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Abstract

Several recent works demonstrate that transformers can implement algorithms
like gradient descent. By a careful construction of weights, these works show
that multiple layers of transformers are expressive enough to simulate iterations
of gradient descent. Going beyond the question of expressivity, we ask: Can
transformers learn to implement such algorithms by training over random problem
instances? To our knowledge, we make the first theoretical progress on this question
via an analysis of the loss landscape for linear transformers trained over random
instances of linear regression. For a single attention layer, we prove the global
minimum of the training objective implements a single iteration of preconditioned
gradient descent. Notably, the preconditioning matrix not only adapts to the input
distribution but also to the variance induced by data inadequacy. For a transformer
with L attention layers, we prove certain critical points of the training objective
implement L iterations of preconditioned gradient descent. Our results call for
future theoretical studies on learning algorithms by training transformers.

1 Introduction

In-context learning (ICL) is the striking capability of large language models: Given a prompt
containing examples and a query, the transformer produces the correct output based on the context
provided by the examples, without adapting its parameters (Brown et al., 2020; Lieber et al., 2021;
Rae et al., 2021; Black et al., 2022). This property has become the focus of body of recent research
that aims to shed light on the underlying mechanism of large language models (Garg et al., 2022;
Akyiirek et al., 2022; von Oswald et al., 2023; Li and Malik, 2017; Min et al., 2021; Xie et al., 2021;
Elhage et al., 2021; Olsson et al., 2022).

A line of research studies ICL via the expressive power of transformers. Transformer architectures
are powerful Turing machines, capable of implementing various algorithms (Pérez et al., 2021; Wei
et al., 2022). Given an in-context prompt, Edelman et al. (2022); Olsson et al. (2022) argue that
transformers are able to implement algorithms through the recurrence of multi-head attentions to
extract coarse information from raw input prompts. Akyiirek et al. (2022); von Oswald et al. (2023)
assert that transformers can implement gradient descent on linear regression encoded in a given input
prompt. It is thought provoking that transformers can implement such algorithms.

Although transformers are universal machines to implement algorithms, they need specific parameter
configurations for achieving these implementations. In practice, their parameters are adjusted via
training using non-convex optimization over random problem instances. Hence, it remains unclear
whether this non-convex optimization can be used to learn algorithms. The present paper investigates
the possibility of learning algorithms via training over random problem instances.

*Equal contribution, alphabetical order.
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More specifically, we investigate the learning of gradient-based methods. It is hard to mathematically
formulate what it means to learn gradient descent for general functions with transformers. Yet, Garg
et al. (2022) elegantly examine it in the specific setting of ICL for learning functions. Empirical
evidence suggests that transformers indeed learn to implement gradient descent, after training on
random instances of linear regression (Garg et al., 2022; Akyiirek et al., 2022; von Oswald et al.,
2023). Motivated by these observations, we theoretically investigate the loss landscape of a simple
transformer architecture based on attention without softmax (Schlag et al., 2021; von Oswald et al.,
2023) (see Section 2 for details).

Summary of our main results. Our main contributions are the following:

» We provide a complete characterization of the global optimum of a single-layer linear transformer.
In particular, we observe that, with the optimal parameters, the transformer implements a single
step of preconditioned gradient descent. Notably, the preconditioning matrix not only adapts to
the distribution of input data but also to the variance caused by data inadequacy. We present this
result in Theorem 1 in Section 3.

» Next, we focus on a subset of the transformer parameter space, defined by a special sparsity
condition (8). Such a parameter configuration allows us to formulate training transformers as
a search over k-step adaptive gradient-based algorithms. Theorem 2 characterizes the global
minimizers of the training objective of a two-layer linear transformer over isotropic regression
instances, and shows that the optima correspond to gradient descent with adaptive stepsizes. For
multilayer transformers, Theorem 3 demonstrates that gradient descent, with a data-dependent
preconditioning, can be derived from a critical point of the training objective.

» Finally, we study the loss landscape in the absence of the sparsity condition (8), which goes
beyond searching over conventional gradient-based optimization methods. In this case, we
prove and interpret the structure of a critical point of the training objective. We show that a
certain critical point in parameter space leads to an intriguing gradient-based algorithm that
simultaneously takes gradient steps preconditioned by data covariance, and applies a linear
transformation to further improve the conditioning. In the specific case when data covariance is
isotropic, this algorithm corresponds to the GD++ algorithm of von Oswald et al. (2023) which is
experimentally observed to be the outcome of training.

We empirically validate the critical points analyzed in Theorem 3 and Theorem 4. For a transformer
with three layers, our experimental results confirm the structural of critical points. Furthermore,
we observed the objective value associated with these critical points is close to 0, suggesting that
the critical points might be global optima. These experiments substantiate our theoretical analysis
and suggests that our theory indeed aligns with practice. Code for our experiments is available at
https://github.com/chengxiang/LinearTransformer.

1.1 Related works

The ability of neural network architectures to implement algorithms has been investigated in various
context. The seminal work by Siegelmann and Sontag (1992) investigate the Turing completeness of
recurrent neural networks. Despite this computational power, training recurrent networks remains a
challenge. Graves et al. (2014) design an alternative neural architecture known as the neural Turing
machine, building on attention layers introduced by Hochreiter and Schmidhuber (1997). Leveraging
attention, Vaswani et al. (2017) propose transformers as powerful neural architectures, capable of
solving various tasks in natural language processing (Devlin et al., 2019). This capability inspired a
line of research that examines the algorithmic power of transformers (Pérez et al., 2021; Wei et al.,
2022; Giannou et al., 2023; Akyiirek et al., 2022; Olsson et al., 2022). What sets transformers apart
from conventional neural networks is their impressive performance after training. In this work, we
focus on understanding how transformers learn to implement algorithms by training over problem
instances.

A line of research investigates how deep neural networks process data across their layers. The
seminal work by Jastrzebski et al. (2018) observes that hidden representations across the layers of
deep neural networks approximately implement gradient descent. Recent observations provide novel
insights into the working mechanism of ICL for large language models, showing they can implement
optimization algorithms across their layers (Garg et al., 2022; Akyiirek et al., 2022; von Oswald
et al., 2023). Moreover, Zhao et al. (2023); Allen-Zhu and Li (2023) observe transformer perform
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dynamic programming to generate text. In this work, we theoretically study how transformer learns
gradient-based algorithms for ICL.

We discuss here two related works (Zhang et al., 2023; Mahankali et al., 2023) that appeared
shortly after publication of our original draft. Both of these studies focus on a single layer attention
network (see Section 3). Zhang et al. (2023) prove the global convergence of gradient descent to
the global optimum whose structure is analyzed independently from this study and it the same as
that in Theorem 1. Mahankali et al. (2023) also characterize the global minimizer of a single layer
attention without softmax for a different data distribution. In addition to results for a single-layer
attention, we analyze the landscape of two and multi-layer transformers.

2 Setting: training linear transformers over random linear regression

In order to understand the mechanism of ICL, we consider the setting of training transformers over the
random instances of linear regression, following (Garg et al., 2022; Akyiirek et al., 2022; von Oswald
et al., 2023). In particular, the random instances of linear regression are formalized as follows.

Data distribution: random linear regression instances. Let (V) ¢ R be the covariates drawn i.i.d.

from a distribution Dy, and w, € R? be drawn from Dy. Let X € R(*1>d be the matrix of
covariates whose row i contains tokens z(¥). Given z(?’s and Wy, the responses are defined as

y = [z w,),..., (@ w,)] € R". Define the input matrix Z, as
1 L@ (n)  p(n+1)
Zo = [z 2 ... oW (41 = Z(l) z(z) z(n) ! 0 e RUFDXHL ()

where zero in the above matrix is used to replace the unknown response variable corresponding to
x("+1)_ Then, our goal is to predict w, 2("*1) given Z. In other words, the training data consists of
pairs (Zg, w,] 2"+ for () ~ Dy and w, ~ Dyy. We then consider training transformers over
this data distribution.

Self-attention layer without softmax. Following (Schlag et al., 2021; von Oswald et al., 2023), we
consider the linear self-attention layer. To motivate, we first briefly review the standard self-attention
layer (Vaswani et al., 2017). Letting Z € R4+ x(n+1) be the input matrix with n + 1 tokens in
R?*1, a single-head self-attention layer denoted by Attn*™** is a parametric map defined as

AP (Z) = W, ZM -smax(ZT W W,Z), M = [‘% 8} e RUDXHD - (9)

where W,,, Wy, W, € R@+1D>x(4+1) are the (value, key and query) weight matrices, and smax(-)
is the softmax operator which applies softmax operation to each column of the input matrix. Note
that the prompt is asymmetric since the label for z("+1) is excluded from the input. To reflect this
asymmetric structure, the mask matrix M is included in the attention. In our setting, we consider the
self-attention layer that omits the softmax operation in (2). In particular, we reparameterize weights
as P = W, € RUTDX(+D) and Q := W}, " W, € R(@HDX(@+1) and consider

Attnpo(Z) = PZM(Z7QZ). (3)

At first glance, the omission of the softmax operation (3) might seem over-simplified. But, (von
Oswald et al., 2023) proves such attention can implement gradient descent, and we will prove in
Lemma 1 that it can also implement various algorithms to solve linear regression in-context.

Architecture for prediction. We now present the neural network architecture that will be used through-
out this paper. For the number of layers L, we define an L-layer transformer as a stack of L linear
self-attention blocks. Formally, denoting by Z, the output of the /" layer attention, we define

1
Zo+1 :Zg-i-*Attnpg)Qe(Zg) for{=0,1,...,L —1, @)
n

The scaling factor 1/n is used only for ease of notation and does not influence the expressive power of
the transformer. Given Zr,, we define TF1,(Zo; { Py, Qe}e=0,1,...0-1) = —[ZL](d+1),(n+1)» i.€., the
(d + 1,n + 1)-th entry of Z,. The reason for the minus sign is to be consistent with (von Oswald



et al., 2023), and we will clarify such a choice in Lemma 1. For training, the parameters are optimized
to minimize in-context loss as

fF (P, Qo) = Bz ) [(TFL(ZO, {Pr, Qe}Yio) + wjx(n+1))2]. )

Goal: the landscape analysis of the training objective functions. We are interested in understand-
ing how the optimization of f leads to in-context learning. We investigate this question by analyzing
its loss landscape. Such analysis is challenging due to two major reasons: (i) f is non-convex in
parameters { P;, Q; } even for a single layer transformer. (ii) The cross-product structures in attention
makes f a highly nonlinear function in its parameters. Hence, we analyze a spectrum of settings
from single-layer transformers to multi-layer transformers. For simpler settings such as single-layer
transformers, we prove stronger results such as the full characterization of the global minimizers.
For networks with more layers, we characterize the structure of critical points. Furthermore, we
provide algorithmic interpretations of the critical points. Table 1 summarizes our results for various
parameteric models.

Results ‘ z(® Wy Setting Guarantees
Theorem I | N'(0,%X) N(0,1) single-layer global minimizers
Theorem 2 | N'(0,1)  N(0,1) two-layer + symmetric (8) global minimizers
Theorem 3 | NV(0,¥) MN(0,X7!) multi-layer + (8) critical points
Theorem 4 | A(0,%) N(0,X71) multi-layer + (11) critical points
Theorem 5 | N'(0,I) N(0,1) single-layer + ReLU activation global minimizers

Table 1: Summary of our analyses for various models and input distributions. The additional
conditions (8) and (11) are about the sparsity structure of parameters. In addition, “symmetric (8)”
means we additionally impose the weights to be symmetric.

Remark 1 (Optimizing (5) vs. practical transformer optimization). Interestingly, a recent work
by Ahn et al. (2023) reports that common optimization algorithms such as SGD/ADAM behave
remarkably similarly on the (linear Transformers + linear regression) problem as they do on (practical
transformers + real language modeling tasks). In particular, they reproduce several distinctive
features of transformer optimization under a simple shallow linear transformer. This work suggests
that (linear transformer + linear regression) may serve as a good proxy for understanding practical
transformer optimization.

