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Abstract
For any two point sets A,B ⇢ d of size up to n, the Chamfer distance from
A to B is defined as CH(A,B) =

P
a2A minb2B dX(a, b), where dX is the

underlying distance measure (e.g., the Euclidean or Manhattan distance). The
Chamfer distance is a popular measure of dissimilarity between point clouds, used
in many machine learning, computer vision, and graphics applications, and admits a
straightforward O

�
dn2

�
-time brute force algorithm. Further, the Chamfer distance

is often used as a proxy for the more computationally demanding Earth-Mover
(Optimal Transport) Distance. However, the quadratic dependence on n in the
running time makes the naive approach intractable for large datasets.

We overcome this bottleneck and present the first (1+")-approximate algorithm for
estimating the Chamfer distance with a near-linear running time. Specifically, our
algorithm runs in time O

�
nd log(n)/"2

�
and is implementable. Our experiments

demonstrate that it is both accurate and fast on large high-dimensional datasets.
We believe that our algorithm will open new avenues for analyzing large high-
dimensional point clouds. We also give evidence that if the goal is to report a
(1 + ")-approximate mapping from A to B (as opposed to just its value), then any
sub-quadratic time algorithm is unlikely to exist.

1 Introduction
For any two point sets A,B ⇢ d of sizes up to n, the Chamfer distance1 from A to B is defined as

CH(A,B) =
X

a2A

min
b2B

dX(a, b)

where dX is the underlying distance measure, such as the Euclidean or Manhattan distance. The
Chamfer distance, and its weighted generalization called Relaxed Earth Mover Distance [16, 7], are
popular measures of dissimilarity between point clouds. They are widely used in machine learning
(e.g., [16, 23]), computer vision (e.g., [8, 22, 12, 15]) and computer graphics [17]. Subroutines for
computing Chamfer distances are available in popular libraries, such as Tensorflow [3], Pytorch [2]
and PDAL [1]. In many of those applications (e.g., [16]) Chamfer distance is used as a faster proxy
for the more computationally demanding Earth-Mover (Optimal Transport) Distance.

1This is the definition adopted, e.g., in [8]. Some other papers, e.g., [12], replace each distance term dX(a, b)
with its square, e.g., instead of ka� bk2 they use ka� bk22. In this paper we focus on the first definition, as it
emphasizes the connection to Earth Mover Distance and its relaxed weighted version in [16, 7].
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Despite the popularity of Chamfer distance, the naïve algorithm for computing it has quadratic O
�
n2

�

running time, which makes it difficult to use for large datasets. Faster approximate algorithms can
be obtained by performing n exact or approximate nearest neighbor queries, one for each point in
A. By utilizing the state of the art approximate nearest neighbor algorithms, this leads to (1 + ")-
approximate estimators with running times of O

�
n(1/")O(d) log n

�
in low dimensions [6] or roughly

O
⇣
dn

1+ 1
2(1+")2�1

⌘
in high dimensions [5]. Alas, the first bound suffers from exponential dependence

on the dimension, while the second bound is significantly subquadratic only for relatively large
approximation factors.

1.1 Our Results
In this paper we overcome this bottleneck and present the first (1 + ")-approximate algorithm for
estimating Chamfer distance that has a near-linear running time, both in theory and in practice.
Concretely, our contributions are as follows:

• When the underlying metric dX is defined by the `1 or `2 norm, we give an algorithm that runs in
time O

�
nd log(n)/"2

�
and estimates the Chamfer distance up to 1± " with 99% probability (see

Theorem 2.1). In general, our algorithm works for any metric dX supported by Locality-Sensitive
Hash functions (see Definition 2.2), with the algorithm running time depending on the parameters
of those functions. Importantly, the algorithm is quite easy to implement, see Figures 1 and 2.

• For the more general problem of reporting a mapping g : A ! B whose cost
P

a2A dX(a, g(a))
is within a factor of 1 + " from CH(A,B), we show that, under a popular complexity-theoretic
conjecture, an algorithm with a running time analogous to that of our estimation algorithm does
not exist, even when dX(a, b) = ka � bk1. Specifically, under a Hitting Set Conjecture [24],
any such algorithm must run in time ⌦(n2��) for any constant � > 0, even when the dimension
d = ⇥(log2 n) and " = ⇥(1)

d . (In contrast, our estimation algorithm runs in near-linear time for
such parameters). This demonstrates that, for the Chamfer distance, estimation is significantly
easier than reporting.

