηq = α(r) · ηu − 2β(r) ·

√
lnK,

which means if Z ≥ −2
√
lnK, then Y ≥ ηu automatically implies α(r) · Y + β(r) · Z ≥ ηq.

Therefore, our probability is at least P(Z ≥ −2
√
lnK) = 1 − P(Z ≥ 2

√
lnK) = 1 − o(1/K),

since P(Z ≥ 2
√
lnK) = O(1/K2).

Finally, we must bound
(

G(cr,ηq,ηu)
F (ηu)

)K

. Note that G(cr,ηq,ηu)
F (ηu)

= P[⟨g, q⟩ ≥ ηq|⟨g, p⟩ ≥ ηu] for
∥p− q∥2 = cr, which means q = α(cr) · p+ β(cr) · p′. Again, letting Y = ⟨g, p⟩ and Z = ⟨g, p′⟩,
we wish to bound

G(cr, ηq, ηu)

F (ηu)
= P

[
α(cr) · Y + β(cr) · Z ≥ α(r) · ηu − 2β(r) ·

√
lnK

∣∣Y ≥ ηu

]
. (1)

We can rewrite this as

P

[
Z ≥ (α(r)− α(cr)) · ηu − 2β(r) ·

√
lnK

β(cr)
− α(cr) · (Y − ηu)

β(cr)

∣∣∣∣Y ≥ ηu

]
(2)

If we write W = Y − ηu, note that the PDF of W is 1√
2π
· e−(W+ηu)

2/2. The probability that W ≥ 0

is between Ω
(

1
ηu

)
· e−η2

u/2 and e−η2
u/2, which means

P(W ≥ w|W ≥ 0) ≤ e−(ηu+w)2/2

Ω(1/ηu) · e−η2
u/2
≤ O(ηu) · e−w2/2−w·ηu ≤ O(ηu) · e−ηu·w.
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Next, a simple calculation tells us that

α(cr)

β(cr)
=

1− (cr)2

2

cr ·
√

1− (cr)2

4

=
1

cr
· (1± o(1)),

and

(α(r)− α(cr)) · ηu − 2β(r) ·
√
lnK

β(cr)
=

(
c2−1
2

)
r2 ·

√
lnn
K · λr − 2r

√
lnK(1± o(1))

cr(1± o(1))

=

√
lnn
K · r · (c

2−1)λ
2 · (1± o(1))

cr(1± o(1))

=

√
lnn

K
· (c

2 − 1)λ

2c
· (1± o(1)).

Let r′ = β(cr)
c·α(cr) = r(1± o(1)). Then, we can therefore upper bound (2) as at most

P

[
Z +

W

cr′
≥

√
lnn

K
· (c

2 − 1)λ

2c
· (1− o(1))

∣∣∣∣W ≥ 0

]
. (3)

The CDF of W
cr′ conditioned on W ≥ 0 is bounded above by O(cr′ · ηu) · e−cr′·ηu·w ≤ (log n)O(1) ·

e−S·w, where S = c · r
′

r · λ ·
√
lnn/K. In addition, we write pZ to represent the PDF of Z (which

is a standard Gaussian) and T =
√

lnn/K · (c2 − 1)λ/(2c) · (1− o(1)). Note that S > T , since it
suffices for c > c2−1

2c · (1 + o(1)), which is true for any constant c. Then, we have that (3) is at most∫ ∞

−∞
P
(
W

cr′
≥ w

∣∣W ≥ 0

)
· pZ(T − w)dw ≤ (log n)O(1) ·

∫ ∞

0

e−S·w · e−(T−w)2/2dw +

∫ 0

−∞
e−(T−w)2/2dw

≤ (log n)O(1) ·
∫ ∞

0

e−T 2/2−(S−T )w−w2/2dw +

∫ 0

−∞
e−T 2/2+Tw−w2/2dw

≤ (log n)O(1) · e−T 2/2 ·
∫ ∞

−∞
e−w2/2

= (log n)O(1) · e−T 2/2.

