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ABSTRACT

Normalization layers are one of the key building blocks for deep neural networks.
Several theoretical studies have shown that batch normalization improves the sig-
nal propagation, by avoiding the representations from becoming collinear across
the layers. However, results on mean-field theory of batch normalization also
conclude that this benefit comes at the expense of exploding gradients in depth.
Motivated by these two aspects of batch normalization, in this study we pose the
following question: “Can a batch-normalized network keep the optimal signal
propagation properties, but avoid exploding gradients?” We answer this question
in the affirmative by giving a particular construction of an Multi-Layer Perceptron
(MLP) with linear activations and batch-normalization that provably has bounded
gradients at any depth. Based on Weingarten calculus, we develop a rigorous and
non-asymptotic theory for this constructed MLP that gives a precise characteriza-
tion of forward signal propagation, while proving that gradients remain bounded
for linearly independent input samples, which holds in most practical settings. In-
spired by our theory, we also design an activation shaping scheme that empirically
achieves the same properties for certain non-linear activations.

1 INTRODUCTION

What if we could train even deeper neural networks? Increasing depth empowers neural networks,
by turning them into powerful data processing machines. For example, increasing depth allows large
language models (LLMs) to capture longer structural dependencies (Devlin et al., 2018; Liu et al.,
2019; Brown et al., 2020; Goyal et al., 2021; Raffel et al., 2020). Also, sufficiently deep convolu-
tional networks can outperform humans in image classification (Liu et al., 2022; Woo et al., 2023;
Wu et al., 2021). Nevertheless, increasing depth imposes an inevitable computational challenge:
deeper networks are harder to optimize. In fact, standard optimization methods exhibit a slower
convergence when training deep neural networks. Hence, computation has become a barrier in deep
learning, demanding extensive research and engineering.

A critical problem is that deeper networks suffer from the omnipresent issue of rank collapse at
initialization: the outputs become collinear for different inputs as the network grows in depth (Saxe
et al., 2013a). Rank collapse is not only present in MLPs and convolutional networks (Feng et al.,
2022; Saxe et al., 2013a; Daneshmand et al., 2020), but also in transformer architectures (Dong
et al., 2021; Noci et al., 2022). This issue significantly contributes to the training slowdown of deep
neural networks. Hence, it has become the focus of theoretical and experimental studies (Saxe et al.,
2013a; Feng et al., 2022; Daneshmand et al., 2021; Noci et al., 2022).

One of the most successful methods to avoid rank collapse is Batch Normalization (BN) (Ioffe &
Szegedy, 2015), as proven in a number of theoretical studies (Yang et al., 2019; Daneshmand et al.,
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2020; 2021). Normalization imposes a particular bias across the layers of neural networks (Joudaki
et al., 2023b). More precisely, the representations of a batch of inputs become more orthogonal
after each normalization (Joudaki et al., 2023b). This orthogonalization effect precisely avoids the
rank collapse of deep neural networks at initialization (Yang et al., 2019; Joudaki et al., 2023b;
Daneshmand et al., 2021; Joudaki et al., 2023a).

While batch normalization effectively avoids rank collapse, it causes numerical issues. The ex-
isting literature proves that batch normalization layers cause exploding gradients in MLPs in an
activation-independent manner (Yang et al., 2019). Gradient explosion limits increasing depth by
causing numerical issues during backpropagation. For networks without batch normalization, there
are effective approaches to avoid gradient explosion and vanishing, such as tuning the variance of
the random weights based on the activation and the network width (He et al., 2015; Glorot & Bengio,
2010). However, such methods cannot avoid gradient explosion in the presence of batch normaliza-
tion (Yang et al., 2019). Thus, the following important question remains unanswered:

Is there any network with batch normalization without gradient explosion and rank collapse issues?

Contributions. We answer the above question affirmatively by giving a specific MLP construction
initialized with orthogonal random weight matrices, rather than Gaussian. To show that the MLP
still has optimal signal propagation, we prove that the MLP output embeddings become isometric
(equation 5), implying the output representations becomes more orthogonal with depth. For a batch
of linearly independent inputs, we prove

E
[
isometry gap

]
= O

(
e−depth/C

)
, (1)

where C is a constant depending only on the network width and input and the expectation is taken
over the random weight matrices. Thus, for sufficiently deep networks, the representations rapidly
approach an orthogonal matrix. While Daneshmand et al. (2021) prove that the outputs converge to
within an O(width−1/2)-ball close to orthogonality, we prove that the output representations become
perfectly orthogonal in the infinite depth limit. This perfect orthogonalization turns out to be key
in proving our result about avoiding gradient explosion. In fact, for MLPs initialized with Gaussian
weights and BN, Yang et al. (2019, Theorem 3.9) prove that the gradients explode at an exponential
rate in depth. In a striking contrast, we prove that gradients of an MLP with BN and orthogonal
weights remain bounded as

E
[
log (gradient norm for each layer)

]
= O

(
width5

)
. (2)

Thus, the gradient is bounded by a constant that only depends on the network width where the
expectation is taken over the random weight matrices. It is worth noting that both isometry and log-
norm gradient bounds are derived non-asymptotically. Thus, in contrast to the previously studied
mean-field or infinite width regime, our theoretical results hold in practical settings where the width
is finite.

The limitation of our theory is that it holds for a simplification in the BN module and linear ac-
tivations. However, our results provide guidelines to avoid gradient explosion in MLPs with non-
linear activations. We experimentally show that it is possible to avoid gradient explosion for certain
non-linear activations with orthogonal random weights together with “activation shaping” (Martens
et al., 2021). Finally, we experimentally demonstrate that avoiding gradient explosion stabilizes the
training of deep MLPs with BN.