3 The global optimum for a single-layer transformer

For the single layer case of L = 1, the following result characterizes the optimal parameters Py and
Qo for the in-context loss (5).

Theorem 1 (Single-layer; non-isotropic data). Assume that vector =) is sampled from N' (0,%),
i.e., a Gaussian with covariance ¥ = UANU " where A = diag(\1, ..., \q). Moreover; assume that
wy is sampled from N (0, I). Then, the following choice of parameters

0 0 Udi N S ut oo
Py = { d6<d 1} , Qo=-— e <{ A (E ) }i_la--wd> . ©
0 0

is a global minimizer of f(P, Q) up to re-scaling, i.e., Py < Py and Qo + v~ ' Qo for a scalar ~.

See Appendix A for the proof of Theorem 1. In the specific case when the Gaussian is isotropic, i.e.,
> = I, the optimal () has the following simple form

1 Iy 0
%=~ |6 ) 7
Up to scaling, the above parameter configuration is equivalent to the parameters used by von Oswald

et al. (2023) to perform one step of gradient descent. Thus, in the single-layer setting, the in-context
loss is indeed minimized by a transformer that implements the gradient descent algorithm.




More generally, when the in-context samples are non-isotropic, the transformer learns to implement
one step of a preconditioned gradient descent as we shall detail in Lemma 1. Here the “preconditioning
matrix” given in (6) has interesting properties:

e When the number of samples n is large, the first d x d submatrix of Qg approximates X1,
the inverse of the data covariance matrix, which is also close to the Gram matrix formed from
(M .. 2(™ Hence the preconditioning can lead to considerably faster convergence rate when
3. is ill-conditioned.

e Moreover, % >k Ak in (6) acts as a regularizer. It becomes more significant when 7 is small and

variance of the z(*)’s is high. Such an adjustment resembles structural risk minimization (Vapnik,
1999) where the regularization strength is adapted to the sample size.

4 Multi-layer transformers with sparse parameters

Theorem 1 proves a single layer of linear attention can implement a single step of preconditioned
gradient descent. Inspired by this result, we investigate the algorithmic power of the linear transformer
architecture. We show that the model can implement various optimization methods even under sparsity
constraints. In particular, we impose the following restrictions on the parameters:

0 0 A; 0
P, = { T 1} . Qi=— {0 0} where A; € R¥*%, (8)

The next lemma proves that a forward-pass of a L-layer transformer, with the parameter configuration
(8) is the same as taking L steps of gradient descent, preconditioned by A,.
Lemma 1 (Forward pass as a preconditioned gradient descent). Consider the L-layer linear

transfomer parameterized by Aq, ..., Ar_1 as in (8). Let yé”H) be the (d + 1,n + 1)-th entry
(n+1)

of the (-th layer output, i.e., y, = [Zd(a41),(n41) Jor £ = 1,...,L. Then, it holds that

yén—H) = —(zD) w8 where {w8Y} is defined as w& = 0 and as follows for { =1,..., L —1:
1 n

w%il = w%d — A)VR,, (w?d) where Ry, (w) = o Zl(waZ- —w, ;)2 )

See Subsection C.1 for a proof. The iterative scheme (9) includes various optimization methods
including gradient descent with A, = ~,1,4, and (adaptive) preconditioned gradient descent, where
the preconditioner A, depends on the time step. In the upcoming sections, we characterize how the
optimal { A} are linked to the input distribution.

4.1 Warm-up: optimal two-layer transformer with symmetric weights

For the rest of this section, we will study the optimal parameters for the in-context loss under the
constraint of Eq. (8). Later in Section 5, we analyze the optimal model for a more general parameters.
For a two-layer transformer, the next Theorem proves the optimal in-context loss obtains the simple
gradient descent with adaptive coordinate-wise stepsizes.

Theorem 2 (Global optimality for the two-layer (symmetric) transformer). Consider the optimization
of in-context loss for a two-layer transformer with the parameter configuration in Eq. (8), and
additionally assume that A1, Ay are symmetric matrices. More formally, consider

. ~ {Oaxqa O _|=4¢ 0
Aq,A2 flrrlelgmmetricf {PZ o |: 0 1:| ’ Qf B |: 0 0:| }Ezl 2 .

Assume z(0) % N(0, I4) and w, ~ N(0, I4); then, there are diagonal matrices Ay and A that are
a global minimizer of f.

Combining the above result with Lemma 1 concludes that the two iterations of gradient descent with
coordinate-wise adaptive stepsizes achieve the minimal in-context loss for isotropic Gaussian inputs.
Gradient descent with adaptive stepsizes such as Adagrad (Duchi et al., 2011) are widely used in
machine learning. While Adagrad adjusts its stepsize based on the individual problem instance, the
algorithm learned adjusts its stepsize to the underlying data distribution.



4.2 Multi-layer transformers

We now turn to the setting of general L-layer transformers, for any positive integer L. The next
theorem proves that certain critical points of the in-context loss effectively implement a specific
preconditioned gradient algorithm, where the preconditioning matrix is the inverse covariance of the
input distribution. Before stating this result, let us first consider a motivating scenario in which the
data-covariance matrix is non-identity:

Linear regression with distorted view of the data: Suppose that w, ~ N(0,1) and the latent
covariates are 7V, ... 7"+ drawn i.i.d from NV (0, T). We are given (). .. y(™, with y(?) =
<E(i) , W, ). However, we do not observe the latent covariates 79 Instead, we observe the distorted
covariates () = Wz, where W € R?*? is a distortion matrix. Thus the prompt consists of
(™ 4y, (2™, y(), as well as z(*+1). The goal is still to predict (" +1). Note that this
setting is quite common in practice, when covariates are often represented in an arbitrary basis.

Assume that ¥ := WW ' = 0. We verify from our definitions that for w, := X~/?w,, y(*) =
(@, w,). Furthermore, (" ~ N(0,%) and w, ~ N'(0,X£7!). From Lemma 1, the transformer

with weight matrices { Ay, ..., Ar,—1 } implements preconditioned gradient descent with respect to
Ry, (w) = 3= (w — w,)"XX T (w—w,), with X = [z, ..., 2("]. Under this loss, the Hessian

matrix V2R, (w) = ﬁX X T (at least in the case of large n). For any fixed prompt, Newton’s

method corresponds to 4; o< (XX ) ~! which makes the problem well-conditioned even if ¥ is

very degenerate. As we will see in Theorem 3 below, the choice of A; o« X! = E [X X T} !
appears to be a stationary point of the loss landscape, in expectation over prompts.

Before stating the theorem, we introduce the following simplified notation: let A := {Ai}iL:_Ol €

RExdxd We use f(A) to denote the in-context loss of f ({F;, Qi} ") as defined in (5), when Q;
depends on A;, and P; is a constant matrix, as described in (8).
Theorem 3. Assume that 2@ N(0,%) and w, ~ N(0,271), fori = 1,...,n, and for some
3. > 0. Consider the optimization of in-context loss for a k-layer transformer with the the parameter
configuration in Eq. (8) given by:
min A).

A f(4)
Let S C RY%4%4 pe defined as follows: A € S if and only if forall i = 0,..., L — 1, there exists
scalars a; € R such that A; = ;X ". Then

L—-1

inf F(A, B)||A =
(A}E)GS;OIIVAJ( ,B)|7 =0,

where V 4, f denotes derivative wrt the Frobenius norm || A; | p.

As discussed in the motivation above, under the setting of A; = a;X !, the linear transformer
implements an algorithm that is reminiscent of Newton’s method (as well as a number of other
adaptive algorithms such as the full-matrix variant of Adagrad); these can converge significantly
faster than vanilla gradient descent when the problem is ill-conditioned. The proposed parameters
A; in Theorem 3 are also similar to A;’s in Theorem 1 when n is large. However, in contrast to
Theorem 1, there is no trade-off with statistical robustness; this is because w, has covariance matrix
>~ !in the Theorem 3, while Theorem 1 has isotropic wy.

Unlike our prior results, Theorem 3 only guarantees that the set S of transformer prameters satisfying
L—1 . . . . . .

{Ai o ot }i:O essentially’ contains critical points of the in-context loss. However, in the next

section, we show experimentally that this choice of A;’s does indeed seem to be recovered by training.

We defer the proof of Theorem 3 to Subsection B.2. Due to the complexity of the transformer
function, even verifying critical points can be challenging. We show that the in-context loss can
be equivalently written as (roughly) a matrix polynomial involving the weights at each layer. By

2A subtle issue is that the infimum may not be attained, so it is possible that S contains points with arbitrarily
small gradient, but does not contain a point with exactly O gradient.



exploiting invariances in the underlying distribution of prompts, we construct a flow, contained
entirely in S, whose objective value decreases as fast as gradient flow. Since f is lower bounded, we
conclude that there must be points in S whos gradient is arbitrarily small.

4.3 Experimental validations for Theorem 3

We present here an empirical verification of our results in Theorem 3. We consider the ICL loss
for linear regression. The dimension is d = 5, and the number of training samples in the prompt is
n = 20. Both (Y ~ N(0,%) and w, ~ N(0,5~1), where & = UT DU, where U is a uniformly
random orthogonal matrix, and D is a fixed diagonal matrix with entries (1, 1,0.25,0.0625,1).

We optimizes f for a three-layer linear transformer using ADAM, where the matrices Ag, Ay, and
Ag are initialized by i.i.d. Gaussian matrices. Each gradient step is computed from a minibatch of
size 20000, and we resample the minibatch every 100 steps. We clip the gradient of each matrix to
0.01. All plots are averaged over 5 runs with different U (i.e. ¥) sampled each time.

Figure 1d plots the average loss. We observe that the training converges to an almost O value,
suggesting the convergence to global minimum. The parameters at convergence match the stationary
point introduced in Theorem 3, and indeed appear to be globally optimal.

To quantify the similarity between Ag, Ay, Ay and £~ (up to scaling), we use the normalized Frobe-

nius norm distance: Dist(M, I) := min,, W, (equivalent to choosing o := % Zle MTi, i]).
F

This is essentially the projection distance of M/| M|l onto the space of scaled identity matrices.

We plot Dist (A4;, I'), averaged over 5 runs, against iteration in Figures la,1b,1c. In each plot, the
blue line represents Dist(3'/2A4;%1/2 T), and we verify that the optimal parameters are converging
to the critical point introduced in Theorem 3, which implements preconditioned gradient descent.
The red line represents Dist(A;, I); it remains constant indicating that the trained transformer is not
implementing plain gradient descent. Figures 2a—2c visualize each ©'/2 4;%/2 matrix at the end of
training to further validate that the learned parameter is as described in Theorem 3.
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Figure 1: Plots for verifying convergence of general linear transformer, defined in Theorem 3. Figure
(d) shows convergence of loss to 0. Figures (a),(b),(c) illustrate convergence of A;’s to identity. More
specifically, the blue line represents Dist(X1/2A;%1/2, I), which measures the convergence to the
critical point introduced in Theorem 3 (corresponding to ¥~ !-preconditioned gradient descent). The

red line represents Dist(A4;, I); it remains constant indicating that the trained transformer is not
implementing plain gradient descent.

S Multi-layer transformers beyond standard optimization methods

In this section, we study the more general setting of

. _|Bi 0 _ 1A 0 - pdxd
Pl_[O 1}, QZ_{O 0} where A;, B; € R**¢, (11)
Note that A;, B; are not constrained to be symmetric. Similar to Section 4, we introduce the following
simplified notation: let A := {A;}/- " € REX¥¥d and B := {B;} ' € RL*4%4 We use f(A, B)
to denote the in-context loss of f ({Pi, Qi f;ol) as defined in (5), when P; and @); depend on B;
and A; as described in (11).



(a) Visualization of £/24¢X1/?  (b) Visualization of ©'/2A4; %2  (c¢) Visualization of $'/2 A, 31/2

Figure 2: Visualization of learned weights for the setting of Theorem 3. We visualize each
»1/2 4,;%:1/2 matrix at the end of training. Note that the optimized weights match the stationary point
discussed in Theorem 3.