The third line uses the fact that (S − T )w ≥ 0 when w ≥ 0 (since S ≥ T ) and that Tw ≤ 0 when
w ≤ 0 (since T is positive as we assume c ≥ 1). Therefore,(

G(cr, ηq, ηu)

F (ηu)

)K

≤
(
(log n)O(1) · e−(T 2/2)

)K

≤ n−(c2−1)2λ2/(8c2)+o(1).

To finish, we will want to set λ2

2 = ρ and (c2−1)2λ2

8c2 = 1 − ρ. Solving gives us λ = 2
√
2c

c2+1 and

ρ = 4c2

(c2+1)2 .

A.2 Embedding into the Euclidean sphere

In the previous sections, we assumed that the data lied on a reasonably low-dimensional Euclidean
sphere, and that r was some reasonably small (but not too small) parameter. In this section, we explain
why this assumption can be made without loss of generality, by using a previous work of [BRS11]
which allows us to embed the data into a Euclidean sphere.
Lemma A.1. [BRS11, Lemma 6, rephrased] Fix integers d, d′ ≥ 1 and a parameter 0 < γ < 1

2 .
There exists a randomized map Θ : Rd → Sd′−1, where Sd′−1 represents the unit sphere in Rd′

,
that can be computed in time O(d · d′) for any point x ∈ Rd, with the following properties for any
x, y ∈ Rd.

1. ∥Θ(x)−Θ(y)∥22 ≤ (1 + γ) · ∥x− y∥22 with failure probability at most exp
(

Dγ2

6

)
.2

2The original claim also takes some parameters σ1, . . . , σD: we will set D = d′/2 and every σi = 1. It is
clear that the final function Θ defined in [BRS11] has norm 1 in this case.
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2. If ∥x− y∥2 ≤
√
γ, then ∥Θ(x)−Θ(y)∥22 ≥ (1− γ) · ∥x− y∥22 with failure probability at

most exp
(
− 3Dγ2

128

)
.

3. If ∥x−y∥2 ≥
√
γ, then ∥Θ(x)−Θ(y)∥22 ≥

γ
2 with failure probability at most exp

(
−D·γ

128

)
.3

We will set d′ = O
(

logn
γ2

)
, where we recall that n equals the number of data points and m equals the

number of queries. Then, if we generate the randomized map Θ ahead of time, with high probability
the conditions in Lemma A.1 hold for all n data points and any fixed query point. (In the final
algorithm, we repeat the embedding O(logm) times to amplify the success probability).

Corollary A.2. Suppose that (cr)2 ≤ γ
2 , and d′ = C · logn

γ2 for some sufficiently large constant C.

Then, with at least 0.99 probability over the randomized map Θ : Rd → Sd′−1, for all x ∈ X and
any fixed query y, ∥x− y∥2 ≤ r implies ∥Θ(x)−Θ(y)∥2 ≤ (1 + γ) · r and ∥x− y∥2 ≥ cr implies
∥Θ(x)−Θ(y)∥2 ≥ (1− γ) · cr.

Proof. We assume that Θ was chosen so that for every x ∈ X and for the fixed y, the three claims in
Lemma A.1 all hold.

Fix some pair (x, y), where x ∈ X, y ∈ Q. First, if ∥x − y∥2 ≤ r, then since r ≤ √γ, ∥Θ(x) −
Θ(y)∥2 ≤ (1+γ) · ∥x−y∥2 = (1+γ) · r. Next, if c · r ≤ ∥x−y∥2 ≤

√
γ, then ∥Θ(x)−Θ(y)∥2 ≥

(1−γ)·∥x−y∥2 ≥ (1−γ)·cr. Otherwise, if ∥x−y∥2 ≥
√
γ, then ∥Θ(x)−Θ(y)∥2 ≥

√
γ
2 ≥ c·r.

We can now finish the proof of Theorem 1.1.