2 RELATED WORK

The challenge of depth in learning. Large depth poses challenges for the optimization of neural
networks, which becomes slower by increasing the number of layers. This depth related slowdown
is mainly attributed to: (i) gradient vanishing/explosion, and (ii) the rank collapse of hidden repre-
sentations. (i) Gradient vanishing and explosion is a classic problem in neural networks (Hochreiter,
1998). For some neural architectures, this issue can be effectively solved. For example, He et al.
(2015) propose a particular initialization scheme that avoids gradient vanishing/explosion for neural
networks with rectifier non-linearities while Glorot & Bengio (2010) study the effect of initializa-
tion on sigmoidal activations. However, such initializations cannot avoid gradient explosion for
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networks with batch normalization (Yang et al., 2019; Lubana et al., 2021). (ii) Saxe et al. (2013a)
demonstrate that outputs become independent from inputs with growing depth, which is called the
rank collapse issue (Daneshmand et al., 2020; Dong et al., 2021). Various techniques have been
developed to avoid rank collapse such as batch normalization (Ioffe & Szegedy, 2015), residual
connections (He et al., 2016), and self-normalizing activations (Klambauer et al., 2017). A related
line of work has shown how signal propagation can be achieved without batch normalization in feed-
forward networks (Burkholz & Dubatovka, 2019) and ResNets (Brock et al., 2021). Other works on
CNNs (Blumenfeld et al., 2020) have shown that symmetry breaking is a vital element for achieving
signal propagation with stable gradients in deep models. Here, we focus on batch normalization
since our primary goal is to avoid the systemic issue of gradient explosion for batch normalization.

Initialization with orthogonal matrices. Saxe et al. (2013a) propose initializing the weights with
random orthogonal matrices for linear networks without normalization layers. Orthogonal matrices
avoid the rank collapse issue in linear networks, thereby enabling a depth-independent training con-
vergence. Pennington et al. (2017) show that MLPs with sigmoidal activations achieve dynamical
isometry when initialized with orthogonal weights. Similar benefits have been achieved by initial-
izing CNNs with orthogonal or almost orthogonal kernels (Xiao et al., 2018; Mishkin & Matas,
2015), and by initializing RNN transition matrices with elements from the orthogonal and unitary
ensembles (Arjovsky et al., 2016; Le et al., 2015; Henaff et al., 2016). Similarly, we use orthogonal
random matrices to avoid gradient explosion. What sets our study apart from this literature is that
our focus is on batch normalization and the issue of gradient explosion.

Networks with linear activation functions. Due to its analytical simplicity, the identity function
has been widely used in theoretical studies for neural networks. Studies on identity activations
date back to at least two decades. Fukumizu (1998) studies batch gradient descent in linear neural
networks and its effect on overfitting and generalization. Baldi & Hornik (1995) provide an overview
over various theoretical manuscripts studying linear neural networks. Despite linearity, as Saxe
et al. (2013a;b) observe, the gradient dynamics in a linear MLP are highly nonlinear. In a line of
work, Saxe et al. (2013b;a; 2019) study the training dynamics of deep neural networks with identity
activations and introduce the notion of dynamical isometry. Baldi & Hornik (1989) and Yun et al.
(2017) study the mean squared error optimization landscape in linear MLPs. More recently, the
optimum convergence rate of gradient descent in deep linear neural networks has been studied by
Arora et al. (2018) and Shamir (2019). Du & Hu (2019) prove that under certain conditions on the
model width and input degeneracy, linear MLPs with Xavier initialized weights (Glorot & Bengio,
2010) converge linearly to the global optimum. Akin to these studies, we also analyze networks
with linear activations. However, batch normalization is a non-linear function, hence the network
we study in this paper is a highly non-linear function of its inputs.

3 MAIN RESULTS

We will develop our theory by constructing networks that do not suffer from gradient explo-
sion (Sec. 3.3) and still orthogonalize (Sec. 3.1). The construction is similar to the network studied
by Daneshmand et al. (2021): an MLP with batch normalization and linear activations. Formally,
let Xℓ ∈ Rd×n denote the representation of n samples in Rd at layer ℓ, then

Xℓ+1 = BN(WℓXℓ), ℓ = 0, . . . , L, (3)

where Wℓ ∈ Rd×d are random weights, n is the mini-batch size and d is the feature dimension.
Analogous to recent theoretical studies of batch normalization (Daneshmand et al., 2021; 2020), we
define the BN operator BN : Rd×n → Rd×n as

BN(X) = diag(XX⊤)−
1
2X, BN(X)ij =

Xij√∑d
k=1 X

2
ik

. (4)

Note that compared to the standard BN operator, mean reduction in equation 4 is omitted. Our
motivation for this modification, similar to Daneshmand et al. (2021), is purely technical and to
streamline our theory. We will experimentally show that using standard BN modules instead does not
influence our results on gradient explosion and signal propagation (for more details see Figure H6).
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A second minor difference is that in the denominator, we have omitted a 1
n factor. However, this

only amounts to a constant scaling of the representations and does not affect our results.

Compared to Daneshmand et al. (2021), we need two main modifications to avoid gradient explo-
sion: (i) n = d, and (ii) Wℓ are random orthogonal matrices. More precisely, we assume the
distribution of Wℓ is the Haar measure over the orthogonal group denoted by Od (Collins & Śniady,
2006). Such an initialization scheme is widely used in deep neural networks without batch normal-
ization (Saxe et al., 2013a; Xiao et al., 2018; Pennington et al., 2017). For MLP networks with BN,
we prove such initialization avoids the issue of gradient explosion, while simultaneously orthogo-
nalizing the inputs.

3.1 TRACKING SIGNAL PROPAGATION VIA ORTHOGONALITY

As discussed, batch normalization has an important orthogonalization bias that influences training.
Without normalization layers, representations in many architectures face the issue of rank-collapse,
which happens when network outputs become collinear for arbitrary inputs, hence their directions
become insensitive to the changes in the input. In contrast, the outputs in networks with batch nor-
malization become increasingly orthogonal through the layers, thereby enhancing the signal propa-
gation in depth (Daneshmand et al., 2021). Thus, it is important to check whether the constructed
network maintains the important property of orthogonalization.

Isometry gap. Our analysis relies on the notion of isometry gap, ϕ : Rd×n → R, introduced by
Joudaki et al. (2023b). Isometry gap is defined as

ϕ(X) = − log

(
det(X⊤X)

1
d

1
dTr(X⊤X)

)
. (5)

One can readily check that ϕ(X) ≥ 0 and it is zero when X is an orthogonal matrix, i.e., XX⊤ = Id.
The isometry denoted by I : Rd×n → R is defined as I(X) = exp(−ϕ(X)).
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Figure 1: Isometry gap (y-axis, log-scale) in depth
for an MLP with orthogonal weights, over ran-
domly generated data. As predicted by Theo-
rem 1, isometry gap of representations vanishes at
an exponential rate. The solid traces are averaged
over 10 independent runs, and the dashed traces
show the theoretical prediction from Theorem 1.