With this relaxed parameter configuration, it turns out transformers can learn algorithms beyond the
conventional preconditioned gradient descent. The next theorem asserts the possibility of learning a
novel preconditioned gradient method. Let L be a fixed but arbitrary number of layers.

Theorem 4. Let . denote any PSD matrix. Assume that z(0 N(0,%) and w, ~ N(0,571), for

i=1,...,n, and for some ¥ - 0. Consider the optimization of in-context loss for a L-layer linear
transformer with the the parameter configuration in Eq. (11) given by:
min  f(A,B).
{As Bi Sy

Let S C R2*EXdXd pe defined as follows: (A, B) € S if and only if for all i € {0,. ..k}, there
exists scalars a;, b; € R such that A; = a; X~ and B; = b;1. Then

L—-1
inf F(A, B)|? F(A, B)||A = 12
(A}E)GS;HVAT,f( B+ IVe, f(A, B)||z =0, (12)

where V 4, f denotes derivative wrt the Frobenius norm || A;|| g

In words, parameter matrices in S implement the following algorithm: {AZ- =qa; X1 }iL:_Ol plays the
role of a distribution-dependent preconditioner for the gradient steps. At the same time, B; = b; [
transforms the covariates themselves to make the Gram matrix have better condition number with
each iteration. When the 3. = [, the algorithm implemented by A; o I, b; o I is exactly the GD++
algorithm proposed in (von Oswald et al., 2023) (up to stepsize).

The result in (12) says that the set S essentially’® contains critical points of the in-context loss f(A, B).
In the next section, we provide empirical evidence that the trained transformer parameters do in fact
converge to a point in S.

5.1 Experimental validations for Theorem 4

The experimental setup is similar to Subsection 4.3: we consider ICL for linear regression with n =
10,d = 5, with () ~ A/(0, %) and w, ~ N (0,£71), where ¥ = UT DU, where U is a uniformly
random orthogonal matrix, and D is a fixed diagonal matrix with entries (1, 1,0.25,0.0625,1). We
train a three-layer linear transformer, under the constraints in (11) which is less restrictive than (8) in
Subsection 4.3. We train the matrices Ay, A1, A, By, By * using ADAM with the same setup as in
Section Subsection 4.3. We repeat this experiment 5 times with different random seeds, each time we
sample a different U (i.e. X).

3Once again, similar to the case of Theorem 3, the infimum may not be attained, so it is possible that S
contains points with arbitrarily small gradient, but does not contain a point with exactly 0 gradient.
“Note that the objective function does not depend on Bs.



In Figure 3c, we plot the in-context loss through the iterations of ADAM; the loss appears to be
converging to 0, suggesting that parameters are converging to the global minimum.
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Figure 3: Plots for verifying convergence of general linear transformer, defined in Theorem 4. Figure
(c) shows convergence of loss to 0. Figures (a),(b) illustrate convergence of By, B; to identity.
Figures (d),(e),(f) illustrate convergence of A;’s to X1,

We next verify that the parameters at convergence are consistent with Theorem 4. We will once
again use Dist(M, I) to measure the distance from M to the identity matrix, up to scaling (see
Subsection 4.3 for definition of Dist). Figures 3a and 3b show that B and B are close to identity,
as Dist(DB;, I') appears to be decreasing to 0. Figures 3d, 3e and 3f plot Dist(A;, I) (red line) and
Dist(X'/2A4;%1/2, I) (blue line); the results here suggest that A; is converging to ¥, up to scaling.
In Figures 3a and 3b, we observe that By and B; also converge to the identity matrix (without left
and right multiplication by X'/2), consistent with Theorem 4.

We visualize each of By, B; in Figure 4 and Ay, A1, Ao in Figure 5a-5c at the end of training. We
highlight two noteworthy observations:

1. Let X;, € RY*™ denote the first d rows of Zj, which are the output at layer k& — 1 de-
fined in (4). Then the update to Xy is X1 = X + Bp Xi M XA Xy, = Xppq =
Xk (I — |akbk|MXkTXk), where M is a mask defined in (2). As noted by von Oswald et al.
(2023), this may be motivated by curvature correction.

2. As seen in Figures 5a-5c in the Appendix, || Ap|| < ||A1]| < ||A2]| that implies the trans-
former implements gradient descent with a small stepsize at the beginning and a large
stepsize at the end. This makes intuitive sense as X is better-conditioned compared to
X1, due to the choice of By, B;. This can be contrasted with the plots in Figures (2a)-(2c¢),
where similar trends are not as pronounced because B;’s are constrained to be 0.

6 Discussion

We take a first step toward proving that transformers can learn algorithms when trained over a set
of random problem instances. Specifically, we investigate the possibility of learning gradient based
methods when training on the in-context loss for linear regression. For a single layer transformer, we
prove that the global minimum corresponds to a single iteration of preconditioned gradient descent.
For multiple layers, we show that certain parameters that correspond to the critical points of the
in-context loss can be interpreted as a broad family of adaptive gradient-based algorithms.
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0.0

Figure 4: Visualization of optimized weight matrices By (left) and B; (right). One can see that the
weight pattern matches the stationary point analyzed in Theorem 4. Matrices Ap, A1 and As are
similar to Figure 2, and are visualized in Figure 5 in Appendix D.

We discuss below two interesting future directions.

Beyond linear attention. The standard transformer architecture comes with nonlinear activations in
attention. Hence, the natural question here is to ask the effect of nonlinear activations for our main
results. Empirically, von Oswald et al. (2023) have observed that for linear regression task, softmax
activations generally degrade the prediction performance, and in particular, softmax transformers
typically need more attention heads to match their performance with that of linear transformers.

As a first step analysis, we consider the nonlinear attention defined as
Attn} o (Z) = PZM o(Z7QZ) where o : R — R is applied entry-wise.

The following result is an analog of Theorem 1 for single-layer nonlinear attention. It characterizes a
global minimizer for this setting with ReLU activation. Here, our choice of ReLU activation was
motivated by Wortsman et al. (2023) who observed that ReLU attention matches the performance of
softmax attention for vision transformers.

Theorem 5. Consider the single layer nonlinear attention setting with 0 = ReLU. Assume that
vector %) is sampled from N'(0, I1). Moreover, assume that w, is sampled from N (0, 1;). Consider
the parameter configuration Py, Qo where we additionally assume that the last row of Qq is zero.
Then, the following parameters form a global minimizer of the corresponding in-context loss:

_ |0dxa O _ 1 I; 0
PO_{O 1]’ QO__ln—1+(d+2)1'[0 0}

2 n

The proof of Theorem 5 involves an instructive argument and leverages tools from (Erdogdu et al.,
2016); we defer it to Subsection A.4. Thus, for isotropic Gaussian data, the structure of global
minimum under ReLU attention is similar to the global minimum with linear attention, established in
Theorem 1 (specifically the minimizer for the isotropic date given in (7)).

Refined landscape analysis for multilayer transformer. Theorem 4 proves that a stationary point
of the in-context loss corresponds to implementing a preconditioned gradient method. However, we
do not prove that all critical points of the non-convex objective lead to similar optimization methods.
In fact, in Lemma 4 in Appendix B, we prove that the in-context loss can have multiple critical points.
It will be interesting to analyze the set of all critical points and try to understand their algorithmic
interpretations, as well as quantify their (sub)optimality.
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A Proofs for the single layer case
In this section, we prove our characterization of global minima for the single layer case (Theorem 1).

We begin by simplifying the loss into a more concrete form. Throughout the proof, we will write
P, @ instead of Py, Qg for brevity.

A.1 Rewriting the loss function

Recall the in-context loss (5) for the single layer case f(P, Q) is defined as:

2
f (Pv Q) = EZo’w* " wT (n+1)]

1
<Z0 + AttnP,Q(Z0)>
n (d+1),(n+1)

From the definition of attention given in (3), one can further spell out the expression Z; +
L Attnp g(Zo) using the notation Zy = [z(M) 22 ... 2(+1)] ag follows:

1
@) Lty Zpr, () L (etD) (1) ... D) 1) ... D)
[z z 1+ nP[z z M ([z z ] Qlz z ])

1 i NN T
— [V ... e+ —p (@) ,(4) 1) ... D)
[z z 1+ ” (;_1 A ) Qlz z ]
Thus, the last column of the above matrix can be expressed as

[<n+1>} 7P (ZZ( 0 ) {(n0+1)},

where note that the summation is for ¢ = 1,2, ..., n due to the mask matrix M. Therefore, letting
b be the last row of P, and A € R¥*14 be the first d columns of @Q (as we did in (14)), then

[Zo + L Attnp,o(Zo)] (d41).(n+ 1) €40 be written as

Jﬁ <Z (i) ()T> [ ("0+1)] , (13)
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in other words, f (P, Q) only depends on the parameter b and A. Henceforth, we will write f (P, Q) as
f(b, A). Let us summarize our conclusion so far since it’s crucial for the analysis to follow.

Conclusion so far: A careful inspection reveals that the in-context loss only depends on the last
row of P and the first d columns of (). Thus, consider the following parametrization

P= [bOT] and Q=1[A 0], wherebe R and A € R(4FDx4, (14)
Now with this parametrization, the in-context loss can be written as f(b, A) :== f([0 b]T,[A 0]).

Now, let us spell out f(b, A) based on (13) as follows:

1 3 N T e e
Fb,A) =Ez 0, |b" - Zz(’)z(’) Az gy T (D)

=:G
2 2
= Bz, [b7GAZ D 4wl o] = By, [(07GA+w])e™V]", (15)
where we used the notation G = % > POMORE™S simplify. We now analyze the global minima of

this loss function. To illustrate the proof idea clearly, we begin with the proof for the simpler case of
isotropic data.

A.2 Warm-up: proof for the isotropic data

As a warm-up, we first prove the result for the special case where 2(*) is sampled from A (0,1y).

1. Decomposing the loss function into components. Writing A = [a1 a1 --- ag], and use the fact
that B[z [j]2(+V[j’]] = 0 for j # j” and E[z("+V[j]?] = 1, we get

d d
F0,A) =Y Ezpw, b7 Ga; +w[f]] Ez V%) = Y Ezpw, [b7Gay + w,[j]]’

j=1 j=1
The key idea is to characterize the global minima of each component in the summation separately.
Another key idea is to reparametrize the cost function given the following identity:

Ezpw, [07Ga; +wif]]” = Ezpw, [Tr(Gad) +w,ljl]” = Bz, [(G0a)) + wilf]]”

where we use the notation (X,Y) := Tr(XY ) for two matrices X and Y here and below. Given
the above identity, we define each component in the summation as follows.

2
fi(X) = Bz, [ (6,X) +w,[j]] for X € RUTX(@HD,

2. Characterizing global minima of each component. To characterize the global minima of each
objective, we prove the following result.

Lemma 2 (Global minima of each component). Suppose that %) is sampled from N(0, 1;) and
w, is sampled from N'(0, 1,). Consider the following objective (here, (X,Y) :== Tr(XY ) for two
matrices X andY)
fJ(X) - Ezmw* [(G’ X> + w*[]]]2 :
Then a global minimum is given as
1
(U +(d+2)7)

Xj=- Eayi,

where E;, ;, is the matrix whose (i1, 12)-th entry is 1, and the other entries are zero.
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Proof of Lemma 2. Note first that f; is convex in X. Hence, in order to show that matrix X is
the global optimum of f;, it suffices to show that the gradient vanishes at that point, in other words,
V f;(X;) = 0. To verify this, let us compute the gradient of f;: for a matrix X,

Vi(X) =2E[(G, X) G] + 2 E [w,[5] G] ,

where we recall that G is defined as
1 POROREEOMO
c=x Z L,(z‘)x(iﬁ y®?

