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Abstract

Graph-based approaches to nearest neighbor search are popular and powerful tools
for handling large datasets in practice, but they have limited theoretical guarantees.
We study the worst-case performance of recent graph-based approximate nearest
neighbor search algorithms, such as HNSW, NSG and DiskANN. For DiskANN, we
show that its “slow preprocessing” version provably supports approximate nearest
neighbor search query with constant approximation ratio and poly-logarithmic
query time, on data sets with bounded “intrinsic” dimension. For the other data
structure variants studied, including DiskANN with “fast preprocessing”, HNSW
and NSG, we present a family of instances on which the empirical query time
required to achieve a “reasonable” accuracy is linear in instance size. For example,
for DiskANN, we show that the query procedure can take at least 0.1n steps on
instances of size n before it encounters any of the 5 nearest neighbors of the query.

1 Introduction

The nearest neighbor search (NN) problem is defined as follows: given a set of n points P in a metric
space pX,Dq, build a data structure that, given any query point q P X , returns p P P closest to q.
More generally, given a parameter k, the data structure should report k points in P that are closest
to q. Often, though not always, the metric space is a d-dimensional vector space with the distance
function induced by the Euclidean norm. Since its introduction in the influential book by Minsky and
Papert in the 1960s [31], the problem has found a tremendous number of applications in machine
learning and computer vision [34]. In most of those applications, the underlying metric is induced by
a set of points in a high-dimensional space. Since in this setting worst-case efficient nearest neighbor
algorithms are unlikely to exist (see e.g., [2]), various approximate formulations of the problem
have been studied extensively. One popular formulation allows the algorithm to return any point
p1 P P whose distance to the query q is at most c times the distance between q and its true nearest
neighbor in P ; such point p1 is called a c-approximate nearest neighbor. In practice, the accuracy of
an approximate data structure is often evaluated by estimating the recall, i.e., the average fraction of
the true k nearest neighbors returned by the data structure.

Over the last few decades, many nearest neighbor data structures have been proposed, both exact
and approximate. The most popular classes of data structures are tree algorithms (e.g., kd-trees [4]);
locality sensitive hashing [1]; learning-to-hash and product quantization [35, 36] ; and metric data
structures. The last class includes algorithms that work for point-sets in arbitrary metrics, not
just those in d-dimensional vectors normed spaces. This category can be further subdivided into
algorithms based on metric trees [6, 32], divide and conquer algorithms [24, 5, 10], and methods
based on greedy search in proximity graphs [3, 28, 15, 21]. See the surveys [8, 27] for further
overview of these classes of algorithms.
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Several algorithms in the latter class, such as HNSW [28], NSG [15] and DiskANN [21], are widely
used in practice.1 They have been recently shown empirically to provide excellent tradeoffs between
accuracy and query speed [27]. Their design is based on approximating theoretical concepts such
as Delaunay or Relative Neighborhood Graphs. However, their worst-case performance is not well
understood, especially when the dimension is high. For example, the authors of [28] point out
that “Further analytical evidence is required to confirm whether the resilience of Delaunay graph
approximations generalizes to higher dimensional spaces.” This stands in contrast to the older
algorithms, e.g., those based on the divide and conquer approach, which come with worst-case
performance guarantees. Those algorithms are typically analyzed under the assumption that the
input point set P has low doubling dimension (a measure of the intrinsic dimensionality of the point-
set)2 and provide near-linear space and logarithmic query time bounds, with the big-Oh constants
depending on the doubling dimension. This raises the question whether similar bounds can be
obtained for the newer algorithms. On the practical side, investigating the worst-case behavior of
data structures is important to understand their benefits and limitations.

Our results In this paper we initiate the study of the worst-case performance of the recent metric
data structures based on proximity graphs. As in [21], we mostly focus on three popular algorithms
and their implementations: HNSW, NSG and DiskANN. (In addition, we present similar results for
other graph-based algorithms in the supplementary material section.) We present both upper and
lower bounds on their worst-case search times. Our specific contributions are as follows:

• Upper bounds: For one of the data structures studied, namely DiskANN version with
“slow preprocessing”, we are able to show a provable worst-case upper bound on its
performance. Specifically, we show that (a) the greedy search procedure returns an
´

α`1
α´1 ` ϵ

¯

-approximate neighbor in O
´

logα
∆

pα´1qϵ

¯

steps and (b) each step takes at

most Opp4αqd log∆q time. This implies that the overall running time is poly-logarithmic
in ∆ when d is constant. Here α ą 1 denotes a parameter of the DiskANN algorithm
(described in Preliminaries, typically set to 2), d denotes the doubling dimension, while
∆ denotes the aspect ratio of the input set P , i.e., the ratio between the diameter and the
distance of the closest pair 3. We also show that our approximation bound is tight, and that
the logarithmic dependence of the query time bound on ∆ cannot be removed.

• Lower bounds: For the other data structure variants studied (NSG, HNSW and DiskANN
with “fast preprocessing”) we present a family of point sets of size n for all n large enough,
such that for each n, the empirical query time required to achieve “reasonable” accuracy is
linear in n. For example, for DiskANN, we show that the query procedure can take at least
0.1n steps before it encounters any of the 5 nearest neighbors of the query. Remarkably, the
point sets are relatively simple: they live in a 2-dimensional Euclidean space, and therefore
have a constant doubling dimension (see Preliminaries). We use implementations provided
by the authors, publicly available on GitHub [16, 29, 22]. Our hard instance examples are
available on GitHub at [18].

To the best of our knowledge, these are the first worst-case upper bounds and lower bounds for these
data structures.

We emphasize that our results do not contradict the empirical evaluations given in the original papers,
or in summary studies such as [27]. Indeed, these algorithms have been demonstrated to be very
useful and can be highly effective in practice. Nevertheless, we believe that our results provide
important information about the behavior of these algorithms. For example, they demonstrate the
importance of validating the quality of answers reported by the algorithms when applying them to
new data sets. They also shed light on the types of data sets which result in suboptimal performance
of the algorithms.

