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ABSTRACT

We study the problem of learning a local quantum Hamiltonian
� given copies of its Gibbs state d = 4−V� /tr(4−V� ) at a known
inverse temperature V > 0. Anshu, Arunachalam, Kuwahara, and
Soleimanifar gave an algorithm to learn a Hamiltonian on = qubits
to precision Y with only polynomially many copies of the Gibbs
state, but which takes exponential time. Obtaining a computation-
ally e�cient algorithm has been a major open problem, with prior
work only resolving this in the limited cases of high temperature or
commuting terms. We fully resolve this problem, giving a polyno-
mial time algorithm for learning� to precision Y from polynomially
many copies of the Gibbs state at any constant V > 0.

Our main technical contribution is a new �at polynomial ap-
proximation to the exponential function, and a translation between
multi-variate scalar polynomials and nested commutators. This en-
ables us to formulate Hamiltonian learning as a polynomial system.
We then show that solving a low-degree sum-of-squares relaxation
of this polynomial system su�ces to accurately learn the Hamil-
tonian.
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• Theory of computation → Quantum information theory.
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1 INTRODUCTION

Quantum computing has sparked a major interest in increasing the
scale and control of quantum systems [26]. This increased interest
is accompanied with the need for better algorithms to character-
ize and verify these systems [20]. A central computational task in
controlling and verifying quantum systems is that of Hamiltonian

learning, where the goal is to estimate physical properties, namely
the interaction strengths, of an interacting quantum many-body
system from measurements [6, 8, 21, 22]. Formally, we consider
= qubits (quantum particles with a local dimension of two) on a
lattice.1 The resulting system is characterized by a Hamiltonian,
a 2= × 2= complex Hermitian matrix of the form � =

∑<
0=1 _0�0 ,

where a term �0 encodes an interaction on at mostK of the particles,
and the coe�cient _0 ∈ [−1, 1] is the strength of the correspond-
ing interaction. We assume that the system has reached thermal
equilibrium at a known inverse temperature V , in which case it is
in the Gibbs state with density matrix

d =
4−V�

tr 4−V�
.

The density matrix is normalized by the partition function, tr 4−V� ,
which ensures that d has trace one. The goal of the Hamiltonian
learning problem is to estimate the _0 ’s, given the ability to prepare
copies of the Gibbs state.

Problem (Hamiltonian learning). Consider = qubits on a constant-
dimensional lattice. Let� =

∑<
0=1 _0�0 ∈ C2

=×2= be a Hamiltonian
whose terms �0 are known, distinct, non-identity Pauli operators
supported on at most : qubits that are local with respect to the
lattice. Further suppose the coe�cients _0 ∈ R satisfy |_0 | ⩽ 1.
Given copies of the corresponding Gibbs state d at a known inverse
temperature V > 0, and Y > 0, �nd estimates _̃0 such that |_̃0−_0 | ⩽
Y for all 0 ∈ [<].

We are interested in both the number of copies of d that we
need, which is called the sample complexity, as well as the running
time of the algorithm. Of particular interest to us is Hamiltonian
learning in the low-temperature regime, where V is an arbitrarily
large constant.

1Our results do not need the Hamiltonian to be geometrically local as described here; we
merely require it to be low-intersection in the sense of Haah, Kothari, and Tang [30]. So,
our algorithm will still work if the locality structure of the qubits is, say, an expander
graph.
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Motivation. As alluded to above, this problem is of fundamen-
tal importance in science and engineering. For example, in pur-
suit of understanding the phenomena like topological order and
superconductivity that are studied in condensed matter physics,
experimentalists carefully design systems which exhibit this ex-
otic behavior. In particular, analog quantum simulators are tuned
to obey poorly-understood Hamiltonians like the Fermi–Hubbard
model for experimental exploration [24, 28, 36].2 For these exper-
iments, a natural goal is to learn the interactions which give rise
to various phenomena [43, 59]. Intractability of computation is a
major barrier to resolving open problems like �nding the phase
diagram of the 2D Fermi–Hubbard model, so having better algorith-
mic tools is of key importance in this domain [47]. This problem
also arises when engineering quantum systems: a major challenge
in building near-term quantum devices is being able to validate
them—certify that they implement the desired Hamiltonian—and
understand sources of error [22, 56]. Quantum devices with 100

or more qubits are challenging to simulate classically, but quan-
tum Hamiltonian learning has emerged as an alternative strategy
for benchmarking devices by combining quantum resources and
classical learning techniques [20, 29].

