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Abstract

We show that thermal states of local Hamiltonians are separable above a constant
temperature. Specifically, for a local Hamiltonian H on a graph with degree d, its Gibbs
state at inverse temperature β, denoted by ρ = e−βH/ tr(e−βH), is a classical distribution
over product states for all β < 1/(cd), where c is a constant. This sudden death of thermal
entanglement upends conventional wisdom about the presence of short-range quantum
correlations in Gibbs states.

Moreover, we show that we can efficiently sample from the distribution over product
states. In particular, for any β < 1/(cd3), we can prepare a state ε-close to ρ in trace distance
with a depth-one quantum circuit and poly(n) log(1/ε) classical overhead.1 A priori the task
of preparing a Gibbs state is a natural candidate for achieving super-polynomial quantum
speedups, but our results rule out this possibility above a fixed constant temperature.

1In independent and concurrent work, Rouzé, França, and Alhambra [RFA24] obtain an efficient quantum
algorithm for preparing high-temperature Gibbs states via a dissipative evolution.
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1 Introduction

A central motivation behind the study of quantum many-body systems is to understand the be-
havior of entanglement, i.e. non-classical correlations. Spurred by experimental breakthroughs
in quantum simulation and quantum phases of matter, a rich body of work has sprung around
understanding entanglement in Gibbs states, which model quantum systems at thermal equi-
librium [Alh23]. The goal of this literature is to quantify the allowable entanglement of these
states as dictated by the locality structure of their underlying Hamiltonians.

Prior rigorous studies on entanglement in Gibbs states, including thermal area laws [WVHC08;
KAA21], bounds on conditional mutual information [KB19], local indistinguishability [KGKRE14],
efficient state preparation [BK18; BCGLPR23], and efficient learning algorithms [AAKS21;
BLMT23], proceeds by bounding the entanglement through proxy correlation measures that
combine both classical and quantum correlations. Consequently these results only provide
meaningful bounds on entanglement at long range, when classical correlations are sufficiently
small. This remains true even for results which assume the Gibbs state is above a critical
temperature [BK18; HMS20; HKT22]. Taken together, this body of work sows the conventional
wisdom that short-range quantum correlations, like short-range classical correlations, exist at
any constant temperature.

We upend this conventional wisdom by showing that above some constant temperature, the
Gibbs state of any local Hamiltonian exhibits zero entanglement, even at short range.

Theorem 1.1 (Informal version of Theorem 1.5). Let H = ∑m
a=1 λaGa be a Hamiltonian where each

term Ga acts on a constant number of qubits and each qubit is acted on by at most d terms, and |λa| ⩽ 1
for all a ∈ [m]. Then there is a constant γ such that, for any non-negative β < 1/(γd), the Gibbs state
at inverse temperature β, ρ = e−βH/ tr(e−βH), can be written as a distribution over tensor products of
stabilizer states2, i.e.

ρ = ∑
|ψ⟩∈S

pψ |ψ⟩ ⟨ψ| ,

where S = {|0⟩ , |1⟩ , |+⟩ , |−⟩ , |i⟩ , |−i⟩}⊗n and the pψ’s are non-negative and sum to 1.

With this result, we witness a “sudden death of thermal entanglement”: there is a constant
critical temperature, above which correlations are purely classical. Alternatively formulated, this
suggests that an entangled state, if weakly coupled to a bath at high temperature and allowed
to thermalize, will become fully disentangled at a finite time. To the best of our knowledge, this
result is the first to show strong bounds on short-range entanglement at constant temperature.

Our structural result for high-temperature Gibbs states has implications for the computational
task of preparing quantum Gibbs states. This task, known as quantum Gibbs sampling, has
been studied extensively [CKBG23, Table 1], dating back to the work of Temme, Osborne,
Vollbrecht, Poulin, and Verstraete [TOVPV11]. However, remarkably little is known about
when Gibbs states can be prepared efficiently. Despite a wealth of approaches and proposals,
efficient algorithms have only been rigorously established in fairly restricted settings, such as
for Hamiltonians with constant operator norm [GSLW19], commuting Hamiltonians [KB16],
1D Hamiltonians [BK18; BCGLPR23], or under strong assumptions, like the eigenstate ther-
malization hypothesis [CB21]. On the other hand, sampling from the Gibbs distribution at low

2For our purposes, it makes sense to think of these as the set of eigenvectors of tensored Pauli matrices. Through-
out, we write the density matrices of single-qubit stabilizer states in terms of Pauli matrices, 1

2 (I ± σz), 1
2 (I ± σx),

and 1
2 (I ± σy).
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temperature is known to be NP-hard, even in the classical setting [Sly10; SS14; GŠV16]. Thus
there is a natural target: Are all high-temperature Gibbs states efficiently preparable?

We resolve this question as well. Our second main result is:

Theorem 1.2 (Informal version of Theorem 1.6). Let H = ∑m
a=1 λaGa be a Hamiltonian where

each term Ga acts on a constant number of qubits and each qubit is acted on by at most d terms, and
|λa| ⩽ 1 for all a ∈ [m]. Let β < 1/(γd3), for a fixed constant γ and let ρ = e−βH/ tr(e−βH) be the
corresponding Gibbs state. Given 0 < ε < 1, there exists an algorithm that outputs a state ρ̂ such that
∥ρ−E [ρ̂]∥1 ⩽ ε, and requires a depth-1 quantum circuit with poly(n) · log(1/ε) classical overhead.

The task of preparing a Gibbs state is a natural place to look for quantum speedups. However,
our result shows that this task offers no super-polynomial quantum speedup for temperature
larger than a fixed constant. On the other hand, assuming that NP-hard problems cannot be
solved in BQP, we know that for preparing a Gibbs state for temperature smaller than a different
fixed constant will not work either. Going forward, finer-grained control of the separability
and computational thresholds across different models appears crucial to understanding Gibbs
sampling, both as a testbed for quantum thermodynamics and as a candidate for quantum
advantage.

1.1 Results

We now formally state our results. Throughout, we consider systems on n qubits, at inverse
temperatures β > 0. Let P denote the set of n-fold tensor products of the four 2× 2 Pauli
matrices, P = {I, σx, σy, σz}⊗n (see Definition 3.1). We consider a class of Hamiltonians which
are local with respect to an underlying graph, which we call low-intersection Hamiltonians.

Definition 1.3 (Hamiltonian). A Hamiltonian on n qubits is an operator H ∈ C2n×2n
that we

consider as a linear combination of local terms Ga ∈ P with associated coefficients λa, H =

H(λ) = ∑m
a=1 λaGa. We also refer to these qubits as sites.

For normalization, we assume that the Ga’s are distinct, non-identity, and that |λa| ⩽ 1. We say
this Hamiltonian is K-local if every term Ga is supported on at most K qubits: |supp(Ga)| ⩽ K.

Assuming that the terms are Pauli can be done without loss of generality: any term supported
on K qubits can be expanded into the Pauli basis, inflating the number of terms by at most a
factor of 4K.

Definition 1.4 ((d,K)-low-intersection Hamiltonian). For an n-qubit Hamiltonian H = ∑m
a=1 λaGa,

we define its underlying graph G to be the hypergraph on n vertices whose edges are given by
the sets supp(Ga) for a ∈ [m]. We say H has degree d if the degree of every vertex in the graph
is at most d.

We call a Hamiltonian H a (d,K)-low-intersection Hamiltonian if H has locality K and degree d.

Low-intersection Hamiltonians generalize geometrically local Hamiltonians in low-dimensional
spaces, which is the type of Hamiltonian often considered in physically motivated settings. For
example, a K-local Hamiltonian which is geometrically local with respect to a d-dimensional
lattice is a ((2d)K−1,K)-low intersection Hamiltonian. We now formally state our structural
result about high-temperature Gibbs states.

Theorem 1.5 (High-temperature Gibbs states are separable). Given a (d,K)-low-intersection Hamil-
tonian (see Definition 1.4) and β < 1/(γ · d · K2) for a fixed universal constant γ, the corresponding
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Gibbs state ρ = e−βH/ tr(e−βH) can be expressed as a positive linear combination of A1⊗A2⊗ . . .⊗An,
such that for each j ∈ [n],

Aj ∈
{

I/2, (I ± σx)/2, (I ± σy)/2, (I ± σz)/2
}

.

Prior work on thermal area laws shows that the mutual information between two subsystems
L and R of a Gibbs state is bounded by a linear function in the size of the surface area of
L, β|∂L| [WVHC08; KAA21]. Here, mutual information serves as a proxy for entanglement,
mirroring area laws for entanglement entropy in ground states [Has07; AKLV13; AAG22]. In
sharp contrast, our results treat entanglement directly and demonstrate that, for any temperature
higher than a fixed constant, it is identically zero.

Next, we state our result on efficiently preparing Gibbs states.

Theorem 1.6 (High-temperature Gibbs states are efficiently preparable). Given 0 < ε, δ < 1 and a
(d,K)-low-intersection Hamiltonian (see Definition 1.4) and β < βc = 1/(γdK)2, for a fixed universal
constant γ, let ρ = e−βH/ tr

(
e−βH). Then, there exists a classical randomized algorithm that runs in

time
Õ
(

n7+ log(d)
log(βc/β) · log2(n/ε) · log(1/δ) · poly(K, d)

)
.

It satisfies the following properties:

1. With probability at least 1− δ, the algorithm outputs a classical description of a product state
ρ̂ = A1 ⊗ · · · ⊗ An where every Aj is either an eigenvector of a Pauli matrix or maximally mixed,

Aj ∈
{ I

2
,

I ± σx

2
,

I ± σy

2
,

I ± σz

2

}
;

otherwise, the algorithm outputs ⊥.

2. Conditioned on successfully outputting a state ρ̂, the mixture over ρ̂ is close to ρ in trace distance,

∥ρ−E[ρ̂]∥1 ⩽ ε,

where the expectation is only over the randomness of the algorithm.

Theorem 1.2 follows from this theorem by considering β < βc/d, so that the exponent on n,
7 + log(d)

log(βc/β)
< 8, is a constant.

With this algorithm, one can prepare a copy of ρ by running our randomized algorithm, taking
the classical description of ρ̂, and preparing it with a depth-one quantum circuit. Note that
preparing ρ in expectation is equivalent to preparing ρ, since one can just “forget the algorithm’s
steps” to get a copy of ρ without classical side correlations. Even stronger, if one performs the
algorithm coherently, it outputs a purification of ρ.