1E.g., DiskANN has been developed and used at Microsoft and NSG at Alibaba.
2Informally, this means that any subset of points that falls into a ball of radius 2r can be covered using a

constant number of balls of radius r. See Preliminaries for the formal definition and discussion.
3We note running time bounds that depend on logp∆q versus those that depend on logpnq are incomparable.

Although ∆ could be much larger than n, we observed that its value is typically quite low. For example, the
MNIST data set [26, 9] contains n “ 60, 000 points, while its aspect ratio ∆ is around 20 when the distances
are measured according to the Euclidean norm.
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Related work Approximate nearest neighbor search has been studied extensively; the references in
the introduction provide some of the main milestones of that rich body of research. In the context
of this paper, we also mention [25, 33], which studied theoretical properties of modern graph-based
nearest neighbor data structure. However, their focus is on the average-case performance, i.e., under
the assumption that the data is generated according to some well-defined distribution, like uniform
over the sphere. In contrast, this work is focused on the worst-case behavior of those algorithms, and
show that their empirical running time can be high even for relatively simple 2-dimensional data sets.

2 Preliminaries

We denote the underlying metric space by pX,Dq. For any point p P X and radius r ą 0, we use
Bpp, rq to denote a ball of radius r centered at p, i.e., Bpp, rq “ tq P X : Dpp, qq ď ru.

Consider a set of points P . We say that P has the doubling constant C if for any ball Bpp, 2rq
centered at some p P P , the set P XBpp, 2rq can be covered using at most C balls of radius r, and
C is the smallest number with this property. Doubling constant is a popular measure of “intrinsic
dimensionality” of high dimensional point sets, see e.g., [17, 24, 5]. The value log2 C is called
the doubling dimension of P . Doubling dimension is often used as a measure of the “intrinsic
dimensionality” of a data set. It generalizes the “standard” (topological) dimension: for any data set
P Ă Rd equipped with a metric Dpp1, p2q “ }p1 ´ p2}p, the doubling dimension of P is at most
Opdq. However, the doubling dimension of P Ă RD could be much lower than D, e.g., if points in
P lie on a low-dimensional manifold. The doubling dimension can be viewed as a finite version of
the fractal Hausdorff dimension. Empirical studies (e.g., [11]) showed that the fractal dimension of
real data sets is often smaller than their ambient dimension D.

The following fact is standard and follows from the definition.
Lemma 2.1. Consider a set of points P with doubling dimension d. For any ball Bpp, rq centered at
some p P P and a constant k, the set Bpp, rq X P can be covered by a set of m ď Opkdq balls with
diameter smaller than r{k, i.e. Bpp, rq X P Ď

Ťm
i“1 Bppi, r{kq.

We use d to denote the doubling dimension of the point set P , ∆ “ Dmax

Dmin
to denote the aspect ratio of

the input set P , where Dmax (Dmin) is the maximal (minimal) distance between any pair of vertices
in the point set. For two points xu, xv in P “ tx1, ...xnu, we use Dpxu, xvq to denote the distance
between them, or sometimes Dpu, vq for simplicity.

3 Analysis of DiskANN

In this section we show bounds on the performance of DiskANN with slow preprocessing.

3.1 DiskANN recap

In this section we give an overview of the DiskANN procedures. For the full description the reader is
referred to the original paper [21], or section A (supplementary material).

The DiskANN data structure is based on a directed graph G over the set P , i.e., the set of vertices V
of G are associated with the set of points P . After the graph is constructed, to answer a given query
q, the algorithm performs search starting from some vertex s. In what follows we describe the search
and insertion procedure in more detail.

The search procedure, GreedySearchps, q, Lq, has the following parameters: the start vertex s, the
query point q, and the queue size L. It performs a best-first-search using a queue of with a bounded
length L, until the L vertices v with the smallest value of Dpv, qq seen so far are all scanned. Upon
completion, it returns a list of vertices in an increasing distance from q where the first vertex (or the
first k vertices) are answers for the query. Note that as long as the graph is connected, the procedure
runs for at least L steps. The total running time of the procedure is bounded by the number of steps
times the out-degree bound of the graph G.

The construction of the graph G “ pV,Eq is done by a repeated invocation of a procedure called
RobustPruning. For any vertex v, a set of vertices U (specified later), and parameters α ą 1 and
R, RobustPruningpv, U, α,Rq proceeds as follows. First, the set U is sorted in the increasing order
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of the distance to v. The algorithm traverses this sequence in order. After encountering a new vertex
u, the algorithm deletes all other vertices w from U such that Dpu,wq ¨ α ă Dpv, wq. Finally, the
node v is connected to all vertices in U that have not been pruned.

The starting point of the DiskANN data structure construction algorithm4 is the following simple
procedure: for each vertex v, execute RobustPruningpv, U, α,Rq with U “ V and R “ n. That is,
robust pruning is applied to all vertices in the graph. We refer to this procedure as slow preprocessing,
as it can be seen that a naive implementation of this method takes time Opn3q. Although the
construction time is slow, we show that this construction method provably constructs a graph whose
degree depends only logarithmically on the aspect ratio of the graph (assuming constant doubling
dimension), and guarantees that the greedy search procedure has polylogarithmic running time. We
note that this result is inspired by an observation in [21] about convergence of greedy search in a
logarithmic number of steps, though to obtain our result we also need to bound the degree of the
search graph and analyze the approximation ratio.

Since the slow-preprocessing-algorithm is too slow in practice, the authors of [21] propose a faster
heuristic method to construct the graph G, which we call fast preprocessing method. At the be-
ginning, the graph G is initialized to be a random R-regular graph. Then the construction of
the graph G “ pV,Eq is done incrementally. The construction algorithms make two passes of
the point set in random order. For each vertex v met, the algorithm computes a set of vertices
U “ GreedySearchps, xv, Lq (for some starting vertex s) and then calls the pruning procedure
on U , not V . That is, it executes RobustPruningpv, U, α,Rq. After pruning is performed, the
insertion procedure adds both edges pv, uq and pu, vq for all vertices u P U output by the prunning
procedure. Finally, if the degree of any of u P U exceeds a threshold R, then the set of neighbors of u
is pruned via RobustPruningpu,Noutpuq, α,Rq as well. This construction method is implemented
and evaluated in the paper.