The low-temperature setting is of particular interest because be-
cause quantum phenomena are most prominent at zero or near-zero
temperature [3], precisely where high-temperature series expan-
sions fail [47].3 In some sense, this is the only relevant setting for
analog quantum simulators, since models at high-temperature can
be solved with a classical computer [51, Chapter 8], without needing
to resort to a quantum simulation. More generally, low temperature
is the computationally interesting regime, since quantum advan-
tage is a low-temperature phenomenon: “temperature scaling” laws
show that quantum annealers can only achieve large speedups over
classical computers when V scales with system size [1].

Prior work. Despite its importance, the computational complexity
of Hamiltonian learning from Gibbs states is not well understood.
Anshu, Arunachalam, Kuwahara, and Soleimanifar gave the �rst
polynomial sample complexity bounds for this task in 2020 [6],
attaining coe�cient estimates using

2poly(V )<2 log<

V2Y2
[6]

copies of the Gibbs state [30, Remark 4.5]. However, their work
comes with a serious drawback: it is computationally ine�cient. In
particular, they give a stochastic gradient descent algorithm and
show that it converges to the true parameters in a small number of
iterations, but actually computing an iterate involves evaluating a
log-partition function, which is well-known to be computationally
hard even for classical systems [50].

Prior work has obtained fast algorithms for Hamiltonian learn-
ing in limited regimes. A follow-up paper of Anshu, Arunachalam,
Kuwahara and Soleimanifar [5] shows that when the terms of �
commute, then a direct generalization of the classical algorithm

2See also [27, Section 5.4.2] for a description of this work aimed towards theoretical
computer scientists.
3Morally, these expansions fail precisely because of the non-local quantum correlations
we’d like to understand!

learns the parameters e�ciently. Further, [6] notes that their sug-
gested algorithm can be performed in polynomial time for su�-
ciently high temperature (small V), since in this regime the log-
partition function can be evaluated, using that its multivariate Tay-
lor series expansion converges rapidly. Haah, Kothari, and Tang [30]
later gave an improved algorithm that achieves the sample and time
complexity

4O(V ) log<

V2Y2
and

<4O(V ) log<

V2Y2
, [30]

respectively, which they prove is tight up to the constant factor in
the exponential, even in the classical case.

However, a central open question remains [2, 4, 6, 30]:

Question 1. Can Hamiltonian learning at low temperature be

solved in time polynomial in =?

In practice quantum many-body systems are run at low tem-
perature, which is also when most macroscopic phenomena arise,
so this is the most important regime for the problem. However,
as we discuss later, no strategies had been suggested for solving
Hamiltonian learning at low temperature. In fact, the situation is
even more dire: all approaches to Hamiltonian learning used in
prior settings fail catastrophically here, since reduction to su�cient
statistics [6], e�cient computation of the partition function [6],
the approximate Markov property [46], and cluster expansion [30]
all provably fail for su�ciently large V . This state of the literature
re�ects a broader scarcity of algorithmic tools known for under-
standing Hamiltonians outside of special settings like high temper-
ature or one dimension. So, a negative resolution to this question
seemed plausible, or even likely. Indeed, a recent survey on the
complexity of learning quantum systems by Anshu and Arunacha-
lam [4] discusses Hamiltonian learning and conclude by asking two
questions:

Question 2 ([4]). Can we achieve Hamiltonian learning under the
assumption that the Gibbs states satisfy an approximate conditional
independence?4

Question 3 ([4]). Could low temperature Gibbs states be pseu-
dorandom, which would explain the di�culty in �nding a time
e�cient algorithm?

1.1 Our Results

Surprisingly, we provide a positive resolution to Question 1. Our
main result is a computationally e�cient algorithm for Hamilton-
ian learning that works at all temperatures. This is a fortunate
development since, if learning were truly computationally hard
in the low-temperature regime, then we could not understand the
behavior of analog quantum simulators in precisely the regimes
where they outperform classical simulators [53, Section 6.10]. As a
consequence our main result, we also resolve Question 2 positively
and Question 3 negatively.