Proof. We will prove that we can solve the (c · 1+γ
1−γ ,

r
1+γ )-near neighbor counting with differential

privacy, where r = (log n)−1/8 and γ = (log n)−1/8, over Euclidean space. By scaling, this
automatically implies the same result for any choice of r, and c replaced with c(1+γ)

1−γ = c(1 + o(1)).

We will run O(logm) independent copies of the data structure and algorithm, where each individual
data structure satisfies (ϵ′, δ′) =

(
ϵ

O(logm) ,
δ

O(logm)

)
-DP. By basic composition, this implies (ϵ, δ)-

DP overall. For each query, we output the median of the responses of each data structure, which by a
Chernoff bound will significantly decrease the failure probability.

For each copy of the data structure, we first preprocess the data X ∈ Rd by using the random
map Θ from Lemma A.1 to map each point x ∈ X to Θ(x), which takes O(nd · d′) time. Next,
we create the data structure on Θ(X), which is on a d′ = O

(
logn
γ2

)
= (log n)O(1)-dimensional

sphere. To answer any query q ∈ Rd, we compute Θ(q) in O(d · d′) time, and answer the query Θ(q)
using the data structure created on Θ(X). By Corollary A.2, with 0.99 probability, any accurate
answer for (c, r)-near neighbor counting on Sd′−1 for a fixed query Θ(q) is an accurate answer for
( (cr)/(1−γ)

r/(1+γ) , r
1+γ ) = (c · 1+γ

1−γ ,
r

1+γ )-near neighbor counting problem for q over Rd. Moreover, the
embedding Θ is oblivious to the data, which means privacy is preserved.

Now, we have embedded the data and queries onto the unit sphere Sd′−1 for d′ = (log n)O(1), in
O(nd · d′) = Õ(nd) preprocessing time. We may now create the data structure (Algorithm 1) and
answer each query (Algorithm 2) on Sd′−1. We recall that, to improve the failure probability so that
every query is answered with high probability, we replaced (ϵ, δ) with (ϵ′, δ′) = ( ϵ

O(logm) ,
δ

O(logm) ),
and we will take the median over O(logm) independent copies of the data structure, for each query.
By Lemmas 3.2 and 3.6, the privacy and runtime conditions of Theorem 1.1 are all satisfied. Moreover,
by Lemma 3.5, with probability at least 2/3− 0.01 ≥ 0.6, for each query q, each copy of the data
structure is accurate, replacing the additive error 1

ϵ log
1
δ · n

ρ+o(1) with logm
ϵ log logm

δ · nρ+o(1). By
a Chernoff bound, the overall algorithm (taking the median of O(logm) copies) is accurate on each

3In the original paper [BRS11] they only prove this result for ∥x− y∥2 ≥ 1√
2

, the same proof can extend to
∥x− y∥2 ≥ γ, at the cost of reducing the failure probability from exponential in −D to exponential in −D · γ.
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query with probability at least 1− 1
100m , so it is accurate on all queries simultaneously with at least

0.99 probability. This concludes the proof.

B Lower Bound

In this section, we prove Theorem 1.2.

Given n points z1, . . . , zn ∈ {0, 1}d, and a series of m queries B1, . . . , Bm represented by axis-
parallel boxes, we create the matrix Ai,j to be the indicator of Bi containing zj . We define the
red-blue discrepancy to be maxx∈{−1,1}n ∥Ax∥∞.

First, we have the following result due to Chazelle and Lvov [CL01].

Theorem B.1. [CL01] For sufficiently large n and d = C log n for a large constant C, there exists a
set of n points z1, . . . , zn ∈ {0, 1}d and n boxes B1, . . . , Bn such that the matrix {Ai,j} ∈ Rn×n

has red-blue discrepancy nΩ(1) = 2Ω(d).

Now, we switch to the result of Muthukrishnan and Nikolov [MN12]. They have a slighly more
general definition of discrepancy, of discp,α(A) = minx∈{−1,0,1}d,∥x∥1≥α·d ∥Ax∥p, so the above
result is written as a lower bound on disc(A) := disc∞,1(A). Now, we describe their theorem.