On temperature. Our bound on the critical temperature for the algorithm cannot be signifi-
cantly improved. Work by Sly and Sun [SS14] shows that approximately sampling from the
anti-ferromagnetic Ising model on a d-regular graph is NP-hard at the “uniqueness threshold”
for the d-regular tree, which is at β = Θ(1/d) = Θ(1/d) [SST14]. This hardness statement for
classical Gibbs sampling implies hardness for the more general problem of quantum Gibbs
sampling.

Note that the threshold for β in Theorem 1.5 of 1/(γdK2) is larger than the threshold in The-
orem 1.6 of 1/(γd2K2). This is because all of the structural properties that we need hold up
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to 1/(γdK2) but algorithmically, we need β < 1/(γd2K2) because we are approximating the
partition function using the subroutine in [HKT22].

1.2 Related work

Locality in high-temperature Gibbs states. Several works in the quantum information lit-
erature focus on high-temperature Gibbs states. These bound correlation measures which do
not distinguish quantum and classical, including covariance of observables [HMS20] and local
indistinguishability [KGKRE14; BK18]. Our work, which shows a lack of quantum correlation
even in the presence of classical correlations, is a significant departure from this prior work.

Sudden death of entanglement. Sudden death of entanglement is the phenomenon that two
entangled qubits, when subject to environmental noise, does not exhibit exponentially decaying
entanglement with time, as classical correlations do, but rather become entirely disentangled
after a finite amount of time [YE09]. The body of literature on ESD (entanglement sudden death)
focuses on analyzing two-qubit systems under various noise models [YE04; FMB05; AJ08] and
experimental demonstrations of ESD [Alm+07]. Its study as a phenomenon of many-body
systems is more limited, likely because even defining a measure of entanglement for mixed
states is non-trivial [HHHH09], and separability is difficult to detect for large systems.

Existing work studies the sudden death of entanglement negativity, an entanglement monotone
which can be computed efficiently [VW02], for specific spin systems, either through heuristic
arguments or numerical calculations [ABV01; AMD15; SDHS16; HC18]. States with zero
entanglement negativity need not be separable [HHH98]. So, our work is vastly more general,
and proves separability of Gibbs states at high temperature, a much stronger result than lack of
entanglement negativity.

Classical Gibbs sampling. Classical Gibbs sampling is, comparatively, well-understood
and researchers have characterized sharp phase transitions wherein there is some critical
temperature, above which sampling the Gibbs state is computationally efficient and below
which it is computationally hard [Sly10; SS14; GŠV16]. The fact that there are such wide gaps in
our understanding of quantum Gibbs sampling is especially surprising given the diverse range
of techniques we have for classical spin systems, such as path coupling [BD97], canonical paths
[JSV04], correlation decay [Wei06], abstract polymer models [KP86], zero-free regions [Bar16],
spectral independence [ALG21], and stochastic localization [CE22]. Our results can be thought
of as a sampling-to-counting reduction for quantum systems. Thus, we give an algorithmic
alternative to directly working with Lindbladians of dissipative evolutions.

Concurrent work on high-temperature Gibbs sampling. In concurrent and independent
work, Rouzé, França, and Alhambra [RFA24] prove that the dissipative evolution studied
by Chen, Kastoryano, and Gilyén [CKG23] has a constant spectral gap at high temperature,
showing that this evolution is an efficient Gibbs sampling algorithm at high temperature. The
techniques are significantly different than ours, controlling the evolution by viewing it as a
perturbation of an infinite-temperature dissipation. We do not analyze such an evolution.

Cluster expansion and abstract polymer models. The foundational tool of our approach is
cluster expansion, which allows quantities like the log-partition function and marginals of high-
temperature Gibbs states to be expressed as exponentially decaying Taylor series. This tool has
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been used to show a variety of efficient algorithms around Gibbs states and real-time evolution,
including the computation of partition functions [MH21], learning of high-temperature Gibbs
states [HKT22], and sampling from the measurement distribution of a high-temperature Gibbs
state [YL23].

Among these, the latter sampling result of Yin and Lucas bears the most similarity to our result,
using a sampling-to-counting reduction with cluster expansion to give a classical algorithm to
sample from the measurement probabilities of a Gibbs state in, say, the computational basis.
Our work also implies an efficient algorithm for this task, and achieves a stronger result by
tackling the additional challenge of performing these arguments “without measuring”.

2 Technical overview

In this section, we describe the key technical ingredients that we need to obtain Theorems 1.5
and 1.6. We refer the reader to Section 3 for notation and background.

2.1 Gibbs states are unentangled

First, we argue that high-temperature Gibbs states are unentangled. For intuition, we first present
a simple argument which shows that Gibbs states are separable for a temperature dependent on
system size. Consider the maximally mixed state, I/2n. This state is the Gibbs state at infinite
temperature, and is in the interior of the convex hull of product states. So, as β tends to zero, ρ

will eventually enter the interior of this convex hull, making it separable. This happens at a
finite β which depends on system size. Our proof will proceed by extracting sites one by one
and performing a similar argument as described locally; because we only ever do it for small
subsystems, we can show separability at constant temperature.

Let H = ∑a∈[m] λaHa be a (d,K)-low-intersection Hamiltonian, and let β < 1/(100d · K2).
Then, we can define the Hamiltonian restricted to a single site j ∈ [n], H(j), to be the terms that
contain j in their support (see Definition 3.4). With the goal of isolating the Gibbs state at site
j, we consider the Taylor expansion of e−βH · eβ(H−H(j)). We show that for our choice of β, this
series converges exponentially fast and we can sample a single term from it in an unbiased
manner.

Sampling a term. Expanding the Taylor series, we show that we can write

e−βH · eβ(H−H(j)) =
∞

∑
t=0

pt
(

H, H(j)
)
, (1)

where pt(H, H(j)) is a matrix-valued, degree-t polynomial satisfying the following recurrence
relation:

pt+1(H, H(j)) =
β

t + 1

(
−
[

H, pt(H, H(j))
]
− pt(H, H(j))H(j)

)
, (2)

This allows us to conclude that the terms are tK-local and exponentially decaying with t.
More precisely, we have that pt(H, H(j)) = ∑Fb∈P(j),t

cb,tFb, where P(j),t ⊂ {±1,±i} · P and
{j} ∪ supp(Fb) is contained in a connected component of size tK for every Fb. Further, the size
of pt is exponentially decaying with t: ∑Fb∈P(j),t

|cb,t| ⩽ 1/4t. This is proven in Theorem 4.1.

5



Since the weights are geometrically decaying, they induce a distribution over all the terms in
series expansion in Eq. (1), which can be rewritten as

e−βH · eβ(H−H(j)) = I +
∞

∑
t=1

∑
Fb∈P(j),t

cb,tFb .

We will always keep I and then sample a term from the remaining sum in an unbiased manner.
We do this by picking some term Fb with probability proportional to |cb,t| and rescaling it
appropriately. Let the resulting term be denoted by I + cE, where c ∈ R and E ∈ {±1,±i} · P .
We have that E [I + cE] = e−βH · eβ(H−H(j)).

Pinning the first site. Next, we show that we can pin the Gibbs state at a site, say site 1, which
means we fix the 2× 2 density matrix on this site. We begin by decomposing the Gibbs state as
follows:

e−βH = e−β(H−H(1))/2
(

eβ(H−H(1))/2 · e−βH/2
)

︸ ︷︷ ︸
(3).(1)

·
(

e−βH/2 · eβ(H−H(1))/2
)

︸ ︷︷ ︸
(3).(2)

e−β(H−H(1))/2. (3)

The two terms (3).(1) and (3).(2) are operators that appear in Eq. (1), with β replaced by β/2.
Therefore, we can invoke the aforementioned sampling primitive, independently, to obtain
unbiased samples I + c1E1 and I + c2E2 such that, by linearity of expectation,

E
[
e−β(H−H(1))/2(I + c1E1)

† · (I + c2E2)e−β(H−H(1))/2
]

= e−β(H−H(1))/2 E [(I + c1E1)]
† ·E [(I + c2E2)]e−β(H−H(1))/2 = e−βH,

where the expectation is over the random choice of picking a particular term. First, we make
the above Hermitian by averaging with its Hermitian conjugate. We want to factorize the state
prepared thus far into the part that acts on site 1 and the part that acts on the remaining Hilbert
space. To this end, consider the following expression:

1
2

e−β(H−H(1))/2
(
(I + c1E1)

†(I + c2E2) + (I + c2E2)
†(I + c1E1)

)
e−β(H−H(1))/2

= e−β(H−H(1))/2

I +
(

c1E1 + c1E†
1

2

)
+

(
c2E2 + c2E†

2
2

)
+

(
c1c2(E†

1 E2 + E†
2 E1)

2

)
︸ ︷︷ ︸

e−β(H−H(1))/2,

(4)

and sample one of the three terms uniformly at random and multiply the coefficient by 3.
Again, in expectation, the resulting expression is precisely e−βH. We focus on the case where
we sample the first term. Since E1 is a product of Paulis up to a factor of ±1,±i, the expression
c1(E1 + E†

1)/2 is equal to c1E1 when E1 is Hermitian and otherwise is equal to 0 when E1 is
anti-Hermitian. Consider the case where it is equal to c1E1 as this is the nontrivial case. Let
E1 = A⊗ B, where A acts on site 1, and A ∈

{
I, σx, σy, σz

}
. Assuming for sake of exposition

A = σx, observe

I + 3c1E1 = I + 3c1(σx ⊗ B) =
1
2
((I + σx)⊗ (I + 3c1B)) +

1
2
((I − σx)⊗ (I − 3c1B))

6



and yet again we sample one of the terms uniformly at random and scale it up by a factor of 2.
Let the sample be (I + σx)⊗ (I + 3c1B), then

e−β(H−H(1))/2((I + σx)⊗ (I + 3c1B))e−β(H−H(1))/2

= 2 · (I + σx)

2︸ ︷︷ ︸
(5).(1)

⊗
(

e−β(H−H(1))/2(I + 3c1B)e−β(H−H(1))/2
)

︸ ︷︷ ︸
(5).(2)

, (5)

and thus we have managed to factorize the matrix into the part that acts on site 1 (term (5).(1))
and the part that acts on the remaining n− 1 sites (term (5).(2))3. We treat the expression in
(5).(1) as the "state" corresponding to site 1, and while strictly speaking this is not a state, we can
think of the constant in front as adjusting the probabilities of outputting the various product
states at the end of the process. Finally, note that by linearity of expectation, we have

E

[
2 · (I + σx)

2
⊗
(

e−β(H−H(1))/2(I + 3c1B)e−β(H−H(1))/2
)]

= e−βH. (6)

Recursing on the remaining sites. Given the operator from term (5).(2), we show that we can
continue to peel off another site by considering the following expression:(

e−
β(H−H(1))

2 (I + 3c1B)e−
β(H−H(1))

2

)
= e−

β(H−H(1)−H(2))

2

(
e

β(H−H(1)−H(2))

2 · e
−β(H−H(1))

2

)
︸ ︷︷ ︸

(7).(1)

(I + 3c1B)
(

e
−β(H−H(1))

2 · e
β(H−H(1)−H(2))

2

)
︸ ︷︷ ︸

(7).(2)

e−
β(H−H(1)−H(2))

2 .