Theorem 1.1 (Efficiently learning aqantum Hamiltonian

(informal)). Given Y > 0, V ⩾ V2 , for a �xed universal constant

4Approximate conditional independence is a property of Gibbs states which is proven
to hold in 1D and conjectured to hold in general.
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V2 > 0, and n copies of the Gibbs state of a low-intersection Hamil-

tonian, � =
∑
0∈[<] _0�0 , there exists an algorithm that runs in

time nO(1) and outputs estimates
{
_̂0

}

0∈[<]
such that with prob-

ability at least 99/100, for all 0 ∈ [<],
���_0 − _̂0

��� ⩽ Y, whenever

n ⩾ poly
(
<, (1/Y)2

O(V )
)
.

Remark 1.2 (On temperature). For our algorithm, we only need
to know an upper bound on V , as we can consider a Gibbs state
at temperature V to be a Gibbs state at temperature, say, 2V with
Hamiltonian�/2. Our requirement that V > V2 is for simplicity, and
V2 can be any constant bounded away from zero. In particular, we
can take V2 to be the temperature at which the high-temperature
algorithm of [30] fails; so, when V < V2 , we can simply appeal

to [30] to achieve a sample and time complexity of
log<

V2Y2
and

< log<

V2Y2
,

respectively.

As noted by prior work [6], Hamiltonian learning is a generaliza-
tion of the classical and well-studied problem of learning undirected
graphical models, speci�cally parameter learning of these models.

This classical problem requires
4O(V )< log(<)

V2Y2
time (and there is an

algorithm matching the lower bound), so exponential dependence
on V is necessary [30].5 Analogies with the classical setting turn
out to be of limited use, since the non-commutativity and non-
locality inherent in the quantum setting rules out generalizations
of classical ideas. However, with the classical setting we can identify
barriers to designing a time-e�cient algorithm.

A key challenge of time-e�cient Hamiltonian learning is that we
cannot work directly with the partition function. The only previous
approach to low temperature [6] only used its copies of d to esti-
mate tr(�0d) for all 0 ∈ [<]. It is known in the classical literature
that taking just these estimates and using them to compute the
parameters _0 is as hard as computing the partition function [50].
To avoid this barrier, we take a richer set of expectations tr(%d) that
allows us to reduce learning to a tractable, but fairly involved, opti-
mization problem instead. Along the way we develop several new
tools of independent interest, and ultimately give a semi-de�nite
programming algorithm based on the sum-of-squares hierarchy.
Consequently, we show that sophisticated modern tools in opti-
mization theory lead to a surprising resolution of the Hamiltonian
learning problem.

1.2 Technical Overview

The recipe for quantum Hamiltonian learning introduced by Anshu,
Arunachalam, Kuwahara, and Soleimanifar [6] is based onmatching
the local marginals of the Gibbs state d , which we can estimate
with copies of d . Speci�cally, for two Hamiltonians � =

∑
_0�0

and � ′ =
∑
_′0�0 with respective Gibbs states

d =
4−V�

tr(4−V� )
and d′ =

4−V�
′

tr(4−V�
′
)
,

they show that � = � ′ (and so _0 = _′0 for all 0 ∈ [<]) if and only
if d and d′ are identical on local marginals i.e. tr(�0d) = tr(�0d

′)

for all 0 ∈ [<] [6, Proposition 4]. This does not imply a bound on

5It is an interesting open question to improve our doubly exponential dependence to
singly exponential.

sample complexity, because with copies of d , we can only compute
tr(�0d) approximately, with noise introduced from sampling error.
The key structural result of [6] is that this equivalence can be made
robust, so that if � ′ only approximately matches marginals, then
the corresponding coe�cients _′0 approximately match the true
coe�cients _0 .

However, the last step of this algorithm is to invert the map
{_0}0∈[<] ↦→ {tr(�0d)}0∈[<] , which is a computationally hard

problem. Formally, for a classical Hamiltonian,6 tr(�0d) are su�-

cient statistics of a graphical model and it is known that estimating
the parameters of a graphical model from these su�cient statis-
tics is computationally intractable [50]. This doesn’t mean that the
problem is hopeless, but rather that to �nd a tractable algorithm,
we should be looking for the opportunity to use a richer family of
statistics.