3.2 Analysis: preprocessing

For the sake of simplicity, we let RobustPruningpp, V, αq be the no-degree-limit version of edge
selection, i.e., where R “ n. We first analyze the property of graph constructed by the no-degree-limit
pruning, and then show that setting R “ Opp4αqd log∆q yields equivalent results.

Definition 3.1 (α-shortcut reachability). Let α ě 1. We say a graph G “ pV,Eq is α-shortcut
reachable from a vertex p if for any other vertex q, either pp, qq P E, or there exists p1 s.t. pp, p1q P E
and Dpp1, qq ¨ α ď Dpp, qq. We say a graph G is α-shortcut reachable if G is α-shortcut reachable
from any vertex v P V .

First, we show that the slow preprocessing algorithm constructs a graph that is α-reachable.

Lemma 3.2 (α-shortcut reachable). For each vertex p, if we connect p to the output of
RobustPruningpp, V, αq, then the graph formed is α-shortcut reachable.

Proof. By Definition 3.1, we only need to prove that the constructed graph is α-shortcut reachable
from each vertex. Suppose that, for some vertex p, vertex q is not connected to p. Then, in
RobustPruningpp, V, αq, there must have existed a vertex p1 P V connected to p s.t. Dpp1, qq ď
Dpp, qq{α.

Next, we show that the graph produced by no degree limit RobustPruning is actually sparse.

Lemma 3.3 (sparsity). For any vertex p, let U “ RobustPruningpp, V, αq, then |U | ď

Opp4αqd log∆q where d is the doubling dimension of the point set P .

Proof. We use Ringpp, r1, r2q to denote the set of vertices that lie in Bpp, r2q but not in Bpp, r1q. We
use Dmax (Dmin) to denote the maximal (minimal) distances between a pair of vertices in the point set
P and by definition ∆ “ Dmax

Dmin
. For each i P rlog2 ∆s, we consider Ringpp,Dmax{2

i, Dmax{2
i´1q

separately. We cover Ringpp,Dmax{2
i, Dmax{2

i´1q using balls with radius Dmax{α2
i`1 by

Lemma 2.1. The number of balls required is bounded by Opp4αqdq. Because every two
points in the same ball have distance at most Dmax{α2

i from each other, and this value is α

4See the discussion in Section 2.2 of [21].
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times smaller than their distance lower bound to p, at most one of them will remain after per-
forming RobustPruningpp, V, αq. Therefore, the number of vertices remain after performing
RobustPruningpp, V, αq is upper bounded by Opp4αqd log∆q.

3.3 Analysis: query procedure

We now show that if the graph is constructed using the slow indexing algorithm analyzed in the previ-
ous section, then GreedySearchps, q, 1q starting from any vertex s returns an pα`1

α´1 q-approximate
nearest neighbor from query q in a logarithmic number of steps.
Theorem 3.4. Let G “ pV,Eq be an α-shortcut reachable graph constructed using the slow
preprocessing method. Consider GreedySearchps, q, Lq starting with any vertex s P V and L “ 1

(i.e., the algorithm performs no back-tracking) answering query q. The algorithm finds an
´

α`1
α´1 ` ϵ

¯

-

approximate nearest neighbor in O
´

logα
∆

pα´1qϵ

¯

steps.

Proof. Let a be the nearest neighbor of q, vi be the i-th scanned vertex, di “ Dpvi, qq, with
approximate ratio ci “

di

Dpa,qq . We use ∆ “ Dmax

Dmin
to denote the aspect ratio of the vertex set.

We know that the distance between vi and a is no more than di `Dpa, qq by triangle inequality, and
because G is α-shortcut reachable, each vi is either connected to a, or vi is connected to a vertex
v1 whose distance to a is shorter than di`Dpa,qq

α . In best-first-search, the next scanned vertex vi`1

should have distance from q no farther than v1, which is at most di`Dpa,qq
α `Dpa, qq. By induction:

di ď
Dps, qq

αi
`

α` 1

α´ 1
Dpa, qq (1)

Consider the following three cases, depending on the value of Dpa, qq:

Case (1): Dps, qq ą 2Dmax. In this case we have Dpa, qq ą Dps, qq´Dpa, sq ą Dps, qq´Dmax ą

Dps, qq{2. Plugging this into inequality 1 gives us ci “
di

Dpa,qq ď
Dps,qq

αiDpa,qq `
α`1
α´1 ď 2

αi ` α`1
α´1 .

Therefore, for any ϵ ą 0, we get a
´

α`1
α´1 ` ϵ

¯

-approximate nearest neighbor in logα
2
ϵ steps.

Case (2): Dps, qq ď 2Dmax and Dpa, qq ě α´1
4pα`1qDmin. By inequality 1, the algorithm reaches an

pα`1
α´1 ` ϵq-approximate nearest neighbor when Dps,qq

αi ă ϵDpa, qq. Substituting the value of Dps, qq

and Dpa, qq with corresponding upper and lower bound, we obtain that the number of steps needed is
logα

8pα`1q∆
pα´1qϵ ď O

´

logα
∆

pα´1qϵ

¯

Case (3): Dps, qq ď 2Dmax and Dpa, qq ă α´1
4pα`1qDmin. Suppose at step i, di ą dpa, qq is not the

nearest neighbor. Here we obtain a new lower bound for di. We know dpvi, aq ą Dmin, dpvi, qq ą
dpa, qq, and dpa, qq ă Dmin. By triangle inequality, we have di “ dpvi, qq ą dpvi, aq{2 ą Dmin{2.
Combing this with inequality 1, we obtain that if vi is not the exact nearest neighbor, it must satisfy
Dmin

2 ď di ď
Dps,qq

αi ` α`1
α´1Dpa, qq ď 2Dmax

αi ` Dmin

4 . This can only happen when i ď logα 8∆.
Therefore, the algorithm reaches the exact nearest neighbor in Oplogα ∆q steps.

