On the impact of activation and normalization in
obtaining isometric embeddings at initialization

Amir Joudaki Hadi Daneshmand Francis Bach
ETH Zurich MIT/LIDS-FODSI INRIA-ENS-PSL Paris
amir.joudaki@inf.ethz.ch dhadi@mit.edu francis.bach@inria.fr
Abstract

In this paper, we explore the structure of the penultimate Gram matrix in deep neural
networks, which contains the pairwise inner products of outputs corresponding
to a batch of inputs. In several architectures it has been observed that this Gram
matrix becomes degenerate with depth at initialization, which dramatically slows
training. Normalization layers, such as batch or layer normalization, play a pivotal
role in preventing the rank collapse issue. Despite promising advances, the existing
theoretical results do not extend to layer normalization, which is widely used
in transformers, and can not quantitatively characterize the role of non-linear
activations. To bridge this gap, we prove that layer normalization, in conjunction
with activation layers, biases the Gram matrix of a multilayer perceptron towards
the identity matrix at an exponential rate with depth at initialization. We quantify
this rate using the Hermite expansion of the activation function.

1 Introduction

Optimization of deep neural networks is a challenging non-convex problem. Various components and
optimization techniques have been developed over the last decades to make optimization feasible.
Components such as activation functions [Hendrycks and Gimpel, 2016], normalization layers [loffe
and Szegedy, 2015], and residual connections [He et al., 2016] have significantly influenced net-
work training and have thus become the building blocks of neural networks. The practical success
of these components has inspired extensive theoretical studies on the intricate role of weight ini-
tialization [Saxe et al., 2013, Daneshmand et al., 2021], normalization [Yang et al., 2019, Kohler
et al., 2019, Daneshmand et al., 2021, 2023, Joudaki et al., 2023] and activation layers [Pennington
et al., 2018, Joudaki et al., 2023], on neural network training. For example, the training of large
language models hinges on carefully utilizing residual connections, normalization layers, and tailored
activations [Vaswani et al., 2017, Radford et al., 2018]. Noci et al. [2022a] highlight that the absence
or improper utilization of these components can substantially slow training.

To delve deeper into the influence of normalization and activation layers on training, one line of
research has studied neural networks at initialization [Pennington et al., 2018, de G. Matthews
et al., 2018, Jacot et al., 2018, Yang et al., 2019, Li et al., 2022]. Several studies have focused on
the Gram matrix, which captures the inner products of intermediate representations for a batch of
inputs, revealing that Gram matrices become degenerate as the network depth increases [Saxe et al.,
2013, Daneshmand et al., 2021, Joudaki et al., 2023]. These issue of degeneracy or rank deficiency
has been observed in multilayer perceptrons (MLPs) [Saxe et al., 2013, Daneshmand et al., 2020],
convolutional networks [Bjorck et al., 2018], and transformers [Dong et al., 2021], posing challenges
to the training process [Noci et al., 2022b, Pennington et al., 2018, Xiao et al., 2018]. Research
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indicates that normalization layers can act effectively to circumvent such Gram degeneracy, thereby
improving training [Yang et al., 2019, Daneshmand et al., 2020, 2021, Bjorck et al., 2018].

Analyses based of neural networks in the mean-field, i.e., the infinite width regime, have revealed
profound insights about initialization by characterizing the local solutions to the Gram dynamics Yang
et al. [2019], Pennington et al. [2018]. However, these results do not guarantee global convergence
towards the mean-field solutions or depend on technical assumptions that are challenging to verify
numerically [Daneshmand et al., 2021, 2020, Joudaki et al., 2023]. Furthermore, all these theories
primarily pertain to the network at initialization, where parameters are typically random and do not
necessarily hold during or after the training. In this work, our objective is to bridge these existing

gaps.

Contributions. Building upon existing literature that elucidates the spectral properties of the Gram
matrix, we introduce the concept of isometry, which quantifies the similarity of the Gram matrix
to the identity. Our initial theoretical finding demonstrates that isometry does not decrease under
conditions of (batch and layer) normalization. This finding illuminates the bias of normalization
layers towards isometry at various stages, namely initialization, during, and post-training.

We subsequently extend our analysis to explore the impact of non-linear activations on the isometry
of intermediate representations in MLPs. Within the mean-field regime, we establish that non-linear
activations incline the intermediate representations towards isometry at an exponential rate in depth.
Our principal contribution is quantifying this rate by utilizing the Hermit polynomial expansion of
activations. Intriguingly, our empirical experiments unveil a correlation between this rate and the
convergence of stochastic gradient descent in MLPs equipped with layer normalization and standard
activations used in practice.

2 Related works

A line of research investigates the interplay between signal propagation of the network and training.
The existing literature postulates that in order to ensure fast training [Schoenholz et al., 2017, Poole
et al., 2016], the network output must be sensitive to input changes, quantified by the spectrum of
input-input Jacobean. This hypothesis is employed by Xiao et al. [2018] to train a 10,000-layer
CNN using proper weight initialization without stabilizing components such as skip connection or
normalization layers. He et al. [2023] demonstrate the critical role of the Jacobean spectra in large
language models. In this paper, we analyze the spectrum of Gram matrices that connect to the spectral
properties of input-output Jacobean.

Mean-field theory has been extensively used to characterize Gram matrix dynamics in the limit of
infinite width. In this setting, the Gram matrix is a fixed point of a recurrence equation that depends
on the network architecture [Schoenholz et al., 2017, Yang et al., 2019, Pennington et al., 2018].
This fixed-point analysis can provide insights into the structure and spectral properties of Gram
matrices in deep neural networks, thereby shedding light on the degeneracy of Gram matrices in
networks [Schoenholz et al., 2017, Yang et al., 2019]. However, often fixed-points are not unique, and
they can be degenerate or non-degenerate Yang et al. [2019]. In this paper, we establish a convergence
rate to a non-degenerate fixed-point for a family of MLPs.