To verify that the gradient is equal to zero, let us first compute E [w, [j] G]. Foreachi¢ =1,...,n,

note that E[w, [/] x(i)x(i)—r] = O because E[w,] = 0. Moreover, E[w,[j] (¥?)?] = 0 because w, is

symmetric, i.e., w, 4 _ ., and Yy = (w,, ™). Lastly, for k = 1,2,...,d, we have
Efw,[f] y© 2@ [k]] = E[w,[5] (w,, ™) 2D [k] = B {w*[ﬂz e[ VK| = 1= (16)
because E[w,[i] w,[j]] = 0 for i # j. Combining the above calculations, it follows that

‘]E [wilj] G] = Eat1,; + Ejas1 - \ (17)

In order to compute E [(G, X) G], let us compute E [(G, E; ;) G] for i, = 1,...,d + 1. Without
loss of generality, 7 > ¢’. First of all We now compute compute E [(G, Eq11 ;) G]. Note first that

<G7Ed+1,j> = Z<w*7x(1)> ‘T(Z) [.]] .

Hence, it holds that

(G,E4114) <Zx(l) (4) >1 E <Z<w*7 > <Zx(l) (4) > —0.
because E[w,] = 0. Next, we have l
(G, Egy1;) (Zy( ) (Z(w*,x(i)>x(i)[j]> (Zy(in)] _0
because w, 4 —wy. Lastly, we compute
(G, Eqt1,5) (Zy(i)x(iﬁ>1 .

To that end, note that for j # j/, l

ot S
and

E [(w*,m(i)> D[] (wy, ) x(i/)[j]} = {E[Ezﬁ:@(&>(2le)(z[‘)]gj)]2)]z]:1 d+2 gz fz (18)

where the last case follows from the fact that the fourth moment of Gaussian is 3 and
E[(w.,a@)? @O[)?] = E [J20)2 @O[])?] =3 +d-1=d+2.

Combining the above calculations together, we arrive at

1
E[(G, Fur1) 6l = 5 - (n(n— 1) + (d+2)n) (Fagr + Eyarn)
n—1 1
= ( - + (d+ 2)71) (Eat1,5 + Ejat1) - (19)
Therefore, combining (17) and (19), the results follows. O
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3. Combining global minima of each component. From Lemma 2, it follows that

1
X;=- E i
R C R CERIT) R
is the unique global minimum of f;. Hence, b and A = [a1 a1 --- aq] achieve the global minimum
of f(b,A) = Z?:l fi(ba] ) if they satisfy
1
bal = — Egiq; foralli=1,2,...,d.
N e I M
This can be achieve by the following choice:
1

bT:edH, aj; = — e; fori=1,2,...,d,

(=L +(d+2)L)

where e; is the j-th coordinate vector. This choice precisely corresponds to

1 I
b= earn, A:_(”—*1+(d+2)l) M ‘

We next move on to the non-isotropic case.

A.3 Proof for the non-isotropic case

1. Diagonal covariance case. We first consider the case where z(*) is sampled from A/(0, A) where

A = diag(A1, ..., \g) and w, is sampled from N(0, I;). We prove the following generalization of
Lemma 2.

Lemma 3. Suppose that V) is sampled from N'(0, A) where A = diag(\1, ..., \q) and w, is
sampled from N (0, I). Consider the following objective

[1(X) =Bz, [(G, X) +w,[j]]” .
Then a global minimum is given as

1 E
n d+1,5
= R S STYS B

where E;, ;, is the matrix whose (i1,12)-th entry is 1, and the other entries are zero.

X;=—

Proof of Lemma 3. Similarly to the proof of Lemma 2, it suffices to check that
2E[(G, Xo) G] + 2E [w,[j] G] = 0,
where we recall that G is defined as
1 @@ T @)@
€=z Z B(i)iwﬁ yy<£2 ] '
A similar calculation as the proof of Lemma 2 yields
E [w.[j] Gl = Aj(Eat1,5 + Eja+1)- (20)

Here the factor of \; comes from the following generalization of (16):

Efw.[j] y® 2V [K]] = Elw.[j] (w.,2@) 2D [K] = E |w.[j]* «V[j] 2D [K]| = X1 =y -

Next, we compute E [(G, Eq1 ;) G]. Again, we follow a similar calculation to the proof of Lemma 2
except that this time we use the following generalization of (18):

i i) i iV E[x(i) []'}2 I(i/)[j]Q] =\ ifi # 4,
E [(w.,a®) 0] (w2 1] = {IE [0, 202 2O = &y T b 202 i =7,
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where the last line follows since

E |(w,,2)? O[] = B [Ja®) «O[P] = E | 2®

23 [k]ﬂ =X ) Ak +2X7.
k k
Therefore, we have

1
E[(G, Egs1) G| = = <n(n — 1A +n); Z Ak + Qn/\§> (Eas1j + Ejat1)
k

- (nJrl

Therefore, combining (20) and (21), the results follows. O

1
i+ —( ZM)> (Eay15 + Ejat1) - 21
k

Now we finish the proof. From Lemma 2, it follows that
1

X. = — E .
ToEI L e
is the unique global minimum of f;. Hence, b and A = [aq a1 - -- a4] achieve the global minimum
of f(b, A) = Y7 f;(b, A;) if they satisfy
ba] = X ! E foralli=1,2,....,d
a. = .= — : 1=1,4,...,Q.
R SV R RS E

This can be achieve by the following choice:

1
e, fori=1,2,...,d,
2L+ £ (M)

where e; is the j-th coordinate vector. This choice precisely corresponds to

, S S
b=ej1, A=-— diag <{n”ﬂ’\j+i'<z"'kk)}j>

0

.
b’ =eqr1, aj=—

2. Non-diagonal covariance case (the setting of Theorem 1). We finally prove the general result of

Theorem 1, namely z() is sampled from a Gaussian with covariance . = UAU " where A =
diag(A1, ..., Ag) and wy is sampled from N(0, I;). The proof works by reducing this case to the
previous case. For each 4, define (V) := UT2(), Then E[z()(z(")T] = E[UT (UAUT)U] = A.
Now let us write the loss function (15) with this new coordinate system: since 2 = UZ®, we have

J(b,A) =Bz, [(b7GA +w] Ux("+1)] Z)\ Ezyw, [(07GA+w)U) 1] .
Hence, let us consider the vector (b" GA + w, )U. By definition of G, we have
T T 1 [ o ] T

_ 1 [ Ui “2 T
= ﬁZb _<Ux(i),w*>} AU +w, U
1 T[U o Z; Ut o T

=22 [§ ][5 fav e

Il [ @ 1%+
:Ezb @,@,)] ATT
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~ - T
where we define b' = b g 0], A = [UO 0

symmetry, w, is also distributed as N (0, I;). Hence, this reduces to the previous case, and a global
minimum is given as

. - ; 1
b=eqp1, A=-— diog <{"I1’\j+i'(z’c)‘k)}j>

0

] AU, and w, = U w,. By the rotational

From the definition of Z, A, it thus follows that a global minimum is given by

: I S T
b —eqrr, A—— Udl@ug({n+1A+ (ZMg)})U 7
0

as desired.
A.4 Proof for non-linear attentions (Theorem 5)
As mentioned in Theorem 5, we focus on the setting where the last row of () is zero, i.e., let

Q:[J—lr g] for A € R¥? and a € R%.

We first rewrite the loss function and simplify it following Subsection A.1. Moreover, for simple
notation we will often write z, z instead of z("1) z(n+1),

1. Rewriting loss function.

Following Subsection A.1, let us write down the in-context loss (5). for the single-layer nonlinear
attention denoted by f (P, Q):

2
1 g
f(P,Q) =Egz, ., [Zo + AttnRQ(ZO)] twlx
n d+1,n+1
Recalling the definition of the ReLU attention Attn% (Z) == PZM o( Z7QZ), the data matrix
Z = [z(l) e z("+1)], and the mask matrix M, the term Attnj’;,Q(Zo) can be written as:

g In n 0
AttnP’Q(Z()) = PZ() . |: 6< O:| -0 (ZS—QZ()) .
~—~— ———

R(d+1)x (n+1) R(n+1)x(n+1)

Hence, it follows that the (d + 1,7 + 1)-th entry of Attn% (Zo) is equal to the product of the

(d + 1)-th row of PZ, the mask matrix M, and the (n + 1)-th column of o (Z{ QZ). Hence, let
us write them down explicitly:

e Letting b be the last row of the matrix P, it holds that the (d + 1)-th row of PZj is equal to
[<ba Z(i)>]7‘,=1,.4.,n+1‘

e The (n + 1)-th column of o (ZJ QZo) is equal to [0 ((2V)TQz"*D)] _ . Letting A
the first d columns of (), this vector is equal to [0 ((alc(z )T Azl ”*1))] —1. because the last
row of @ is zero and the last row of z("*+1) is zero (since (2("*1)T = [(x ”*1)) 0)).

Thus, the product of [(b, 2(V)]i—1,... n41, the mask matrix M, and [o ((z)T Az("TV)] _ i

results in the following expression of the attention (writing z, x instead of z(**1) z(n+1).

(A 0(Z0)] 44y iy = D [<b,z<i>> Co((2®)T Ax)} .

=1
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Since [Zp]d+1,n+1 = 0, we therefore have

1 1 — , ,

[ZO + Attnfp’Q(ZO)} ==y [<b, 20) -o—((x@))TAx)} .
n d+1,n+1 n i=1

Therefore, it follows that the in-context loss f (P, Q) only depends on b and A. Henceforth, let us

write f(b, A) instead of f(P, Q) following Subsection A.1. In particular, writing b" = [b] , b1] for

by € R? and b; € R, the loss function can be expressed as

n

f(b,A) =E (111 Z [((bo,x(i)> + byy™) -a((:c(i))TAx)} + (w*,x>> . (22)
i=1

2. Simplifying the loss function with symmetry.

Now, we use the fact that both z(9)’s and w, are sampled from the isotropic Gaussian, i.e., N’ (0,1,)
in order to further simplify the loss function in (22). In particular, we use the following facts:

(a) For orthonormal matrices U,V €& R%%4_ it holds that Uz, Vz and Uw, have the same
distributions as N (0, ).

(b) Moreover, for a diagonal matrix = = diag(¢;) € R4*4 with the diagonal entries being random
signs & ~ {=£1}, it holds that Zx(), Z2 and Zw, have the same distributions as (0, I).

Now let us fix a matrix A € R¥< and b = [b] , by] for by € R? and b; € R. Letting A = UXV T
be the SVD of the matrix A, it follows that

2
f(b,A)=E |—

I |

o
Il
i

[(b—r @) 4 ppw 2@ ((a?(i))TAx)} +w/ x

2

=
&
—
Sl
(7=

[(bgUx(i) +byw, UTU2®) . a((m(i))TUTAVx)} +w] U Va

i=1
1 — ?
OF ) - Z [(bgUEa:(i) + byw,] @) - 0((x(i))TEx)} +w]ZUTVEr
i=1
1 — ’
>E |Es { 3 [ b UZ2® + byw] @) - ((az(i))TEz)} + ijUTvzx}
n
i=1
1 — ’
=FE Z [blea:(i) . cf((x(i))TEm)} + w, diag(U " V)z
i=1
= fiower(b1, 2, D == diag(U V).
where in the third line we use the fact that 2T = = ZX.= = ¥; and the fourth line follows from the

Jensen’s inequality. Hence for the remainder of the proof, we w111 characterize the global minimizer
of the lower bound, i.e., fiower and then we will connect it back to the original objective.

3. Computation of the lower bound foyer.

Let us now explicitly compute fiower. Let us rewrite the definition of fiower. In fact since, 0 = ReLU
is homogenous, one can further simplify the lower bound by pushing the constant b; inside and write
b1Y as X. Hence, for two diagonal matrices 3., D € REX9 fiover is defined as:

n

2
fiower (8, D) =E 1 Z {(w*,x(% : U(xTEx(i))} +w*TDx] .

n
i=1

In particular, D is constrained to be the diagonal part of an orthogonal matrix (since D = diag(U ' V)
in the above derivation). Now we focus on characterizing the global minimizers of fiower-
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The main part of the argument is inspired by the elegant observation of Erdogdu et al. (2016), which
says that the solution of least squares and generalized linear models are collinear for Gaussian inputs.
We leverage the same proof technique (a /a Stein’s Lemma) to prove that the presence of ReLU only
changes the scaling of global optimum.