We note that similar neighbor selection strategies in the greedy search procedure are also used in
HNSW [28] and NSG [15]. However, we cannot prove query performance guarantees similar to the
ones above, as those algorithms use α “ 1.

3.4 A tight convergence rate lower bound for DiskANN

In this section we show that the logarithmic dependence of the query time bound on ∆ is unavoidable,
i.e., we cannot replace log∆ with log n. The proof is deferred to appendix B.
Theorem 3.5. For any choice of α ą 1, there exists a set of n “ 2k ´ 1 points on a one dimensional
line with aspect ratio ∆ “ Opαnq, and a query q, such that after the slow preprocessing version
of DiskANN, greedy search must scan at least Ωplog∆q or Ωpnq vertices before reaching an Op1q-
approximate nearest neighbor of q.
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3.5 A tight approximation lower bound for DiskANN

In Theorem 3.4, we know that the slow preprocessing version of DiskANN algorithm can asymptoti-
cally get to an α`1

α´1 -approximate nearest neighbor. Here, we provide a simple instance showing that
this approximation ratio is tight.

Figure 1: α`1
α´1 -approximation ratio lower bound instance for

slow preprocessing version of DiskANN. The whole instance
can be embedded in a two-dimensional grid using l1 distance,
and therefore has a constant doubling dimension. Black dots
(solid or hollow) are points in the database, the red dot is
the query point. Grids are only used to show the layout
structure. Please refer to Section 3.5 for detailed instance
description.

Theorem 3.6. For any α ą 1, there exists a set of n` 2 points in the two dimensional plane under l1
distance where the slow preprocessing version of DiskANN will scan at least n vertices before getting
to a vertex with an approximation ratio smaller than α`1

α´1 -approximate nearest neighbor.

We draw the instance in Figure 1. The whole instance can be embedded in a two dimensional grid
using l1 distance. Note that in the figure, grids are drawn to label distances and highlight the layout
structure. The vertex set V consists of a point set P and two single points p1 and a. The point set P
further consists of a

?
nˆ

?
n (we assume that n is a perfect square) square grid with grid length

0.5ϵ?
n

where each grid point is associated with a point. We denote the upper-rightmost point in P by p0.
Some important distances are Dpp0, p

1q “ 2, Dpp1, aq “ 2
α´1 , Dpp0, aq “

2α
α´1 , Dpa, qq “ 1 ` ϵ,

Dpp0, qq “
2

α´1 ` 1´ ϵ, where ϵ ă 0.01.

Lemma 3.7. Some properties regarding the graph G “ pV,Eq built on the instance in Figure 1 using
the slow preprocessing version of DiskANN:

(1) For any p P P , pp, p1q P E and pp, aq R E

(2) The subgraph of G induced by point set P Ď V is strongly connected.

(3) The starting vertex s is in P .

Proof. (1): According to the l1 distance, we can see that for any point p P P , Dpp, p1q ą Dpp0, p
1q “

2 and Dpp, aq ą Dpp0, aq “ 2 ` 2
α´1 “ 2α

α´1 , and Dpp1, aq “ 2
α´1 . Therefore, in the procedure

RobustPruningpp, V, αq, the edge pp, p1q remains and edge pp, aq is pruned.

(2): Because the point set P is a uniform grid, we know that for each vertex p, the distances between
p and its four adjacent vertices in the grid are smaller than to all other vertices and must remain after
RobustPruningpp, V, αq. Therefore the subgraph induced by the vertex set P in the final graph G
is strongly connected.

(3): In the implementation of DiskANN, the starting point is the closest vertex to the centroid of the
whole vertex set, which lies in P .

Proof of Theorem 3.6. Now we analyze the behavior of running GreedySearchps, q, Lq on the
instance above on the graph constructed by DiskANN’s slow version. We will show that the first n
vertices entering the queue are all vertices in the set P . Additionally, the only neighbor of set P , p1,
is further from q than any vertex in the set P . If L ď n, GreedySearchps, q, Lq terminates before
getting to p1 or a. Consequently, the nearest vertex returned by GreedySearchps, q, Lq has distance
at least 2

α´1 ` 1´ ϵ from q, which is not a α`1
α´1 -approximate nearest neighbor when ϵ approaches 0.
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The first vertex in the queue is s P P . According to property (1) in Lemma 3.7, no vertex in P is
connected to a, any vertex p P P has distance Dpp, qq ă Dpp1, qq thus has higher priority to be
scanned than p1, and the subset P is strongly connected, so in the first n steps (recall that |P | “ n),
GreedySearchps, q, Lq will always scan vertices in P .

4 Experiments

In our experiments, we test the performance of DiskANN, NSG, and HNSW, on two of our constructed
hard instances. We run each algorithm on 20 different data sizes n P t105, 2 ¨ 105, . . . , 2 ¨ 106u. Each
data set consists of n points in the two-dimensional plane. We plot Recall@5 rates (Figures 3 and 5)
and approximation ratios (Figure 6) for answering the query with queue length L equal to pn where
the percentage p is enumerated from the set 1%, 2%, . . . , 12%, 15%, 18%, 20%, 30%, 40%, 50%.
Note that for all graph-based nearest neighbor search algorithms, the value L lower bounds the
number of vertices scanned (and therefore the running time) of the algorithm.

Our results show that, unlike on standard benchmarks, the algorithms scan at least 10% of the points
in our instances before finding quality nearest neighbors. All experiments were ran on Google Cloud.
Since our experiments only use combinatorial measures of algorithm complexity (i.e., the number of
vertices searched), the results do not depend on the exact details of the computer architecture.