Batch normalization [Ioffe and Szegedy, 2015] and layer normalization [Ba et al., 2016] layers are
widely used in deep neural networks (DNNs) to improve training. Batch normalization ensures that
each feature within a layer across a mini-batch has zero mean and unit variance. In contrast, layer
normalization centers and divides the output of each layer by its standard deviation. There have
been numerous theoretical studies on the effects of batch normalization due to its popularity Yang
et al. [2019], Daneshmand et al. [2021], Joudaki et al. [2023]. While layer normalization has
been the subject of increasing interest due to its application in transformers Xiong et al. [2020],
there are relatively fewer studies on its theoretical underpinnings. While we primarily focus on
layer normalization, we define and characterize a property that is shared between batch and layer
normalization.

A broad spectrum of activation functions such as ReL.U [Fukushima, 1969], GeLU [Hendrycks and
Gimpel, 2016], SeLU [Klambauer et al., 2017], and Hyperbolic Tangent, and Sigmoid, are used in
DNNs. These functions have various computational and statistical consequences in deep learning.
Despite this diversity, only the design of SeL.U activation is theoretically motivated [Klambauer et al.,



2017], while a broader theoretical understanding of activations remains elusive. To address this issue,
we develop a theoretical framework to characterize the influence of a broad range of activations on
intermediate representations in DNNss.

3 Preliminaries

Notation. Let (z,y) be the inner product of vectors x and y, and |z|*> = (x,z) the squared
Euclidean norm of z. For a matrix X, we write X;. and X.; for the ¢-th row and column of X,
respectively. We use W ~ N (u, 0%)™*™ to indicate that W is an m x n Gaussian matrix with i.i.d.
elements from N (1, 02). We denote by 0,, the zero vector of size n. Given vector x € R™, T denotes
the arithmetic mean of % S, ;. Lastly, I, is the identity matrix of size n.

Normalization layers. Let LN : R? — R¢ and BN : R4*" — R4X"_denote batch normalization
and layer normalization respectively. Table 1 summarizes the definition of normalization layers. In
our notations, we separate centering from normalization in layer (batch) normalization. Similarly,
we split batch normalization into centering and normalization steps in our definitions. This notation
allows us to decouple the effect of normalization from the centering. However, we will not depart
from the standard MLP architectures as we include centering in the network architecture defined
below.

Width deN Batch size neN
Depth LeN Input r € R?
Input batch X € R¥xn Gaussian weights | W', ... W% ~ N(0,1)4x4
Activation c:R—-R Centering r—2
— x J— Xij
Layer Norm | LN(z) = T Batch Norm BN(X);; S

Table 1: Building blocks we consider in this work.

MLP setup. The subject of our analysis is an MLP with constant width d across the layers and L
layers, which takes input = € R and maps it to output z” € R?, with hidden representations as
41 _ 1 7 _ .. —
7 = ==LN(hy — h¢), he=c(W*"), £=0,...,L—1
{ 0._ 1\/5 ( Z* ? ! ( ) . (1)
a = N(z —T), input.

While the original ordering of layer normalization and activation is different [Ba et al., 2016], Xiong
et al. [2020] show that the above ordering is more effective for large language models.

Gram matrices and isometry. Given n data points {z;};<, € R¢, the Gram matrix G* of the

feature vectors ¥, ..., x4 € R? at layer ¢ of the network is defined as
Gl = [(mf,w?}} , (=01,... L @)
B,j<n

We define the notion of isometry to measure how much G* is close to a scaling factor of the identity
matrix.

Definition 1. Let G be an n X n positive semi-definite matrix. We define the isometry Z(G) of G as
the ratio of its normalized determinant to its normalized trace:

_ det(G)1/m

70) = T 3)

Z(G") is a scale-invariant quantity measuring the parallelepiped volume spanned by the feature vectors
x%, ..., 2% For example, consider two points on a plane 1, 75 € R? with lengths a = |z1|,b = 2|
and angle § = /(x1, ). The ratio is given by absin(6)/(a? + b?), which is maximized when a = b
and 0 = 7/2. This relationship between volume and isometry is visually clearn = 2 and n = 3
feature vectors in Figure 1.

Remarkably, Z(M) has the following properties (see Lemma A.1 for formal statements and proofs):
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Figure 1: A geometric interpretation of isometry: higher volume, in the second row, corresponds to
higher value for isometry.

(i) Scaling-invariant: For all constants ¢ > 0, we have Z(G) = Z(cG).

(ii) Range: T € [0, 1] where the boundaries 0 and 1 are achieved for to degenerate and identity
matrices respectively.

We also define the isometry gap as negative logarithm of isometry —log Z(M ). Based on these
properties of isometry, isometry gap lies between 0 and co, with 0 and oo indicating the perfect
isometry (identity matrix) and degenerate matrices respectively. Isometry allows us to establish the
inherent bias of normalization layers in the following section.

4 Isometry bias of normalization

This section is devoted to discussing the remarkable property of isometry in the context of normaliza-
tion. We present a theorem that formalizes this property, followed by its geometric interpretation and
implications.

Theorem 1. Given n samples {x;}i<, C R%\ {04}, their projection onto the unit sphere T; :=
x;/||x; ||, and their respective Gram matrices G and G, the isometry obeys

LN, )2
7 (G) > 7(G) (1 + "(;Za)) : €5
where a; := ||x;||, and @ := 1 3" " a;.

Geometric Interpretation. Isometry can be considered a measurement of the “volume” of the
parallelepiped formed by sample vectors, made scale and dimension-independent. The normalization
process effectively equalizes the edge lengths of this parallelepiped, enhancing the overall "volume"
or isometry, provided there is a variance in the sample norms. Thus, projection onto the unit sphere
x; — x;/||z;|| makes the edge lengths of the parallelepiped equal while leaving the angles between
its edges intact. From this geometric perspective, Theorem 1 implies that among parallelepiped with
similar angles between their edges and fixed total squared edge lengths, the one with equal edge
lengths has the highest volume (and thereby isometry).