Geometric interpretation of isometry.
While the formula for isometry gap may
seem enigmatic at first, it has a simple
geometric interpretation that makes it in-
tuitively understandable. The determinant
det(X⊤X) = det(X)2 is the squared volume
of the parallelepiped spanned by the columns of
X , while Tr(X⊤X) is the sum squared-norms
of the columns of X . Thus, the ratio between
the two provides a scale-invariant notion of
volume and isometry. On the one hand, if there
is any collinearity between the columns, the
volume will vanish and the isometry gap will
be infinity, ϕ(X) = ∞. On the other hand,
ϕ(X) = 0 implies X⊤X is a scaled identity
matrix. We will prove ϕ serves as a Lyapunov
function for the chain of hidden representations
{Xℓ}∞ℓ=0.

Theory for orthogonalization. The following theorem establishes the link between orthogonality
of representations and depth.
Theorem 1. There is an absolute constant C such that for any layer ℓ ≤ L we have

Eϕ(Xℓ+1) ≤ ϕ(X0)e
−ℓ/k, where k := Cd2(1 + dϕ(X0)) . (6)

Theorem 1 states that if the samples in the input batch are not linearly dependent, representations
approach orthogonality at an exponential rate in depth. The orthogonalization in depth ensures the
avoidance of the rank collapse of representations, which is a known barrier to training deep neural
networks (Daneshmand et al., 2020; Saxe et al., 2013a; Bjorck et al., 2018).
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Figure 1 compares the established theoretical decay rate of ϕ with the practical rate. Interestingly, the
plot confirms that the rate depends on width in practice, akin to the theoretical rate in Theorem 1. It is
worth mentioning that the condition on the input samples to not be linearly dependent is necessary
to establish this result. One can readily check that starting from a rank-deficient input, neither
matrix products, nor batch-normalization operations can increase the rank of the representations.
Since this assumption is quantitative, we can numerically verify it by randomly drawing many input
mini-batches and check if they are linearly dependent. For CIFAR10, CIFAR100, MNIST and
FashionMNIST, we empirically tested that most batches across various batch sizes are full-rank (see
Section E for details on the average rank of a batch in these datasets).

Theorem 1 distinguishes itself from the existing orthogonalization results in the literature (Yang
et al., 2019; Joudaki et al., 2023b) as it is non-asymptotic and holds for networks with finite width.
Since practical networks have finite width and depth, non-asymptotic results are crucial for their ap-
plicability to real-world settings. While Daneshmand et al. (2021) provide a non-asymptotic bound
for orthogonalization, the main result relies on an assumption that is hard to verify.

Proof idea of Theorem 1. We leverage a recent result established by Joudaki et al. (2023b), proving
that the isometry gap does not decrease with BN layers. For all non-degenerate matrices X ∈ Rd×d,
the following holds

I(BN(X)) ≥

(
1 +

variance{∥Xj·∥}dj=1

(mean{∥Xj·∥}dj=1)
2

)
I(X) .

Using the above result, we can prove that matrix multiplication with orthogonal weights also does
not decrease isometry as stated in the next lemma.
Lemma 2 (Isometry after rotation). Let X ∈ Rd×d and W ∈ Rd×d be an orthogonal matrix and
X ′ = WX; then,

I(BN(X ′)) ≥

(
1 +

variance{∥X ′
j·∥}dj=1

(mean{∥X ′
j·∥}dj=1)

2

)
I(X) . (7)

It is straightforward to check that there exists at least an orthogonal matrix W for which
I(BN(WX)) = 1 (see Corollary B.3). Thus, I(·) strictly increases for some weight matrices,
as long as X is not orthogonal. When the distribution of W is the Haar measure over the orthogo-
nal group, we can leverage recent developments in Weingarten calculus (Weingarten, 1978; Banica
et al., 2011; Collins & Śniady, 2006; Collins et al., 2022) to calculate a rate for the isometry increase
in expectation:
Theorem 3. Suppose W ∼ Od is a matrix drawn from Od such that the distribution of W and UW
are the same for all orthogonal matrices U . Let {λi}di=1 be the eigenvalues of XX⊤. Then,

EW [I(BN(WX))] ≥

(
1−

∑d
k=1(λk − 1)2

2d2(d+ 2)

)−1

I(X) (8)

holds for all X = BN(·), with equality for orthogonal matrices.

The structure in X induced by BN ensures its eigenvalues lie in the interval (0, 1], in that the multi-
plicative factor in the above inequality is always greater than one. In other words, I(·) increases by
a constant factor in expectation that depends on how close X is to an orthogonal matrix.

The connection between Theorem 3 and the main isometry gap bound stated in Theorem 1 is estab-
lished in the following Corollary (recall ϕ = − log I).
Corollary 4 (Isometry gap bound). Suppose the same setup as in Theorem 3, where X ′ = WX .
Then, we have:

EW [ϕ(X ′)|X] ≤ ϕ(X) + log

(
1−

∑
k(λk − 1)2

2d2(d+ 2)

)
. (9)

Notice that the term
∑d

k=1(λk−1)2

2d2(d+2) = O( 1d ), yielding log
[
1−

∑d
k=1(λk−1)2

2d2(d+2)

]
≤ 0.

The rest of proof is based on an induction over the layers, presented in Appendices B and C.
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3.2 ORTHOGONALIZATION AND GRADIENT EXPLOSION

There is a subtle connection between orthogonalization and gradient explosion. Suppose the input
batch is rank-deficient, i.e., degenerate. As elaborated above, since all operations in our MLP can be
formulated as matrix products, they cannot recover the rank of the representations, which thus re-
main degenerate. By perturbing the input such that it becomes full-rank, the output matrix becomes
orthogonal, hence non-degenerate at an exponential rate in depth as proven in Theorem 1.
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Figure 2: Logarithmic plot for the gradient norm
of the first layer for networks with different num-
ber of layers evaluated on degenerate (orange) and
non-degenerate (blue) inputs. The degenerate in-
puts contain repeated samples from CIFAR10 in
the batch, measured at initialization for MLPs of
various depths. While gradients explode for de-
generate inputs, there is no explosion for non-
degenerate inputs. Traces are averaged over 10
independent runs.

Thus, a slight change in inputs leads to a signif-
icant change in outputs from degeneracy to or-
thogonality. Considering that the gradient mea-
sures changes in the loss for infinitesimal in-
puts changes, the large changes in outputs po-
tentially lead to gradient explosion. While this
is only an intuitive argument, we observe that
in practice the gradient does explode for degen-
erate inputs, as shown in Figure 2.