• We experimentally evaluate our algorithm on real and synthetic data sets. Our experiments
demonstrate the effectiveness of our algorithm for both low and high dimensional datasets and
across different dataset scales. Overall, it is much faster (>5x) than brute force (even accelerated
with KD-trees) and both faster and more sample efficient (5-10x) than simple uniform sampling.
We demonstrate the scalability of our method by running it on billion-scale Big-ANN-Benchmarks
datasets [21], where it runs up to 50x faster than optimized brute force. In addition, our method is
robust to different datasets: while uniform sampling performs reasonably well for some datasets
in our experiments, it performs poorly on datasets where the distances from points in A to their
neighbors in B vary significantly. In such cases, our algorithm is able to adapt its importance
sampling probabilities appropriately and obtain significant improvements over uniform sampling.

2 Algorithm and Analysis
In this section, we establish our main result for estimating Chamfer distance:

Theorem 2.1 (Estimating Chamfer Distance in Nearly Linear Time). Given as input two datasets
A,B ⇢ Rd such that |A|, |B| 6 n, and an accuracy parameter 0 < " < 1, Chamfer-Estimate

runs in time O
�
nd log(n)/"2

�
and outputs an estimator ⌘ such that with probability at least 99/100,

(1� ")CH(A,B) 6 ⌘ 6 (1 + ")CH(A,B),

when the underlying metric is Euclidean (`2) or Manhattan (`1) distance.

For ease of exposition, we make the simplifying assumption that the underlying metric is Manhattan
distance, i.e. dX(a, b) = ka � bk1. Our algorithm still succeeds whenever the underlying metric
admits a locality-sensitive hash function (the corresponding analogue of Definition 2.2).

Definition 2.2 (Hashing at every scale). There exists a fixed constant c1 > 0 and a parameterized
family H(r) of functions from X to some universe U such that for all r > 0, and for every x, y 2 X

1. Close points collide frequently:

Pr
h⇠H(r)

[h(x) 6= h(y)] 6 kx� yk1
r

,

2



Subroutine Chamfer-Estimate(A,B, T )
Input: Two subsets A,B ⇢ d of size at most n, and a parameter T 2 .
Output: A number ⌘ 2 >0.
1. Execute the algorithm CrudeNN(A,B), and let the output be a set of positive real numbers

{Da}a2A which always satisfyDa > minb2B ka� bk1. LetD :=
P

a2A Da.
2. Construct the probability distributionD, supported on the set A, which satisfies that for every

a 2 A,

Pr
x⇠D

[x = a] :=
Da

D
.

3. For ` 2 [T ], sample x` ⇠ D and spend O(|B|d) time to compute

⌘` :=
D

Dx`

·min
b2B

kx` � bk1.

4. Output

⌘ :=
1

T

TX

`=1

⌘`.

Figure 1: The Chamfer-Estimate Algorithm.

2. Far points collide infrequently:

Pr
h⇠H(r)

[h(x) = h(y)] 6 exp

✓
�c1 ·

kx� yk1
r

◆
.

Uniform vs Importance Sampling. A natural algorithm for estimating CH(A,B) proceeds by
uniform sampling: sample an a 2 A uniformly at random and explicitly compute minb2B ka� bk1.
In general, we can compute the estimator ẑ for CH(A,B) by averaging over s uniformly chosen
samples, resulting in runtime O(nds). It is easy to see that the resulting estimator is un-biased, i.e.
E [ẑ] = CH(A,B). However, if a small constant fraction of elements in A contribute significantly to
CH(A,B), then s = ⌦(n) samples could be necessary to obtain, say, a 1% relative error estimate
with constant probability. Since each sample requires a linear scan to find the nearest neighbor, this
would result in a quadratic runtime.