The proof of Theorem 1 is intuitive for the special case of vectors forming a cube, where max volume
is realized when all edge lengths are equal. This fact that maximum volume is achieved when edge
lengths are equal can be deduced from the arithmetic vs geometric mean inequality. Strikingly, the
proof for the general case is nearly as simple as this special case. The high-level intuition behind
the proof is that the determinant allows us to decouple the role of angles and edge lengths in volume
formulation. This fact is evident for n = 2 in Figure 1. Since normalization does not modify the
angles between edges, the remainder of the proof falls back onto the case where edges form a cube.



Proof of Theorem 1. Define D := diag(ay, . .., ay). Observe that G = DGD, implying det(G) =
det(G) det(D)?. Because Z;’s have norm 1, diagonals of Gram after normalization are constant
Gi; = 1, implying Ltr(G) = 1. We have
I(G)  Ltr(G) det(G)V/n
T(G) ~ Lu(@) det(G) /"
Cisra (@Y
L det(@)V(IT} ad)V/
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Theorem 1 further shows a subtle property of normalization: as long as there is some variation in
the sample norms, i.e., ||z;||’s are not all equal, the post-normalization Gram has strictly higher
isometry than the pre-normalization Gram matrix. It further quantifies the improvement in isometry
as a function of variation of norms. Intuitively, terms @ and % >-7(a; — a)* can be interpreted as the
average and variance of sample norms ay, . . ., a,,. Thus, a higher variation in the norms a;’s leads to
a larger increase in isometry after normalization.

4.1 Implications for layer (and batch) normalization

Theorem 1 reveals insights into the biases introduced by layer and batch normalization in neural
networks, particularly highlighting the improvement in isometry not just limited to initialization but
also persistent through the training process.

Corollary 2. Consider n vectors before and after layer-normalization {x;};<, C R?\ {04}
and {Z;}i<pn,T; = LN(z;). Define their respective Gram matrices G = [(x;, ;)i j<n, and
G = [(Z;,Zj)]i j<n. We have:

S (ai — a)?)

1 n
~ 1 1
> n .= . a = .
T (G) > I(G) <1 + - where a; = ||x;||,a - E a;

What makes the above result distinct from related studies [Daneshmand et al., 2021, 2020, Yang
et al., 2019] is that the increase in isometry is not limited to random initialization. Thus, layer
normalization increases the isometry even during and after training. This calls for future research on
the role of this inherent bias in enhanced optimization and generalization performance with batch
normalization [loffe and Szegedy, 2015, Yang et al., 2019, Lyu et al., 2022, Kohler et al., 2019].

Despite the seemingly vast differences between layer normalization and batch normalization [Lubana
et al., 2021], the following corollary shows a link between these two different normalization tech-
niques.

Corollary 3. Given n samples in a mini-batch before X & R¥*" and after normalization X =
BN(X) and define covariance matrices C := XX " and C := X X T. We have:

1 \~d —\2 d
. Ls~dig 1
T (C) >Z(C) (1 + W) , where a; := || X;.||,a := - Zai.
i=1

a

Gram matrices of networks with batch normalization have been the subject of many previous studies
at network initialization: it has been postulated that BN prevents rank collapse issue [Daneshmand
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Figure 2: Validation of Corollary 2 Isometry (y-axis) vs different layer of an MLP: Normalization layers
(shaded blue) across all layers and configurations maintain or increase isometry both before (left) and after
(right) training, validating Corollary 2. Hyper parameters: activation: tanh, depth: 10, width: 1000, batch-size:
512, training SGD on training set of CIFAR10. with [r = 0.01.. Layer names are encoded as type-index, where
type can be fc: fully connected, norm: LayerNorm, and act: activation.

et al., 2020] and that it orthogonalizes the representations [Daneshmand et al., 2021], and that it
imposes isometry [Yang et al., 2019]. It is straightforward to verify that orthogonal matrices have
the maximum isometry. Thus, the increase in isometry links to the orthogonalization of hidden
representation characterized by Daneshmand et al. [2021]. While all previous results heavily rely on
Gaussian random weights to establish this inherent bias, Corollary 3 is not limited to random weights.

4.2 Empirical validation of Corollary 2 in an MLP setup

We can validate Corollary 2 by tracking the isometry of various layers of an MLP with layer
normalization. Figure 2 shows the isometry of intermediate representations in an MLP with layer
normalization and hyperbolic tangent on CIFAR10 dataset. Shades in the figure mark layers illustrate
that the isometry of the Gram matrix is non-decreasing after each layer normalization layer. We can
see in Figure 2 that both before (left) and after training (right), the normalization layers maintain
or improve isometry. To highlight the fact that the claims of Corollary 2 holds at all times and not
only for initialization, Figure 2 tracks isometry of various layers both at initialization (left) and after
training (right). This can be verified by the fact that isometry in the normalization layers (shaded
blue) is either stable or increased, which validates Corollary 2.

5 Isometry bias of non-linear activation functions

So far, our focus was individual normalization layers. In this section, we extend our analysis to all
layers when weights are Gaussian. Inspired by the isometry bias of normalization, we analyze how
other components of neural networks influence the isometry of the Gram matrices, denoted by Z(G*)
with a specific focus on non-linear activations.

5.1 Hermite expansion of activation functions

Analyzing Gram matrix dynamics for non-linear activation is challenging since even small modifi-
cations in the scale or shape of activations can lead to significant changes in the representations. A
powerful tool to analyze activations is to express activations in the Hermite polynomial basis. Inspired
by previous successful applications of Hermite polynomials in neural network analysis [Daniely et al.,
2016, Yang, 2019], we explore their impact on the isometry of activation functions.

Definition 2. Hermite polynomial of degree k, denoted by Hey (), is defined as

.2 dF 2
= (k)2 (=1)k 5 -
Hex(x) = (k) (~1)te 0

zZ
2

e

All square-integrable function o with respect to the Gaussian kernel, which obeys
ffcoo a(:c)Qe*rz/ 2dx < oo, can be expressed as a linear combination of Hermite polynomials



as o(x) = Y, cx Hey(x) with (see section A for more details):

ck = Egono,)[o(2) Hep ().