First, since w, is isotropic Gaussian, we can take the expectation over w, to obtain

n 2

LS a5t o] + s

flower (E D

)

which after a careful expansion becomes

. ) . 2 . .
) Z ("2 o (2T S20)) (@ 20Dy 4 - ZU(mTZx(l))@(Z),Dx) + const.  (23)
3
In order to compute (23), we will rely on the aforementioned argument of Erdogdu et al. (2016). In

particular, from integration by parts, or Stein’s lemma (Erdogdu et al., 2016) (since x ~ N (0, 1)),
we have

E.[o(z"v)z] = B [0’ (z "v)]v  fora fixed v € RY.
We use this to compute all the terms in (23) as follows:
e We first apply Stein’s lemma to the first term of (23) for ¢ % j. This results in
Ep) 20) 2 a(a:TEx(i))o(xTEx(j))<x(i), J;(j)>
= Ea:(j)7w[E$(7‘,) [Ul(xTZx(i))] o(xTEz(j)) xTZx(j>]

Using the fact that (¥) is a symmetric random variable, one can compute the expectation above as
follows: one the one hand, we know E ) [0’ (2" Z2(®))] = E, ) [0’ (—2 T £2(?)]. On the other
hand, we also know that for any scalar «, o'(—«a) + o/(«) = 1. Therefore, we conclude that
B, [0’ (xTS2?)] = 1/2. Thus, applying this technique twice, we obtain the following

) ) ) . 1 1
Epi) 20,0 0(z " 2D)o(zT829)) (20, 210)) = el Ty2y] = i Tr(%?).
e Similarly, we can use Stein’s lemma to the second term of (23) to conclude
) ) 1 1
Eo(z'22®) (2", D) = 5 B ' YDz = 5 (D).

e Lastly, the computation of the first term of (23) for ¢ = j is straightforward. Using the fact that
Va € R, 0?(a) + 0?(—a) = a?, we get
. . 1 _ .
E [02(@T£a®) o |2] = SE[@TEa)? o))
1 - d+2
= SE [@)T5%0 [20)] = 22T,

Putting things all together (and ignoring the constant part in (23)), we have
2(d+2)+ (n
4dn

fiower (2, D) = -V Tr(%?) + Tr(ED). (24)

4. Connecting back to the original loss function.

One can in fact write (24) solely in terms of by and A as follows:

2d+2)+ (n—1 2d+2)+(n—1
( )4n( )3(22) + Tr(ED) = ( )4n( ) b1 Al + Tr(by A) .
Since the latter is a convex function in the matrix by A, it follows that the minimizer corresponds to
2
biA=— n Iy

2d+2)+(n—-1)
In fact the choice by = 1, b9 = 0, and A = —W - I; achieves this, and more crucially,

satisfies the property that fiower = f for the corresponding parameters. Therefore, this shows that
such choice is a global minimizer.

20



B Proofs for the multi-layer case

B.1 Proof of Theorem 2

The proof is based on probabilistic methods (Alon and Spencer, 2016). According to Lemma 5, the
objective function can be written as (for more details check the derivations in (25))

where we use the isotropy of w, and the linearity of trace to get the last equation. Suppose that Aj
and A} denote the global minimizer of f over symmetric matrices. Since A} is a symmetric matrix,
it admits the spectral decomposition A; = UD U " where D, is a diagonal matrix and U is an
orthogonal matrix. Remarkably, the distribution of X is invariant to a linear transformation by an
orthogonal matrix, i.e, X has the same distribution as XoU T. This invariance yields

f(UDUT, A3) = f(Dy,UT A3U).

f(Al,AQ) =ETr (E

2 2
H(I — X AiXoM)X{ waw] Xo H(I — MXTA;Xo)
=1

i=1

1 2
=ETr | E |[](T - X4 AiXoM)Xg Xo [[(T - MXTA;X0) | |,
i=2 j=1

Thus, we can assume A7 is diagonal without loss of generality. To prove A3 is also diagonal, we
leverage a probabilistic proof technique. Consider the random diagonal matrix .S whose diagonal
elements are either 1 or —1 with probability % Since the input distribution is invariant to orthogonal
transformations, we have

Note that we use SD1.S = D; in the last equation, which holds due to D, and S are diagonal matrices
and .S has diagonal elements in {+1, —1}. Since f is convex in As, a straightforward application of
Jensen’s inequality yields

f(Dy, A3) = E[f(D1,5455)] = f(D1, E[SA5S5]) = f(D1, diag(A43)).

Thus, there are diagonal D; and diag(A%) for which f(D;,diag(A3)) < f(Aj, A%) holds for an
optimal A} and A%. This concludes the proof.

B.2 Proof of Theorem 3

Let us drop the factor of 1/n which was present in the original update (56). This is because the
constant 1/n can be absorbed into A4;’s. Doing so does not change the theorem statement, but reduces
notational clutter.

Let us consider the reformulation of the in-context loss f presented in Lemma 5. Specifically, let Z
be defined as
2D 2@ o () pnt1)

€ RU+Dx(n+1)
YO @ Ly D)

Zy =
where y("*1) = (w,, z("*1). Let Z; denote the output of the (i —1)'" layer of the linear transformer

(as deﬁged in (56), initialized at Z). For the rest of this proof, we will drop the bar, and simply
denote Z; by Z;.° Let X; € R¥*("+1) denote the first d rows of Z; and let Y; € R'*("+1) denote the
(d+1)" row of Z;,. Under the sparsity pattern enforced in (8), we verify that, for any i € {0, ...k},

X; = Xo,

Yi =Y+ Y, MX; A X; =Y, H (I+MXJ ArXo) - (25)
£=0

5This use of Z; differs the original definition in (1). But we will not refer to the original definition anywhere
in this proof.
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_ |Iaxn O
where M = { 0 0

k
} . We adopt the shorthand A = {4;},;_,.
We adopt the shorthand A = {Ai}fzo. Let S ¢ R(+1)xdxd and A ¢ S if and only if for all

i € {0,...,k}, there exists scalars a; € R such that A; = ;X! and B; = b;I. We use f(A) to
refer to the in-context loss of Theorem 3, that is,

s ({a=[i om0

Throughout this proof, we will work with the following formulation of the in-context loss from
Lemma 5:

F(A) =E(xg ) [Tr (I = M) Y[ Yiga (T = M))]. (26)

The theorem statement is equivalent to the following:

k
. 2
Agg; IV 4 f(ADF =0, 27)

where V 4, f denotes derivative wrt the Frobenius norm || A; || . Towards this end, we establish the

following intermediate result: if A € S, then for any R € RE+1D)xdxd there exists R € S, such that,
att =0,

d _d
T [(A+iR) < — f(A+1R). (28)

In fact, we show that R; := r;1, for r; = 3 Tr (£/2R;%/2). This implies (27) via the following
simple argument: Consider the "S-constrained gradient flow": let A(t) : Rt — R*+1)xdxd pe

defined as
Al = @27 n) = Te(S12V 4, f(A(2)5?)
fori =0,..., k. By (28), we verify that

k
L HAD) <= IVafAD)E 9)
1=0

We verify from its definition that f(A) > 0; if the infimum in (27) fails to be zero, then inequality
(29) will ensure unbounded descent as ¢ — oo, contradicting the fact that f(A) is lower-bounded.
This concludes the proof.

Proof outline. The remainder of the proof will be devoted to showing (28), which we outline as
follows:

* In Step 1, we reduce the condition in (29) to a more easily verified layer-wise condition. Specifically,
we only need to verify (29) when R; are all zero except for I; for some fixed j (see (30))
At the end of Step 1, we set up some additional notation, and introduce an important matrix G,
which is roughly "a product of attention layer matrices". In (31), we study the evolution of f(A(t))
when A(t) moves in the direction of R, as X is (roughly speaking) randomly transformed.

* In Step 2, we use the results of Step 2 to to study G (see (32)) and %G(A(t)) (see (33)) under
random transformation of Xg. The idea in (33) is that "randomly transforming X" has the same
effect as "randomly transforming S" (recall S is the perturbation to B3).

« In Step 3, we apply the result from Step 2 to the expression of <& f(A(t)) in (31). We verify that R
in (28) is exactly the expected matrix after "randomly transforming S". This concludes our proof.

1. Reduction to layer-wise condition. To prove (28), it suffices to show the following simpler condi-
tion: Let j € {0,...,k}. Let R; € R?*9 be arbitrary matrices. For C € R?*4, let A(tC, j) denote
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the collection of matrices, where [A(tC, j)|; = A; + tC, and for i # j, A(tC, j); = A;. We show
that forall j € {0,...,k},R; € R4*?_there exists Rj = rjE’l, such that, at t = 0,

& FA(tRy. ) < L F(AGR;, ) (30)

We can verify that (28) is equivalent to (30) by noticing that for any R, att = 0, % (A+tR) =

Z?:o % f(A(tR;,7)). We will now work towards proving (30) for some index j that is arbitrarily
chosen but fixed throughout.

Let us define, for any C' € R, G(X, A; + C) == X [[\_, (I - MXT [A(C, /)], X). By (25)
and (26),

F(A(tR;, 7))
=E[Tr (I - M)V, Vi1 (I — M))]
=E[Tr (I — M)G(Xo, Aj +tR;) "w] w,.G(Xo, A; +tR;) (I — M))]
=E[Tr (I — M)G(Xo, A; +tR;) TS G(Xo, Aj + tR;) (I — M))]
The second equality follows from plugging in (25). For the rest of this proof, let U denote a uniformly

randomly sampled orthogonal matrix. Let Us, := X'/2UX.~1/2, Using the fact that X, 2 Us Xy, we
can verify

d .
SHARR;. )

t=0

[Tr (I — M) G(Xo, A; +tR;) TS7'G(Xo, Aj + tR;) (I — M))]

=—E
dt t=0
d

=~ Ex,u [Tr (I — M) G(UsXo, Aj +tR;) ' S7'G(UsXo, A; +tR;) (I — M))]

t=0

d ~ (I—M)ﬂ. 31)

=2Ex, v |:TI‘ ((I - M) G(UzXo,Aj)TZ_l %G(UEXO,AJ' + tRj)

2. Gand %G under random transformation of X,. We will now verify that G(Us Xy, A;) =
UEG(X(), Aj)!

G(UnXo, A;)
k
=UsXo [[ (I + MX{Us, AU X,)
i=0
:UEG(XOa A])a (32)
where we use the fact that Uy A;Us, = Ul (a;%71)Us, = A;. Next, we verify that

d
%G(UzXO,A + tRj)

t=0

7—1 k

=Us X (H(I + MXgAiX0)> MXIUS R;Us X, H (I4+MXFA;Xo)
i=0 i=j+1

d
%G(XO, A; + tUs, R;Us) (33)

where the first equality again uses the fact that Uy A;Us, = A;.

:UE

3. Putting everything together. Let us continue from (31). Plugging (32) and (33) into (31),

d )
S IAQR,. )

t=0
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d
—G(UsXo,Aj +tR;)

=2Ex, v [Tr ((1 — M)G(Us Xy, A;) T85! 7

L))

L))

)
L))

L))

where r; := 1 Tr (S!/2R;$1/2). In the above, (i) uses 1. (32) and (33), as well as the fact that
Ug XUy = %71 (ii) uses the fact that :G(Xo, A; +tC)|,_, is affine in C. To see this, one
can verify from the definition of G, e.g. using similar algebra as (33), that %G (Xo, A, +C) is affine
in C. Thus EU [GY()(()7 AJ‘ + tUgRJUE)} = G(Xo, Aj + tEU [UgRJUZ)}

DoEx, v [”ﬁ ((I — M) G(Xo,4;) 87! %G(XmAj + tU3, R;Us)

[ d
ZQEXO Tr ((I — M) G(Xo,Aj)T271 Ey %G(Xo,Aj + tUgRjUg)

d

(@) - G(Xo, A +tEy [Us R;Us])

=2Ex, |Tr ((I - M) G(Xp,A;) "5t

=2Ex, |Tr ((I — M)G(Xp,A;)"' 57! %G(XO, Aj+t-r87h

= S rAG )

B.3 Proof of Theorem 4

The proof of Theorem 4 is similar to that of Theorem 3, and with a similar setup. However to keep
the proof self-contained, we will restate the setup. Once again, we drop the factor of % which was
present in the original update (56). This is because the constant 1/n can be absorbed into A;’s. Doing
so does not change the theorem statement, but reduces notational clutter.