Nonetheless, in Figure 2 we observe that for
non-degenerate inputs the gradient norm does
not explode. In fact, we observe that inputs are
often non-degenerate in practice (see Table E1
for details). Thus, an important question is
whether the gradient norm remains bounded for
non-degenerate input batches. Remarkably, we
can not empirically verify that for all degener-
ate inputs the gradient norm remains bounded.
Therefore, a theoretical guarantee is necessary
to ensure avoiding gradient explosion.

3.3 AVOIDING GRADIENT EXPLOSION IN DEPTH

So far, we have proven that the constructed network maintains the orthogonalization property of
BN. Now, we turn our focus to the gradient analysis. The next theorem proves that the constructed
network does not suffer from gradient explosion in depth for non-degenerate input matrices.

Theorem 5. Let the loss function L : Rd×d → R be O(1)-Lipschitz, and input batch X0 be non-
degenerate. Then, there exists an absolute constant C such that for all ℓ ≤ L it holds

E [log ∥∇Wℓ
L(Xℓ)∥] ≤ Cd5(ϕ(X0)

3 + 1) (10)

where the expectation is over the random orthogonal weight matrices.

Remark 1. For degenerate inputs ϕ(X0) = ∞ holds, in that the bound becomes vacuous.

Remark 2. The O(1)-Lipschitz condition holds in many practical settings. For example, in a clas-
sification setting, MSE and cross entropy losses obey the O(1)-Lipschitz condition (see Lemma D.2).

Note that the bound is stated for the expected value of log-norm of the gradients, which can be
interpreted as bits of precision needed to store the gradient matrices. Thus, the fact that depth does
not appear in any form in the upper bound of Theorem 5 points out that training arbitrarily deep
MLPs with orthogonal weights will not face numerical issues that arise with Gaussian weights (Yang
et al., 2019) as long as the inputs are non-degenerate. Such guarantees are necessary to ensure
backpropagation will not face numerical issues.

Theorem 5 states that as long as the input samples are not linearly dependent, the gradients remain
bounded for any arbitrary depth L. As discussed in the previous section and evidenced in Figure 2,
this is necessary to avoid gradient explosion. Therefore, the upper bound provided in Theorem 5
is tight in terms of inputs constraints. Furthermore, as mentioned before, random batches sampled
from commonly used benchmarks, such as CIFAR10, CIFAR100, MNIST, and FashionMNIST, are
non-degenerate in most practical cases (see Section E for more details). Thus, the assumptions and
thereby assertions of the theorem are valid for all practical purposes.
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Figure 3: Logarithmic plot for the gradient norm of the first
layer for networks with different number of layers evaluated
on CIFAR10. For Gaussian weights (orange) the gradient-
norm grows at an exponential rate, as predicted by Yang
et al. (2019, Theorem 3.9), while for orthogonal weights
(blue) gradients remain bounded by a constant, validating
Theorem 5. Traces are averaged over 10 runs and shaded
regions denote the 95% confidence intervals.

To the best of our knowledge, The-
orem 5 is the first non-asymptotic
gradient analysis that holds for net-
works with batch normalization and
finite width. Previous results heavily
rely on mean field analyses in asymp-
totic regimes, where the network
width tends to infinity (Yang et al.,
2019). While mean-field analyses
have brought many insights about the
rate of gradient explosion, they are
often specific to Gaussian weights.
Here, we show that non-Gaussian
weights can avoid gradient explo-
sion, which has previously been con-
sidered “unavoidable” (Yang et al.,
2019). Figure 3 illustrates this pro-
nounced discrepancy.

Proof idea of Theorem 5. The first important observation is that, due to the chain rule, we can bound
the log-norm of the gradient of a composition of functions, by bounding the summation of the log-
norms of the input-output Jacobian of each layer, plus two additional terms corresponding to the loss
term and the gradient of the first layer in the chain. If we discount the effect of the first and last terms,
the bulk of the analysis is dedicated to bounding the total sum of log-norms of per layer input-output
Jacobian, i.e., the fully connected and batch normalization layers. The second observation is that
because the weights are only rotations, their Jacobian has eigenvalues equal to 1. Thus, the log-norm
of gradients corresponding to fully connected layers vanish. What remains is to show that for any
arbitrary depth ℓ, the log-norm of gradients of batch normalization layers also remains bounded.
The main technical novelty for proving this step is showing that the log-norm of the gradient of BN
layers is upper bounded by the isometry gap of pre-normalization matrices. Thus, we can invoke the
exponential decay in isometry gap stated in Theorem 1 to establish a bound on the log-norm of the
gradient of these layers. Finally, since the decay in isometry gap is exponentially fast, the bound on
the total sum of log-norm of the gradients amounts to a geometric sum that remains bounded for any
arbitrary depth ℓ.

4 IMPLICATIONS ON TRAINING

In this section, we experimentally validate the benefits of avoiding gradient explosion and rank
collapse for training. Thus far, we have proved that our constructed neural network with BN does
not suffer from gradient explosion in Theorem 5, and does not have the rank collapse issue in depth
via the orthogonalization property established in Theorem 1. We find that the constructed MLP is
therefore less prone to numerical issues that arise when training deep networks.
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Figure 4: Contrasting the training accuracy of MLPs with BN and shaped sin, shaped tanh and
identity activations, on the CIFAR10 dataset. The identity activation performs much worse than
the nonlinearities, confirming that the sin and tanh networks are not operating in the linear regime.
The networks are trained with vanilla SGD and the hyperparameters are width 100, batch size 100,
learning rate 0.001.
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By avoiding gradient explosion and rank collapse in depth, we observe that the optimization with
vanilla minibatch Stochastic Gradient Descent (SGD) exhibits an almost depth-independent conver-
gence rate for linear MLPs. In other words, the number of iterations to get to a certain accuracy
does not vary widely between networks with different depths. Figure 4 (c) shows the convergence of
SGD for CIFAR10, with learning rate 0.001, for MLPs with width d = 100 and batch size n = 100.
While the SGD trajectory strongly diverges from the initial conditions that we analyze theoretically,
Figure 4 shows that the gradients remain stable during training, as well as the fact that different
depths exhibit largely similar accuracy curves.