The subsequent section will discuss how to leverage the Hermite expression of the activation to
analyze the dynamics of Gram matrix isometry.

5.2 Non-linear activations bias Gram dynamics towards isometry

In this section, we analyze how Z(G*) changes with £. We use the mean-field dynamic of Gram
matrices subject of previous studies [Yang et al., 2019, Schoenholz et al., 2017, Poole et al., 2016].
The mean-field dynamics of Gram matrices is given by

G = Epenioan @0 (M)eem)T], where [6(a): = (a; — Ea;)/v/Vara;.  (10)

This equation gives the expected Gram matrix for layer ¢ + 1, based on the Gram matrix G, from the
previous layer, and ¢ is mean-field regime counterpart for layer normalization operator (see section A
for more details). The sequence G approximates the dynamics of G, and this correspondence
becomes exact for infinitely wide MLPs. In the rest of this section, we analyze the above dynamical
system. Our theory relies on the notion of isometry strength of the activation function, defined next.

Definition 3 (Isometry strength). Given activation o with Hermite expansion {cy} k>0, define its
isometry strength 3, as:

2
1

By =2 — =t (11)

leil Ci

We can readily check from the definition that isometry strength (3, has the following basic properties:
(i) it ranges between 1 and 2, and (ii) it is 1 if and only if the activation is a linear function. Table 2
presents the isometry strength of certain activations in closed form. With this definition, we can finally
analyze Gram matrix mean-field dynamics. Interestingly, the negative log of isometry — log Z(G%)
can serve as a Lyapunov function for the above dynamics. The following theorem proves non-linear
activations also impose isometry similar to normalization layers.

Theorem 4. Let o be an activation function with a Hermite expansion and a non-linearity strength 3,
(see equation (11)). Given non-degenerate input Gram matrix G2, then for sufficiently large layer
02 B (—nlog Z(GY) + log(4n)), we have

—log Z(GY) < exp(—Llog B, — nlog Z(GY) + log(4n)). (12)

Note that the condition on input being non-degenerate is essential to reach isometry through depth.
For example, if the input batch contains a duplicated sample, their corresponding representations
across all layers will remain duplicated, implying that all G%’s will be degenerate.

Theorem 4 reveals the importance of non-linear Hermite coefficients (cg, k > 2) in activation function
to ensure 3, > 1 and obtain isometry in depth. This connection between 3, and isometry is the
rationale for referring to 5, as the isometry strength. This constant can be computed in closed
form for various activations, as shown in Table 2, and for all other activations, it can be computed
numerically by sampling.

Hei(x) Heq(x) Sine Exponential ~ Step ReLU
o x 22 —1 sin(z) exp(zr —2) 1z >0] max(z,0)
ﬁa 1 2 2— eZQil 2 - eil 2— % g;:g

Table 2: Isometry strength 3, (see Definition 3) for various activation functions.

Figure 3 compares the established bound on the isometry gap with those observed in practice, i.e. G*,
for three activations. We observe [3, predicts the decay rate in isometry of Gram matrices G*. While
so far, we have only discussed the direct results of our theory for isometry of Gram matrices, in the
next section, we will discuss other insights from the above analysis.
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Figure 3: Validation of Theorem 4. Solid blue traces show the isometry of MLP with n = 100, d = 5000, and
various activations . Solid lines show the average of #10 independent runs. The dashed traces are theoretical
upper bounds given in Theorem 4, with constant C' = 1.

6 Implications of our theory

In this section, we elucidate the implications of our theory, beginning with insights into layer
normalization through the Hermit expansion of activation functions, followed by an examination of
its impact on training.

Layer normalization primarily involves two steps: (i) centering and (ii) normalizing the norms.
Through the Hermit expansion of activation functions, we unravel the underlying intricacies of these
components and propose alternatives based on insights from the Hermit expansion.

Experimental Setup. Our experiments utilize MLPs with layer normalization and various activation
functions for the task of image classification on the CIFAR10 dataset [Krizhevsky et al.]. For training,
we use stochastic gradient descent (SGD) with a fixed step size of 0.01. Unless stated otherwise, the
MLP has constant width of d = 1000 is maintained across hidden layers, and a batch size of n = 10.
Throughout this section, a’ and x* respectively denote the post-activation and post-normalization
vector for layer /.

6.1 Centering and Hermit expansion

One of the key insights of our mean-field theory is that the centering step in layer normalization is
crucial in obtaining isometry. In the mean-field regime, pre-activations follow standard Gaussian

distributions, and thus the average post-activation af = é Zf af will converge to their expectation
a* = E. n0,1)[0(X)] = co. This insight suggests an alternative way of obtaining isometry by
explicitly removing the offset term from activation, i.e., replacing activation o(x) by o(x) — co.

Strikingly, our experiments presented in Figure 4 indicate that such replacement can also impose
isometry. This result provides novel insights into the role of centering in layer normalization.

relu tanh sigmoid exp

10°

—log 1(G")

107!
0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
L L L 2
Figure 4: Layer vs. mean-field centering in obtaining isometry. Layer centering (orange): it = LN(a“ —E)‘
Mean-field centering (blue): z‘T* = LN(a® — ¢o).

6.2 Normalization and Hermit expansion

Theorem 4 further reveals the importance of normalization of norms in addition to centering to
achieve isometry. Figure 5 underlines the importance of the normalization for different activations,
where we observe the isometry gap may increase without normalization. Similar to our mean-field
analysis of centering, the factor é Z?Zl(af — a')? in layer normalization converges to variance



var,. n(0,1)(0(2)) = Ypeyci =: &(1). Thus, as the width increases, the layer normalization
operator LN(a’ — a*) will converge to (a* — ¢)/+/a(1). Figure 6 demonstrates that the constant

scaling 1/4/7(1), achieves comparable isometry to layer normalization for hyperbolic tangent and
sigmoid and ReL.U, while it is not effective for exp function. This observation calls for future research
on the link between normalization and activation in deep neural networks.
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Figure 5: Comparing no normalization (blue) z**' = (a® — cp) with layer normalization (orange)
2" = LN(a® — ¢o) in obtaining isometry.
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Figure 6: Comparing layer normalization (blue) = LN(aZ — ¢p) vs. mean-field normalization (orange)
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6.3 Isometry strength correlates with SGD convergence rate in shallow MLPs.