While such an approach has good empirical performance for well-behaved datasets, it does not work
for data sets where the distribution of the distances from points in A to their nearest neighbors in B is
skewed. Further, it is computationally prohibitive to verify the quality of the approximation given by
uniform sampling. Towards proving Theorem 2.1, it is paramount to obtain an algorithm that works
regardless of the structure of the input dataset.

A more nuanced approach is to perform importance samplingwhere we sample a 2 Awith probability
proportional to its contribution toCH(A,B). In particular, if we had access to a distribution,Da, over
elements a 2 A such that,minb2Bka� bk1 6 Da 6 �minb2Bka� bk1, for some parameter � > 1,
then samplingO(�) samples results in an estimator ẑ that is within 1% relative error to the true answer
with probability at least 99%. Formally, we consider the estimator defined in Algorithm 1, where
we assume access to CrudeNN(A,B), a sub-routine which receives as input A and B and outputs
estimatesDa 2 >0 for each a 2 A which is guaranteed to be an upper bound forminb2B ka� bk1.
Based on the values {Da}a2A we construct an importance sampling distribution D supported on A.
As a result, we obtain the following lemma:

Lemma 2.3 (Variance Bounds for Chamfer Estimate). Let n, d 2 and suppose A,B are two
subsets of d of size at most n. For any T 2 , the output ⌘ of Chamfer-Estimate(A,B, T )
satisfies

E [⌘] = CH(A,B),

Var [⌘] 6 1

T
·CH(A,B)2

✓
D

CH(A,B)
� 1

◆
,
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forD from Line 1 in Figure 1. The expectations and variance are over the randomness in the samples
of Line 3 of Chamfer-Estimate(A,B, T ). In particular,

Pr
h
|⌘ �CH(A,B)| > " ·CH(A,B)

i
6 1

"2 · T

✓
D

CH(A,B)
� 1

◆
.

The proof follows from a standard analysis of importance sampling and is deferred to Appendix A.
Observe, ifD 6 �CH(A,B), it suffices to sample T = O

�
�/"2

�
points in A, leading to a running

time of O
�
nd�/"2

�
.

Subroutine CrudeNN(A,B)
Input: Two subsets A,B of a metric space (X, k · k1) of size at most n such that all non-zero
distances between any point in A and any point in B is between 1 and poly(n/"). We assume
access to a locality-sensitive hash family at every scaleH(r) for any r > 0 satisfying conditions
of Definition 2.2. (We show in Appendix A that, for `1 and `2, the desired hash families exist,
and that distances between 1 and poly(n/") is without loss of generality).
Output: A list of numbers {Da}a2A whereDa > minb2B ka� bk1.

1. We instantiate L = O(log(n/")) and for i 2 {0, . . . , L}, we let ri = 2i.
2. For each i 2 {0, . . . , L} sample a hash function hi : X ! U from hi ⇠ H(ri).
3. For each a 2 A, find the smallest i 2 {0, . . . , L} for which there exists a point b 2 B

with hi(a) = hi(b), and set Da = ka� bk1.
• The above may be done by first hashing each point b 2 B and i 2 {0, . . . , L}
according to hi(b). Then, for each a 2 A, we iterate through i 2 {0, . . . , L}
while hashing a according to hi(a) until the first b 2 B with hi(a) = hi(b) is
found.

Figure 2: The CrudeNN Algorithm.

Obtaining importance sampling probabilities. It remains to show how to implement the
CrudeNN(A,B) subroutine to obtain the distribution over elements in A which is a reason-
able over-estimator of the true probabilities. A natural first step is to consider performing an
O(log n)-approximate nearest neighbor search (NNS): for every a0 2 A, find b0 2 B satisfying
ka0 � b0k1/minb2B ka0 � bk1 = O(log n). This leads to the desired guarantees on {Da}a2A. Un-
fortunately, the state of the art algorithms for O(log n)-approximate NNS, even under the `1 norm,
posses extraneous poly(log n) factors in the runtime, resulting in a significantly higher running time.
These factors are even higher for the `2 norm. Therefore, instead of performing a direct reduction to
approximate NNS, we open up the approximate NNS black-box and give a simple algorithm which
directly satisfies our desired guarantees on {Da}a2A.