While the empirical evidence for our MLP with linear activation is encouraging, non-linear activa-
tions are essential parts of feature learning (Nair & Hinton, 2010; Klambauer et al., 2017; Hendrycks
& Gimpel, 2016; Maas et al., 2013). However, introducing non-linearity violates one of the key parts
of our theory, in that it prevents representations from reaching perfect isometry (see Figure H5 in
the Appendix for details on the connection between non-linearities and gradient explosion in depth).
Intuitively, this is due to the fact that non-linear layers, as opposed to rotations and batch normal-
ization, perturb the isometry of representations and prevent them from reaching zero isometry gap
in depth. This problem turns out to be not just a theoretical nuisance, but to play a direct role in the
gradient explosion behavior. While the situation may seem futile at first, it turns out that activation
shaping (Li et al., 2022; Zhang et al., 2022; Martens et al., 2021; He et al., 2023; Noci et al., 2023)
can alleviate this problem, which is discussed next. For the remainder of this section, we focus on
the training of MLPs with non-linear activations, as well as standard batch normalization and fully
connected layers.

5 ACTIVATION SHAPING BASED ON THE THEORETICAL ANALYSIS

In recent years, several works have attempted to overcome the challenges of training very deep net-
works by parameterizing activation functions. In a seminal work, Martens et al. (2021) propose
deep kernel shaping, which is aimed at facilitating the training of deep networks without relying on
skip connections or normalization layers, and was later extended to LeakyReLU in tailored activa-
tion transformations (Zhang et al., 2022). In a similar direction, Li et al. (2022) propose activation
shaping in order to avoid a degenerate output covariance. While the mechanism proposed by Li et al.
(2022) covers both smooth and non-smooth activations, we focus on their result for LeakyReLU,
which consists of shaping the negative slope of the activation towards identity to ensure that the
output covariance matrix remains non-degenerate when the networks becomes very deep.

Since kernel and activation shaping aim to replace normalization, they have not been used in con-
junction with normalization layers. In fact, in networks with batch normalization, even linear ac-
tivations have non-degenerate outputs (Daneshmand et al., 2021; Yang et al., 2019) and exploding
gradients (Yang et al., 2019). Thus, shaping activations towards identity in the presence of normal-
ization layers may seem fruitless. Remarkably, we empirically demonstrate that we can leverage
activation shaping to avoid gradient explosion in depth by using a pre-activation gain at each layer.
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Figure 5: Logarithmic plot contrasting the effect of gain on the gradient at initialization of the
first layer, for networks with different number of layers initialized with orthogonal weights, BN
and different activations, evaluated on CIFAR10. The networks have hyperparameters width 100,
batch size 100. Traces are averaged over 10 independent runs, with the shades showing the 95%
confidence interval.

Inspired by our theory, we develop a novel activation shaping scheme for networks with BN. The
main strategy consists of shaping the activation function towards a linear function across the layers.
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Our activation shaping consists of tuning the gain of the activation, i.e., tuning α for σ(αx). We
consider non-linear activations σ ∈ {tanh, sin}.
The special property that both tanh and sin activations have in common is that they are centered,
σ(0) = 0, are differentiable around the origin σ′(0) = 1, and have bounded gradients σ′(x) ≤ 1, ∀x.
Therefore, by tuning the per-layer pre-activation gain αℓ towards 0, the non-linearities behave akin
to the identity function. This observation inspires us to study the relationship between the rate of
gradient explosion for each layer as a function of the gain parameter αℓ. Formally, we consider an
MLP with shaped activations using gain αℓ for the ℓth layer, that has the update rule

Xℓ+1 = σ(αℓBN(WℓXℓ)) . (11)

Since the gradient norm has an exponential growth in depth, as shown in Figure 5, we can compute
the slope of the linear growth rate of log-norm of gradients in depth. We define the rate of explosion
for a model of depth L and gain αℓ at layer ℓ as the slope of the log norm of the gradients R(ℓ, αℓ).
We show in Figure 5 that by tuning the gain properly, we are able to reduce the exponential rate
of the log-norm of the gradients by diminishing the slope of the rate curve and achieve networks
trainable at arbitrary depths, while still maintaining the benefits of the non-linear activation. The
main idea for our activation shaping strategy is to have a bounded total sum of rates across layers,
by ensuring faster decay than a harmonic series (see App. F for more details on activation shaping).
Figure 5 illustrates that this activation shaping strategy effectively avoids gradient explosion while
maintaining the signal propagation and orthogonality of the outputs in depth. Furthermore, Figure 4
shows that the training accuracy remains largely depth-independent. For further experiments using
activation shaping, see Appendix H.

6 DISCUSSION
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Figure 6: Implicit orthogonality bias of SGD. Training an MLP with width d = 100, batch size
n = 100, and depth L = 1000, activation tanh, using SGD with lr = 0.001 (a) Isometry gap (y-
axis; log-scale) of weight matrices across all layers throughout training. (b) Gradient norms at each
layer during training.

Implicit bias of SGD towards orthogonality in optimization. Optimization over orthogonal ma-
trices has been an effective approach for training deep neural networks. Enforcing orthogonality
during training ensures that the spectrum of the weight matrices remains bounded, which prevents
gradient vanishing and explosion in depth. Vorontsov et al. (2017) study how different orthogonality
constraints affect training performance in RNNs. For example Lezcano-Casado & Martınez-Rubio
(2019) leverage the exponential map on the orthogonal group, Jose et al. (2018) decompose RNN
transition matrices in Kronecker factors and impose soft constraints on each factor and Mhammedi
et al. (2017) introduce a constraint based on Householder matrices.

While these studies enforce orthogonality constraints, one of our most striking empirical observa-
tions is that when our MLP grows very deep, the middle layers remain almost orthogonal even after
many steps of SGD. As shown in Figure 6, for 1000 layer networks, the middle layers remain or-
thogonal during training. One could hypothesize that this is due to small gradients in these layers. In
Figure 6, we observe that the gradients of these middle layers are not negligible. Thus, in our MLP
construction, both with linear activation and with activation shaping, the gradient dynamics have an
implicit bias to optimize over the space of orthogonal matrices. The mechanisms underlying this
implicit orthogonality bias will be an ample direction for future research.
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The appendix is structured in the following sections:

• Appendix A: supplemental related work

• Appendix B: contains the proof based on Weingarten calculus for the conditional isometry
gap decay rate, conditioned on the previous layer in the network.

• Appendix C: contains the proof for the isometry gap exponential rate decay in depth, based
on the conditional rate established in Appendix B.