Besides the direct consequences of our theory, we observe a striking correlation between the conver-
gence of SGD and isometry strength in a specific range of neural network hyper-parameters. Figure 7
shows the convergence of SGD is faster for activations with a significantly larger isometry strength
Bo (see Definition 3) for shallow MLPs, e.g., with 10 layers or less. We can speculate that this
correlation reflects the input-output sensitivity of the networks with higher non-linearity. Surprisingly,
this correlation does not extend to deeper networks. This discrepancy between shallow and deep
networks regarding SGD convergence may be due to the issue of gradient explosion studied by
Meterez et al. [2023]. This finding suggests multiple avenues for future research.
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Figure 7: 3, correlates with SGD training speed. Training loss (y-axis) vs epoch (x-axis) on a training dataset
of CIFAR10. Each curve shows the MLP with corresponding activation, with color codes denoting isometry
strength .. Hyper parameters: depth: 10, width: 1000, batch size: 512, Average of #5 independent runs.



7 Discussion

In this study, we explored the influence of layer normalization and nonlinear activation functions on
the isometry of MLP representations. Our findings open up several avenues for future research.

Self normalized activations. It is worth investigating whether we can impose isometry without
layer normalization. Our empirical observations suggest that certain activations, such as ReLU,
require layer normalization to attain isometry. In contrast, other activations, which can be considered
as “self-normalizing” (e.g., SeLU [Klambauer et al., 2017] and hyperbolic tangent), can achieve
isometry with only offset and scale adjustments (see Figure 8). We experimentally show how we can
replace centering and normalization by leveraging Hermit expansion of activation. Thus, we believe
Hermit expansion provides a theoretical grounding to analyze the isometry of SeL.U.
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Figure 8: (a) Exploring the potential of achieving isometry with self-normalized activations. Batch size n = 10,
width d = 1000. (b) Impact of the order of activation and normalization layers. Batch size n = 10, width
d = 1000.

Impact of the ordering of normalization and activation layers on isometry. Theorem 4 highlights
that the ordering of activation and normalization layers has a critical impact on the isometry. Figure 8
demonstrates that a different ordering can lead to a non-isotropic Gram matrix. Remarkably, the
structure analyzed in this paper is used in transformers [Vaswani et al., 2017].

Normalization’s role in stabilizing mean-field accuracy through depth. Numerous theoretical
studies conjecture that mean-field predictions may not be reliable for considerably deep neural
networks [Li et al., 2021, Joudaki et al., 2023]. Mean-field analysis incurs a O(1/+/width) error per
layer when the network width is finite. This error may accumulate with depth, making mean-field
predictions increasingly inaccurate with an increase in depth. However, Figure 9 illustrates that
layer normalization controls this error accumulation through depth. This might be attributable to the
isometry bias induced by normalization, as proven in Theorem 1. Similarly, batch normalization also
prevents error propagation with depth by imposing the same isometry [Joudaki et al., 2023]. This
observation calls for future research on the essential role normalization plays in ensuring the accuracy
of mean-field predictions.
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Appendix outline

The appendix is partitioned into four main components, each serving its purpose as described:

1. Section A details the all the proofs, with most of it dedicated to proof of Theorem 4 alongside
numerical confirmation of significant steps

» Section A.1 elaborates on the basic properties of isometry.

* Section A.2 provides an elaborate review of the mean-field Gram dynamics.

» Section A.3 presents the Lyapunov function ~y, and establishes that this function provides both
upper and lower bounds for the isometry, thereby implying that geometric contraction of 'y(GZ)
indicates a geometric contraction of isometry gap — log Z (Ge).

* Section A.4 proves that fy(Ge) exhibits an exponential contraction in depth with rate 3.

2. Section B outlines our rebuttal responses to the reviews that we chose to leave out of the main text.

* Section B.1 gives additional details concerning the experiments reported in the main text and
appendix.

» Section B.2 explores the effect of gain on isometry, and links the rate to the associated isometry
strength.

* Section B.3 explores the effect of varying widths of hidden layers on the isometry.

* Section B.4 explores the notion of isometry for representations in language models.

A Proofs

A.1 Basic properties of isometry

Basic properties of isometry It is straightforward to check isometry obeys the following basic isometry-
preserving properties:

Lemma A.1. For PSD matrix M, the isometry defined in (3) obeys the following properties: 1) scale-invariance
Z(cM) = I(M), 2) only takes value in the unit range Z(M) € [0, 1] 3) it takes its maximum value if and
only if M is identity Z(M) = 1 <= M = I,,, and 3) takes minimum value if and only if M is degenerate
Z(M)=0.

Proof of Lemma A.1. The scale-invariance is trivially true as scaling M by any constant will scale det(M )1/ "
and tr(M) by the same amount. The proof of other properties is a straightforward consequence of writing the

isometry in terms of the eigenvalues Z(M) = ([], )\i)l/"/(% > Ai), where \;’s are eigenvalues of M. By
arithmetic vs geometric mean inequality over the eigenvalues we have (] ], )\i)l/ "< % >~ Ai), which proves

that Z(M) € [0, 1]. Furthermore, the inequality is tight iff the values are all equal \; = - - - = A,,, which holds
only for identity M = I,,. Finally, isometry is zero iff at least one eigenvalue is zero, which is the case for
degenerate matrix M. O

A.2 Mean-field Gram Dynamics

Recall the mean-field Gram dynamics stated in equation (10):