To begin with, we assume that the aspect ratio of all pair-wise distances is bounded by a fixed
polynomial, poly(n/") (we defer the reduction from an arbitrary input to one with polynomially
bounded aspect ratio to Lemma A.3). We proceed via computing O(log(n/")) different (randomized)
partitions of the dataset A [ B. The i-th partition, for 1 6 i 6 O(log(n/")), can be written as
A [ B = [jP

i
j and approximately satisfies the property that points in A [ B that are at distance

at most 2i will be in the same partition Pi
j with sufficiently large probability. To obtain these

components, we use a family of locality-sensitive hash functions, whose formal properties are given
in Definition 2.2. Intuitively, these hash functions guarantee that:

1. For each a0 2 A, its true nearest neighbor b0 2 B falls into the same component as a0 in the
i0-th partition, where 2i0 = ⇥(ka0 � b0k1) 2, and

2. Every other extraneous b 6= b0 is not in the same component as a0 for each i < i0.

It is easy to check that any hash function that satisfies the aforementioned guarantees yields a valid
set of distances {Da}a2A as follows: for every a0 2 A, find the smallest i0 for which there exists a
b0 2 B in the same component as a0 in the i0-th partition. Then setDa0 = ka0 � b0k1. Intuitively, the
b0 we find for any fixed a0 in this procedure will have distance that is at least the closest neighbor in
B and with good probability, it won’t be too much larger. A caveat here is that we cannot show the

2Recall we assumed all distances are between 1 and poly(n) resulting in only O(log n) different partitions
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above guarantee holds for 2i0 = ⇥(ka0 � b0k1). Instead, we obtain the slightly weaker guarantee that,
in the expectation, the partition b0 lands in is a O(log n)-approximation to the minimum distance, i.e.
2i0 = ⇥(log n · ka0 � b0k1). Therefore, after running CrudeNN(A,B), setting � = log n suffices
for our O

�
nd log(n)/"2

�
time algorithm. We formalize this argument in the following lemma:

Lemma 2.4 (Oversampling with bounded Aspect Ratio). Let (X, dX) be a metric space with a
locality-sensitive hash family at every scale (see Definition 2.2). Consider two subsets A,B ⇢ X of
size at most n and any " 2 (0, 1) satisfying

1 6 min
a2A,b2B

a 6=b

dX(a, b) 6 max
a2A,b2B

dX(a, b) 6 poly(n/").

Algorithm 2, CrudeNN(A,B), outputs a list of (random) positive numbers {Da}a2A which satisfy
the following two guarantees:

• With probability 1, every a 2 A satisfiesDa > minb2B dX(a, b).

• For every a 2 A, E[Da] 6 O(log n) ·minb2B dX(a, b).

Further, Algorithm 2, runs in time O(dn log(n/")) time, assuming that each function used in the
algorithm can be evaluated in O(d) time.

Proof Sketch for Theorem 2.1. Given the lemmas above, it is straight-forward to complete the proof
of Theorem 2.1. First, we reduce to the setting where the aspect ratio is poly(n/") (see Lemma A.3
for a formal reduction). We then invoke Lemma 2.4 and apply Markov’s inequality to obtain a set of
distances Da such that with probability at least 99/100, for each a 2 A, minb2B ka � bk1 6 Da

and
P

a2A Da 6 O(log(n))CH(A,B). We then invoke Lemma 2.3 and set the number of samples,
T = O

�
log(n)/"2

�
. The running time of our algorithm is then given by the time ofCrudeNN(A,B),

which is O(nd log(n/")), and the time needed to evaluate the estimator in Lemma 2.3, requiring
O
�
nd log(n)/"2

�
time. Refer to Section A for the full proof.

Other Related Works We note that importance sampling is a popular technique used for speeding
up geometric algorithms. For example, [14] uses it to obtain a fast c-approximate algorithm for
computing Earth Mover Distance (EMD) in two (or any constant) dimensions, for some constant
c > 2. However, the application and implementation of importance sampling in that paper is quite
different from ours. In [14], the space containing all input points is subdivided into regions, and
the total EMD value is represented as a sum of EMDs restricted to point-sets in each region (plus
an additional representing the “global” EMD). The EMD cost in each region is then approximated
quickly by embedding EMD into `1 using a randomly shifted quadtree with logarithmic distortion;
these estimations define the sampling probabilities.