(7)

Recall, that we can obtain independent, unbiased samples of (7).(1) and (7).(2) using the expan-
sion from Eq. (1). Let I + d1F1 and I + d2F2 be the resulting samples, and thus

1
2

e−
β(H−H(1)−H(2))

2

(
(I + d1F1)

†(I + 3c1B)(I + d2F2) + (I + d2F2)
†(I + 3c1B)(I + d1F1)

)
e−

β(H−H(1)−H(2))

2

(8)

is an unbiased estimator of
(

e−
β(H−H(1))

2 (I + 3c1B)e−
β(H−H(1))

2

)
. As before, we then expand each

of the terms above and show that we can uniformly sample one of them to pin the second site
and so on.

Gibbs states are separable. To finish the proof, we crucially need to argue that our procedure
produces a valid positive linear combination over product states. To do this, it suffices to argue
that the matrix in the “middle" e.g. the I + 3c1B in (6), is PSD throughout the process. Note,
the perturbation to the Identity is changing as we recurse, as evidenced by expanding out the
middle expression in Eq. (8). This is challenging since this perturbation is not monotonically
decreasing. To control the perturbation, we show that the coefficient c1 is bounded. We do this
by introducing a carefully chosen potential function that tracks an upper bound on the size of
the coefficient and inductively argue the following holds

|c1| ⩽
1
2

(
1− 1

K

)| supp(B)|

3Here we overload notation and use e−β(H−H1)/2 to denote the 2n × 2n operator that is I on the first site, and the
2n−1 × 2n−1 operator with the first site factored out.
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throughout this process (see Lemma 6.7). In other words, we show that in each iteration of
the recursion, if the support of B grows, then the coefficient in front gets exponentially smaller,
whereas if the support of B shrinks, the coefficient can grow but not too drastically. Carrying
out this argument requires carefully adjusting our sampling probabilities e.g. for the different
cases in (8) instead of sampling uniformly at random—see Algorithm 6.3 for more details.

2.2 Gibbs states are efficiently preparable

We now switch gears and describe how to efficiently implement each of the aforementioned
steps to prepare a Gibbs state.

Efficiently sampling a single term. We begin by observing that the Taylor expansion in Eq. (1)
can be truncated at T = O(log(n/ε)), and since the coefficients decay exponentially, we can
conclude that

e−βH · eβ(H−H(1)) = I +
T

∑
t=1

pt

(
H, H(1)

)
︸ ︷︷ ︸

(9).(1)

+Φ, (9)

where ∥Φ∥op ⩽ poly(ε/n). Since the process terminates after poly(n) steps, it suffices to
construct an unbiased estimator for the expression in (9).(1). As before, we always keep
the identity matrix. Note, that we could in poly(n/ε) time, explicitly compute each term
∑T

t=1 pt(H, H(1)) and sample it proportional to its coefficients. However, we can actually design
a faster sampling algorithm, in particular getting log(1/ε), by exploiting the recursive structure
of pt. We do as follows: let E0 = I and suppose for some t ∈ [T], the current sample is Et. Then,
using Eq. (2),

pt+1(H, H(1)) =
β

t + 1
E
[(
−[H, Et]− Et · H(1)

)]
,

and thus with probability t/(t + 1) we sample a single Pauli term from [H, Et], and with the
remaining probability sample a single Pauli term from Et · H(1). We can verify that the resulting
sample is unbiased and runs in time O(log(n/ε)poly(d,K)) (see Lemma 4.5).

Efficiently pinning sites. Suppose invoking the aforementioned sampling primitive twice,
independently, with unbiased terms I + c1E1 and I + c2E2. As before, we have an expression of
the form:

e−β(H−H(1))/2

I +
(

c1E1 + c1E†
1

2

)
︸ ︷︷ ︸

(10).(1)

+

(
c2E2 + c2E†

2
2

)
︸ ︷︷ ︸

(10).(2)

+

(
c1c2(E†

1 E2 + E†
2 E1)

2

)
︸ ︷︷ ︸

(10).(3)

e−β(H−H(1))/2,

(10)

such that in expectation, this operator is close to e−βH . Note, in the structural result, we could
get away with uniform sampling, since it suffices to explore the entire state space, and we do
not have to adjust the probabilities carefully. Whereas, for preparing a state close to the Gibbs
state, we require a density matrix, thus need to adjust the sampling weights. In particular we
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need to sample each term with the following probabilities:

Pr[(10).(1)] ∝ tr
(

e−β(H−H(1))/2
(

I +
(

c1E1 + c1E†
1

2

))
e−β(H−H(1))/2

)
Pr[(10).(2)] ∝ tr

(
e−β(H−H(1))/2

(
I +

(
c2E2 + c2E†

2
2

))
e−β(H−H(1))/2

)
,

Pr[(10).(3)] ∝ tr
(

e−β(H−H(1))/2
(

I +
(

c1c2(E†
1 E2 + E†

2 E1)

2

))
e−β(H−H(1))/2

)
.

(11)

Approximately sampling from this distribution requires estimating the expectation of marginals
(in (11)). Whenever β < 1/(γd2K2), for a fixed constant γ, we can leverage cluster expansion
analysis from [HKT22] to estimate these quantities (see Theorem 3.5). However, we note that
running time for estimating the marginals grows exponentially in d times the support size of
the Hamiltonian. Since the support size can be as large as Θ(log(n/ε)), this would result in an
algorithm with running time (n/ε)Ω(d).

Fast Gibbs state preparation. We show that it suffices for us to have an O(1)-approximate es-
timator for tr

(
e−βH) and the partition function for any residual Gibbs state e.g. tr

(
e−β(H−H(1))

)
.

Our reduction from ε-approximate sampling to this “weak" constant-factor approximate count-
ing is reminiscent of the one by Jerrum and Sinclair [SJ89] and works as follows: we imagine
setting up a tree over the space of possible choices that our sampling algorithm makes. These
choices correspond to picking a site, expanding a series similar to Eq. (9), and sampling one
term in the expansion. The tree T has depth n and

• The root note is labeled by e−βH

• A node at depth k is indexed by a product state over k sites and a “Gibbs-like" state over
n− k sites e.g. an expression of the form in (5).(2)

• The possible children of a node are obtained by pinning one additional site in the “Gibbs-
like" state and adding this site to the product state part via the procedure described
earlier

Ideally, we want to sample a product state by simply walking straight down this tree. However,
this requires exactly computing the probabilities in Eq. (11). Since we can only do approximate
counting, we don’t know the exact probabilities we should go down each of the branches in the
tree. Instead, we set up a random walk on this tree that goes both up and down (i.e. we could
pin some site and then later unpin it and resample it) but has the desired stationary distribution
on the leaves. In particular, with respect to this distribution, the average of the product states at
the leaves is close to the Gibbs state. We show that this random walk mixes quickly – it turns
out that the approximation factor in our counting oracle only shows up in the mixing time.
Thus we can simply run the walk until it hits a leaf and output the product state corresponding
to that leaf. We remark that this tree random walk is inspired by the tree random walk used
in the reduction from weak approximate counting to sampling for self-reducible problems in
[SJ89].
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3 Background

3.1 Linear algebra

We work in the Hilbert space CN corresponding to a system of n qubits, C2 ⊗ · · · ⊗ C2, so
that N = 2n. For a matrix A, we use A† to denote its conjugate transpose, ∥A∥op to denote
its operator norm, and ∥A∥1 to denote its trace norm; for a vector v, we use ∥v∥ to denote its
Euclidean norm. We will work with this Hilbert space, often considering it in the basis of (tensor
products of) Pauli matrices.

Definition 3.1 (Pauli matrices). The Pauli matrices are the following 2× 2 Hermitian matrices.

σI =

(
1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

These matrices are unitary and (consequently) involutory. Further, σxσy = iσz, σyσz = iσx,
and σzσx = iσy, so the product of Pauli matrices is a Pauli matrix, possibly up to a factor of
{i,−1,−i}. The non-identity Pauli matrices are traceless. We also consider tensor products of
Pauli matrices, P1 ⊗ · · · ⊗ Pn where Pi ∈ {σI , σx, σy, σz} for all i ∈ [n]. The set of such products
of Pauli matrices, which we denote P , form an orthogonal basis for the vector space of 2n × 2n

(complex) Hermitian matrices under the trace inner product. The product of two elements of P
is an element of P , possibly up to a factor of {i,−1,−i}.

Definition 3.2 (Support of an operator). For an operator P ∈ CN×N on a system of n qubits,
its support, supp(P) ⊂ [n] is the subset of qubits that P acts non-trivially on. That is, supp(P)
is the minimal set of qubits such that P can be written as P = Osupp(P) ⊗ I[n]\supp(P) for some
operator O.

So, for example, the support of a tensor product of Paulis, P1 ⊗ · · · ⊗ Pn are the set of i ∈ [n]
such that Pi ̸= σI .

Fact 3.3. For any square matrix B, eI⊗B = I ⊗ eB.

3.2 Hamiltonians of interacting systems

Definition 3.4 (Restricted Hamiltonian). For a Hamiltonian H = ∑m
a=1 λaGa on n sites and a

subset S ⊆ [n], we define
H(S) = ∑

a:supp(Ga)⊆S
λaGa .

For an element j ∈ [n], we define

H(j) = ∑
a:j∈supp(Ga)

λaGa .

3.3 Approximating the partition function

At high temperature, we can efficiently estimate the log-partition function. We recap this result
here, following the analysis in [HKT22].