G = Epnoar) [pom)o(om) 7], where [8(a)]s = (a; — Eag)/VVara;,  (13)
Assuming that inputs are encoded as columns of X, we can restate the MLP dynamics as follows
1 _
X" = ——LN(X - X), inputs (14)
7 ( ) p
H" := WX W*~ N(0,1)%¢, preactivation (15)
AL = o(HY), activations (16)
X = %LN(AIZ — A?) centering & normalization, 17

where centering and layer normalization are applied column-wise, as defined in the main text. Observe that
Gram matrix of representations can be written as

Gt = x T xt (18)
d ®2 d d
1 AfL — AL — 1
Sy (M i) S S 09
k=1 " k=1 k=1




where ® denotes Hadamard product, and subscript 4 emphasises the dependence of Gram on width d. Note that
conditioned on the previous layer, rows of H® and A* are i.i.d. , because of independence of rows of W*. Thus,
by law of large numbers, in the infinitely wide network regime, p; and s; will converge to the expected mean and

variance respectively limg— oo tti = EA,, and limg_s o0 85 = Var(Af,), foralli = 1, ..., n. By construction
of ¢, in the infinitely wide regime, we can rewrite Gram dynamics as limg_, oo G5 = é 22:1 H(AL) T p(AL).
We can invoke the fact that rows of A* are i.i.d. to conclude that G is the sample Gram matrix that converges to
its expectation

Jim G =E(AL)G(AL) " = Epono,an@(o(h))é(o(h) " =: G, (20)

where . denotes the mean-field regime d — oo. This concludes the connection between the mean-field Gram
dynamics and infinitely wide Gram dynamics.

A.3 Introducing a potential

Here we will introduce a Lyapunov function that enables us to precisely quantify the isometry of activations in
deep networks:

Definition 4. Given a positive semidefinite matrix G € R™*"™, we define v : R™*™ — R=? gs:
|G~ij | ~
v(G) := max —, Gii = G5 GiiGis. 21
(@) Gy J il 33

Remarkably, v obey exhibits an geometric contraction under one MLP layer update, which is stated in the
following theorem:
Theorem A.2. Let G be PSD matrix with unit diagonals Gi; = 1,41 = 1,...,n. It holds:

7<Eh~mo,c) [¢<a<h>>¢(a<h>f])m(c;)/ﬁa, where [¢(a)); := (a; — Ea))/VVarai.  (22)

Thus, we may apply Theorem A.2 iteratively to prove that in the mean-field, the Lyapunov function (G*)
decays at an exponential rate 3,. A straightforward induction over layers leads to a decay rate in -y, which is
presented in the next corollary.

Corollary A.3. If activation o has Hermite expansion with non-linearity strength 3, the mean-field Gram
matrices G, obey Lyapunov of these Gram matrices decays at an exponential rate 3,:

Y(GL) < v(GBT, 23)

where G2 denotes the input Gram matrix.

In Figure A.1, we experimentally validated the above equation for MLPs with a finite width and activations
{tanh ,relu, sigmoid} where we observe that the mean-field analysis well predicates the decay in .

relu

sigmoid

----- theory
—— empirical

0 10 20 30 0 10 20 30 O 10 20 30
I/ { !

Figure A.1: v(G*) vs depth ¢, for MLP with n = 10, d = 10000, various activations ¢. Solid lines

shows average of 10 independent runs. The dashed traces the theoretical upper bounds given in
Corollary A.3.

Interestingly, we can connect the Lyapunov « to the isometry, by proving an upper and lower based on the
determinant G based on y(G), when G is PSD and has unit diagonals:
Lemma A.4. For PSD matrix G with unit diagonals holds:

YRl

(1 — (n — 1) max |Gij|) < det(G) <1 —maxG; (24)
i#j i#£]

where the lower bound holds if (n — 1)|Gy;| < 1.
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Now, we are ready to prove the main theorem.

Theorem A.5 (Restated Theorem 4). Let o be an activation function with a Hermite expansion and a non-
linearity strength B, , (see equation (11)). Given non-degenerate input Gram matrix G2, then for sufficiently
large layer £ > B (—nlog Z(GY) + log(4n)), we have

—log Z(G%) < exp(—Llog B> — nlog Z(GY) + log(4n)). (25)

Proof of Theorem 4. First, note that we have the following transformation

_ t V(G)
t_l—x = T= :>maX‘G”‘_1+’y(G) (26)
we have
det(GL) > (1 —(n—1) max |ij* n" Lemma A .4 27
i#]
det(GY) = (1 —(n—1)(y(GYH/(1 + W(Gﬁ))))" Invoke (26) 28)
> (1 —(n— m(ci))" (29)
— félogdet(Gf) < —log(1 — (n— 1y(GY)) (30)
< 2ny(GY) fory(G%) <1/(2n—2) (1)
< QnV(Go)Bge. (32)

By upper bound of Lemma A.4 we have max;-; |Gi;| < 4/1 — det(G) < 1 — det(G)/2, implying v(Go) <
2det(Go) ™", which allows us to

—1og Z(G") < 4ndet(Go) 43, ¢ (33)
< exp(—Llog B — nlog Z(Go) + log(4n)) 34)
which concludes the proof. O

Proof of Lemma A.4. Lower bound. The lower bound is a result of Gershgorin circle theorem [Gershgorin, 1931],
which implies that every eigenvalue must be within the disc [1—(n—1) max;=; |Gsj|, 1+(n—1) max;=; |Gi;|].
Thus, the determinant is lower-bounded by (1 — (n — 1) max;+; |Gi;])"

Upper bound. Since G is PSD, we can write G = X ' X, which implies that columns of X are unit norm
|lz:]] = 1, and G encodes the angles between them cos Z(z;, x;) = (2, ;) = Gy;. Furthermore, we have
det(G) = vol(X)?, where the volume refers to the parallelepiped spanned by the columns of X. With this
formulation, we write volume recursively as volume spanned by columns 1 up to n — 1, times the projection
distance of z,, from their span

vol(z1,...,zn) = dist(xn, span(z1, ..., Tn-1))vol(x1,...,Tn_1),

where span refers to the space of all linear combinations of these vectors. Note that projection distance of

x; onto x; can be written as sin Z(z;, z;) = /1 — (x5, x;)2 = /1 ij Since the projection distance

onto the linear span cannot be greater than projection distance onto a single vector, which is bounded by
\/1 — maxi; G%,. This concludes the upper bound that det(G) < 1 — maxix; G3;. O

A.4 Dual activation and proof of Thm. A.2

According to Daniely et al. [2016], we leverage the notion dual activation associated with the activation function
o, which is defined in following.