• Appendix D: contains the proof for the log-norm gradient bound at arbitrary depths, based
on the orthogonality result established in Appendix C.

• Appendix E: contains the numerical verification of the average rank of the input batch in
common datasets.

• Appendix F: contains the full derivation and additional explanations of the activation shap-
ing heuristic.

• Appendix G: contains further results on CIFAR10, MNIST, FashionMNIST and CI-
FAR100, showcasing the implicit orthogonality bias of SGD during training.

• Appendix H: contains supplemental experiments, including train and test results on
MNIST, FashionMNIST, CIFAR100, as well as the effect of mean reduction and non-
linearities without shaping on the gradient log-norms.

A SUPPLEMENTAL RELATED WORK

Due to space constraints, we expand upon the related works in this section.

Mean field theory for random neural networks. The existing analyses for random networks
often rely on mean-field regimes where the network width tends to infinity (Pennington et al., 2017;
Yang et al., 2019; Li et al., 2022; Pennington & Worah, 2017). However, there is a discrepancy
between mean-field regimes and the practical regime of finite width. While some analyses attempt
to bridge this gap (Joudaki et al., 2023a; Daneshmand et al., 2021), their results rely on technical
assumptions that are hard to validate. In contrast, our non-asymptotic results hold for standard
neural networks used in practice. Namely, our main assumption for avoiding rank collapse and
gradient explosion is that samples in the input batch are not linearly dependent, which we will show
is necessary. To go beyond mean-field regimes, we leverage recent theoretical advancements in
Weingarten calculus (Weingarten, 1978; Collins, 2003; Banica et al., 2011; Collins & Śniady, 2006;
Collins et al., 2022).

B CONDITIONAL ORTHOGONALIZATION

Isometry after rotation. Our analysis is based on (Joudaki et al., 2023b, Corollary 3), which we
restate in the following Lemma:

Lemma B.1. For all non-degenerate matrices X ∈ Rd×d, we have:

I(BN(X)) ≥

(
1 +

variance{∥Xj·∥}dj=1

(mean{∥Xj·∥}dj=1)
2

)
I(X) . (12)

Lemma B.1 proves isometry bias of BN. The next lemma proves that isometry does not change
under rotation

Lemma B.2 (Isometry after rotation). Let X ∈ Rd×d and W ∼ Od be a random orthogonal matrix
and X ′ = WX . Then,

I(BN(X ′)) ≥

(
1 +

variance{∥X ′
j·∥}dj=1

(mean{∥X ′
j·∥}dj=1)

2

)
I(X) . (13)

14



Published as a conference paper at ICLR 2024

Proof. Using properties of the determinant, we have

det(X ′X ′⊤) = det(W )2det(XX⊤) = det(XX⊤), (14)

where the last equation holds since W is an orthogonal matrix. Furthermore,

Tr(X ′X ′⊤) = Tr(WXX⊤W⊤) (15)

= Tr(XX⊤ W⊤W︸ ︷︷ ︸
=I

) (16)

= Tr(XX⊤) . (17)

Combining the last two equations with Lemma B.1 concludes the proof.

Increasing isometry with rotations and BN. The last lemma proves the isometry bias does not
decrease with rotation and BN. However, this does not prove a strict decrease in isometry with BN
and rotation. The next lemma proves there exists an orthogonal matrix for which the isometry is
strictly increasing.

Corollary B.3 (Increasing isometry). Let X ∈ Rd×d and denote its singular value decomposition
X = Udiag

(
{σi}di=1

)
V ⊤, where U and V are orthogonal matrices. Then, we have:

I(BN(U⊤H)) = 1 . (18)

Proof. Let S = diag
(
{σi}di=1

)
be the diagonal matrix containing the singular values of X . Then,

we have:

BN(U⊤X) = BN(U⊤USV ⊤) (19)

= BN(SV ⊤) (20)

= diag(SV ⊤V S)−
1
2SV ⊤ (21)

= S−1SV ⊤ (22)

= V ⊤, (23)

which has maximum isometry 1 since it’s an orthonormal matrix.

Thus, there exists a rotation that increases isometry with BN for each non-orthogonal matrix. The
proof of the last corollary is based on a straightforward application of Lemma 2.

Orthogonalization with randomness. The isometric is non-decreasing in Lemma 2 and provably
increases for a certain rotation matrix (as stated in the last corollary). Hence, it is possible to increase
isometry with random orthogonal matrices.

Theorem B.4. Suppose W ∼ Od is a matrix drawn from Od such that W d
= WU for all orthogonal

matrices U . Let {λi}di=1 be the eigenvalues of XX⊤. Then,

EW [I(BN(WX))|X] ≥

 1

1−
∑d

k=1(λk−1)2

2d2(d+2)

 I(X) (24)

holds for all X = BN(·), with equality for orthogonal matrices.

Remark 3. Note that the assumption on X = BN(·), can be viewed as an induction hypothesis, in
that we can recursively apply this theorem to arrive at a quantitative rate at depth.

Notably,
∑d

i=1 λi = d if X = BN(·). Hence, one can expect that
∑d

i=1 λ
2
i < d2 for all full random

matrices X in form of X = BN(·).

Proof. We need to compute the variance/mean ratio in Lemma 2. Let X ∈ Rd×d have SVD de-
composition X = Udiag{σi}di=1V

⊤ where U and V are orthogonal matrix and σ2
i = λi. Since
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the distribution of W is invariant to transformations with orthogonal matrices, the distribution of W
equates those of X ′ = Wdiag{σi}V ⊤. It easy to check that

∥X ′
j·∥ =

√√√√ d∑
i=1

σ2
iW

2
ji =

√√√√ d∑
i=1

λiW 2
ji . (25)

Thus,
d∑

j=1

∥X ′
j·∥2 =

d∑
i=1

λi = d, (26)

where the last equality holds due to the batch normalization. Thus, we have

E

[
d
∑d

j=1 ∥X ′
j·∥2

(
∑d

j=1 ∥X ′
j·∥)2

]
= E

[
d2

(
∑

j ∥X ′
j·∥)2

]
≥ d2

E
[(∑d

j=1 ∥X ′
j·∥
)2] . (27)

We need to estimate

E
[
∥X ′

i∥∥X ′
j∥
]
= E

( d∑
k=1

λkW
2
ik

) 1
2
(

d∑
k=1

λkW
2
jk

) 1
2

 . (28)