In contrast, in our paper, the value of the Chamfer distance is exactly equal to the sum of distances from
each point to its nearest neighbor, so there is no decomposition involved. Instead, we approximate
each distance to nearest neighbor using a randomized hierarchical decomposition; for the case of the
`1 norm, each level of the decomposition partitions the space into rectangular boxes, as in quadtrees.
Crucially, however, to ensure that the running time of our algorithm is within the stated bounds, we
cannot use a standard randomly shifted quadtree where each level is shifted by the same random
vector (as in [14]). This is because shifting all levels by the same amount only ensures that the
expected distortion between a fixed pair of points is logarithmic; to ensure that the distance to the
nearest neighbor is distorted by O(log n), we would need to use O(log n) independent quadtrees
and apply the union bound. Instead, we use independent random partitions at each level, and show
(Lemma 2.4) that this suffices to bound the expected distortion of the distance to the nearest neighbor,
without incurring any additional factors. This makes it possible to obtain the running time as stated.

There are other works on quickly computing EMD and related distances. For example, the algorithm
of [4] runs in time that is linear in the number of distances, i.e. it runs in ⌦(n2) time and gets a 1 + "
approximation to EMD. This means that their approach requires a runtime quadratic in the size of
the dataset n. In contrast, Chamfer distance admits a trivial time O(n2) algorithm and our main
contribution is to provide a nearly linear O(n log(n)/"2) algorithm to get (1 + ")-approximation to
Chamfer distance.
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3 Experiments
We perform an empirical evaluation of our Chamfer distance estimation algorithm.

Summary of Results Our experiments demonstrate the effectiveness of our algorithm for both
low and high dimensional datasets and across different dataset sizes. Overall, it is much faster
than brute force (even accelerated with KD-trees). Further, our algorithm is both faster and more
sample-efficient than uniform sampling. It is also robust to different datasets: while uniform sampling
performs well for most datasets in our experiments, it performs poorly on datasets where the distances
from points in A to their neighbors in B vary significantly. In such cases, our algorithm is able to
adapt its importance sampling probabilities appropriately and obtain significant improvements over
uniform sampling.

Dataset |A|, |B| d Experiment Metric Reference
ShapeNet ⇠ 8 · 103,⇠ 8 · 103 3 Small Scale `1 [10]

Text Embeddings 2.5 · 103, 1.8 · 103 300 Small Scale `1 [16]
Gaussian Points 5 · 104, 5 · 104 2 Outliers `1 -

DEEP1B 104, 109 96 Large Scale `2 [9]
Microsoft-Turing 105, 109 100 Large Scale `2 [21]

Table 1: Summary of our datasets. For ShapeNet, the value of |A| and |B| is averaged across different
point clouds in the dataset.

3.1 Experimental Setup
We use three different experimental setups, small scale, outlier, and large scale. They are designed
to ‘stress test’ our algorithm, and relevant baselines, under vastly different parameter regimes. The
datasets we use are summarized in Table 1. For all experiments, we introduce uniform sampling
as a competitive baseline for estimating the Chamfer distance, as well as (accelerated) brute force
computation. All results are averaged across 20+ trials and 1 standard deviation error bars are shown
when relevant.

Small Scale These experiments are motivated from common use cases of Chamfer distance in the
computer vision and NLP domains. In our small scale experiments, we use two different datasets: (a)
the ShapeNet dataset, a collection of point clouds of objects in three dimensions [10]. ShapeNet is a
common benchmark dataset frequently used in computer graphics, computer vision, robotics and
Chamfer distance is a widely used measure of similarity between different ShapeNet point clouds
[10]. (b) We create point clouds of words from text documents from [16]. Each point represents
a word embedding obtained from the word-to-vec model of [19] in 300 applied to the Federalist
Papers corpus. As mentioned earlier, a popular relaxation of the common Earth Mover Distance is
exactly the (weighted) version of the Chamfer distance [16, 7].