Designing a new system of constraints. We interpret the previous
argument as de�ning and then solving a constraint system in the
set of unknowns, {_′0}0∈[<] . The structural result in [6] shows
that an approximate solution to this system will be close to the
true parameters _0 . However, this system is computationally hard
to solve. Our starting point is to de�ne a larger set of constraints
which {_0}0∈[<] must satisfy, which can be veri�ed by measur-
ing expectations of observables slightly less local than the terms
{�0}0∈[<] . Let Plocal be the set of Pauli matrices whose support
is  -local for some large constant  . We begin with the following
system of constraints:





∀0 ∈ [<] −1 ⩽ _′0 ⩽ 1

� ′
=

∑

0∈[<]

_′0 · �0

∀%,& ∈ Plocal, tr
(
&4−V�

′

%4V�
′

d
)
= tr(%&d)





, (1)

The constraints above are indeed satis�ed for the true parameters
(_′ = _) since by assumption |_0 | ⩽ 1 for all 0 ∈ [<] and moreover

tr
(
&4−V�%4V� d

)
= tr

(

&4−V�%4V�
4−V�

tr(4−V� )

)

= tr(%&d)

which follows from the cyclic property of the trace. Two main
challenges remain: Must a solution to this system be close to the
true coe�cients? And how can we e�ciently solve the system?
Eventually we will derive a convex relaxation for it that is based on

(A) replacing the last constraint in Eq. (1) which involves the
matrix exponential with low degree polynomial constraints
on the indeterminates (

{
_′0

}
0∈[<]

) instead and

(B) showing that any choice of _′ that satisfy the constraints
must also approximately match the true coe�cients _.

In general solving systems of polynomial equations is computa-
tionally hard, but because our analysis in (B) will be based on
sum-of-squares proofs, there is by now standard machinery for
turning it into an e�cient algorithm (see the full version for de-
tailed explanation).

6A classical Hamiltonian is a Hamiltonian that is diagonal, i.e. its terms are tensor
products of the identity and the Pauli fI . For a classical Hamiltonian, the state d is a
sample from the Gibbs distribution, and tr(�0d ) is a K-point correlation function.
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Identifying an equivalence between nested commutators and poly-

nomials. Working towards the goal of replacing the term

tr
(
&4−V�

′

%4V�
′

d
)

with a low-degree polynomial in the variables _′, we begin by
recalling the Hadamard formula:7

4−V�
′

%4V�
′

=

∞∑

ℓ=0

(−V)ℓ
[� ′, %]ℓ

ℓ!
, (2)

where [� ′, %]ℓ = [� ′, [� ′, . . . , [� ′, %] . . .]] is the ℓ-th nested com-
mutator. A natural �rst step is to truncate this series at 3 terms and
observe that

tr

(

&

(
3∑

ℓ=0

(−V)ℓ
[� ′, %]ℓ

ℓ!

)

d

)

is a low-degree polynomial in the variables _′. For instance, observe
for the order-2 nested commutator, we have

tr
( [ ∑

0∈[<]

_′0�0, %
]

2
d
)
= tr

( [ ∑

0∈[<]

_′0�0,
∑

0∈[<]

_′0 [�0, %]
]
d
)

=

∑

0,1∈[<]

_′0_
′
1
tr( [�0, [�1 , %]] d),

which is a degree-2 polynomial in the _′8 indeterminates. However,
the series in Eq. (2) only converges quickly when V is su�ciently
small [30], so we cannot use it.8

Nevertheless, from this observation we can develop a general for-
malism for constructing polynomial approximations of evolutions
of operators. We observe that in the eigenbasis of � ′,

[� ′, %]ℓ = % ◦
{ (

f8 − f 9
)ℓ }

8 9
,

where { f8 }8∈[# ] are the eigenvalues of � ′ and ◦ denotes the
Hadamard product. Similarly,

4−V�
′

%4V�
′

= % ◦
{
4−V (f8−f 9 )

}

8 9
,

and thus we can focus our attention on designing polynomials

that approximate the scalar quantity 4−V (f8−f 9 ) with low-degree
polynomials in

(
f8 − f 9

)
. Further, any degree-3 polynomial ? (I) =

∑3
ℓ=0 2ℓI

ℓ can be extended to commutators as follows:

? (� ′ | %) = % ◦
{
?
(
f8 − f 9

) }
8 9

=

3∑

ℓ=0

2ℓ [�
′, %]ℓ .