Definition 5. Given activation o : R — R that is square integrable with respect to the Gaussian kernel, define
its dual activation & : R — R, and its mean reduced dual G : R — R as:

(p) = Ea(z)o(y) (p) :=E[(o(x) — Eo(2))(o(y) — Eo(y))] (35)

The following lemma connects the dual activation and its mean-reduced version with the Hermite expansion of
o:

Lemma A.6. Given two standard Gaussian variables X,Y ~ N(0,1) with covariance EXY = p, and
activation o with normalized Hermite coefficients ciy,, we have

a(p) = Zcipk, a(p) = Zcipk. (36)
k=0 k=1

16



Finally, we have the tools to prove the first main theorem.

Proof of Theorem A.2. Let a = o(h) for h ~ N(0, G). Note that by definition of the dual-activation we have
Eaa" = [6(Gij)]i.j<n. Since we assumed G has unit diagonals, we have h; ~ N (0, 1), which implies that
Ea; = Ehin(O,l)U(h)i) = cop, implying that E(ai —Eai)(aj —Eaj)-r = &(Gz]) —0(2) = 5’(GU) Furthermore,

the variance can be driven as Var(a;) = Ea; — (Ea;)® = Y po ¢k = > oo, cr = (1) foralli =1,...,n.
Thus, we have E¢(a;)¢(a;) = (Gij)/a(1). In the matrix form we have
1 (Brioe [ole®mse)]) =7 (0(G0)/oD]sz0) @7

The remainder proof relies on the following contractive property of Gram matrix potential:

Lemma A.7. Consider activation o, with normalized Hermite coefficients {ci }x>0. For all p € (0,1), the
mean-reduced dual activation & obeys

l7(p)l/a(1) —1_ ol
—— s < B ) (38)
1—lo(p)l/o(1) 1—lpl
which the right hand-side is strictly larger if some nonlinear coefficient is nonzero cy, # 0 for some k > 2.

Thus we can apply Lemma A.7 on each element 7 # j to conclude that

|6(Gij)|/o(1) |Gl 51 s
-~ - < B Lemma A.7 for all i # j 39)
1—1o(Gij)l/a(1) = 1= |Gy
_ Gijl
< B ! max ‘# 40
< B, max il (40)
=B, '(G). @1
(42)
since the inequality holds for any value of ¢ # j, we can take the maximum over ¢ # j7j to write:
(7 /m o(Giy)|/a(1) —1
0(G)/a(1)) = max ———————— < B, v(G), 43
1(0(6) /(1) = max 10 D s < 6,14(0) @3)
which concludes the proof. O
Proof of Lemma A.7. Note the ratio is invariant to scaling of Y7, ci. Hence, we assume h e 2 =1
without loss of generality. With this simplification, we have 5 (1) = 1. For the positive range p € [0, 1] we have
( 6(p) )( 4 )71 _ 071220:1 C%Pk (44)
1-a(p)" " 1—p (L=p) 7' 2202, k(1 = p)
_ Zf’:l cipk_l
= S 21 45)
> e G (55)
k—
- L= Cip,c 11 , (46)
D ke Ch (Zz‘:o pz)
=) 2 k—1
SR D L A @7
Qonsy P + 20, e
Zzil Cil)k_l
< max ——ss = = (48)
p€[0,1] (Zkzl Cipk_l) + Zk‘:Q Ci
= S G (49)
SheiCh T~
1
= (50)
Bo
Thus for p € [0, 1] we have
a(p) P 51
— < B 51
o) S1-p" eh
By Jensen inequality for convex function z — |z| we have
l5(p)] = > ckp®1 <D cilol* = a(lp)) (52)
k=1 k=1
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Because « — x/(1 — x) is monotonically increasing for = € [0, 1], we have

7(p)] a(lel) ol o1
- < - < B (53)
L=la(p)l = 1=a(lp)) = 1=l
Where we invoked the inequality that was proven for p € [0, 1], because |p| € [0, 1]. O

The following lemma, which is a consequence of Mehler’s formula, is at the hart of proof of Lemma A.6:
Lemma A.8 (Consequence of Mehler’s kernel). If X, Y ~ N(0, 1) with covariance EXY = p we have

ExyyHen(X)Hek(Y) = pn(snk

where Oy, is the Dirac delta.

Proof of Lemma A.6. Leto(x) =3, _, cxHe(x), denote the Hermite expansion of o. Thus, we have

6(p) :=Exyo(X)o(Y) (54)
= > cackBx,y Hen(X)Hey(Y) (55)
n,k=0
= e, (56)
k=0

where in the last line we applied result of Lemma A.8. For the mean-reduced dual kernel &, observe that
Ex ~n(0,1)0(X) = co. Thus, the reduction of mean will cancel the £ = 0 term, which concludes the proof that

5(p) = Sy . O
Proof of Lemma A.8. The property can be deduced from Mehler’s formula Mehler [1866]. The formula states
that
1 202 2y _9
B Al +y)2 zyp 57)
1—p? 2(1-p?)
=Y Hem(x)Hem(y), (58)
m=0

where the m! factor difference is due to the definition of Hermite polynomials with an additional 1/ Vm!
compared to the one used in Mehler’s kernel. Observe that the left hand side is equal to p(z, y) /p(x)p(y), where
p(z,y) is the joint PDF of (X,Y), and p(x), p(y) are PDF of X and Y respectively. Therefore, we can take the
expectation using the expansion

Ex,y [Hen(X)Her(Y)] = /Hen(m)Hek(y)p(x,y)dxdy (59)
=S / Hen () Hex (y) Hem () Hem (y)dp(2)dp(y) (60)

M

meXNN(O,l) [Hen(X)Hem(X)] EYNN(O,l) [Hek(Y)Hem(Y)] (61)

m=0
= p"0nk (62)
where in the last line we used the orthogonality property Ex . n(0,1) Hk (2) Hn(X) = Onk. O

B Additional experiments

B.1 Details about empirical validations

Hardware. Experiments that did not require training a model were run on a AMD Ryzen 9 3900X 12-Core
CPU, which takes about 5 minutes overall. All experiments that required training a model were trained a single
NVIDIA GeForce RTX 3090 GPU, which takes about 1 minutes per each training task.