Since ShapenNet is in three dimensions, we implement nearest neighbor queries using KD-trees to
accelerate the brute force baseline as KD-trees can perform exact nearest neighbor search quickly in
small dimensions. However, they have runtime exponential in dimension meaning they cannot be
used for the text embedding dataset, for which we use a standard naive brute force computation. For
both these datasets, we implement our algorithms using Python 3.9.7 on an M1 MacbookPro with
32GB of RAM. We also use an efficient implementation of KD trees in Python and use Numpy and
Numba whenever relevant. Since the point clouds in the dataset have approximately the same n value,
we compute the symmetric version CH(A,B) + CH(B,A). For these experiments, we use the `1
distance function.

Outliers This experiment is meant to showcase the robustness of our algorithm. We consider
two point clouds, A and B, each sampled from Gaussian points in 100 with identity covariance.
Furthermore, we add an "outlier" point to A equal to 0.5n · 1, where 1 is the all ones vector.

This example models scenarios where the distances from points in A to their nearest neighbors in B
vary significantly, and thus uniform sampling might not accurately account for all distances, missing
a small fraction of large ones.
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Large Scale The purpose of these experiments is to demonstrate that our method scales to datasets
with billions of points in hundreds of dimensions. We use two challenging approximate nearest
neighbor search datasets: DEEP1B [9] and Microsoft Turing-ANNS [21]. For these datasets, the set
A is the query data associated with the datasets. Due to the asymmetric sizes, we compute CH(A,B).
These datasets are normalized to have unit norm and we consider the `2 distance function.

These datasets are too large to handle using the prior configurations. Thus, we use a proprietary in-
memory parallel implementation of the SimHash algorithm, which is an `2 LSH family for normalized
vectors according to Definition 2.2 [11], on a shared virtual compute cluster with 2x64 core AMD
Epyc 7763 CPUs (Zen3) with 2.45Ghz - 3.5GHz clock frequency, 2TB DDR4 RAM and 256 MB L3
cache. We also utilize parallization on the same compute cluster for naive brute force search.

3.2 Results

(a) ShapeNet (b) Federalist Papers (c) Gaussian Points

(d) DEEP (e) Turing

Figure 3: Sample complexity vs relative error curves.

(a) ShapeNet (b) Federalist Papers

Figure 4: Runtime experiments. We set the number of samples for uniform and importance sampling
such that the relative errors of their respective approximations are similar.

Small Scale First we discuss configuring parameters. Recall that in our theoretical results, we use
O(log n) different scales of the LSH family in CrudeNN. CrudeNN then computes (over) estimates
of the nearest neighbor distance from points in A to B (in near linear time) which is then used

7



(a) DEEP (b) Turing

Figure 5: The figures show sample complexity vs relative error curves as we vary the number of
LSH data structures and window sizes. Each curve maps k ⇥W where k is the number of LSH data
structures we use to repeatedly hash points in B and W is the window size, the number of points
retrieved from B that hash closest to any given a at the smallest possible distance scales.

for importance sampling by Chamfer-Estimate. Concretely for the `1 case, this the LSH family
corresponds to imposing O(log n) grids with progressively smaller side lengths. In our experiments,
we treat the number of levels of grids to use as a tuneable parameter in our implementation and find
that a very small number suffices for high quality results in the importance sampling phase.

Figure 6 (b) shows that only using 3 grid levels is sufficient for the crude estimatesDa to be within
a factor of 2 away from the true nearest neighbor values for the ShapeNet dataset, averaged across
different point clouds in the dataset. Thus for the rest of the Small Scale experiments, we fix the
number of grid levels to be 3.

Figure 3 (a) shows the sample complexity vs accuracy trade offs of our algorithm, which uses
importance sampling, compared to uniform sampling. Accuracy is measured by the relative error to
the true value. We see that our algorithm possesses a better trade off as we obtain the same relative
error using only 10 samples as uniform sampling does using 50+ samples, resulting in at least a 5x
improvement in sample complexity. For the text embedding dataset, the performance gap between
our importance sampling algorithm and uniform sampling grows even wider, as demonstrated by
Figure 3 (b), leading to > 10x improvement in sample complexity.