Theorem 3.5 (Estimating the log-partition function). Let H = H(λ) = ∑m
a=1 λaGa be a Hamilto-

nian with degree d and locality K. Let 0 ⩽ β ⩽ βc = 1/(4e2(d+ 1)2). Given any 0 < η < 1 we can
compute an estimate ẑ such that

log(tr(e−βH))− η ⩽ ẑ ⩽ log(tr(e−βH)) + η,
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in time

n · (n/η)
4+log(d)
log(βc/β) · K · polylog(n/η).

This statement follows from cluster expansion. Specifically, we can conclude the following
about the log-partition function.

Lemma 3.6 (Version of [HKT22, Theorem 3.1] for the log-partition function). Let H = H(λ) =

∑m
a=1 λaGa be a Hamiltonian with degree d and locality K. Let 0 ⩽ β ⩽ βc = 1/(4e2(d+ 1)2). Then

the log-partition function of H can be expressed as a power series in β,

L := log(tr(e−βH)) = ∑
ℓ⩾0

βℓpℓ(λ),

where pℓ is a degree-ℓ homogeneous polynomial in λ with the following properties:

1. pℓ consists of at most ned(1 + e(d− 1))ℓ−1 monomials.

2. The coefficient in front of any monomial in pℓ is at most (2e(d+ 1))ℓ in magnitude.

Further, after O(Kmd log d) pre-processing time, we have the following form of access to pℓ:

A. The list of monomials that appear in pℓ can be enumerated in time O(ℓdµ), where µ is the number
of monomials.

B. The coefficient of any monomial in pℓ can be computed exactly in O(Kℓ3 + 8ℓℓ5 log2 ℓ) =

(8ℓ + K)poly(ℓ) time.

Proof. Everything needed for the proof of this is contained in Section 3 of [HKT22]. We direct
the reader there for further details. Here, we only identify where our statements come from.

First, we observe that the L = log(tr(e−βH)) has a formal multivariate Taylor series expansion
around λ = (0, . . . , 0) [HKT22, Eqs. 24 and 25],

L = ∑
ℓ⩾0

∑
V :|V |=ℓ

λV

V !
DV L︸ ︷︷ ︸

βℓpℓ(λ)

,

where V denotes a multiset over terms [m]; λV = ∏a∈V λa is the product of all coefficients
associated to the terms in V with multiplicity; and DV L = ∏a∈V

∂
∂λa
L|λ=(0,...,0) is the log-

partition function, with derivatives taken for every λa with a ∈ V with multiplicity, evaluated
at λ = (0, . . . , 0). Note that DV L is a constant in λ. This formal expression becomes a true
equality whenever the right-hand side series converges.

The coefficient, DV L, is only non-zero when V is connected [HKT22, Proposition 3.5]. Because
of the degree bound d, the number of such “clusters” (connected V ) of size ℓ is merely expo-
nential, bounded by ned(1 + e(d− 1))ℓ−1 [HKT22, Proposition 3.6]. This gives the monomial
bound. When it is connected, |DV L| ⩽ (2e(d+ 1)β)ℓ(V !) [HKT22, Proposition 3.8]. This gives
the coefficient bound.

As for the running time statements, enumerating monomials amounts to enumerating clusters,
which is done in [HKT22, Section 3.4]. Computing a coefficient amounts to computing DV L,
which is done in [HKT22, Proposition 3.13].
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Proof of Theorem 3.5. We use Lemma 3.6 to write L = log(tr(e−βH)) as a power series

L = ∑
ℓ⩾0

βℓpℓ(λ),

and we estimate it by truncating at some level d,

L̃ =
d

∑
ℓ=0

βℓpℓ(λ).

Then, using Parts 1. and 2. of the lemma,

|L − L̃| ⩽ ∑
ℓ⩾d+1

βℓ|pℓ(λ)|

⩽ ∑
ℓ⩾d+1

βℓ ned(1 + e(d− 1))ℓ−1︸ ︷︷ ︸
# of monomials

(2e(d+ 1))ℓ︸ ︷︷ ︸
coefficient size bound

⩽ n ∑
ℓ⩾d+1

(2e2(d+ 1)2β)ℓ

=
n(2e2(d+ 1)2β)d+1

1− 2e2(d+ 1)2β
,

where the last step follows for β < βc = 1/(2e2(d+ 1)2), since then this series converges. This
difference can be made to be η by taking

d =

⌈
log(n/((1− β/βc)η)

log(βc/β)

⌉
. (12)

To compute L̃, we enumerate the list of monomials to order d and then compute all correspond-
ing coefficients. The running time of this is dominated by the task at order d, which is bounded
by

n(ed)d︸ ︷︷ ︸
# of clusters

· (8d + K)poly(d)︸ ︷︷ ︸
time to compute a coefficient

(13)

= Õ
(

n
( n
(1− β/βc)η

) log(8ed)
log(βc/β)K

)
(14)

This gives the desired bound. Since we are not optimizing the constant in βc, we take βc ← βc/2,
to avoid writing the (1− β/βc) term.

4 Low-degree polynomial approximation to a restricted Gibbs state

In this section, we decompose the matrix expression e−βHeβ(H−H(j)), where H(j) is the Hamilto-
nian restricted to a site j (Definition 3.4), into an infinite, exponentially decaying series. This
implies that this operator is quasi-local, and that the truncation of this series, a low-degree
polynomial p in the terms of H, is a good approximation to it. This allows us to extract the
dependence of site j from the Gibbs state,

e−βH ≈ p · e−β(H−H(j)).

Theorem 4.1 (Restricted Gibbs state series). Let H = ∑a∈[m] λaGa be a (d,K)-low-intersection
Hamiltonian and let j ∈ [n]. If β < 1

2CdK for some universal constant C > 1, then we can write

e−βH · eβ(H−H(j)) =
∞

∑
t=0

pt(H, H(j))

12



where p0(H, H(j)) = I and pt satisfies the recurrence

pt+1(H, H(j)) =
β

t + 1

(
−[H, pt(H, H(j))]− pt(H, H(j))H(j)

)
. (15)

Furthermore, for each t > 0, pt can be written as ∑Fb∈P(j),t
cb,tFb where ∑Fb∈P(j),t

|cb,t| ⩽ 1
Ct , and

P(j),t =
{

P ∈ {±1,±i} · P
∣∣∣ {j} ∪ supp(P) ⊂ S for some S ⊂ [n]

which is connected in G and satisfies |S| ⩽ tK
}

.

Proof. We can write

e−βHeβ(H−H(j)) =
( ∞

∑
k=0

βk(−H)k

k!

)( ∞

∑
ℓ=0

βℓ(H − H(j))
ℓ

ℓ!

)
=

∞

∑
t=0

βt

t!

t

∑
k=0

(−H)k(H − H(j))
t−kt!

k!(t− k)!
(16)

=
∞

∑
t=0

βt

t!

t

∑
k=0

(
t
k

)
(−H)k(H − H(j))

t−k

︸ ︷︷ ︸
ft(H,H(j))

.

Now observe that f0(H, H(j)) = I and ft(H, H(j)) satisfies the recurrence

ft(H, H(j)) = −H ft−1(H, H(j)) + ft−1(H, H(j))(H − H(j))

= −[H, ft−1(H, H(j))]− ft−1(H, H(j))H(j) . (17)

Now let pt(H, H(j)) =
βt

t! ft(H, H(j)). From the above, we immediately get (15). Now we will
prove the desired properties by induction. The base case is clear. Now for the inductive step,
assume that we have proven the desired properties up to some t. Then we can write

pt(H, H(j)) = ∑
Fb∈P(j),t

cb,tFb .

The above recurrence implies

pt+1(H, H(j)) =
β

t + 1 ∑
Fb∈P(j),t

cb,t

(
−[H, Fb]− FbH(j)

)
.

We now consider the terms in two parts. First, recall H = ∑a λaGa where the Ga form a bounded
degree graph on the sites. We can write

[H, Fb] = ∑
a:supp(Ga)∩supp(Fb) ̸=∅

λa[Ga, Fb] (18)

since the commutator [Ga, Fb] is zero when the supports of Ga and Fb don’t intersect. Now
each commutator [Ga, Fb] is equal to 2P for some P ∈ {±1,±i} · P . Furthermore, by the
inductive hypothesis, {j} ∪ supp(P) ⊆ ({j} ∪ supp(Fb))∪ supp(Ga) must be contained in some
connected component of size at most (t + 1)K. Also, in (18), there are at most d| supp(Fb)| ⩽ dtK
nonzero terms by the inductive hypothesis. Next, note that

FbH(j) = ∑
a:j∈supp(Ga)

λaFbGa (19)
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and FbGa ∈ {±1,±i} · P and supp(FbGa) ⊆ supp(Ga)∪ supp(Fb) which again, by the inductive
hypothesis, must be contained in some connected component of size at most (t + 1)K that also
contains {j}. Also, by assumption, the above sum has at most d terms. Combining the two
parts (18) and (19), we can write

pt+1(H, H(j)) = ∑
Fb∈P(j),t+1

cb,t+1Fb

where all elements Fb ∈ P(j),t+1 have supp(Fb) contained in some connected component of size
at most (t + 1)K that also contains {j}. Finally, by the inductive hypothesis,

∑
Fb∈P(j),t+1

|cb,t+1| ⩽
β

t + 1 ∑
Fb∈St

|cb|(d+ 2tdK) ⩽
1

Ct+1 ,

with our setting of β, which completes the proof.

Algorithm 4.2 (Recursively sampling a term).

Input: A (d,K)-low-intersection Hamiltonian H = ∑a λaGa, parameters β, site j ∈ [n]

Input: Integer k ⩾ 0.

Operations:

1. Initialize c0 = 1, E0 = I

2. For t = {0, 1, . . . , k− 1}

(a) Sample g ∈ {0, 1, . . . , t}

(b) If g > 0

i. Sample a random element j′ ∈ supp(Et)

ii. Let S be the set {(λa, Ga)}a∈[m],j′∈supp(Ga)

iii. Sample each element of S independently with probability 1/d and oth-
erwise sample the pair (0, I)

iv. If we sample (0, I), set ct+1 = 0, Et+1 = I

v. Otherwise let (λa, Ga) be the pair we sampled and let k = | supp(Ga) ∩
supp(Et)|

vi. Set

ct+1 =
2βdctλa| supp(Et)|

tk
, Et+1 =

−[Ga, Et]

2
.