Figures. The solid lines in all plots represent the average performance over multiple independent runs, and
the shaded regions indicate the confidence intervals. Unless stated otherwise, each average is computed over #10
independent runs.
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Codes and reproducibility. We implemented our experiments in Python using the PyTorch frame-
work Paszke et al. [2019]. All the figures are reproducible with the code attached in the supplementary.

Training procedure For all training-related experiments, the isometry or isometry gap are computed per
each batch by sampling a few of the batches randomly, and then averaged over. The epoch ¢ corresponds to the
network at after ¢ steps of training on the training set of CIFAR10 (epoch 0 means network is at initialization).

Pre-trained large language models The pre-trained language models and their default configuration was
downloaded from Huggingface Wolf et al. [2020] library.

B.2 Quantifying the influence of gain on isometry through non-linearity strength

The concept of gain in neural networks is vital and closely connected with the weights initialization. A neural
network with properly initialized weights can learn faster, have a lesser chance of getting stuck at sub-optimal
solutions, and provide better generalization. The impact of gain can be visualized through the lens of weight
initialization strategies such as Xavier normalization [Glorot and Bengio, 2010], which has shown significant
effectiveness in optimizing neural networks. These initialization strategies apply a gain value to the weights,
which is a scaling factor, to ensure a good signal flow through many layers during the forward and backward
passes. The gain value essentially determines the variance of the weights in the initialization stage.

As an extension to our prior investigations, we delve into understanding the influence of gain on isometry,
predominantly through our calculated metric, the non-linearity strength, denoted as (., as a function of gain a.
For certain instances, such as ReLU, sine, and exponential activations, we are capable of deriving S () in a
closed form. Table B.1 presents a few of these cases.

o exp(ax) sin(ox) max(az,0)
ﬁ 2—26“2 +a? 2(—1+€2a2—€a2a2) 4—37
g 1—ea? 71+e2a2 22w

Table B.1: Relationship between non-linearity strength and gain.

For a more extensive selection of activation functions, we have numerically computed the non-linearity strength
as a function of gain «, as visualized in Figure B.1. Leveraging Theorem 4, these computed values provide an
estimation for the isometry strength for various activations. This correlation proves to be remarkably predictive,
as shown in Figure B.2. Remarkably, in the case of ReLU activation, its unique characteristics lead to both
our closed form S, (refer Table B.1) and rate towards isometry (refer Figure B.2) remaining consistent across
different values of a.
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Figure B.1: Analysis of gain through the lens of isometry strength.

Comparison to Xavier gain for initialization Inspired by the results so far, we can compare mean-field
centering and normalization to Xavier gain for activations. Figure B.3 demonstrates that all mean-field based
gains improve the isometry when compared with Xavier initialization. However, this is markedly stronger for
ReLU and leaky ReLLU. We can explain this starker contrast by the fact that both activations have a significant
offset term co, which is not corrected by the Xavier initialization.

B.3 Varying width of hidden layers

While in our theoretical setup, we assume the network width is constant across the layers, this is only a choice
to streamline our proof and notation. Since our primary result is derived from the mean-field regime, the
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Figure B.2: Influence of gain on the attainment of isometry.
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Figure B.3: Isometry vs depth for mean-field centering and normalization to Xavier initialization.

only criterion for it to hold is for the width to be sufficiently large to approximate the mean-field regime. Our
experiments in Figure B.4 substantiate this claim that the specific sizes of hidden layers, as long as they are large,
will not impact our main results on the isometry. We empirically validate this for four different configurations
and show that the decay of the isometry gap remains largely consistent across these configurations.
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Figure B.4: Theorem 4 holds for variable width MLP. Isometry gap of various layers for MLP
with ReLU activation and fixed width (blue), growing width (orange), narrowing width (green), and
interchanging width (red) on MNIST (left) and CIFARI1O0 (right) training data. The weights of MLP

are random. These plots show that our central theory holds regardless of the dataset or shape of MLP
widths.

B.4 Isometry in pre-trained large language models

Since our theory for normalization is not limited to initialization, we can expand our search for isometry to
other architectures. Figure B.5 shows the important role of normalization in the pre-trained GPT2 network.
However, we need to adjust the notion of isometry with the architecture of layer norm in a transformer in
mind. In fact, the mean and standard deviation are computed over features separately for each token. Thus, to
adapt the notion of isometry, we can view each token as a sample and define Gram over different tokens. Thus,
isometry here quantifies the similarity between various tokens within one sample. As can be seen in the figure
below, LayerNorm layers (shaded in red) in the last six layers of the pre-trained GPT?2 increase the isometry

between tokens, which is consistent with our theory of layer normalization. It is crucial that our theory holds
deterministically, which extends to the pre-trained model.
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One caveat in interpreting our results is that, in practice, LayerNorm layers have learnable parameters that make
them deviate from our theory. It would be fruitful to study the effects of learned parameters to discern it from
the role of centering and normalization for a future study.
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Figure B.5: Validation of corollary 2 in GPT2. The last six transformer layers of pre-trained GPT2,
LayerNorm layers (shaded; red) decrease the isometry gap.

B.5 Tracking isometry at initialization and optimization for more activations

Here there are more numerical experiments related to to tracking isometry before and after training.
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Figure B.6: Validation of Corollary 2 and Theorem 4 for multiple activations.

The following plot shows that isometry gap remains relatively stable.
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Figure B.7: Isometry gap change during training is relatively small.
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