In terms of runtimes, we expect the brute force search to be much slower than either importance
sampling and uniform sampling. Furthermore, our algorithm has the overhead of first estimating
the valuesDa for a 2 A using an LSH family, which uniform sampling does not. However, this is
compensated by the fact that our algorithm requires much fewer samples to get accurate estimates.

Indeed, Figure 4 (a) shows the average time of 100 Chamfer distance computations between randomly
chosen pairs of point clouds in the ShapeNet dataset. We set the number of samples for uniform
sampling and importance sampling (our algorithm) such that they both output estimates with (close
to) 2% relative error. Note that our runtime includes the time to build our LSH data structures. This
means we used 100 samples for importance sampling and 500 for uniform. The brute force KD Tree
algorithm (which reports exact answers) is approximately 5x slower than our algorithm. At the same
time, our algorithm is 50% faster than uniform sampling. For the Federalist Papers dataset (Figure
4 (b)), our algorithm only required 20 samples to get a 2% relative error approximation, whereas
uniform sampling required at least 450 samples. As a result, our algorithm achieved 2x speedup
compared to uniform sampling.

Outliers We performed similar experiments as above. Figure 3 (c) shows the sample complexity vs
accuracy trade off curves of our algorithm and uniform sampling. Uniform sampling has a very large
error compared to our algorithm, as expected. While the relative error of our algorithm decreases
smoothly as the sample size grows, uniform sampling has the same high relative error. In fact, the
relative error will stay high until the outlier is sampled, which typically requires ⌦(n) samples.

Large Scale We consider two modifications to our algorithm to optimize the performance of
CrudeNN on the two challenging datasets that we are using; namely, note that both datasets are
standard for benchmarking billion-scale nearest neighbor search. First, in the CrudeNN algorithm,
when computing Da for a 2 A, we search through the hash buckets h1(a), h2(a), . . . containing
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a in increasing order of i (i.e., smallest scale first), and retrieve the first W (window size) distinct
points in B from these buckets. Then, the whole process is repeated k times, with k independent LSH
data structures, and Da is set to be the distance from a to the closest among all Wk retrieved points.

Note that previously, for our smaller datasets, we set Da to be the distance to the first point in B
colliding with a, and repeated the LSH data structure once, corresponding to W = k = 1. In our
figures, we refer to these parameter choices as k ⇥W and test our algorithm across several choices.

For the DEEP and Turing datasets, Figures 3 (d) and 3 (e) show the sample complexity vs relative error
trade-offs for the best parameter choice (both 64⇥ 106) compared to uniform sampling. Qualitatively,
we observe the same behavior as before: importance sampling requires fewer samples to obtain
the same accuracy as uniform sampling. Regarding the other parameter choices, we see that, as
expected, if we decrease k (the number of LSH data structures), or if we decreaseW (the window
size), the quality of the approximations {Da}a2A decreases and importance sampling has worse
sample complexity trade-offs. Nevertheless, for all parameter choices, we see that we obtain superior
sample complexity trade-offs compared to uniform sampling, as shown in Figure 5. A difference
between these parameter choices are the runtimes required to construct the approximations {Da}a2A.
For example for the DEEP dataset, the naive brute force approach (which is also optimized using
parallelization) took approximately 1.3 · 104 seconds, whereas the most expensive parameter choice
of 64 ⇥ 106 took approximately half the time at 6.4 ⇥ 103 and the cheapest parameter choice of
8⇥ 105 took 225 seconds, leading to a 2x-50x factor speedup. The runtime differences between brute
force and our algorithm were qualitative similar for the Turing dataset.

Similar to the small scale dataset, our method also outperforms uniform sampling in terms of runtime
if we require they both output high quality approximations. If we measure the runtime to get a 1%
relative error, the 16⇥ 2 · 105 version of our algorithm for the DEEP dataset requires approximately
980 samples with total runtime approximately 1785 seconds, whereas uniform sampling requires
> 1750 samples and runtime > 2200 seconds, which is > 23% slower. The gap in runtime increases
if we desire approximations with even smaller relative error, as the overhead of obtaining the
approximations {Da}a2A becomes increasingly overwhelmed by the time needed to compute the
exact answer for our samples.