(c) If g = 0

i. Let S be the set {(λa, Ga)}a∈[m],j∈supp(Ga)

ii. Sample each element of the set S with probability 1/d and otherwise
sample the pair (0, I)

iii. If we sample (0, I), set ct+1 = 0, Et+1 = I

14



iv. Otherwise let (λa, Ga) be the pair we sampled and set

ct+1 = βdctλa , Et+1 = −EtGa

Output: ck, Ek

In light of Theorem 4.1, we make the following definition:

Definition 4.3 (Truncating the polynomial series). For any integer k ⩾ 0 and parameter β, we
define Tk,β(H, H(j)) = ∑k

t=0 pt(H, H(j)) where pt is as constructed in Theorem 4.1.

We now give a fast algorithm for sampling a single Pauli term from one of the polynomials
in Theorem 4.1. This subroutine will be useful in our sampling algorithm later on. We will
assume that we are given the following form of access to the terms of H. For any j ∈ [n], we can
enumerate the collection {(λa, Ga)}a∈[m],j∈supp(Ga) in O(d) time.

Remark 4.4. Note that in both cases |S| ⩽ d by the assumption on the degree of H so the
distributions specified are valid.

Lemma 4.5 (Sample access to terms of pt,j). In the same setting as Theorem 4.1, for any integer t ⩾ 0,
if we run Algorithm 4.2 with k← t, then it runs in (t + 1) · poly(K, d) time and outputs a c ∈ R with
|c| ⩽ 1

Ct and E ∈ {±1,±i} · P such that

E[cE] = pt(H, H(j))

and supp(E) is contained in some connected component of size at most tK that also contains {j} in the
underlying graph.

Proof. We prove the lemma by induction. For the base case of t = 0 we simply output c = 1, E =

I. Now we show how to go from t to t+ 1. By the inductive hypothesis, we can assume that after
t iterations in the algorithm ct, Et satisfies E[ctEt] = pt(H, H(j)) and |ct| ⩽ 1

Ct , Et ∈ {±1,±i} · P .
Now recall that

pt+1(H, H(j)) =
β

t + 1

(
−[H, pt(H, H(j))]− pt(H, H(j))H(j)

)
.

Now in Algorithm 4.2, there are two cases for g which we call case 1 and case 2. We show that
in case 1, which occurs with probability t

t+1 , we are sampling a single Pauli term from −[H, Et]

and in case 2, which occurs with probability 1
t+1 , we are sampling a single Pauli term from

−EtH(j). Now we analyze the two cases.

Case 1: In this case, recall that either ct+1 = 0, Et+1 = I or

ct+1 =
2βdctλa| supp(Et)|

tk
, Et+1 =

−[Ga, Et]

2
.

Also recall k = | supp(Ga) ∩ supp(Et)|. Note that by the inductive hypothesis, supp(Et+1) is
contained in some connected component of size at most (t + 1)K that also contains {j} and

|ct+1| ⩽ 2βdK|ct| ⩽
1

Ct+1 .

Also, we can compute the expectation of ct+1Et+1 in this case. For a fixed term Ga, the probability
of sampling it is exactly equal to | supp(Ga)∩supp(Et)|

d| supp(Et)| . Note that for all terms Ga where | supp(Ga)∩
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supp(Et)| = 0, we also have [Ga, Et] = 0. Summing over all choices of Ga, by linearity of
expectation, we conclude

E[cE| case 1] = −βct

t
[∑

a
λaGa, Et] = −

βct

t
[H, Et] . (20)

Case 2: In this case, recall that either ct+1 = 0, Et+1 = I or

ct+1 = βdctλa , Et+1 = −EtGa .

It is clear that this setting of parameters satisfies the desired inductive statement. It remains to
compute the expectation. By linearity, we have

E[ct+1Et+1| case 2] = −βctEt

 ∑
a,j∈supp(Ga)

λaGa

 = −βctEtH(j) . (21)

Putting (20) and (21) together, we have

E[ct+1Et+1] =
β

t + 1

(
−[H, ctEt]− ctEtH(j)

)
.

Thus, if ctEt was drawn from a distribution such that E[ctEt] = pt(H, H(j)), then E[ct+1Et+1] =

pt+1(H, H(j)) as desired. Each iterative step of the sampling can be implemented in time
poly(K, d) so we get the desired runtime bound and this completes the proof.

We now have a basic primitive for sampling a single term of the form I2n + cE, for c ∈ R, E ∈
{±1,±i} · P whose expectation is Ttmax,β(H, H(j)) (which is an approximation to e−βH · eβ(H−H(j)),
recall Definition 4.3) for some parameters tmax, β.

Algorithm 4.6 (Sampling a monomial).

Input: Hamiltonian H = ∑a λaGa, parameters β,K, d, site j ∈ [n], threshold tmax

Operations:

1. Sample t ∼ {0, 1, 2, . . . , tmax}with probabilities {1− s, 1
3 ,
( 1

3

)2
,
( 1

3

)3
, . . . ,

( 1
3

)tmax}
(where s is such that the probabilities sum to 1)

2. If t = 0, set c = 0, E = I

3. Otherwise, run Algorithm 4.2 on H, j with parameter k← t to obtain c, E

Output: t, I + 3tcE

Lemma 4.7 (Unbiased sample). The output of Algorithm 4.6 satisfies

E[I + 3tcE] = Ttmax,β(H, H(j)) .

Proof. By linearity and the guarantees of Lemma 4.5,

E[I + 3tcE] = I +
tmax

∑
t=1

pt(H, H(j)) = Ttmax,β(H, H(j))

where the last step follows from Theorem 4.1.
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4.1 Additional structural properties of restricted Gibbs states

We prove a few additional structural properties about Gibbs states. We begin with a few basic
facts about the Gibbs state corresponding to the residual Hamiltonian, H − H(j), where H(j) is
the Hamiltonian restricted to site j,

Fact 4.8 (Factoring out a site). Let H = ∑a∈[m] λaGa be a K-local Hamiltonian with degree d. Let

j ∈ [n]. Then e−β(H−H(j)) = I ⊗ e−βH([n]\j)
.

Proof. Recall that by definition H − H(j) is a Hamiltonian on n sites that acts trivially on site j
and is equal to I ⊗ H([n]\j). Then we are done by Fact 3.3.

Now we show that the Gibbs state corresponding to H − H(j) has roughly the same spectrum
as the Gibbs state corresponding to H.

Lemma 4.9 (Spectrum of residual Hamiltonians). Let H = ∑a∈[m] λaGa be a K-local Hamiltonian
with degree d. Let j ∈ [n]. If β < 1

2CdK for some constant C > 1 then(
1− 3

2C− 1

)
e−βH ⪯ e−β(H−H(j)) ⪯

(
1 +

3
2C− 1

)
e−βH

where we view H − H(j) as a 2n × 2n matrix that acts trivially on site j.

Proof. By Theorem 4.1, there is a matrix X with ∥X∥op ⩽ 1
2C−1 ⩽ 1 such that

e−β(H−H(j))/2 = e−βH/2(I + X) .

Taking the Hermitian conjugate of both sides, we also have

e−β(H−H(j))/2 = (I + X†)e−βH/2 .

Now we have ∥∥∥(I + X)(I + X†)
∥∥∥

op
⩽ 1 + 3 ∥X∥op ⩽ 1 +

3
2C− 1

and thus,

(I + X)(I + X†) ⪯
(

1 +
3

2C− 1

)
I

which implies

eβH/2 · e−β(H−H(j)) · eβH/2 = (I + X)(I + X†) ⪯
(

1 +
3

2C− 1

)
I

proving the upper bound. The lower bound is proven similarly.

Next, we prove a sharper statement. Recalling the construction of Tt,β/2(H, H(j)) in Defini-
tion 4.3, we show that left and right multiplying a matrix by e−βH/2 is very close to the same
thing as left and right multiplying by e−β(H−H(j))/2Tt,β/2(H, H(j))

† and its Hermitian conjugate.

Lemma 4.10 (Peeling the residual Gibbs state). Let P be a 2n × 2n Hermitian matrix such that
0.5I2n ⪯ P ⪯ 2I2n and let t ⩾ 0 be an integer. Let H = ∑a∈[m] λaGa be a K-local Hamiltonian with
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degree d and let H(j) be the restriction to site j ∈ [n]. Given any β < 1
2CdK , let ZH,β = e−βH/2. for some

constant C > 1, we have(
1− 40

Ct

)
ZH,β · P · ZH,β

⪯ ZH−H(j),β · Tt,β/2(H, H(j))
† · P · Tt,β/2(H, H(j)) · ZH−H(j),β ⪯

(
1 +

40
Ct

)
ZH,β · P · ZH,β ,

where Tt,β/2 is the truncation defined in Definition 4.3.

Proof. It follows from Theorem 4.1 that

e−βH/2 · eβ(H−H(j))/2 = Tt,β/2(H, H(j)) + E

for some E ∈ C2n×2n
such that ∥E∥op ⩽ 1

(2C)t . Now we can rewrite the LHS as

ZH,βPZH,β − ZH−H(j),β · Tt,β/2(H, H(j))
† · P · Tt,β/2(H, H(j)) · ZH−H(j),β

= ZH−H(j),β

(
Tt,β/2(H, H(j))

† · P · E + E† · P · Tt,β/2

)
ZH−H(j),β + ZH−H(j),βE† · P · EZH−H(j),β .

Now consider multiplying the above by eβH/2 = Z−1
H,β on both sides. Note that Lemma 4.9

implies that ∥∥∥Z−1
H,βZH−H(j),β

∥∥∥
op

⩽ 2

and also
∥∥∥Tt,β/2(H, H(j))

†
∥∥∥

op
⩽ 2. Thus,

∥∥∥Z−1
H,β · ZH−H(j),β ·

(
Tt,β/2(H, H(j))

† · P · E + E† · P · Tt,β/2(H, H(j))
)
· ZH−H(j),β · Z

−1
H,β

∥∥∥
op

⩽
16 ∥P∥op

(2C)t

and also ∥∥∥Z−1
H,β · ZH−H(j),β · (E†PE) · ZH−H(j),β · Z

−1
H,β

∥∥∥
op

⩽
4 ∥P∥op

(2C)2t .

Thus,

−20
(2C)t I2n ⪯ P−Z−1

H,β ·ZH−H(j),β · Tt,β/2(H, H(j))
† · P · Tt,β/2(H, H(j)) ·ZH−H(j),β ·Z

−1
H,β ⪯

20
(2C)t I2n .

Finally, recalling the assumption about P and left and right multiplying the above by e−βH/2

gives the desired relations.