Let us consider the reformulation of the in-context loss f presented in Lemma 5. Specifically, let Z
be defined as
_ D 2@ 0 () pntD)

Zo = € RE+Dx(n+1),
0= [y 4@ . ) et

where y" 1) = (w,, 2" V). Let Z; denote the output of the (i—1)*" layer of the linear transformer

(as defined in (56), initialized at Z). For the rest of this proof, we will drop the bar, and simply denote
Z;by Z;.5 Let X; € R¥"*1 denote the first d rows of Z; and let Y; € R1*"*+1 denote the (d + 1)*"
row of Zj. Under the sparsity pattern enforced in (11), we verify that, for any i € {0,...,k},

X1 =X+ B X;MX," A; X,

Yigi =Y +YiMX A X =Y, H (I+MX]AX,). (34)

£=0
We adopt the shorthand A = {Ai}fzo and B = {Bi}fzo. Let S ¢ R2x(k+1)xdxd and (A, B) € S
if and only if for all ¢ € {0,...,k}, there exists scalars a;,b; € R such that A; = a; ¥~ and

B; = b;I. Throughout this proof, we will work with the following formulation of the in-context loss
from Lemma 5:

F(A,B) = E(xp ) [T (I = M)V Yira (T = M))] . 35)

(note that the only randomness in Zy comes from Xy as Yj is a deterministic function of Xg). The
theorem statement is equivalent to the following:

k

inf (A, B)|; S(AB)|F =
(A}g)63;||v&,f( B+ Vs F (A, B) [ =0 (36)

SThis use of Z; differs the original definition in (1). But we will not refer to the original definition anywhere
in this proof.
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where V 4, f denotes derivative wrt the Frobenius norm || 4;|| .

Our goal is to show that, if (4, B) € S, then for any (R, S) € R2*(k+1)xdxd there exists (R, S) €
S, such that, at ¢t = 0,

d ~ ~ d

ﬁf(A+tR,B+tS) < af(A+tR,B+tS). 37
In fact, we show that RZ = r;d, for r; = éTr (21/2RZ—21/2) and S’Z = s;1, for s; =
1Ty (£-1/28;51/2). This implies (36) via the following simple argument: Consider the "S-
constrained gradient flow": let A(t) : Rt — RE+Dxdxd and B(t) : RT — RE+H)xdxd pe
defined as

LA = —riD, ni(t) = US4, F(AW), B)S?)
SB(1) = —s(57, silt) == TH(S TV f(A(D), BE)SY),

fori =0,...,k. By (37), we verify that

k
%f(A(t),B(t)) <- (Z IV.a, F(A®), B#)) |7 + IIVBif(A(t)vB(t))II§> - B3
=0

We verify from its definition that f(A, B) > 0; if (36) does not hold then (38) will ensure unbounded
descent as t — oo, contradicting the fact that f(A, B) is lower-bounded. This concludes the proof.

Proof outline. The remainder of the proof will be devoted to showing (37), which we outline as
follows:

* In Step 1, we reduce the condition in (37) to a more easily verified layer-wise condition. Specifically,
we only need to verify (37) in one of the two cases: (I) when R;, S; are all zero except for R; for
some fixed j (see (40)), or (II) when R;, S; are all zero except for S; for some fixed j (see (39)).
We focus on the proof of (II), as the proof of (I) is almost identical. At the end of Step 1, we set
up some additional notation, and introduce an important matrix GG, which is roughly "a product of
attention layer matrices". In (41), we study the evolution of f(A, B(t)) when B(¢) moves in the
direction of S, as Xy is (roughly speaking) randomly transformed. This motivates the subsequent
analysis in Steps 2 and 3 below.

* In Step 2, we study how outputs of each layer (34) changes when X is randomly transformed.
There are two main results here: First we provide the expression for X in (42). Second, we provide
the expression for £ X;(B(t)) in (43).

* In Step 3, we use the results of Step 2 to to study G (see (47)) and %G(B(t)) (see (48)) under
random transformation of X.

The idea in (48) is that "randomly transforming X" has the same effect as "randomly transforming
S" (recall S is the perturbation to B).

« In Step 4, we use the results from Steps 2 and 3 to the expression of % f(A, B(t)) in (41). We
verify that S'in (37)is exactly the expected matrix after "randomly transforming S". This concludes
our proof of (II).

* In Step 5, we sketch the proof of (I), which is almost identical to Steps 2-4.

1. Reduction to layer-wise condition. To prove (37), it suffices to show the following simpler con-
dition: Let j € {0,...,k}. Let R;,S; € R4 be arbitrary matrices. For C € R4, let A(tC, 7)
denote the collection of matrices, where A(tC,j); = A; + tC, and for ¢ # j, A(tC,j); = A;.
Define B(tC, j) analogously. We show that for all j € {0,...,k} and all R;,S; € R%*?, there
exists R; = ;X" and S; = 5,271, such that, at t = 0,

& F(A(tRy.), B) < & f(A(R;. ), B) (9)

==Y

and (A BIS,.) < 5 T(A B, ) (40)

Qu

t
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We can verify that (37) is equivalent to (39)+(40) by noticing that for any (R, S) € R?*(k+1)xdxd_
att =0, £ f(A+1tR,B+1S) =Y. (& [(A(tR},)), B) + & [(A, B(tS;, 7))

We will first focus on proving (40) (the proof of (39) is similar, and we present it in Step 5 at the
end), for some index j that is arbitrarily chosen but fixed throughout. Notice that X; and Y; in (34)
are in fact functions of A, B and X,. For most of our subsequent discussion, A; (for all ) and B;
(for all ¢ # j) can be treated as constant matrices. We will however make the dependence on X and

B, explicit (as we consider the curve B; + t5), i.e. we use X;(X, C) (resp Y;(X, C)) to denote the
value of X; (resp Y;) from (34), with Xo = X, and B; = C.

By (35) and (34),
J(A, B(t5;,))
=E [Tr (I — M) Yii1(Xo, Bj +t5) Vi1 (Xo, B; +15;) (I — M))]
=K [Tr (I — M)G(Xy, Bj +tS; ) w, w*G(X07Bj +t5;) (I — M))]
=E[Tr (I — M) G(Xo, B; +tS;) TS G(Xo, Bj +tS;) (I — M))]
where G(X,C) := X [[r_, (I - MX;(X,C)T 4;X;(X,C)). The second equality follows from
plugging in (34).
For the rest of this proof, let U denote a uniformly randomly sampled orthogonal matrix. Let
Us. := X125 ~1/2, Using the fact that Xo < Us, Xo, we can verify

SI(ABS;..)

t=0

=~ Ex, [Tr (I — M) G(Xo, Bj +tS;) 'S7'G(Xo, B; + tS;) (I — M))]

d
d t=0
d

= %EXO,U [TI‘ ((I — M) G(UEX(),B]' + tSj)TE_lG(UzXo,Bj + tSj) (I — M))]

t=0

L (U X0, By +1S;) (I—M))]. @1)
t=0

=2Ex, v [T} ((I - M)G(UsXo,B;) 271 yr

2. X; and 2t Xi under random transformation of X. In this step, we prove that when X is trans-

formed by Ug, X, for ¢ > 1 are likewise transformed in a simple manner. The first goal of this step
is to show

Xi(UsXo, Bj) = Us X;(Xo, B;). (42)
We will prove this by induction. When ¢ = 0, this clearly holds by definition. Suppose that (42) holds
for some 7. Then
Xiy1(UsXo, Bj)
=X,(UsXo, B;) + B; X;(UsXo, B;) M X;(Us X0, B ) A, X;(Us Xy, Bj)
=UsX;(Xo, B;) + Us B; X;(Xo, Bj)M X;(Xo, Bj)" 4;X;(Xo, B;)
=Us X;41(Xo, Bj)
where the second equality uses the inductive hypothesis, and the fact that A; = a; X!, so that

UET A;Us = A;, and the fact that B; = b;I, from the definition of S and our assumption that
(A, B) € S. This concludes the proof of (42).

We now present the second main result of this step. Let Uy, L= 21/2yTx=1/2, 50 that it satisfies
UsUs' = Ug'Us = I. For all 4,

d d
Us, 1d X;(UsXo, Bj +1S;) = %Xi(XO,Bj +tU5'S;Us)| . (43)
t=0 t=0

To reduce notation, we will not write -|,_ explicitly in the subsequent proof. We first write down the
dynamics for the right-hand-side term of (43): From (34), for any ¢ < j, and for any ¢ > j + 1, and
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for any C' € R?*4,

d
aX@ (X(), Bj + tC) =0
d

7 Xi+1 (Xo, Bj +1tC) = CX; (Xo, B;) M X; (Xo, By)' A;X; (X0, B))
d d
7 Xir1 (Xo, Bj +1C) = —

d

X; (Xo, B; +tC)

d
+ BiX; (Xo, Bj)M (dt

T
Xi (AXV()7 Bj + tO)) AZX'L (XOa BJ)

d

+ BiX; (X0, B;)MX,; (X0, B;) " A; (dt

X, (Xo, B, —|—tC’)> (44)

We are now ready to prove (43) using induction. For the base case, we verify that for £ < j,

Us'! thg (UsXo, By + t5;) = 0 = L X, (Xo, B; + tUs; ' S;Us;) (see first equation in (44)). For
index j + 1, we verify that

. d
Uzldt i+1 (UsXo, Bj +15;)
=Uy'S,;Us X;(Xo, B)MX;(Us X0, B;) " A;X,;(Us Xy, B)
d _
=2 Xjn (Xo, B; +tUs; ' S;Us)) (45)
where we use two facts: 1. X;(UsXo, B;) = UsX;(Xo, B;) from (42), 2. A; = ;X1
so that UET A;Us = A;. We verify by comparison to the second equation in (44) that

Us'4X; (UsXo, Bj +t5;) = 0 = 4£X; (Xo,B;j +tUs'S;Us). These conclude the proof
of the base case.

Now suppose that (43) holds for some . We will now prove (43) holds for ¢ + 1. From (34),

Us'— X1 (UsXo, By +tS;)

dt
L, d
=Uy, 1@ (Xi (UsXo, Bj +15j))
. d
+U5' = (BiXi (UsXo, B + tS;) MX; (UsXo, B + tS;) " AiX; (UsXo, B; + tsj))
. d
=Us 1@ (Xi (UsXo, Bj +t5;))

_ d
+ UE 1Bi (thz (UzXo,Bj + tSj)) ((]2)(07 ) A X; (UEXO,BJ‘)

d
+ Us'B; X; (Us Xo, Bj)M (dt

-

X; (UsXo, B; + 1S, )) AiX; (UsXo, B))
d

+ Ungle (UEX07 B])MXZ (UEXO,BJ')TAZ' (thz (UEX(),BJ' + tS])>

(i), — d
=Uy dt

d
+ B; <U§1th,; (Us Xo, B; +tsj)) MX; (Xo,B;)" 4 X; (X0, B;)

X, (Us Xy, Bj +t5;)

1d

+ B; X; (X0, Bj) M (UE 7

-
X; (UsXo, Bj + tSj)) AiX; (Xo, By)

— B;iX; (X0, Bj)MX; (XO,B) A, (U 1 d

T X; (UsXo, Bj + tSj))
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ii) d
W2 X; (Xo, By + U5 5,Us)

+ B; (chXi (Xo, B; +tU§15jUg)> MX; (Xo, B ) A X; (Xo, By)

d

+ B;X; (X0, B;)M (dt

.
X; (Xo, Bj +tUy, SU2)> A X; (Xo, Bj)

d

+ BiX; (Xo, B)MX; (Xo, B;) " A; (dt

X; (XO,B +tUg s, U2)> (46)
In (i) above, we crucially use the following facts: 1. B; = b;1 so that Uy B, = B;Ug 12,

X;(UsXo, Bj) = UsXi(Xo, B;j) from (42),3. A; = ¢;X 7!, so that Uy A;Us = A;, 4. UsUy ' =
Us Uy = I (i) follows from our inductive hypothesis. The inductive proof is complete by
verifying that (46) exactly matches the third equation of (44) when C' = Uy, 1SUs.