Additional Experimental Results We perform additional experiments to show the utility of our
approximation algorithm for the Chamfer distance for downstream tasks. For the ShapeNet dataset,
we show we can efficiently recover the true exact nearest neighbor of a fixed point cloudA in Chamfer
distance among a large collect of different point clouds. In other words, it is beneficial for finding
the ‘nearest neighboring point cloud’. Recall the ShapeNet dataset, contains approximately 5 · 104
different point clouds. We consider the following simple (and standard) two step pipeline: (1) use
our algorithm to compute an approximation of the Chamfer distance from A to every other point
cloud B in our dataset. More specifically, compute an approximation to CH(A,B) + CH(B,A)
for all B using 50 samples and the same parameter configurations as the small scale experiments.
Then filter the dataset of points clouds and prune down to the top k closest point cloud candidates
according to our approximate distances. (2) Find the closest point cloud in the top k candidates via
exact computation.

We measure the accuracy of this via the standard recall @k measure, which computes the fraction
of times the exact nearest neighbor B of A, averaged over multiple A’s, is within the top k choices.
Figure 6 (a) shows that the true exact nearest neighbor ofA, that is the point cloudB which minimizes
CH(A,B)+CH(B,A) among our collection of multiple point clouds, is within the top 30 candidates
> 98%, time (averaged over multiple different choices of A). This represents a more than 1000x
reduction in the number of point clouds we do exact computation over compared to the naive brute
force method, demonstrating the utility of our algorithm for downstream tasks.

4 Lower Bound for Reporting the Alignment
We presented an algorithm that, in time O

�
nd log(n)/"2

�
, produces a (1 + ")-approximation to

CH(A,B). It is natural to ask whether it is also possible to report a mapping g : A ! B whose
cost

P
a2A ka� g(a)k1 is within a factor of 1 + " from CH(A,B). (Our algorithm uses on random

sampling and thusdoes not give such a mapping). This section shows that, under a popular complexity-
theoretic conjecture called the Hitting Set Conjecture [24], such an algorithm does not exists. For
simplicity, we focus on the case when the underlying metric dX is induced by the Manhattan distance,
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(a) ShapeNet NNS pipeline experiments (b) Quality of approximations Da vs the
number of levels of LSH data structure

Figure 6: Additional figures for the ShapeNet dataset.

i.e., dX(a, b) = ka � bk1. The argument is similar for the Euclidean distance, Euclidean distance
squared, etc. To state our result formally, we first define the Hitting Set (HS) problem.

Definition 4.1 (Hitting Set (HS) problem). The input to the problem consists of two sets of vectors
A,B ✓ {0, 1}d, and the goal is to determine whether there exists some a 2 A such that a · b 6= 0 for
every b 2 B. If such an a 2 A exists, we say that a hits B.

It is easy to see that the Hitting Set problem can be solved in time O
�
n2d

�
. The Hitting Set

Conjecture [24] postulates that this running time is close to the optimal. Specifically:

Conjecture 4.2. Suppose d = ⇥(log2 n). Then for every constant � > 0, no randomized algorithm
can solve the Hitting Set problem in O

�
n2��

�
time.

Our result can be now phrased as follows.

Theorem 4.3 (Hardness for reporting a mapping). Let T (N,D, ") be the running time of an algorithm
ALG that, given sets of A”, B” ⇢ {0, 1}D of sizes at most N , reports a mapping g : A” ! B” with
cost (1 + ")CH(A”, B”), for D = ⇥(log2 N) and " = ⇥(1)

D . Assuming the Hitting Set Conjecture,
we have that T (N,D, ") is at least ⌦(N2��) for any constant � > 0.

5 Conclusion
We present an efficient approximation algorithm for estimating the Chamfer distance up to a 1 + "
factor in time O

�
nd log(n)/"2

�
. The result is complemented with a conditional lower bound which

shows that reporting a Chamfer distance mapping of similar quality requires nearly quadratic time.
Our algorithm is easy to implement in practice and compares favorably to brute force computation and
uniform sampling. We envision our main tools of obtaining fast estimates of coarse nearest neighbor
distances combined with importance sampling can have additional applications in the analysis of
high-dimensional, large scale data.
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