This allows us to translate between matrix series expansions in-
volving nested commutators and univariate polynomials. We note
that for technical reasons we need to extend our equivalence to
nested commutators with two distinct operators -,. appearing in
an arbitrary order, such as [-, [., [-, . . .] . . .], �01 ] and bi-variate
polynomials ? (G,~). The translation between bi-variate polynomi-
als and nested commutators incurs additive error depending on
[-,. ] due to re-ordering of the - and . operators as expected. In
our full algorithm, we introduce an additional constraint to drive

7This can be derived from the Baker–Campbell–Hausdor� formula,

exp(�) exp(�) = exp
(
� + � +

1

2
[�, � ] +

1

12
( [�, [�, � ] ] + [�, [�,�] ] ) + . . .

)
.

8This expansion does converge after V ∥� ∥ terms, but our running time is exponential
in the degree, so this would be far too large.

this additive error to zero. Focusing on the scalar polynomial ap-
proximation to the exponential function, we now formalize the
notion of approximation that we require.

Constructing a new, �at approximation to the exponential. Recall
that we want a polynomial such that, working in the eigenbasis of
� ′,

? (� ′ | %) = % ◦
{
?
(
f8 − f 9

) }
8 9

≈ % ◦
{
4−V (f8−f 9 )

}

8 9

= 4−V�
′

%4V�
′

,

(3)

where “≈” denotes an unusual notion of approximation which, for
the purposes of this discussion, we can consider to mean that the
matrices are close in some norm. The Taylor series approximation
to the exponential would be Eq. (2), which we established is too
high degree.

Our key insight is that we choose a better polynomial approxi-
mation. We begin by observing that an operator with small support
is approximately band-diagonal in the basis of eigenvectors of � ,
which is a property of local terms proved by Arad, Kuwahara, and
Landau [7]. We state a weak version of this here: let % be a Pauli
operator with support size O(1), and let � =

∑
8 38E8E

†
8 be an eigen-

decomposition of � . Then, considering % in the eigenbasis of � ,

|%8 9 | = |E†8 %E 9 | ⩽ 4−Ω ( |38−3 9 | ) . (4)

A consequence of this is that entries of

% ◦
{
?
(
f8 − f 9

)
− 4−V (f8−f 9 )

}

8 9
,

which denote the error of the polynomial approximation, are
weighted inverse exponentially inf8−f 9 . Therefore, our polynomial
approximation need not be equally good for all f8 − f 9 ; rather, our
approximation should be Y-good in a small range but is allowed to
diverge at a su�ciently slow exponential rate outside that range.
We call this a �at approximation. In particular, given parameters
V ⩾ 0, 0 < Y, [ < 1, we construct ? such that





���? (I) − 4−VI
��� ⩽ Y if I ∈ [−1, 1]

|? (I) | ⩽ max
(
1, 4−VI

)
· 4[V |I | if I ∉ [−1, 1]

(5)

The key di�culty in satisfying the above constraints is satisfying
|? (I) | ⩽ 4[V |I | for I ⩾ V , as standard approximations like Tay-
lor series truncations and Chebyshev series truncations fail this
condition. We explicitly construct a degree

(
2O(1/[ ) · (V + log(1/(Y[)))

)

polynomial that satis�es Eq. (5). This construction is inspired by
the iterative “peeling” of the exponential used in proofs of Lieb-
Robinson bounds [33, 48]. We can write

4−VI = 4−V2I · · · 4−V2I︸             ︷︷             ︸
V/V2

for a �xed small constant V2 and then truncate the Taylor series
expansion of 4−V2I at di�erent scales for all of the V/V2 = $ (V)

copies in the product so that the tails of the di�erent truncations
don’t “interfere".
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We show that when ? is a �at approximation of the above form
for some su�ciently small [, then &? (� |%)d is a good approxima-
tion to &4−V�%4V� d . In other words, the polynomial approxima-
tion is good when� ′ = � and we right multiply by d ; this is crucial
for the polynomial system that we set up next to be feasible.

Formulating a polynomial system. We now have all the tools to
describe a polynomial system that captures the Hamiltonian learn-
ing problem. The constraint system we describe in this section is an
informal treatment of the system that appears in the full algorithm,
and avoids several technical details. We show that using our �at
approximation to the exponential, we can obtain a polynomial ?
such that

tr
(
&4−V�%4V� d

)
≈ tr(&? (� | %)d).

Then, we can re-write Eq. (1) as the following polynomial con-
straint system:





∀0 ∈ [<] −1 ⩽ _′0 ⩽ 1

� ′
=

∑

0∈[<]

_′0�0

∀%,& ∈ Plocal, | tr
(
&?