Theorem B.2. [MN12] For all x ∈ {0, 1}n, there exist constants ϵ, δ > 0 such that no mechanism
M = {Mn} that satisfies

∀x ∈ {0, 1}n,P
(
∥Mn(x)−Ax∥∞ <

disc(A)

2

)
≥ 2/3

is (ϵ, δ)-DP, where two data points x, x′ ∈ {0, 1}n are adjacent if they differ exactly in one coordinate
location.

Given these lemmas, we are ready to prove our main lower bound, Theorem 1.2.

Proof of Theorem 1.2. We set m = n and d = C log n for some constant C. By using Theorem
B.1, we can construct a public set {z1, . . . , zn} of distinct points in {0, 1}d and a fixed set of boxes
B1, . . . , Bn, that generate a matrix A with discrepancy disc(A) ≥ nρ, where ρ > 0 is a fixed
constant. For any x ∈ {0, 1}n, we define the dataset Dx will be the subset of the public set where
zi ∈ Dx if and only if xi = 1. Then, Ax would be an m = n dimensional vector that precisely
tells us the number of points in Dx are in each box. In addition, if x, x′ are adjacent in {0, 1}n, then
Dx, Dx′ are adjacent datasets. Next for any axis-parallel box Bi, we create a query point qi ∈ {0, 1}d
as follows. In the kth coordinate dimension, if Bi intersects either both or neither of the planes
xk = 0 and xk = 1, we set qi,k = 1/2. Otherwise, if Bi only intersects the plane xk = 0, we set
qi,k = −1/2. Finally, if Bi only intersects the plane xk = 1, we set qi,k = 3/2.

Suppose thatA is an (ϵ, δ)-DP algorithm acting on subsets S of {0, 1}d of size at most n, that returns
an estimate to |S ∩ B∞(qi, 1)| for all queries qi. Since every qi has half-integral coordinates, and
every data point has integral coordinates, we have that B∞(qi, 1) = B∞(qi, 1/2) = B∞(qi, 3/2−α)
for any α > 0, and these all equal Bi. So, for any subset S ⊂ {0, 1}d,

|S ∩B∞(qi, 1)| = |S ∩B∞(qi, 1/2)| = |S ∩B∞(qi, 3/2− α)| = |S ∩Bi|.

Suppose that for any S ⊂ {0, 1}d of size at most n, with probability at least 2/3, the output of A(S)
for each query qi differs by at most T from |S ∩Bi|. Then, we can consider the algorithmM that
acts on an element in {0, 1}n, whereM(x) = A(Dx). Since A is (ϵ, δ)-DP, this implies thatM
is also (ϵ, δ)-DP, with respect to adjacent elements in {0, 1}n. Moreover, (A · x)i =

∑
j Ai,jxj =

|{j : Ai,j = xj = 1}| = |Dx ∩Bi|. Hence, by Theorem B.2, there must exist x ∈ {0, 1}n such that

P
(
∥A(Dx)− |Dx ∩Bi|∥∞ <

disc(A)

2

)
= P

(
∥M(x)−Ax∥∞ <

disc(A)

2

)
<

2

3
,

so T ≥ disc(A)
2 . This completes the proof as disc(A) ≥ nρ.
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C Extensions

ℓ1 balls. It is easy to extend our algorithms to ranges that are balls in the ℓ1 norm. This relies on the
well-known fact that the ℓ1 norm embeds (almost) isometrically into a negative-type metric, i.e., into
a squared Euclidean metric (ℓ2)2. We use the following constructive version of this fact, from [LN14,
Theorem 116] based on [MN04].

Theorem C.1 ([LN14]4). Let 1 ≤ p < 2. Let X ⊂ Rd be a point set with ℓp-aspect ratio Φ. There is
a mapping f : X → Rd′

for d′ = d · poly(log Φ, log d, 1/ϵ) such that for every x, y ∈ X ,

∥x− y∥pp ≤ ∥f(x)− f(y)∥22 ≤ (1 + ϵ) ∥x− y∥pp .