5 Random walks on trees

As a subroutine of our main sampling algorithm, we will design a (classical) random walk on
a tree. In this section, we present some general machinery for analyzing the mixing times of
random walks on trees. We begin with the definition of a weighted tree.

Definition 5.1 (Weighted tree). Let T be a tree of depth n with a unique root such that all
root-to-leaf paths have length exactly n. A weighted tree (T, w) of depth n is obtained by
assigning some non-negative weight wv to each leaf v of the tree. Further, the weight of each
interior node v is equal to the sum of the weights of the leaves in the sub-tree rooted at v.

Next, we assume access to the following sampling sub-routine:
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Definition 5.2 (Sampling a sub-tree). For a weighted tree, we define a sample query as querying
a node v and sampling one of its children with probabilities proportional to their weights.

Since the weights on each leaf are non-negative, they induce a probability distribution over the
leaves as follows:

Definition 5.3 (Leaf distribution). For a weighted tree, we say the leaf-distribution is the
distribution over leaves where each leaf is sampled proportional to its weight.

We then recall the definition of a Markov chain and the corresponding stationary distribution.

Definition 5.4 (Transition matrix and stationary distribution). A Markov chain on N states is
given by a transition matrix P with entries Pij for i, j ∈ [N] given by the probability of moving
from state i to state j. We define the stationary distribution, denoted by π = (π1, . . . , πN), such
that Pπ = π.

Definition 5.5 (Ergodic and time-reversible Markov chain). A Markov chain P is ergodic there
exists a positive integer z such that Pz is entry-wise positive. It is time-reversible if its stationary
distribution π satisfies

Pijπi = Pjiπj

for all i, j ∈ [N].

Next, we define the notion of conductance of a Markov chain.

Definition 5.6 (Conductance). Given a Markov chain on N states with transition matrix P and
stationary distribution π, for any subset S ⊂ [N], the conductance ΦS is defined by

ΦS =
∑i∈S,j/∈S Pijπi

∑i∈S πi
.

The global conductance of the chain is defined by Φ = minCS⩽1/2 ΦS, where CS = ∑i∈S πi.

A classical result of Jerrum and Sinclair [SJ89] bounds the spectral gap of an ergodic, time-
reversible Markov chain as a function of the conductance.

Lemma 5.7 (Spectral gap of a Markov chain [SJ89]). For an ergodic time-reversible Markov chain P,
if we order the eigenvalues of P as λ1 ⩾ λ2 ⩾ . . . ⩾ λN where λ1 = 1, then

λ1 ⩽ 1− Φ2

2
.

The main result in this section, stated in Theorem 5.8 below, is about relating two different
weighted trees on the same vertex set, which we denote by (T, w) and (T, w′). For a vertex
v, the distortion between the two weight functions is just wv/w′v. Note that scaling a weight
function by a constant factor doesn’t affect any of the resulting distributions. Given any edge
(u, v) on this tree, we assume that the distortion between w and w′ along this edge is bounded
i.e. 0.1 ⩽ (wu/wv) · (w′u/w′v) ⩽ 10. With this assumption, we show that given sample access to
w′ and exact access to wv/w′v at the leaves, but only a constant approximate oracle for wv/w′v at
interior nodes, we can actually efficiently sample from the leaf distribution of w via a Markov
chain that mixes quickly. This is closely related to the reduction from weak approximate
counting to sampling for self-reducible problems in [SJ89].

Theorem 5.8 (Sampling a leaf via a Markov chain). Let (T, w), (T, w′) be weighted trees of depth n
on the same vertex set such that the arity of the tree is k, i.e. each vertex has at most k children. Assume

19



that for any adjacent nodes u, v ∈ T, 0.1 ⩽ (wuw′v)/(wvw′u) ⩽ 10. Further, assume we are given an
oracle that responds to the following types of queries

• For any internal node v, compute an estimate r̂v such that 0.1(wv/w′v) ⩽ r̂v ⩽ 10(wv/w′v).

• For any leaf node v, exactly compute r̂v = wv/w′v.

• Responds to sample queries for (T, w′) (see Definition 5.2).

Then, for any 0 < ε, δ < 1, there exists an algorithm that uses O(n4 log(nk/ε) log(1/δ)) queries to
the aforementioned oracle, and

• Outputs a leaf with probability at least 1− δ.

• When the algorithm outputs a leaf, its distribution is ε-close to the leaf distribution of (T, w) in
TV distance

• Otherwise the algorithm outputs ⊥.

Proof. Consider the following random walk on (T, w): if we are at a vertex v, let u be its parent
and then:

• With probability 0.01 · r̂u/r̂v, go to u

• With probability 0.01, sample query (T, w′) for a child of v and go to that child

• Otherwise remain at v.

Note that for all vertices, we query the oracle once for r̂v and always use the same estimate
throughout the random walk i.e. we never query the same vertex again for a new estimate.
Note that by assumption, r̂u/r̂v ⩽ 10 so this walk is well-defined.

First, we prove that the stationary distribution of this walk has probability mass on each vertex
proportional to r̂vw′v. In particular, since r̂v = wv

w′v
on any leaf v, this is exactly the distribution

proportional to w on the leaves.

We do this by verifying reversibility (see Definition 5.5). Consider any two vertices u, v such
that u is a parent of v. Then we have

Puvπv = 0.01
r̂u

r̂v
r̂vw′v = 0.01r̂uw′v = 0.01

w′v
w′u

r̂uw′u = Pvuπu

as desired. Thus we can conclude that the Markov chain is ergodic and time-reversible.

Next, we will lower bound the spectral gap of this walk by bounding the conductance and
applying Lemma 5.7. To lower bound the conductance we show that it suffices to consider
when the subset S is a subtree rooted at some vertex v. To see this, consider any cut (T1, T2)

such that T2 contains the root. LetM = { vi }i∈[r] be the maximal elements in T1, i.e. for each vi,
the parent of vi , denoted by ui, is in T2. Then,

ΦT1 ⩾
∑vi∈M Pviui πvi

∑vi∈T1
πvi

⩾
∑vi∈M Pviui πvi

∑vi∈M ∑vj∈ sub-tree (vi) πvj

⩾
Pviui πvi

∑vj∈ sub-tree (vi) πvj

Let S be sub-tree rooted at v and let u be the parent. Then

ΦS ⩾
0.1r̂uw′v

∑v′⪯v r̂vw′v
⩾

wuw′v
40w′u(∑v′⪯v wv)

⩾
wuw′v

40nw′uwv
⩾

1
80n
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where in the above, we used that ∑v′⪯v wv ⩽ nwv from the definition of a weighted tree of depth
n. Thus, by Lemma 5.7, the spectral gap of the Markov chain is Ω(1/n2). Finally, the number
of nodes in the tree is at most (k + 1)n so after O(n3 log(k/ε)) steps of the Markov chain, the
distribution will be ε-close to the stationary distribution (see for instance [LP17]). Note that
the stationary distribution matches the leaf distribution of (T, w) on the leaves and also the
probability of being at a leaf in the stationary distribution is at least

∑v leaf r̂vw′v
∑v r̂vw′v

⩽
1
4

∑v leaf wv

∑v wv
⩾

1
4n

.

Thus, we can first run O(n3 log(nk/ε)) steps of the Markov chain to get ε/(100n)-close to the
stationary distribution and then run epochs of O(n3 log(nk/ε)) steps until we reach a leaf. We
output as soon as we hit a leaf. With probability 1− δ, we will hit a leaf within O(n log(1/δ))

epochs and this gives the desired output.

6 Fast state preparation and analysis

Next, we describe our full sampling algorithm. We construct a tree of depth n. Each node is
labeled with a tuple (S, α, B, M) consisting of

• A subset S ⊆ [n]

• A multiplier α ∈ R

• A matrix B that is a product state over sites in [n]\S.

• A matrix M = (I2|S| + cE) where c ∈ R and E ∈ P is a Hermitian matrix acting on the
sites in S

The root is labeled with S = [n], α = 1, B = 1, M = I2n . We now show in Algorithm 6.3 how to
construct the children of a given node. At a high-level, we can interpret the children of each
node as obtained by adding one additional qubit to the product state B and marginalizing it out
from the matrix M.

Remark 6.1. In the above, we use B⊗j A to denote a product state with A in the j-th qubit and
B on the remaining qubits.

Note that each time we run the sampling procedure in Algorithm 6.3 on say (S, α, B, M), the
child node has a set S′ = S\j for some j ∈ S, matrix B′ that is a product state over B and one
additional qubit, and matrix M acting on one fewer qubit. The sampling procedure gives us a
way to construct a tree of depth n.

Definition 6.2 (Sample tree of a Hamiltonian). Given a Hamiltonian H = ∑a λaEa over n sites
and parameters β,K, d such that H is a K-local Hamiltonian with degree d, we construct its
sample tree as follows:

• The root node is labeled with (S, α, B, M) = ([n], 1, 1, I2n)

• For each node with a nonempty subset S, its children are labeled with the possible
outcomes of running Algorithm 6.3 on that node.

Our overall strategy is as follows. We will first assign a matrix to each of the nodes of the sample
tree. Specifically, for a node v indexed by (Sv, αv, Bv, Mv), we assign it the matrix

Qv = αvBv ⊗ e−βH(Sv)/2Mve−βH(Sv)/2 .
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To interpret this matrix, note that it is a 2n× 2n matrix. The matrix Bv is over the qubits in [n]\Sv

and the latter part is over the qubits in Sv. Roughly at this node, we think of having “pinned"
all qubits in [n]\S to be a product state Bv and are left with a “Gibbs-like" state on the qubits in
Sv (note if Mv were identity, then it would actually be a multiple of the Gibbs state on Sv).

Algorithm 6.3 (Pinning a single site).

Input: Hamiltonian H = ∑a λaEa over set of sites [n], parameters β,K, d such that β ⩽
1/(100dK2)

Input: Accuracy parameter ε

Input: Set S ⊆ [n] of unpinned sites, multiplier α, matrices B, I2|S| + cE

1. Let H(S) be the effective Hamiltonian on the unpinned sites. Choose an unpinned
site j ∈ supp(E) or arbitrarily if supp(E) = ∅.

2. Run Algorithm 4.6 with inputs H(S), j, β/2,K, d, tmax = 10 log(n/ε) twice (inde-
pendently) to obtain t1, I2|S| + c1E1 and t2, I2|S| + c2E2.

3. Sample b ∈ {0, 1, 2, 3, 4, 5, 6} with probabilities {1 − 1
K , 1

6K , 1
6K , 1

6K , 1
6K , 1

6K , 1
6K}.