Since square root function is concave, we have
√
x ≤ 1 + 1

2 (x− 1). Thus

E
[
∥X ′

i∥∥X ′
j∥
]
≤ E

[(
1 + 0.5

d∑
k=1

(λk − 1)W 2
ik

)(
1 + 0.5

d∑
k=1

(λk − 1)W 2
jk

)]
(29)

= 1 +
1

4

∑
k,q

(λk − 1)(λq − 1)E
[
W 2

ikW
2
jq

]
(30)

= 1 +
1

4

∑
k ̸=q

(λk − 1)(λq − 1)E
[
W 2

ikW
2
jq

]︸ ︷︷ ︸
E1

+
∑
k=q

(λk − 1)(λk − 1)E
[
W 2

ikW
2
jk

]︸ ︷︷ ︸
E2

 ,

(31)

where in the first equality we have used the fact that the cross terms reduce, where the expectations
are applications of Weingarten calculus:

E

[
0.5

d∑
k=1

(λk − 1)W 2
ik + 0.5

d∑
k=1

(λk − 1)W 2
jk

]
= E

[
0.5

d∑
k=1

λkW
2
ik + 0.5

d∑
k=1

λkW
2
jk − 1

]
(32)

= 0.5
d∑

k=1

λkE
[
W 2

ik

]
+ 0.5

d∑
k=1

λkE
[
W 2

jk

]
− 1

(33)

=
0.5

d

d∑
k=1

λk +
0.5

d

d∑
k=1

λk − 1 (34)

= 0 . (35)

The main quantity we must compute is an expectation of polynomials taken over the Haar measure
of the Orthogonal group O(n). To carry out the computation, we make use of Weingarten calcu-
lus (Banica et al., 2011; Collins & Śniady, 2006; Weingarten, 1978). More specifically, we make
use of the of the Weingarten formula, studied by (Collins & Śniady, 2006; Collins et al., 2022):∫

O(n)

ri1j1ri2j2 . . . ri2dj2ddµ(O(n)) =
∑

σ∈M2d

∑
σ∈M2n

∆σ(i)∆σ(j)WgO(σ−1τ), (36)
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where µ(O(n)) is the Haar measure of Orthogonal group. For an in depth explanation of each
quantity in the Weingarten formula, we refer the reader to Collins et al. (2022, Section 5.2).

The quantity we focus on is EW [WikWikWjqWjq]. We will do the computation on multiple cases,
based on the equalities of k, q. Notice that i ̸= j in all cases. It suffices if we focus on the two
distinct cases: E1 = EW

[
W 2

ikW
2
jq

]
(k ̸= q) and E2 = EW

[
W 2

ikW
2
jk

]
(k = q).

We first compute E1.

Following the procedure from Collins et al. (2022, Section 5.2), we take the index sequences
to be i = (i, i, j, j) and j = (k, k, q, q). Similarly, we get ∆σ(i) = ∆τ (j) = 1 only if
σ = {{1, 2}, {3, 4}} and τ = {{1, 2}, {3, 4}}.

Consdering σ, τ as permutations, we get:

σ =

(
1 2 3 4
1 2 3 4

)
, (37)

τ =

(
1 2 3 4
1 2 3 4

)
, (38)

σ−1τ =

(
1 2 3 4
1 2 3 4

)
, (39)

where σ−1τ has coset-type [1, 1]. Finally, we plug the results back into the formula and we obtain:

E1 = EW

[
W 2

ikW
2
jq

]
= WgO([1, 1]) =

d+ 1

d(d+ 2)(d− 1)
,

where the last equality is based on the results in Section 7 of (Collins & Matsumoto, 2009).

We compute E2.

Similar to the previous expression, we take the index sequences to be to be i = (i, i, j, j) and
j = (k, k, k, k). Thus, we obtain ∆σ(i) = ∆τ (j) = 1 only if σ = {{1, 2}, {3, 4}} and τ1 =
{{1, 2}, {3, 4}}, τ2 = {{1, 3}, {2, 4}}, τ1 = {{1, 4}, {2, 3}}. Similarly, we compute σ−1τi for
i ∈ {1, 2, 3}. Notice that σ is the identity permutation, thus yielding σ−1τi = τi, with the coset-
types [1, 1], [2], [2] respectively, for each i ∈ {1, 2, 3}.

Plugging back into the original equation, we obtain:

E2 = EW

[
W 2

ikW
2
jk

]
= WgO([1, 1]) + 2WgO([2]) (40)

=
d+ 1

d(d+ 2)(d− 1)
+ 2

−1

d(d+ 2)(d− 1)
(41)

=
d− 1

d(d+ 2)(d− 1)
. (42)

Thus, plugging back into the original inequality, we obtain:

E∥X ′
i∥∥X ′

j∥ ≤ 1 +
1

4

∑
k ̸=q

(λk − 1)(λq − 1)
d+ 1

d(d+ 2)(d− 1)
+
∑
k=q

(λk − 1)(λk − 1)
d− 1

d(d+ 2)(d− 1)


(43)

= 1 +
1

4d(d+ 2)(d− 1)


∑
k ̸=q

(λk − 1)(λq − 1)︸ ︷︷ ︸
S ̸=

−
∑
k=q

(λk − 1)(λk − 1)︸ ︷︷ ︸
S=

 (44)

= 1−
∑

k(λk − 1)2

2d(d+ 2)(d− 1)
, (45)
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where we have used that S ̸= + S= =
∑

k,q(λk − 1)(λq − 1) = (
∑d

k=1(λk − 1))2 = 0 in the last
equality.

Thus, we obtain:

E


∑

j

∥X ′
j·∥

2
 = E

∑
j

∥X ′
j·∥2 + 2

∑
i<j

∥X ′
i·∥∥X ′

j·∥

 (46)

= d+ 2
∑
i<j

E
[
∥X ′

i·∥∥X ′
j·∥
]

(47)

≤ d+ (d2 − d)

(
1−

∑
k(λk − 1)2

2d(d+ 2)(d− 1)

)
(48)

= d2 −
∑

k(λk − 1)2

2(d+ 2)
. (49)

Corollary B.5 (Isometry gap bound). Suppose the same setup as in Theorem 3. Then, we have:

EW [ϕ(X ′)|X] ≤ ϕ(X) + log

(
1−

∑
k(λk − 1)2

2d2(d+ 2)

)
. (50)

Remark 4. Notice that the term
∑d

k=1(λk−1)2

2d2(d+2) = O( 1d ), yielding log
[
1−

∑d
k=1(λk−1)2

2d2(d+2)

]
≤ 0.