4.1 Hard instance for DiskANN

Though we provide pα`1
α´1 q-approximate ratio upper bound for slow preprocessing version of DiskANN

algorithm, in the experiments, we show that there exists a family of instances where the DiskANN
algorithm with fast preprocessing cannot reach any top 5 nearest neighbor before scanning 10% of
the vertices. We test our constructed instance using the authors’ DiskANN code (fast preprocessing)
on GitHub [22] . For a comparison, we also test our constructed instance on our implementation of
the slow preprocessing DiskANN algorithm.

Figure 2: Our constructed hard instance for
DiskANN for n “ 106. The instance lives
in a two-dimensional Euclidean space, and
therefore has a constant doubling dimension.
Black dots (solid or hollow) are points in the
database, the red dot is the query point. Grids
are only used to show the layout structure.
See section 4.1 for detailed description and
supplementary materials for its implementa-
tion.

In Figure 2, we draw our constructed instance for the DiskANN algorithm for n “ 106. It is easy to
mimic this instance for other data sizes. The parameters used in our experiment are R “ 70, L “ 125
(suggested in the original DiskANN paper [21], section 4.1, for in-memory search experiments),
α “ 2, num_threads “ 1.

In the left plot of Figure 3, we can see that in most cases, DiskANN (fast preprocessing version)
cannot achieve non-zero Recall@5 unless scanning at least 10% of the vertex set. In the right plot of
Figure 3, we can see that DiskANN (slow preprocessing version) generates very sparse graph data
structure given our hard instance. Furthermore, after preprocessing, greedy search is very efficient: it
finds the exact nearest neighbor in only 2 steps! Overall, it can be seen that, on the hard instances
proposed in this paper, the greedy search procedure for query answering is highly efficient after slow
preprocessing, and slow (linear time) after fast preprocessing.
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Figure 3: Results for both variants of the DiskANN algorithm on the instance in Figure 2. Left figure
(fast preprocessing DiskANN): the horizontal axis represents the data size n, in multiples of 105
points. The vertical axis represents the size of the search queue length L in terms of the percentage
of the data size. Each pixel represents the average value of Recall@5 P r0, 1s over 10 runs of the
algorithm. Note the sharp transation of the recall (from 0 to 1) for L « 10%. Right figure (slow
preprocessing DiskANN): as indicated by Theorem 3.4, slow preprocessing DiskANN constructs a
very efficient data structure. In the experiment, it finds the exact nearest neighbor in at most 2 steps
of greedy search, with L “ 1. In the figure we plot the maximum degree of the constructed graph (on
the vertical axis) vs. the data size n in multiples of 104 points (on the horizontal axis). The plot ends
at n “ 105, as the slow preprocessing algorithm takes several hundred hours for larger values of n.

Description of instance in Figure 2 The instance lives in a 2-dimensional plane under the l2
distance, so in what follows, we give the coordinates for each point, which defines the distances
between all points. In Figure 2, n “ 106, the vertex set V consists of three sets of points M,P and
P 1, of sizes 0.8n, 0.1n, 0.1n respectively, and a single answer point a. Let l “ 0.01 ˚ n “ 104. M is
a

a

|M |ˆ
a

|M | square grid with grid side length 1 whose bottom-right corner is m “ p´1.2l, 1.2lq.
P is a

a

|P | ˆ
a

|P | square grid with grid side length 1 whose upper-right corner is p “ p´l, 0q. P 1

is a
a

|P 1| ˆ
a

|P 1| square grid with grid side length 1 and whose bottom-left corner is p “ p0, lq.
(We assume that |M |, |P |, |P 1| are perfect squares.) The query point is q “ p´0.4l, 0q, whose nearest
neighbor is a “ p0, 0.1lq. Since our experiments measure Recall@5, we add another 4 points very
close to a, which is not shown in the figure for simplicity.

Intuition First, the start point s should lie in the point set M . The three key properties we want to
maintain in the construction of the graph are that (1) s is always connected to at least one vertex in
the point sets P and P 1. (2) Except for the points randomly connected to a at initialization, only the
points in the set P 1 can still have edges to a at the end of the construction. (3) In the final graph, at
least L vertices in set P are reachable from start point s without passing through any vertex not in
P . If these three properties hold, GreedySearchps, q, Lq scans only the vertices in P (except for
the start point s) until it finds a vertex pi P P which is randomly connected to a at initialization. In
expectation, this requires scanning Ωpn{Rq vertices, and DiskANN won’t reach the nearest neighbor
a before that. The actual running time of the code is even slower.

4.2 Hard instance for NSG and HNSW

A variant of the hard instance from the previous section works for NSG [15] and HNSW [28]
algorithms as well. In Figure 4, we draw this instance for n “ 106. It is easy to mimic this instance
for other data sizes.

The parameters of NSG are as follows. We set K “ 400, L “ 400, iter “ 12, S “ 15, R “ 100
for EFANNA [12] to construct the KNN graph. We set L “ 60, R “ 70, C “ 500 for constructing
NSG from KNN graph. These parameters were used by the authors when testing on GIST1M dataset,
whose size is similar to ours. The parameters of HNSW are as follows. efconstruction “ 200 (as used
in their example code), M “ 64 (maximal degree limit in their suggested range), num_threads “ 1.
We test our constructed instance using the authors’ code available at [29] (for HNSW) and at [16]
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Figure 4: Our constructed hard instance for
NSG and HNSW algorithms for data size n “

106. The instance lives in a two-dimensional
Euclidean space, and therefore has a constant
doubling dimension. Black dots (solid or hol-
low) are points in the database, the red dot
is the query point. Grids are only used to
show the layout structure. See Section 4.2
for a detailed description and supplementary
materials for its implementation.