3.G and -G under random transformation of X,. We now verify that G(UsXo,B;) =
UsG (XO, ;). This is a straightforward consequence of (42) as
G(Ux Xy, B))
k
=UsXo [ (I + MX;(UsXo, B;)" AiXi(Us X0, B;))
i=0
k
=UsXo [ (I + MXi(Xo,B;)" Ai Xi(Xo, B)))
=0
:UEG(X()v Bj)7 (47)

where the second equality uses (42), as well as the fact that UZT A;Us, = A;. Next, we will show that

d
Ug' 2 G(UsXo, B; +1S))

To see this, we can expand

= —G(XO,B +tU5'S;Us)

7 (48)

t=0 t=0

1 d
UE_ dtG(UEXO,Bj + tSj)

k
1 d
=Ug" i (UEXO H (I +MX;(UsXo,B; + tS) T A; Xi(Us Xo, B; + tSj))>
i=0
i—1

k
:XOZ <H (I+ MX@(UZX(), ) AZX (UEXOaBZ))>

i=0 \¢=0

(

Xo

(Xi(UsXo, Bj +t5;)" A;X;(Us X0, B;))

=

-

(I+MX5(U§]X0, ) AZX (UEX();B[))>

g

1d T d
Ust T Xi(UnXo, B; + 15 )) AiX(Xo, B;) + MX,(Xo, B))" A; (UzlcltXi(UgXo,Bj—ktSj)))

1

I
+

1
@)

II=
'M?T

S
I
=)

(I + MX(Xo,B)) AgXe(Xo,Be))>

S
Il

-

( (I +MXy(Xo,Bj) AKXZ(XOan))>
t=it1

k i—1
(ﬂ)X Z <H I+ MX,(Xo,B ) Ang(XO,Bg))>

£=0

1=0
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d

dt

d T
M <<thi(Xo,Bj +tU215jUE)> A; X;(Xo, Bj) +MXi(Xo,Bj) A, (

X;(Xo, B; + tUs SU2)>>

k
( 11 (+Mxi(X0,B )TAeXe(XOan))>
l=i+1

"“)iG(XO,B + U5 'S, Us)

In (i) above, we the following facts: 1. X;(UxXo, B;) = Us X;(Xo, B;) from (42),2. A; = a;X71,
so that Ug A;Us = A;,3. UsUy ' = Uy 'Us = 1. (m) follows from (43). (4ii) is by definition of
G.

4. Putting everything together. Let us now continue from (41). We can now plug (47) and (48) into
41):

d

t=0

d
—G(Us Xy, Bj +t5;)

=2Ex, v {Tr ((I ~ M)G(UsX,,B;) "2t i

L))

L 0=m)]
)
L))
L))

where s; := L Tr (£71/25;51/2). In the above, (i) uses 1. (47) and (48), as well as the fact that
Ug X7 Us = S71. (ii) uses the fact that :G(Xo, B; +tC)|,_, is affine in C. To see this, one
can verify from (44), using a simple induction argument, that %Xi (Xo, Bj +tC) is affine in C for
all ¢. We can then verify from the deﬁnition of G, e.g. using similar algebra as the proof of (48),
that £ G (X, B; + C) is affine in 4 X;(Xo, B; + tC). Thus Ey [G(Xo, Bj + tUs ' S;Us)] =
G(Xo, B; +tEy [UE S]Ug)] .

With this, we conclude our proof of (40).

@QEXO |:TI' ((I— M) G(X(),B )TE ! %G(Xo,Bj —l—tU{:lSJ‘Uz)

jG(XO,B +tU5'S;Us)

d
G(Xo,B;) 2™ -G (X0, B + tEy [Us'S;Us])

d

G(Xo, B;)' 2! p

=2Ex, _Tr <(I — M)G(Xo,B;) 'S 'Ey [
&l
( G(Xo, Bj + ts;I)

=2Ey, |Tr

d
= SIAB(ts,1,7)

t=0

5. Proof of (39). We will now prove (39) for fixed but arbitrary j, i.e. there is some r; such that

_ d
*f( (t TJ 17.7) B) dtf(A(tijj) )

The proof is very similar to the proof of (40) that we just saw, and we will essentially repeat the same
steps from Step 2-4 above.

Since we now consider perturbations to A instead of to B, we will need to redefine some
notation: let X;(X,C) (resp Y;(X,C)) to denote the value of X; (resp Y;) from (34), with
Xo = X, and A; = C (previously it was with B; = (). Let G(X,A; + C) =
XTIl (I + M (X;(X,A; + O)TA(C,§)i Xi(X, Aj + C))), where recall that A(C, j) := A; +
C,and A(C,j)s := Ay forall £ € {0..k}\ {j}.

We first verify that

Xi(UgXo,Aj) = UEXi(XQ,Aj)
G(UsXo, A;) = UsG(Xo, A;). (49)
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The proofs are identical to the proofs of (42) and (47) so we omit them. Next, we show that for all ¢,

d d
Us'—X;(UsXo, A; +tR;)| = —Xi(Xo, Aj +tUs R;Us)| . (50)
dt e dt =0
We establish the dynamics for the right-hand-side of (50):

d
X0 (X0, A; +1C) =0

d
7 Ki+1 (Xo, A5 +1C) = B; X (Xo, Aj) M X;; (Xo, A;)TCX; (Xo, Aj)
d d
%Xi—&-l (Xo, 45 +tC) = %Xi (Xo, 4; +1C)
d
+ B; (thi (Xo,A; + tC’)) MX; (Xow‘lj)T A X (Xo, 4y)

T
+ BzXz (Xo, A])M (thz ()(07 Aj + tC)) AzXz (Xo, AJ)

+ BiX; (X0, A))MX; (Xo, A;) " A, (;ltXi (Xo, Aj + tC’)) (51)

Similar to (45), we show that for ¢ < j,

d d
Uil@Xi (UsXo,A; +tR;) =0 = Uil%Xi (UsXo, Aj + tUsR;Us)
and
1 d
Us %XjJrl (UsXo, Aj +tR;)

:U{:lBjUEXj(Xo,Aj)MXj(UEXmA]‘) Aij(UEXmAj)

d
=X (Xo, Aj +tUs, R;Us) .

Finally, for the inductive step, we follow identical steps leading up to (46) to show that

d
U;%Xi+1 (UsXo, Aj + tR;)
d
:%Xi (Xo, A; + tUs, R;Us))

d
+ B,L (thz (Xo,Aj + tUgRJUz)) MXZ (XQ,Aj)T AlX,L (Xo,Aj)

.
d
+ B X; (X0, Aj)M (thi (Xo, Aj + tUgRjUE)> AiXi (X0, Aj)
d

+ B, X; (Xo, A )MX; (X0, A;) " A (thi (Xo, 4; + tUgRjUE)> (52)

The inductive proof is complete by verifying that (52) exactly matches the third equation of (51)
when C' = Uy, 1 SUs.. This concludes the proof of (50).

Next, we study the time derivative of G(Us Xy, A; + tR;) and show that

d d

TG (UnXo, 4; +tR;) =—G(Xo, 4; + tUs, R;Us). (53)

This proof differs significantly from that of (48) in a few places, so we provide the whole derivation
below. By chain-rule, we can write

Us?

d
G(UZX(), Aj + tRj) = =Y

U{;l@
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where

k
d
N = UX_JI% (UzXO H (I + MXi(UzXo,Aj + tRj)TAiXi(UEXo, Aj + tR]))>
=0

and

j—1
Q Z:U{:leX() <H (I + MXi(UEXo, Aj)TAZ‘Xi(UzX(), AJ))>
=0

-MX;(UsXo, A)TR; X;(Us Xy, Aj)
k
. ( 11 (I—|—MXZ»(UZX(LAj)TAiXi(UgXO,Aj))) :
i=j+1

We will separately simplify & and ©, and verify at the end that summing them recovers the right-
hand-side of (53). We begin with #, and the steps are almost identical to the proof of (48).

k
d
=Us' 2 (UzXOH (I +MX;(UsXo, Aj + tR;)" A; X;(Us Xo, A, +tRj))>
i=0
(I + MX,(UsXo, Aj)" A¢X;(Us Xo, Ae)))
=0 \/=0

Mo (Xi(UsXo, Aj +tR)T A;X;(Us Xo, A; + tR;))

k
[T (T +MX(UsXo, Aj)" A Xi(Us Xo, A@))

] ko /i-1
Dx, > (H (I+MX¢(Xo, Aj)T ArXo(Xo, A@))
=0

d T d
(Uglthi(UEXo,Aj +tRj)> AiXi(Xo, Aj) + MXi(Xo, A" A, <U§1thi(UgXo,Aj +tRj)>>

k
. ( H (I+ MX@(XOaAj)TAZXK(XOaAZ))>
¢
1—1
(H (I + MXZ(X()’AJ-)TAng(Xo,Ae)))
=0
d T T T d T
-M %Xi(Xo,Aj +tUZ RjUz) AzXl(Xo,AJ)—FMXz(Xo,AJ) Ai %Xi(Xo,Aj +tUE RjUE)
k
I (7+ MX(Xo, Aj)T AXe(Xo, Ae)))

(I + MX(Xo, Aj)T ArXo(Xo, Ae)))
=0 \/=0

7 (Xi(Xo, Aj +tUs, R;Us)" A Xi(Xo, Aj + tUs, R;Us))

k
H (I +MX(Xo,Aj)" A Xe(Xo, Ae))) (54)
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In () above, we the following facts: 1. X;(Us X, Bj) = Us. X;(Xo, B;) from (49),2. A; = a; 571,
so that Uy, A;Us, = A;, 3. UEU_ =Ug Uy =1. (u) follows from (50).

We will now simplify ©.
@

j—1
=Us 'Us X0 (H (I+MX;(UsXo, Aj)" 4 X;(Us Xo, A; )))
=0
- MX;(UsXo, A))"R; X;(Us X0, A;)

k
I (7 +MXi(UsXo, A))" AiXi(Us X0, A;))
i=j+1

j—1
Dx, (H (I +MX;(Xo, Aj)" A X:(Xo, Aj ))) MX;(Xo,A;) Us R;Us X;(X0, Aj)
=0
k
i=j+1

where (i) uses the fact that X;(Us Xy, B;) = UsX;(Xo, B;) from (49) and the fact that A, =
a; 21

By expanding 2 G(Xy, A; + tUyl R;Us), we verify that

%G(XO,AJ-—HUETRJ-UZ):(54)+(55) a+O=Ug 1d G(UsXo, A, +tR;)),

this concludes the proof of (53).

The remainder of the proof is similar to what was done in (41) in Step 4:

d .

t=0

d
ZQEXO,U |:TI‘ <(I — M) G(U2X07Aj)—r271 %G(UX]X(),AJ' +tRj)

L))
L))
L))
L))

d
—G(Xo, Aj + Uy, R;Us)

@y Ex,.v [Tr ((I — M) G(Xp,A;) T2t 7

Dogy, [Tr ((1— M) G(Xo, A;) 5! %G(Xo,Aj +tEy [Us R;Us))

dtG(XO,A +t-r; 87

=2Fx, [Tr ((1 — M)G(Xo,A;)' 27! y

:ff( (t-r;%71 ), B)

where 7; 1= 1 Tr (£1/2R;51/2). In the above, (i) uses 1. (49) and (53), as well as the fact that
Uy, ~1Us = S~ (ii) uses the fact that 4 G(X,, A + tC)‘ is affine in C. To see this, one

can verify using a simple induction argument, that X;(Xo, A + tC) is affine in C for all i.
We can then verify from the deﬁnition of G, e.g. using similar algebra as the proof of (53), that
4 G(Xo,A; + C) is affine in £ X;(Xo, A; + tC) and C. Thus Ey [G(Xo, 4; + tUy, R;Us)] =
G(Xo,Aj +tEy [Us R;Us]).