(
� ′ | %

)
d
)
− tr(%&d) | ⩽ Y





, (6)

and observe that the last constraint encodes a relaxation of the last
constraint in Eq. (1) and is satis�ed when � ′ = � . Further, all of
the constraints are indeed succinctly representable as low-degree
polynomials in the indeterminates,

{
_′0

}
0∈[<]

, as discussed earlier.

Finally, the coe�cients, such as tr( [�0, [�1 , %]]), are expectations
of the Gibbs state against a slightly larger set of local observables,
which are the richer class of test functions we desired. We can
obtain estimates of these expectations through quantum measure-
ments. Computing these estimates is the only quantum part of our
algorithm, and the rest of the algorithm is entirely classical.

Feasibility of the polynomial system. Recall that to show that the
polynomial system in (6) is feasible, we need to argue that

tr
(
&4−V�%4V� d

)
≈ tr(&? (� | %)d)

for all %,& . Working in the eigenbasis of � , let its eigenvalues
be { f8 }8∈[2= ] . The key tool that we leverage is from [7] which
roughly states that any local term � must be approximately diagonal
in the eigenbasis of � , with o�-diagonal entries decaying as |�8 9 | ⩽

4−Ω ( |f8−f 9 | ) . Thus, we can decompose the matrices &, % into two
parts – parts indexed by 8, 9 where |f8 − f 9 | ⩽ V and parts indexed
by 8, 9 where |f8 − f 9 | ⩾ V . Then we use the fact that ? (G) is a
good approximation to 4−G on [−V, V] to prove that the error on
the �rst part is small. We then appeal to the exponential decay of
the o�-diagonals to argue that the contribution from the second

part in both tr
(
&4−V�%4V� d

)
and CA (&? (� | %)d) is small. Our

�at approximation to the exponential is designed to ensure that
it does not overwhelm the exponential decay in the o�-diagonal
entries in %,& in any regime.

E�ciently optimizing polynomial systems. Now that we know
that our polynomial system is feasible, we consider a convex re-
laxation of this system. In particular, we consider a degree-3 sum-
of-squares relaxation, which can be e�ciently optimized by ex-
pressing it as a semi-de�nite program (see the full version for de-
tails), with 3 = log(1/Y) · 2O(V ) . Since we have < variables and
2O(V ) constraints, and each constraint is a degree-3 polynomial,
we can solve the degree-23 sum-of-squares relaxation of Eq. (6) in

<

(
log(1/Y ) ·2O(V )

)

time. The main challenge in analyzing the sum-
of-squares relaxation is to show that we can round it to estimates{
_̃′0

}

0∈[<]
such that they are close to the true parameters. Here,

we adopt the so-called proofs-to-algorithms philosophy, where we
instead work with the dual object to the sum-of-squares relaxation,
namely sum-of-squares proofs (see [13, 25], and references therein).
This perspective states that if the true parameters are identi�able
only using the sum-of-squares proof system, then we immediately
obtain an e�cient algorithm and we show that we can easily and
accurately round the solution.

We then provide a proof of identi�ability, i.e. for all 0 ∈ [<],
the inequality

(
_′0 − _0

)
⩽ Y can be derived using the system of

polynomial constraints and other basic inequalities that admit sum-
of-squares proofs (we refer the reader to the full version for a
detailed exposition). At a high level, the proof works by arguing
that when � ′ − � is large, there are witnesses %,& such that

| tr(&? (� ′ |%)d) − tr(&? (� |%)d) |

is large. Since we know that � is a feasible solution, this would
imply that � ′ cannot be a feasible solution so any feasible solu-
tion must have � ′ − � be small. The construction of the witnesses
relies on an additional property of the polynomial ? that we con-
struct, namely that it is strongly monotone (in some appropriate
quantitative sense).

For the identi�ability proof, we crucially use an additional im-
portant property of local Hamiltonians. It deals with the quantity
tr(�2d), where � =

∑
1 f1%1 is a Hermitian linear combination of

Pauli matrices with small support. Thinking of d as a distribution,
tr(�2d) is a second moment term with respect to d ; we can prove
this is not much smaller than tr(�2�/dim) =

∑
1 f

2
1
, the second

moment against the uniform distribution: for some constant 2 > 0,

tr(�2d) ⩾ 2O(V ) max
1

f2
1
.