Figure 5: Results for running NSG and HNSW algorithm on instance in Figure 4. The horizontal
axis represents the data size n, in multiples of 105 points. The vertical axis represents the size of the
search queue length L in terms of the percentage of the data size. Each pixel represents the average
value of Recall@5 P r0, 1s over 10 runs of the algorithm. Since the algorithm is randomized, each
run generates and uses a different random seed.

(for NSG). We note that both implementations are randomized, but their random seeds are hardwired
into the code. To obtain more informative results, we generate and use different random seeds for
each algorithm execution, and plot the average recall.

In Figure 5, we can see that, for most values of n, both NSG and HNSW algorithms cannot achieve
good Recall@5 unless scanning at least 10% of the vertex set.

Description of instance in Figure 4 This instance is based on the last instance in Figure 2. The
main difference is that we use a few chains of points to connect the three subsets M , P , and P 1.
Specifically, on the dotted line, we add points uniformly spaced out, separated by a distance of 5 in
the horizontal and/or vertical directions. For n “ 106 and l “ 0.01n “ 104, the instance consists
of 400p0.04%q points on the diagonal (from m “ p´1.2l,´1.2lq to p´l,´lq), 2000p0.2%q on the
horizontal line (from p´l, lq to p1 “ p0, lq) and 2000p0.2%q points on the vertical line (from p´l, lq
to p “ p´l, 0q). In total, there are 4400 new added points on the chain compared with the previous
instance, occupying 0.44% of the vertex set.

Intuition for the instance in Figure 4 The new added vertex chains are there to make KNN graph
connected for those nearest neighbor algorithms using KNN as part of their constructions. Thanks
to these chains, most of the vertices in subset P and P 1 are reachable from the start point. The
construction algorithm will only add edges from the vertices in the set P 1 to a, but not from P . Then,
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GreedySearch on query q will first traverse the whole subset P before going to P 1. Therefore,
GreedySearch cannot get to the nearest neighbor if the queue length limit L is smaller than |P |.

4.3 Cross-comparisons

We also evaluated DiskANN on hard examples for NSG and HNSW, and vice versa. For n “ 106

the results are similar to the ones reported in earlier sections: none of the algorithms can achieve
non-zero recall unless L exceeds 10% of the data set size. We did not experiment with other values
of n, as two different families of instances are anyway helpful for other algorithms, as outlined in the
next section and described in detail in supplementary material.

4.4 Evaluating approximation ratio of the algorithms

In addition to Recall@5, we also measure the average approximation ratio of DiskANN (fast
preprocessing), NSG and HNSW on slightly modified hard instances from Figure 2 and 4. The
modifications only involve scaling of the entire instance and bringing points a and q closer, to amplify
the approximate ratio for other points. As per Figure 6, the average ratio is very high unless L ě 0.1n.
Note that we do not include the plot for DiskANN (slow preprocessing) here because, as shown in
Figure 3, that algorithm (with L “ 1) can find the exact nearest neighbor in two steps.

Figure 6: Average approximation ratio results for running DiskANN (fast preprocessing), NSG, and
HNSW algorithm on instances in Figure 2 and 4. The horizontal axis depicts the data size n, in
multiples of 105. The vertical axis depicts the size L of the search queue, as a ratio to n. Each pixel
represents the average approximation ratio over 10 runs of the algorithm. Since the algorithms are
randomized, each run generates and uses a different random seed.

4.5 Experiments on other popular approximate nearest neighbor search algorithms

We also tested other popular approximate nearest neighbor search algorithms covered in the survey
[37]: NGT [20], SSG [14], KGraph [37], DPG [27], NSW [30], SPTAG-KDT [7] and EFANNA [12].
We ran them on our hard instances, with n ranging over 105, 2 ¨ 105 . . . 2 ¨ 106 and the queue length
L “ 0.1n. The table depicts average Recall@5 rates over all values of n and 5 or 10 repetitions. One
can see that all algorithms achieve sub-optimal recall. See the appendix for more details.

DiskANN NSG HNSW NGT SSG KGraph DPG NSW SPTAG-KDT EFANNA
0.0 0.27 0.1 0.05 0.16 0.42 0.37 0.02 0.02 0.12

Table 1: Average Recall@5 for the 10 algorithms surveyed in [37], on our constructed instances.

5 Conclusions

In this paper we study the worst-case performance of popular graph-based nearest neighbor search
algorithms. We demonstrate empirically that almost all of them suffer from linear query times on
carefully constructed instances, despite being fast on benchmark data sets [37]. The exception is
DiskANN with slow-preprocessing, for which we bound the approximation ratio and the running
time. However, its super-linear preprocessing time makes it difficult to use for large data sets.

An important question raised by our work is whether there is a fast preprocessing algorithm, and
a query answering procedure, that are empirically fast (e.g., as fast as for DiskANN) while having
worst case query time and approximation guarantees. Another interesting direction is to investigate
whether it is possible to replicate our findings for real data sets, using adversarially selected queries.
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A DiskANN Algorithm

Algorithm 1 RobustPruningpi, U, α,Rq

1: Input Vertex i, candidate neighbor set U ,
pruning parameter α, degree limit R(default
R is n if not given)

2: Result Update Noutpiq, the set of out-
neighbors of i

3: U Ð U YNoutpiq
4: Noutpiq Ð ∅
5: while U ‰ ∅ and |Noutpiq| ă R do
6: v Ð argminvPU Dpxv, xiq

7: Noutpiq Ð Noutpiq Y v
8: U Ð Uzv
9: U Ð tv1 P U : Dpxv, xv1q ¨ α ą

Dpxi, xv1qu

10: end while

Algorithm 2 GreedySearchps, q, Lq

1: Input Graph G “ pV,Eq, seed s, query
point q, queue length limit L

2: Output visited vertex list U
3: A Ð tsu
4: U Ð ∅
5: while AzU ‰ ∅ do
6: v Ð argminvPAzU Dpxv, qq

7: A Ð AYNoutpvq
8: U Ð U Y v
9: if |A| ą L then

10: A Ð top L closest vertices to q in A
11: end if
12: end while
13: sort U in increasing distance from q
14: return U