The above theorem, applied for p = 1, reduces approximate range queries for ℓ1 balls with approx-
imation factor c to approximate range queries for (ℓ2)2 balls with approximation factor c/(1 + ϵ)
and d replaced by d′. The latter problem is equivalent to approximate range queries for ℓ2 balls with
approximation factor

√
c/(1 + ϵ). The final bound follows by following this sequence of reductions.

Pure Differential Privacy. The only reason that our algorithm requires approximate differential
privacy is that we use truncated Laplace noise in line 19 of Algorithm 1. We use truncated Laplace
noise so that if any leaf node is empty, then the noisy count will be 0 with probability 1. To make the
algorithm pure-DP, we modify line 19 to add Lap(2/ϵ) noise to the count cv , and in lines 20-21, we
replace cv with 0 whenever the noised count is at most 10

ϵ ·K log T . For the parameters in subsection
3.4, this is at most 1

ϵ · (log n)
O(1).

The difficulty, however, is that we need to speed up the runtime from TK , as done in the runtime
analysis in subsection 3.3. Specifically, we need to ensure that few nodes are created (i.e., have
cv = 0): we prove that, in expectation, this holds. In addition, we need to determine which nodes
will have cv ̸= 0 efficiently. If so, we only need to create these nodes in the preprocessing, which
completes the proof.

First, we determine which nodes every data point p ∈ X is sent to, in the same fashion as in
runtime analysis in subsection 3.3. Suppose there are n′ ≤ n nonempty regions: then there are
N := TK − n′ empty regions. For each node v, we wish to sample cv ∼ Lap(2/ϵ) as the noise, and
if cv > 10

ϵ ·K log T , we keep the node v and store cv . Otherwise, we reset cv back to 0, and do not
need to store v.

We note that the probability of any fixed cv > 4
ϵ ·K log T is 1

2 ·e
−(ϵ/2)·(10/ϵ)·K log T = e−5K log T /2 =

T−5K/2. Let α := T−5K/2. We first consider the problem of sampling from Bin(N,α), which
represents the number of empty regions that will have cv > 0. Note that P(Bin(N,α) > 0) =

1 − (1 − T−5K/2)T
K−n′ ≤ T−4K . By using a repeated squaring approach, we can compute

this probability exactly in poly log(TK) = poly log n time. Then, we can flip a coin with this
probability, and with at most T−4K failure probability, the Binomial equals 0. Otherwise, need to
compute the distribution Bin(N,α) conditioned on it being at least 1. However, we can compute
each term

(
N
r

)
αr(1 − α)N−r = P(Bin(N,α) = r) in time at most O(N2), which thus means we

can compute every P(Bin(N,α) = r) in time O(N3). Hence, in the T−4K ≤ N−4 probability event
that Bin(N,α) > 0, we can still draw from the conditional distribution in time O(N3). Hence, in
expected time poly log n, we can draw from Bin(N,α).

In the case that Bin(N,α) = r > 0, because every cv (for empty regions v) has the same distribution,
we can create the full tree, and then uniformly choose the subset of r regions which will have noisy
count at least 10

ϵ ·K log T . This takes time at most T 2K . We then have to compute each cv ∼ Lap(2/ϵ)

for the r choices of v where cv > 10
ϵ · K log T . However, by using the well-known memoryless

property of exponential distributions, the distribution of each cv is just 10
ϵ ·K log T + Expo(2/ϵ).

Hence, we can compute the full data structure in time O(T 3K), in this setting. This, however, only
happens with at most T−4K probability.

4The statement in [LN14] is for Φ = dO(1), but applies to any Φ > 0. The statement given here is by setting
R = d−1/q in [LN14, Theorem 116] and scaling the minimal distance in the given metric to 1.
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Alternatively, if r = 0, we can avoid computing any cv when v is empty. The rest of the analysis in
this case proceeds identically to subsection 3.3. Finally, in either case, the time to answer each query,
in expectation, is still the same as in subsection 3.3.