Intuitively, this shows that d is not close to zero in any local di-
rection. This was �rst shown by [6] for quasi-local operators; we
adjust their proof to hold for just local operators and give a tighter
bound. We show that we can obtain a slightly weaker statement of
this form in the sum-of-squares proof system by formulating it as
a quadratic inequality. This inequality can be used to remove the
dependence on d in expressions appearing in the proof; for example,
it is used to relate tr( [�,� ′]2d) to the size of [�,� ′] itself.

Finally, we observe that our identi�ability proof does not use the
full power of a degree-23 sum-of-squares relaxation and therefore, it
should su�ce to solve a signi�cantly smaller semi-de�nite program.
We show that we can execute our proof of identi�ability by only
appealing to a sparse subset of monomials of degree at most 23 and
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invoke a linearization theorem by Steurer and Teigel [57] to obtain

a �nal running time of poly(<) · (1/Y)2
O(V )

, as desired.

1.3 Further Related Work

Hamiltonian learning. Hamiltonian learning is a broad topic stud-
ied both in experimental and theoretical contexts. This work �ts
into a large body of algorithmic research about learning properties
of quantum states modeling physical systems [4, 21]. Here, we point
to a few lines of related work in this �eld.

Hamiltonian learning often focuses on the real-time evolution
setting, where one can allow the system to evolve with respect
to � , applying the unitary 4−i�C [22, 38, 59]. Some algorithms
consider taking time derivatives (i.e. taking C → 0), which are
similar to small-V algorithms in the Gibbs state setting [29, 30,
60]. There is some research on learning from (zero-temperature)
ground states [54], but the algorithmic work is limited because the
ground state of a Hamiltonian need not determine the Hamiltonian.
We study the �nite temperature case, which is both the typical
temperature at which experiments are run and, in the V → ∞ limit,
a rich approximation to the much less computationally tractable
ground state [2, 27].

Though our algorithm is not practical, we use constraint sys-
tems that bear some similarity to the “correlation matrix” linear
constraint systems analyzed heuristically and experimentally in
prior work [8, 54]. In fact, our constraint system contains these
constraints for technical reasons. Our work places these works on
a rigorous basis, as we prove that, though the linear constraint
systems might not uniquely identify the true Hamiltonian, adding
more, similar constraints eventually fully constrains the Hamilton-
ian.

Bounding correlations in Gibbs states. Though classical Gibbs
states have extremely good locality properties, these become much
weaker in the quantum setting. A series of works aims at bounding
the non-locality in quantum Gibbs states with various di�erent
measures and in various di�erent regimes [40, 45, 46], oftenwith the
goal of concluding that simulating or learning these systems can be
done time-e�ciently. It is an interesting open problem whether one
can extract a new kind of “locality” statement from our algorithm,
to understand how general our approach is for learning quantum
systems. Our polynomial approximation is inspired by proofs of the
Lieb–Robinson bound [33, 48], and can be viewed as a “low-degree”
form of this bound. This could be of independent interest.

Parameter learning of graphical models. There is a rich body of
work on the problem of learning graphical models. Our setting is
that of learning Markov random �elds; the literature on this topic
focuses on the task of structure learning, which in our setting corre-
sponds to learning the terms {�0}0∈[<] , given the guarantee that
they form an (unknown) dual interaction graph with bounded de-
gree [18, 19, 31, 42]. The problem we consider, learning the parame-
ters with known terms, is easy in the classical setting [30, Appendix
B], because classical Gibbs states satisfy the Hammersley–Cli�ord
theorem [32], also known as the Markov property. A consequence
of the Markov property is that estimating a parameter on a K-body
term can be done by computing conditional marginals on the sup-
port of this term. It is not clear how to generalize this argument to

the quantum setting, since the Markov property does not hold for
low-temperature quantum Hamiltonians, even approximately [46].

The sum-of-squares meta-algorithm. The sum-of-squares hierar-
chy has been used to analyze several problems in quantum infor-
mation, including best state separation [14, 16, 17, 23], optimizing
fermionic Hamiltonians [34, 35], and a quantum analogue of max-
cut [52, 58]. Additionally, the proofs-to-algorithms perspective,
introduced in [13, 15], has been extensively used to design e�cient
algorithms for several estimation and learning tasks. In particular,
this perspective has led to e�cient algorithms for robust learn-
ing [9, 10, 12, 37, 41, 44, 49] and list-decodable learning [11, 39, 55].

2 FORMAL RESULTS AND PROOFS

Due to space constraints, the formal statements of our main results
and full proofs are deferred to the full version.
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