Algorithm 3 DiskANN indexing algorithm (with fast preprocessing)

1: Input Point set P “ tx1...xnu, degree limit R, queue length L
2: Output A proximity graph G “ pV,Eq where V “ t1..nu are associated with point sets P .
3: G Ð randomly sample a R-regular graph on vertex set V “ t1..nu
4: s Ð vertex for the point closest to the centroid of P
5: for k “ 1 to 2 do
6: σ Ð a random permutation of r1...ns
7: for i “ 1 to n do
8: U Ð GreedySearchps, xσpiq, Lq
9: RobustPruningpσpiq, U, α,Rq

10: for vertex j in Noutpσpiqq do
11: Noutpjq Ð Noutpjq Y σpiq
12: if |Noutpjq| ą R then
13: RobustPruningpj,Noutpjq, α,Rq

14: end if
15: end for
16: end for
17: end for

Algorithm 4 DiskANN indexing algorithm (with slow preprocessing)

1: Input Vertex set P “ tx1...xnu, parameters: degree limit R
2: Output A proximity graph G “ pV,Eq where V “ t1..nu are associated with point sets P .
3: s Ð vertex for the point closest to the centroid of P
4: for i “ 1 to n do
5: Noutpiq Ð RobustPruningpi, V, α,Rq

6: end for

B Dependence on aspect ratio ∆

Consider the following 1-dimensional data set with n “ 2k points located at txiu
n
i“1, where

xi “

"

αi for 1 ď i ď k

2αk ` αkβ ´ α2k`1´i for k ă i ď n
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and β “ maxp 1
α´1 , α ´ 1q. This is a symmetric line starting from 0 to p2 ` βqαk. Each point’s

distance toward the closer endpoint is α times larger than that of the previous point.
Lemma B.1. The graph G “ pV,Eq built on the above instance using the slow preprocessing version
of DiskANN satisfies the following properties:

(1) For any i P rk ` 1, ns, pi, kq P E and pi, jq R E for any j ă k

(2) For any j ă i ď k, pi, jq P E if and only if j “ i´ 1

Since the xi’s are symmetric, the same properties also hold in the other direction.

Proof. (1): For any i P rk ` 1, ns, we can check that no vertex j such that k ă j ă i can delete k

from i’s neighborhood, because xj´xk

xi´xk
ą

αkβ
αkβ`αk ě 1

α . Thus, we have pi, kq P E. Similarly, we

have that k will delete any vertex j ă k from i’s neighborhood because xk´xj

xi´xj
ď αk

αk`αkβ
ď 1

α .
These two inequalities use that β “ maxp 1

α´1 , α´ 1q

(2): For any i P r1, ks, xi´1 is the closest point on xi’s left, so pi, i´ 1q P E. Then, for any j ă i´ 1,
j will be deleted from i’s neighbor by i´ 1 because xi´1´xj

xi´xj
ă αi´1

αi “ 1
α .

Proof of Theorem 3.5. Based on the graph properties in Lemma B.1, let us determine the length
of the shortest path from a starting point s (selected arbitrarily by the DiskANN algorithm) to a
constant approximate nearest neighbor of a given query q. We select our query q to be either 0 or
2αk ` αkβ, i.e., one of the two endpoints of the data set, whichever is farther from xs. To find an
Op1q-approximate nearest neighbor of the query q within l steps of GreedySearch, there should be at
least one path with less than l hops from s to q’s approximate nearest neighbor. WLOG, let’s assume
q “ 0 and s ą k. By Property (1) of Lemma B.1, among t1...ku, the vertex k is the only neighbor
of any vertex on the right of k. By Property (2) of Lemma B.1, for any vertex i P r1, ks, its only
neighbor on its left is i ´ 1. Therefore, it takes at least l ě Ωpnq and l ě Ωplog∆q steps for slow
preprocessing DiskANN with GreedySearch to reach any Op1q- approximate nearest neighbor in this
constructed instance.

C More experimental results

C.1 Hard instance for KD-Tree based nearest neighbor search algorithm

Some nearest neighbor search algorithms use KD-tree to find the entry point for greedy search. In
this case, we design a hard instance where KD-tree cannot get good entry point close to the nearest
neighbor. See Figure 7. We draw our constructed instance for n “ 106. It is easy to mimic this
instance for other data sizes.

Description of instance in Figure 7 Our instance has 6 dimensions, where the first two dimensions
of the instance are similar to Figure 2 but with different choices of parameters. Again, the vertex set V
consists of three sets of points M,P, P 1 (with size 0.1n, 0.1n, 0.8n respectively) and a single answer
point a: M is a

a

|M | ˆ
a

|M | square grid with unit length 1 and with bottom right corner m “

p´109, 109q. P is a vertical chain of points consisting of unit intervals from pl “ p´109,´0.05nq to
ph “ p´109, 0.05nq. P 1 is a

a

|P 1| ˆ
a

|P 1| square grid with unit length 1 whose bottom left corner
is p1 “ p0, 109q. The answer point is a “ p0, 3 ˚ 108q. The query point is q “ p´3 ˚ 108, 0q. For a
vertex v P M Y P 1 Y tau, each of v’s other 4 coordinates are sampled from a uniform distribution
supported on r5 ˚ 107, 6 ˚ 107s. For a vertex v P P , its other 4 coordinates are sampled from a
uniform distribution supported on r107, 2 ˚ 107s. And for point q, its other 4 coordinates are all 0.
Note that though such choices of parameters are tailored to the implementation of KD-trees used in
SPTAG and EFANNA in [37], some general ideas are reusable for constructing hard instances for
other implementations.