Finally, we need to verify the accuracy of the algorithm. In expectation, each cv is off by at most
O(T logK/ϵ) = (log n)O(1)/ϵ, as the noise adds an expected O(1/ϵ) error, and the replacing of cv
with 0 only happens when cv < O(T logK/ϵ). The analysis of Lemma 3.3 proceeds identically,
except that the first source of error replaces the log 1

δ term with a T logK = (log n)O(1) term.

Finally, the embedding of arbitrary Euclidean data into the Euclidean sphere, as in Appendix A.2,
proceeds the same way. Overall, Theorem 1.1 still holds when δ = 0, except that the runtime of both
the preprocessing and answering each query is in expectation, and the additive error removes the
log(logm/δ) term. (Indeed, the additional (log n)O(1) factors in the runtime and additive error can
be absorbed into the no(1) term).

Large ϵ. We remark that our analysis extends to ϵ ≤ no(1) in a straightfoward manner. We remark
that in practice, because the probability ratio in differential privacy depends on eϵ, it is highly
impractical to use any ϵ significantly larger than Ω(log n), and therefore we believe that it is not
interesting to analyze an algorithm beyond ϵ ≤ no(1).

To see why, note that for 1 ≤ ϵ ≤ no(1), any (1/2, δ)-DP algorithm is automatically (ϵ, δ)-DP. (This
also holds in the δ = 0 case.) Note that the runtime bounds do not depend on ϵ, and the accuracy
bounds are proportional to 1/ϵ in the additive error. Therefore, if we allow the nρ+o(1) term in the
additive error to have a slightly larger o(1) in the exponent (i.e., up to nρ+o(1)/ϵ), the claim still holds
until ϵ ≤ no(1) for any o(1).

Adaptive Queries. Here, we explain how we are able to improve Theorem 1.1 to handle adaptive
queries.

We assume we are promised that all data points are in [−R,R]d, where R > r is some parameter.
Let T represent the set of points (x1, . . . , xd) where every |xi| ≤ 2R and xi is an integral multiple
of r/d. Note that |T | ≤ O(d ·R/r)d = eO(d log(dR/r)).

Now, consider having M = O(d log(dR/r)) independent copies of the data structure, where each
data structure is initialized with ( ϵ

M , δ
M )-DP. To answer each query, each data structure computes its

approximation, and the overall data structure outputs the mean of the M responses. By a standard
Chernoff bound, and the accuracy bounds of Theorem 1.1, the output will be between (1−o(1)) · |X∩
B2(q, r)|−nρ+o(1)· log(logm·M/δ)·logm

ϵ/M and (1+o(1))·|X∩B2(q, cr)|+nρ+o(1)· log(logm·M/δ)·logm
ϵ/M ,

with e−Ω(M) failure probability. In other words, the failure probability is e−Ω(M) (assuming non-
adaptive queries) and the additive error multiplies by at most O(M logM). Moreover, each data
structure is ( ϵ

M , δ
M )-DP, so the overall algorithm, by basic composition, is (ϵ, δ)-DP. Finally, the

runtime will only increase by a factor of M (both for preprocessing and answering queries), since we
have to repeat the process for M data structures.

Now, we explain how we can deal with arbitrary adaptive queries. We can assume WLOG that every
query is in the range [−2R, 2R]d, or else the algorithm can simply output 0 without sacrificing either
privacy or accuracy. Next, we can assume WLOG that every query is in T , because any query q is
within r/

√
d of some point q′ ∈ T , and answering the query on q′ will be accurate up to an additive

error of r/
√
d = o(r). Therefore, as long as the data structure is accurate for all of the queries in T ,

this is sufficient.

Thus, for each q ∈ T , the overall data structure will answer accurately with failure probability
e−Ω(M). For M = O(d log(dR/r)), we have that |T | ≤ eΩ(M), so by a union bound, the data
structure will answer any query q ∈ T accurately. Therefore, even adaptive queries can be answered
accurately, since even any adaptive query can be assumed WLOG to be in T .
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