Re-weight the sample as follows:

• If b = 0, set c′ = c
1−1/K , E′ = E

• If b = 1 set c′ = 6Kc1, E′ = (E†
1 + E1)/2

• If b = 2 set c′ = 6Kc2, E′ = (E†
2 + E2)/2

• If b = 3 set c′ = 6Kcc1, E′ = (E†
1 E + EE1)/2

• If b = 4 set c′ = 6Kcc2, E′ = (E†
2 E + EE2)/2

• If b = 5 set c′ = 6Kc1c2, E′ = (E†
2 E1 + E†

1 E2)/2

• If b = 6 set c′ = 6Kcc1c2, E′ = (E†
2 EE1 + E†

1 EE2)/2

4. Write E′ = E′j ⊗ E′S\j where E′j ∈ {I, σx, σy, σz} is the jth Pauli matrix in E′ and
E′S\j ∈ P is the product of the Paulis over the remaining |S| − 1 sites

5. Round c′ down to the nearest integer multiple of ε/(100n).

6. If E′j = I then set A = I/2, c′′ = c′.

7. If E′j ∈ {σx, σy, σz} set A = (I + E′j)/2, c′′ = c′ or A = (I − E′j)/2, c′′ = −c′ with
probability 1/2 each.

8. If E′S\j = ±I2|S|−1 , set α← α(1± c′′) , c′′ ← 0

9. Set α← 2α, to account for uniform sampling at step 7.

Output: Set S\j, multiplier α, matrices B⊗j A, I2|S|−1 + c′′E′S\j .

Now going from a node to its children involves pinning one more site. The key lemma,
Lemma 6.13, shows that the average of Qv′ over the children v′ of a node v, with respect to the
distribution given by the sampling algorithm Algorithm 6.3, is close to the matrix Qv. Then we
will be able to iterate this lemma to show that the average over the leaves, which are all just
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product states weighted by αv, is close to the matrix at the root which is just e−βH.

Thus to sample the Gibbs state e−βH/ tr(e−βH), it suffices to sample a leaf from a certain
distribution, which we define in Definition 6.11. However, this distribution is not the same as
the distribution naturally induced by running Algorithm 6.3, which is defined in Definition 6.9.
We will show how to approximate the ratio between these two distributions and then use
Theorem 5.8 to sample.

6.1 Basic properties of the sample tree

First we need to prove that various quantities that appear when constructing the sample tree
are positive and well-defined. We have the following claim which ensures that the α are real
and the matrices M at all of the nodes in the sample tree are indeed of the form I2|S| + cE for
c ∈ R and E ∈ P a 2|S| × 2|S| Hermitian matrix.

Lemma 6.4 (Sample tree has Hermitian nodes). Assuming that the input I2|S| + cE to Algorithm 6.3
has c ∈ R and E is Hermitian with E ∈ P , then the output also has c′′ ∈ R and E′[n]\j Hermitian with
E′[n]\j ∈ P .

Proof. Clearly c′′ is real if c is real. Also, if E ∈ P and E is Hermitian, then as constructed in the
algorithm, E′ ∈ P and E′ is Hermitian. Thus, it is a product of 2× 2 Pauli matrices up to a sign
of either ±1. Thus, both E′j and E′S\j are also just products of Paulis up to a sign of either ±1
and this means they are both Hermitian.

Next, we record a few basic observations about the structure of the sample tree.

Fact 6.5. The sample tree has the following properties. For a node v = (S, α, B, M) at depth d:

1. |S| = n− d

2. B is a product state over sites in [n]\S sites of the form
⊗

j∈[n]\S Aj where Aj ∈ {I/2, (I ±
σx)/2, (I ± σy)/2, (I ± σz)/2}

3. M is a 2n−d × 2n−d matrix on sites in S

Proof. These are immediate from the definition in Algorithm 6.3.

Lemma 6.6 (Sample tree arity). In the sample tree T, each node has at most O(n24n/ε) children.

Proof. This is immediate from the definition in Algorithm 6.3 since there are at most n choices
for j, O(n/ε) choices for c by Lemma 6.7 and at most 4n possible choices for A and E′.

In order for the sample tree to be useful, we need to ensure that the weights α are positive and
the matrices I2|S| + cE are PSD i.e. |c| ⩽ 1. This is nontrivial to show, but we are able to prove it
via a carefully chosen potential function. We note that this lemma is crucial to showing that we
can keep pinning sites iteratively, and implies the structural result for Gibbs states.

Lemma 6.7 (Coefficients remain small). Assuming that the input I2|S| + cE to Algorithm 6.3 satisfies
either of the following two conditions

• | supp(E)| > 0 and |c| ⩽ 1
2

(
1− 1

K

)| supp(E)|

• c = 0
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Then the output satisfies |c′′| ⩽ 1
2

(
1− 1

K

)| supp(E′S\j)|.

Proof. We start by considering the first condition when | supp(E)| > 0. We consider each
of the cases in the algorithm. If b = 0 then E′ = E then | supp(E′S\j)| = | supp(E)| − 1 and
|c′′| = c

1−1/K so the desired statement follows from the inductive hypothesis. If b = 1 then by
Lemma 4.5 and the definition in Algorithm 4.6,

|c′′| = 6K|c1| ⩽ 6K ·
(

3
100K

)⌈| supp(E1)|/K⌉
⩽

1
2

(
1− 1

K

)| supp(E1)|

⩽
1
2

(
1− 1

K

)| supp(E′S\j)|
.

The argument for the b = 2 case and b = 5 case are similar. If b = 3 then

|c′′| = 6K|c||c1| ⩽ 6K ·
(

3
100K

)⌈| supp(E1)|/K⌉
|c| ⩽

(
1− 1

K

)| supp(E1)|
|c|

⩽
1
2

(
1− 1

K

)| supp(E′S\j)|

where the last step used the inductive hypothesis and the fact that | supp(E′S\j)| ⩽ | supp(E1)|+
| supp(E)|. The argument for the remaining cases b = 4 and b = 6 are similar.

Next, it remains to consider when c = 0. In this case we only need to deal with when b = 1 or
b = 2 (as c′′ = 0 in all other cases). The argument for these cases is the same as above.

Corollary 6.8 (Sample tree is well-defined). Given a Hamiltonian H = ∑a λaEa over n sites and
parameters β,K, d such that H is a K-local Hamiltonian with degree d and β ⩽ 1/(100dK2), all nodes
in the sample tree, say (S, α, B, M), have

• M is a PSD matrix with M = I2|S| + cE where E ∈ P , tr(cE) = 0 and |c| ⩽ 1
2

(
1− 1

K

)| supp(E)|

• α > 0

Proof. First observe that whenever we call Algorithm 6.3 in the tree, either supp(E) ̸= ∅ or
c = 0. This holds for the root and for all descendants because of Step 8 in the algorithm. Thus,
we can apply Lemma 6.7 and induct first statement. The second statement also follows from
Lemma 6.7 now, since we must have |c′′| ⩽ 1/2 whenever we execute Algorithm 6.3.

6.2 Weight functions

Now we define two different weighted trees on the sample tree. The first is the weight derived
from the sampling process.

Definition 6.9 (Natural weight). Given a Hamiltonian H = ∑a λaEa over n sites and parameters
β,K, d such that H is a K-local Hamiltonian with degree d, let T be its sample tree. We define the
natural weight function ω to have for each node v ∈ T, ω(v) is the probability of reaching v
from the root by running the sampling process in Algorithm 6.3 at each intermediate node.

Remark 6.10. It is clear from the definition that ω indeed defines a valid weighted tree i.e. the
weight at any intermediate node is equal to the sum of the weights of the leaves of its subtree.
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The second weight function, the true weight, is defined by adjusting the natural weight at each
leaf by αv. We will show (see Corollary 6.14) that to sample from the Gibbs state, it suffices to
sample a leaf according to this true weight distribution.

Definition 6.11 (True weight). Given a Hamiltonian H = ∑a λaEa over n sites and parameters
β,K, d such that H is a K-local Hamiltonian with degree d, let T be its sample tree. We define the
true weight function κ as follows: for each leaf node v = (∅, α, B, 1), we set κ(v) = αω(v) and
for each intermediate node v, κ(v) is the sum of the weights of the leaves in its subtree.

Remark 6.12. Recall from Corollary 6.8 that all of the α are positive and thus this is a valid
weighted tree.

6.3 Analyzing the weight functions

First, we prove the key lemma, which shows that at each node v, the matrix

Qv = αvBv ⊗ e−βH(Sv)/2Mve−βH(Sv)/2

is close to the average of Qv′ over its children v′ (according to the distribution induced by
running Algorithm 6.3 on v). Since these matrices are not trace-normalized, it will be important
to ensure that our error bounds are “at the right scale". We do this by bounding our errors
multiplicatively in PSD ordering.

Lemma 6.13. Given a Hamiltonian H = ∑a λaEa over n sites and parameters β,K, d such that H is
a K-local Hamiltonian with degree d and β ⩽ 1/(100dK2), let T be its sample tree. Let v be a node
indexed by (Sv, αv, Bv, Mv). Then we have

(
1− ε

10n

)
αvBv ⊗ e−βH(Sv)/2Mve−βH(Sv)/2

⪯ ∑
v′ child of v

ω(v′)
ω(v)

αv′Bv′ ⊗ e−βH(Sv′ )/2Mv′e−βH(Sv′ )/2 ⪯
(

1 +
ε

10n

)
αvBv ⊗ e−βH(Sv)/2Mve−βH(Sv)/2

where recall H(Sv) is the Hamiltonian restricted to the set Sv.