Intuition for instance in Figure 7 The main reason why we construct a new example here is to
handle the use of KD-tree to search for a good starting point. Implementation of KD-tree provided
in [37] always randomly picks one of the top 5 dimensions with the largest variance as the splitting
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Figure 7: Our constructed hard instance
for SPTAG on the scale n “ 106.
The instance lives in a two-dimensional
Euclidean space, and therefore has a
constant doubling dimension. Black
dots (solid or hollow) are points in the
database, the red dot is the query point.
Grids are only used to show the layout
structure. See section C.1 for detailed
description.

dimension, and divides the vertices into two halves at their mean. In Figure 7, because of the
separation on the other 4 dimensions, our construction can make sure that KD-tree quickly gets to a
subtree with vertices only in P . Then KD-tree will only horizontally split the chain from ph to pl
or split via the other 4 dimensions. In the vertical axis, the coordinates for vertices in P and a are
quite close, so KD-tree will assign them a low distance estimation based on only a horizontal split,
resulting in KD-tree scanning all vertices on the chain before scanning other vertices outside of the
set P . As long as we make the KD-tree select a vertex in P as the starting point, we can ensure (as in
Figure 2) that GreedySearch will scan all vertices in P before going to M or P 1.

C.2 More experiments on other popular nearest neighbor search algorithms

We further test the other 7 popular nearest neighbor search algorithms studied in the survey [37]. We
use the same setting as in Section 4. We run each algorithm for 20 different data sizes n P t105, 2 ¨
105, . . . , 2 ¨ 106u using hard instances in Figure 4, Figure 2, or Figure 7 (introduced in Appendix C.1).
We plot the Recall@5 rate for answering the query with queue length L equal to pn where the
percentage p is enumerated from the set 1%, 2%, . . . , 12%, 15%, 18%, 20%, 30%, 40%, 50%.

NGT [20] We use NGT’s implementation from the authors’ GitHub repository [19]. We run NGT
on the hard instance in Figure 2, using all default parameters as stated in GitHub’s readme, except that
we use the command “-i g” to generate only the graph index, because of our focus on graph-based
nearest neighbor search algorithms. We use command “-p 1” to set the number of threads to 1. We
run this experiment 10 times and report the average recall.

SSG [14] We use SSG implementation from the authors GitHub repository [13]. We run SSG on
the hard instance in Figure 4, using parameters K “ 200, L “ 200, iter “ 12, S “ 10, R “ 100 (for
building KNN graph) L “ 100, R “ 50, Angle “ 60 (constructing SSG). The parameters chosen
here are copied from the author’s selected parameters for data set SIFT1M [23], whose data size is
close to ours. We run this experiment 10 times using different random seeds and report the average
recall.

KGraph We use KGraph implementation due to [37], from the GitHub repository [38]. We run
KGraph on the hard instance in Figure 4 using parameter K “ 100, L “ 130, iter “ 12, S “

20, R “ 50. Parameters here are copied from the authors’ selected parameters used for their synthetic
data set named “n_1000000”, whose size is close to ours. We run this experiment 5 times using
different random seeds and report the average recall.
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Figure 8: Results for running NGT algorithm on the family of instances in Figure 2. The horizontal
axis represents the data size n, in multiples of 105 points. The vertical axis represents the size of the
search queue length L in terms of the percentage of the data size. each pixel represents a query result,
with its Recall@5 P r0, 1s mapping to the spectrum on the right. We run NGT algorithm 10 times
and report the average recall rate.

DPG [27] We use DPG implementation due to [37], from the GitHub repository [38]. We run DPG
on the hard instance in Figure 4 using parameter K “ 100, L “ 100, iter “ 12, S “ 20, R “ 300.
Parameters here are copied from the authors’ selected parameters for their synthetic dataset named
“n_1000000”, whose size is close to ours. We run this experiment 10 times using different random
seeds and report the average recall.

NSW [30] We use NSW’s implementation due to [37], from the GitHub repository [38]. We
run NSW on the hard instance in Figure 4 (with a different vertex permutation) using parameter
max_m0 “ 100, ef_construction “ 400. Parameters here are copied from the author’s selected
parameters for their synthetic dataset named “n_1000000”, whose data size is close to ours. We run
this experiment 5 times using different random seeds and report the average recall.

SPTATG-KDT [7] We use SPTATG-KDT implementation due to [37], from the GitHub repository
[38]. We run SPTATG-KDT on the hard instance in Figure 7 using parameters KDT_number “

1, TPT_number “ 16, TPT_leaf_size “ 1500, scale “ 2, CEF “ 1500. Parameters here are
copied from the authors’ selected parameters for their synthetic dataset named “n_1000000”, whose
size is close to ours. We run this experiment 5 times and report the average recall.

EFANNA [12] We use EFANNA’s implementation due to [37], from the GitHub repository [38].
We run EFANNA on the hard instance in Figure 7 using parameter nTrees “ 4,mLevel “ 8,K “

80, L “ 140, iter “ 7, S “ 25, R “ 150. Parameters here are copied from the authors’ selected
parameters for their synthetic dataset named “n_1000000”, whose size is close to ours. We run this
experiment 10 times and report the average recall.

Experimental results for these 7 algorithms are plotted in Figure 8, Figure 9, and Figure 10. We can
see that all algorithms achieve suboptimal Recall@5 rates until the queue length L is greater than
10% of the data size.
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Figure 9: Results for running SSG, KGraph, DPG, NSW algorithms on the family of instances in
Figure 4. The horizontal axis represents the data size n, in multiples of 105 points. The vertical axis
represents the size of the search queue length L in terms of the percentage of the data size. Each pixel
represents a query result, with its Recall@5 P r0, 1s mapping to the spectrum on the right. We run
each algorithm 10 (or 5) times and report the average recall rate.

Figure 10: Results for running SPTAG-KDT and EFANNA algorithms on the family of instances
in Figure 7. The horizontal axis represents the data size n, in multiples of 105 points. The vertical
axis represents the size of the search queue length L in terms of the percentage of the data size. Each
pixel represents a query result, with its Recall@5 P r0, 1s mapping to the spectrum on the right. We
run each algorithm 10 (or 5) times and report the average recall rate.
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