This concludes the proof of (39), and hence of the whole theorem.
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B.4 Equivalence under permutation

Lemma 4. Consider the same setup as Theorem 3. Let A = {Ai}fzo, with A; = ;X1 Let

f(4) w({@[‘ﬁi 8}73{%0” (1)]}_>

Leti,j € {0,...,k} be any two arbitrary indices, and let A; = Aj, [lj = A;, and let Ay = Ay for
all €{0,....k}\{i,5}. Then f(A) = f(A)

Proof. Following the same setup leading up to (26) in the proof of Theorem 3, we verify that the
in-context loss is

F(A) =E[Tr (I - M)G(Xo, A) TS G(Xo, A) (I — M))]

where G(X(), A) = X(] HIZ:O (I + MXgAgX(])
Consider any fixed index ¢. We will show that

(I+MXTAXo) (I + MXT A1 Xo) = (I+ MXE Ari1Xo) (I+MXTAXo) .

The lemma can then be proven by repeatedly applying the above, so that indices of A; and A; are
swapped.

To prove the above equality,

(I+MX§ AiXo) (I+MXg Apy1Xo)
=TI+ MXFAXo+MXT Ay 1 X0+ MXETAXoMXT Api1 Xo
=T+ MXFAXo+MXT A1 Xo + MXT a2 ' XoM X T ar 1271 X
=T+ MXTAXo+MXT A1 X0+ MXTap 1 X' XoMXT a2 X,
= (I +MX{ A1 Xo) (I +MXTArXo).

This concludes the proof. Notice that we crucially used the fact that Ay and Ay are the same matrix
up to scaling. O

C Auxiliary Lemmas

C.1 Proof of Lemma 1 (Equivalence to Preconditioned Gradient Descent)

Consider fixed samples ("), ..., z(") and fixed w,. Let P = {Pi}fzo Q= {Qi}fzo denote
fixed weights. Let Z; evolve as described in (4). Let X; denote the first d rows of Z; (under (8),

X; = X, for all I) and let Y; denote the (d + 1) row of Z;. Let g(z,y,k) : R? x R x Z — R be
a function defined as follows: let 2"+ = x and let yJ ™' = y, then g(z, y, k) := y;'"". Note that
yz+1 = [Yk]n+1'

We verify that, under (8), the formula for updating y,(CnH) is given by

1
Yii1 = Y5 — EYk.MXOTAkXo.
. . I 0 . .
where M is a mask given by 0 ol We can verify the following facts

1. g(z,y,k) = g(x,0,k) + y. To see this, notice first that for all ¢ € {1,...,n},

i H s (T NG
yl(cj-l = yl(c) — ﬁ Zl‘( ) Akx(j)yéj)

Jj=1
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In other words, y,(C ") does not depend on yt( ") for any t. Next, for y,

i = y,i"*”—ng("*” APy,
j=1

(1) itself,

which depends on yZ“ only additively. We can verify under a simple induction that
9@,y k+1) —y =g,y k) —y.

2. g(z,0, k) is linear in z. To see this, notice first that for j # n + 1, y(J)

is does not depend

on xth) for all ¢, j, k. Consequently, the update formula for y,(g:l) depends only linearly
on z(™+1) and y("+ ). Finally, y(()"+1) = 0 is linear in z, so the conclusion follows by

induction.

With these two facts in mind, we verify that for each k, there exists a 0y, € R?, such that

9(z,y,k) = g(2,0,k) +y = (O, z) +y
for all z, y. It follows from definition that g(z,y,0) = y, so that (6, z) = g(x,y,0) —y = 0, so
that 00 =0.

We now turn our attention to the third crucial fact: for all 7,
9@y k) =y = <9k> x(i)> +y®

To see this, suppose that we let ("1 := x(i) for some i € 1,...,n. Then

g =y - Zx( Ay

n n n T i j
yz(w:l) ylg +1) ﬁz$( +1) Akx(j)y;?),

Jj=1

(@) (n+1) (n+1)

thus yp. 0 =y if y,(C =1y, ,and the induction proof is completed by noting that y( )=

yénH) by definition. Let X € R*" be the matrix whose columns are (1), ... (™) leaving out
("t Let Y}, € R™™ denote the vector of y,(cl), e ,y,gn) Then it follows that
Yk == YO + ek‘,

Using the above fact, the update formula for y,(c ") can be written as

D =)~ L (4T )

= <9k+1,9€(n+1)> = <9k-, 1:("+1)> — % <AkX (X706, + Yo) ,x(n+1)>

= (0, x™) = L (4 X (X (04 4+ w,)) 20D
(Bst0) =

Since the choice of 2("*1) is arbitrary, we get the more general update formula
Opir = O — %AkXXT (O +w,) .
We can treat Ay, as a preconditioner. Let f(6) :== ;- (6 + w,)" XXT(0 + w,), then
Opt1 = 0 — %Aka(G).
Finally, let w%d := —0). We verify that f(—w) = Rw*( ), so that
Wl = uff — SAT Ry, ()

We also verify that for any ("1 the prediction of y( " s

g (x<n+1>7y<n+1>7 k) =yt <9, x("+1)> =yt <wgd,x<”+1>> _

This concludes the proof.
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C.2 Reformulating the in-context loss

In this section, we will develop a re-formulation in-context loss, defined in (5), in a more convenient
form (see Lemma 5).

For the entirety of this section, we assume that the transformer parameters {P;, Qi}f:o are of the
form defined in (11), which we reproduce below for ease of reference:

B, 0 |4, 0
R:[O 1:|7 Qi—|:0 0:|
Recall the update dynamics in (4), which we reproduce below:
1
Zis1 = Zi + ﬁPZiMZiT QZ;, (56)

where M is a mask matrix given by M := [I"OX” 8} . Let X}, € R4X"*1 denote the first d rows

of Z;, and let Y3, € RY"*! denote the (d + 1)”‘ (last) row of Z. Then the dynamics in (56) is
equivalent to

1
Xig =X, + EBiXiMXiT A X;

1
Vi1 =Y+ EYiMXiT AiX;. (57)
We present below an equivalent form for the in-context loss from (5):
Lemma 5. Let p, and p,, denote distributions over R%. Let x(V) ... z(+1) i Pz and Wy ~ Py
Let Zy € RTIX" L be gs defined in (1):
2D 2@ 0 p() (e

Zo = } c R(d+1)><(n+1).

y y@ gy 0
Let 7, denote the output of the (k — 1) layer of the linear transformer (as defined in (56), initialized
at Zy). Let f ({PZ-, Qi}fzo) denote the in-context loss defined in (5), i.e.
2
F{PLQiYy) =E(z 0, [([Zk](d+1),(n+1) + wjx("ﬂ)) } (58)

Let Zg be defined as

2D 2@ . () pntD)
y @ ) g (et )
where y("t1) = <w*,m("+1)>. Let Zy, denote the output of the (k — 1) layer of the linear
transformer (as defined in (56), initialized at Z). Assume { P;, Qi}f:o be of the form in (11). Then
the loss in (5) has the equivalent form

f({Ai, B}izo) = f ({PsQi}izo) = Ezy ) {Tr ((I M)V Vit (I — M))} ;

where Y1 € RV s the (d + 1) row of Z..

Zoy = } € R+ x(n+1)

Before proving Lemma 5, we first establish an intermediate result (Lemma 6 below). To facilitate
discussion, let us define a function F'x ({Ai, Bi}fzo , Xo, Y0> and Fy ({Ai7 Bi}fzo , Xo, YO) to
be the outputs, after &k layers of linear transformers respectively. Le.

FX ({A“ B7}f:0 aX07YO) == Xk—',—l

Iy ({Ai,Bi}fzo 7X07Y0) = Yiy1,
as defined in (57), given initialization X, Yj.

We now prove a useful lemma showing that Y], , = y(™*+1) influences X;,Y; in a very simple
manner:

35



Lemma 6. Let X;,Y; follow the dynamics in (57). Then
1. [X] is are independent of [Yy)

n+1*
2. For j #n+ 1, [Yi]; is independent of [Yo],, ;.
3. [Yil,,, depends additively on [Yo],, . ;.
In other words, for C := [0,0,0,...,,0,c] € RIx(m+1),

( Aini}?:() , X0, Yo + C) =Fx ({Ai,Bz'}f:O 7X0,Yo)
(

2+3:Fy ({4, B; }1 0>Xo0, Yo + C) =Fy ({Aini}f:mXo,Yo) +C

Proof of Lemma 6. The first and second items follows directly from observing that the dynamics for

X; and Y; in (57) do not involve [Yi]nﬂ, due to the effect of M.

The third item again uses the fact that [Y;,; — Y;],, ., does not depend on [Y]] O

n+1-°

We are now ready to prove Lemma 5

Proof of Lemma 5. Let Zy, Zy, 70,77k be as defined in the lemma statement. Let X and Y,
denote first d rows and last row of Zj. Then by Lemma 6, Xy4; = Xg41 and Y41 = Y1 +
0 0 -+ 0 (wa™D)]. Therefore, (58) is equivalent to

E(Z) wy) {([7k+1](d+1) (n+1))2}

IE(Zo,w*) {( Yk+1 (”+1)) ]
o [l 3072

EZ, ) [T (I MY p o Vi (I - M))}.
This concludes the proof. O

D Additional experimental results

In this section, we present a few addition experimental results. We first present in Figure 5 a
visualization of learned weights Ag, A1, As for the setting of Theorem 4. One can see that the weight
pattern matches the stationary point analyzed in Theorem 4; hence, combining Figure 4 and Figure 5,
we corroborate our results from Theorem 4. Interestingly, it appears that the transformer implements
a tiny gradient step using X (as Ay is small), and a large gradient step using X (as A, is large). We
believe that this is due to X5 being better-conditioned than X, due to the effects of By, B;.

(a) Visualization of /2 4,X'/2 (b) Visualization of £'/2 A, /2 (¢) Visualization of X'/2 4,31 /2

Figure 5: Visualization of learned weights for the setting of Theorem 4. One can see that the weight
pattern matches the stationary point analyzed in Theorem 4.
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We next present some additional experiments that investigates the properties of the learned predictors
of various algorithms. First, we plot the test losses against the number of examples provided
in the prompt (“the number of ICL examples”). We compare four different algorithms: (i) the
predictor learned by a three-layered of linear transformer, (ii) three steps of GD, (iii) three steps of
preconditioned GD, and (iv) the ordinary least-squared solution (OLS). For GD and preconditioned
GD, the optimal stepsizes are found by gridsearch. For preconditioned GD, preconditioner is fixed to
be ¥~ for comparison. In all cases, the dimension d = 5, and for each N, the linear Transformer is
trained using Adam. The result is presented in Figure 6.

—— 3-Step GD

—— 3-Step Preconditioned GD
—— 3-Layer Linear Transformer
— OLS

2 6 10 14 18 22
Number of ICL Examples
Figure 6: Test loss comparison between (i) the predictor learned by a three-layered of linear trans-

former, (ii) three steps of GD, (iii) three steps of preconditioned GD, and (iv) the ordinary least-
squared solution (OLS).

Lastly, in Figure 7, we plot the test losses against the number of layer L (or the number of steps
in the case of gradient-based algorithms). For L = 1,2, 3,4, we compare between (i) the predictor
learned by L-linear transformer and (i) L-steps of GD, (ii) L-steps of preconditioned GD. Again, the
optimal stepsize is found by gridsearch, and for preconditioned GD, the preconditioner is fixed to be
>~1. In all cases, the dimension d = 5, and context length N = 20. The linear transformer is trained
with Adam.

-

log(Loss)
>

— GD
-84 — Preconditioned GD
—— Linear Transformer

1 2 3 4
Number of Layers/Steps

Figure 7: Test loss comparison between (i) the predictor learned by a L-layered linear transformer
and (i) L-steps of GD, (ii) L-steps of preconditioned GD, for L = 1,2, 3, 4.
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