Proof. Consider the execution of Algorithm 6.3 with input (Sv, αv, Bv, Mv) where Mv = I2|Sv | +

cE. We first note that in the execution,∥∥∥E[αA⊗ (I2|Sv |−1 + c′′E′Sv\j)]− αv E[I2|Sv | + c′E′]
∥∥∥

op
⩽

αvε

100n
, (22)

where α, A is the output of Algorithm 6.3 and c′, E′ are the intermediate parameters appearing
in the execution of Algorithm 6.3. This follows from observing that the cases all result in a state
that in expectation is αv E[I2|Sv | + c′E′] and that the only difference between the two sides is due
to the rounding of c′′. Next, we compute

αv E[I2|Sv | + c′E′]

= αv E

[
1
2

(
(I2|Sv | + c1E†

1) (I2|Sv | + cE) (I2|Sv | + c1E1) + (I2|Sv | + c2E†
2) (I2|Sv | + cE) (I2|Sv | + c1E1)

)]
= αvTtmax,β/2(H(Sv), H(Sv)

(j) )† (I2|Sv | + cE) Ttmax,β/2(H(Sv), H(Sv)
(j) ),
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where the last step follows from Lemma 4.7. Recall that Mv = I2|Sv | + cE. Left and right

multiplying the above by e−β(H(Sv)−H(Sv)
(j) )/2 and applying Lemma 4.10, we get

αve−βH(Sv)/2Mve−βH(Sv)/2 − αve−β(H(Sv)−H(Sv)
(j) )/2

E[I2|Sv | + c′E′]e−β(H(Sv)−H(Sv)
(j) )/2

⪯ αvε

100n
· e−βH(Sv)/2Mve−βH(Sv)/2 .

(23)

Next, we can left and right multiply both sides of (22) by e−β(H(Sv)−H(Sv)
(j) )/2 to get

e−β(H(Sv)−H(Sv)
(j) )/2

(
E[αA⊗ (I2|Sv |−1 + c′′E′Sv\j)]− αv E[I2|Sv | + c′E′]

)
e−β(H(Sv)−H(Sv)

(j) )/2

⪯ αvε

100n
· e−β(H(Sv)−H(Sv)

(j) )
(24)

Adding (23) and (24), we get

αve−βH(Sv)/2Mve−βH(Sv)/2

−E

[
αe−β(H(Sv)−H(Sv)

(j) )/2
(

A⊗ (I2|Sv |−1 + c′′E′Sv\j)
)

e−β(H(Sv)−H(Sv)
(j) )/2

]
⪯ ε

100n
·
(

αve−βH(Sv)/2Mve−βH(Sv)/2 + αve−β(H(Sv)−H(Sv)
(j) )
)

⪯ ε

10n
· αve−βH(Sv)/2Mve−βH(Sv)/2

where in the last step, we applied Lemma 4.9 and used that 0.5I2|Sv | ⪯ Mv from Corollary 6.8.
Similarly, we can prove a lower bound of

− ε

10n
· αve−βH(Sv)/2Mve−βH(Sv)/2 .

Now we immediately get the desired inequality since H(Sv) − H(Sv)
(j) = I ⊗ H(Sv\j) (where the

identity matrix is on the jth site) and thus

e−β(H(Sv)−H(Sv)
(j) )/2

= I ⊗ e−βH(Sv\j)/2 .

Also recall that averaging over the children of v with weights ω(v′)/ω(v) is exactly the same as
taking the expectation over the execution of Algorithm 6.3.

By iterating Lemma 6.13, we can relate the average at the leaves to the Gibbs state. Specifically,
since the true weight distribution on the leaves is exactly defined to be equal to the natural
weight distribution arising from the sampling process and then distorted by a factor of αv at
each leaf v, we get that the average of the product states Bv at the leaves according to the true
weight distribution is close to the Gibbs state e−βH/ tr(e−βH).

Corollary 6.14 (Average of the leaves is close to the Gibbs state). Given a Hamiltonian H =

∑a λaEa over n sites and parameters β,K, d such that H is a K-local Hamiltonian with degree d and
β ⩽ 1/(100dK2), let T be its sample tree . Then∥∥∥∥∥ e−βH

tr(e−βH)
−

∑v′ leaf of T κ(v′)Bv′

∑v′ leaf of T κ(v′)

∥∥∥∥∥
1

⩽
ε

2
.
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Proof. By repeatedly applying Lemma 6.13 starting from the root, we have(
1− ε

10

)
e−βH ⪯ ∑

v′ leaf of T
κ(v′)Bv′ ⪯

(
1 +

ε

10

)
e−βH ,

which follows from recalling that κ(v) = α(v)ω(w). Thus∥∥∥∥ e−βH

tr(e−βH)
− ∑v′ leaf of T κ(v′)Bv′

∑v′ leaf of T κ(v′)

∥∥∥∥
1
⩽ 2

∥∥∥∥ e−βH

tr(e−βH)
− ∑v′ leaf of T κ(v′)Bv′

tr(e−βH)

∥∥∥∥
1
⩽

ε

2

as desired.

To sample from the distribution induced by κ on the leaves, we will need to approximate the
ratio κ(v)/ω(v) in order to then apply Theorem 5.8 (since we can run Algorithm 6.3 to sample
from the weighted tree ω). We do this below.

Corollary 6.15 (Bounded weight ratio). Given a Hamiltonian H = ∑a λaEa over n sites and
parameters β,K, d such that H is a K-local Hamiltonian with degree d and β ⩽ 1/(100dK2), let T be its
sample tree. Let v be a node indexed by (Sv, αv, Bv, Mv). Then we have

0.4αv tr(e−βH(Sv)
) ⩽

κ(v)
ω(v)

⩽ 1.6αv tr(e−βH(Sv)
) .

Proof. By repeatedly applying Lemma 6.13, we have(
1− ε

10n

)|Sv|
αvBv ⊗ e−βH(Sv)/2Mve−βH(Sv)/2 ⪯ ∑

v′ leaf
v′⪯v

ω(v′)
ω(v)

αv′Bv′

⪯
(

1 +
ε

10n

)|Sv|
αvBv ⊗ e−βH(Sv)/2Mve−βH(Sv)/2

.

Now take the trace of the above. Recall that by Corollary 6.8, 0.5I ⪯ Mv ⪯ 1.5I and tr(Bv′) = 1
for all leaves v′, so we have

0.4αv tr(e−βH(Sv)
) ⩽

κ(v)
ω(v)

⩽ 1.6αv tr(e−βH(Sv)
)

which is exactly what we set out to prove.

We will also need a bound on the running time of Algorithm 6.3.

Lemma 6.16 (Running time). Algorithm 6.3 can be implemented to run in time O(log(n/ε)poly(K, d)).

Proof. By Lemma 4.5, Algorithm 4.6 runs in log(n/ε)poly(K, d) time. The remaining operations
can be implemented in time O(| supp(E1)| + | supp(E2)|) since we can multiply the Pauli
matrices qubit-wise. This is O(log(n/ε)K) by the guarantees of Lemma 4.5. Thus, the total
runtime is log(n/ε)poly(K, d) as claimed.

Now we can put everything together to prove our our main theorem, Theorem 1.6.

Proof of Theorem 1.6. We will apply Theorem 5.8 on the sample-tree with w′ ← ω and w ← κ.
First, we verify the hypotheses of Theorem 5.8. By Lemma 6.6, the number of children of
each node is at most k ⩽ n24n/ε. Consider two adjacent nodes u = (Su, αu, Bu, Mu) and
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v = (Sv, αv, Bv, Mv) where u is the parent of v. Note this means Sv = Su\j for some element
j ∈ Su. By Corollary 6.15,

1
4
· αu tr(e−βH(Su)

)

αv tr(e−βH(Sv))
⩽

wuw′v
wvw′u

⩽ 4 · αu tr(e−βH(Su)
)

αv tr(e−βH(Sv))
.

Note that |c′′| ⩽ 1/2 by Corollary 6.8 so

1
4
⩽

αu

αv
⩽

3
4

.

Also recall that
e−β(H(Su)−H(Su)

(j) )
= I ⊗ e−βH(Su\j)

= I ⊗ e−βH(Sv)

so by Lemma 4.9,

1.9 ⩽
tr(e−βH(Su)

)

tr(e−βH(Sv))
⩽ 2.1 .

Thus, we deduce

0.1 ⩽
wuw′v
wvw′u

⩽ 10 .

Next, we show how to implement the types of queries required in Theorem 5.8. For the first
type of query, we can apply Corollary 6.15 and Theorem 3.5 with η ← 0.01. The runtime of
answering this query is

O
(

n · (100n)
4+log(d)
log(βc/β) · K · polylog(n)

)
For the third type of queries, we simply run Algorithm 6.3. By Lemma 6.16, the runtime is
O(log(n/ε)poly(K, d)). Note that when running the Markov chain in Theorem 5.8, we can store
the of all of the labels (S, α, B, M) of all of the nodes that we have visited so far. When visiting a
new node, computing (S, α, B, M) involves just one execution of Algorithm 6.3 on its parent,
which we must have already visited. Thus, whenever we visit a leaf we already have an exact
value for α = κ(v)/ω(v) so this allows us to answer the second type of query whenever we
need to (which is only when the Markov chain visits a leaf). Thus, we have verified all of the
hypotheses of Theorem 5.8. Putting everything together, we get that with probability 1− δ, we
get a sample from a distribution that is ε/2-close in TV to the leaf distribution of κ in time

Õ
(

n6+ ·(4+log(d))
log(βc/β) log2(1/ε) log(1/δ)poly(K, d)

)
.

Now let this sample be indexed by a product state Bv = A1 ⊗ · · · ⊗ An. By Corollary 6.8, this is
a product state over {I/2, (I ± σx)/2, (I ± σy)/2, (I ± σz)/2}. Finally∥∥∥∥ e−βH

tr(e−βH)
−E[Bv]

∥∥∥∥
1
⩽

∥∥∥∥ e−βH

tr(e−βH)
− ∑v′ leaf of T κ(v′)Bv′

∑v′ leaf of T κ(v′)

∥∥∥∥
1
+

∥∥∥∥∑v′ leaf of T κ(v′)Bv′

∑v′ leaf of T κ(v′)
−E[Bv]

∥∥∥∥
⩽ ε.

where the expectation is over the execution of the Markov chain in Theorem 5.8 (conditioned
on a valid output). Note that in the last step above we used Corollary 6.14 and the fact that the
distribution of our output is ε/2 close to the distribution induced by κ(·) on the leaves. Thus,
we can simply output ρ̂ = Bv and this completes the proof.

Finally we prove the structural property Theorem 1.5. It follows directly from Corollary 6.14.
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Proof of Theorem 1.5. Note that the set of all convex combinations of Q1 ⊗Q2 ⊗ . . .⊗Qn where

Qi ∈
{
(I + σx)/2, (I − σx)/2, (I + σy)/2, (I − σy)/2, (I + σz)/2, (I − σz)/2

}
,

for each i ∈ [n], forms a closed set. By Corollary 6.14, for any ε > 0, the Gibbs state
e−βH/ tr(e−βH) is ε-close to this set (in trace distance). Taking the limit as ε → 0, we get
that e−βH/ tr(e−βH) must actually be in this set of convex combinations, as desired.
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