Proof. From Lemma 2, we know that:

− log I(BN(X ′)) ≤ − log I(X)− log
d2(∑d

j=1 ∥X ′
j·∥
)2 (51)

=⇒ − log I(BN(X ′)) ≤ − log I(X)− log d2 + log

 d∑
j=1

∥X ′
j·∥

2

(52)

=⇒ EW [− log I(BN(X ′))|X] ≤ − log I(X)− log d2 + EW

log
 d∑

j=1

∥X ′
j·∥

2 ∣∣∣∣∣X
 (53)

≤ − log I(X)− log d2 + logEW


 d∑

j=1

∥X ′
j·∥

2 ∣∣∣∣∣X
 (54)

≤ − log I(X)− log d2 + log

(
d2 −

∑
k(λk − 1)2

2(d+ 2)

)
(55)

≤ − log I(X) + log

(
1−

∑
k(λk − 1)2

2d2(d+ 2)

)
, (56)

where in inequality 54 we have used the fact that E[logX] ≤ logE[X] and in inequality 55 we have
used the bound obtained in proof Theorem 3, equation 49. Thus, we obtain:

EW [ϕ(X ′)|X] ≤ ϕ(X) + log

(
1−

∑
k(λk − 1)2

2d2(d+ 2)

)
. (57)
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C ISOMETRY GAP DECAY RATE

Before we start with the main part of our analysis, let us establish a simple result on the relation
between isometry gap and orthogonality:
Lemma C.1 (Isometry gap and orthogonality). If ϕ(X) ≤ c

16d , then eigenvalues of X⊤X are within
[1− c, 1 + c].

Note that, in order to simplify the calculations, we use the fact that 1
d(d+2) ≈ 1

d2 in the following
proofs.

Based on the conditional expectation in Corollary B.5, we have:

E
[
ϕ(Xℓ+1)|Xℓ

]
≤ ϕ(Xℓ)− σλ(X

ℓ)

2d2
. (58)

Now, we prove a lemma that is conditioned on the previous layer isometry gap being smaller or
larger than 1

16d .

Lemma C.2 (Isometry gap conditional bound). For Xℓ being the representations of an MLP under
our setting, we have:

E
[
ϕ(Xℓ+1)

∣∣∣∣Xℓ, ϕ(X
ℓ) ≤ 1

16d

]
≤ ϕ(Xℓ)

(
1− 1

2d2

)
, (59)

E
[
ϕ(Xℓ+1)

∣∣∣∣Xℓ, ϕ(X
ℓ) >

1

16d

]
≤ ϕ(Xℓ)− 1

32d3
. (60)

Proof of Lemma C.2. Let λk = 1 + ϵk, and assume without loss of generality that
∑d

k=1 ϵk = 0.
Then, using the numerical inequality log(1 + x) ≥ x− x2, when |x| ≤ 1

2 we have:

σλ(X) =
1

d

d∑
k=1

ϵ2k (61)

max
k

|ϵk| ≤
1

2
=⇒ ϕ(X) = −1

d

d∑
k=1

log(1 + ϵk) ≤ −1

d

d∑
k=1

(ϵk − ϵ2k) = σλ(X) . (62)

Altogether, we have

max
i

|ϵi| ≤
1

2
=⇒ ϕ(X) ≤ σλ(X) . (63)

Now, we can restate the condition in terms of an inequality on the isometry gap. Thus, we can write:

dϕ(X) = −
d∑

i=1

log λi = −
d∑

i=1

log(1 + ϵi) ≥ −
d∑

i=1

(
ϵi −

3ϵ2i
6 + 4ϵi

)
=

d∑
i=1

3ϵ2i
6 + 4ϵi

, (64)

where we used the fact that
∑

i λi = d implying
∑

i ϵi = 0 and also used the inequality log(1+x) ≤
x − 6+x

6+4x when x ≥ −1 for ϵi’s. Note that because |ϵi| ≤ 1
2 , we get 6 + 4ϵi ≥ 4, all terms on the

right-hand side are positive, implying that each term is bounded by the upper bound:

3ϵ2i
6 + 4ϵi

≤ dϕ(X) ∀i ∈ {1, 2, . . . , d} . (65)

By construction, we have ϵi ≥ −1 and 3ϵ2i
6+4ϵi

≤ 1
16 . Since 6 + 4ϵi ≥ 2, we can multiply both sides

by 6 + 4ϵi and conclude 3ϵ2i − 6+4ϵi
16 ≤ 0. We can now solve the quadratic equation and obtain

1−
√
74

24 ≤ ϵi ≤ 1+
√
74

24 which numerically becomes −0.35 ≤ ϵi ≤ 0.4, implying |ϵi| < 0.5.

By solving the quadratic equation above we can guarantee that

ϕ(X) ≤ 1

16d
=⇒ max

i
|ϵi| ≤

1

2
=⇒ ϕ(X) ≤ σλ(X) . (66)
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Furthermore, we can restate the condition on maximum using:

max
k

|ϵk| =
√

max
k

ϵ2k ≤
√∑

k

ϵ2k =
√
dσλ(X) (67)

and conclude that

σλ(X) ≤ 1

4d
=⇒ max

i
|ϵi| ≤

1

2
=⇒ ϕ(X) ≤ σλ(X) . (68)

Using this statement, we have

σλ(X) ≤ 1

16d
=⇒ ϕ(X) ≤ σλ(X) =⇒ ϕ(X) ≤ 1

16d
. (69)

If we negate and flip the two sides we arrive at

ϕ(X) >
1

16d
=⇒ σλ(X) >

1

16d
. (70)

Thus, we can simplify the recurrence

E[ϕ(Xℓ+1)|Xℓ] ≤ ϕ(Xℓ)− σλ(X
ℓ)

2d2
(71)

as follows

E
[
ϕ(Xℓ+1)

∣∣∣∣Xℓ, ϕ(Xℓ) ≤ 1

16d

]
≤ ϕ(Xℓ)

(
1− 1

2d2

)
, (72)

E
[
ϕ(Xℓ+1)

∣∣∣∣Xℓ, ϕ(Xℓ) >
1

16d

]
≤ ϕ(Xℓ)− 1

32d3
, (73)

where we used equation 66 in the first one and equation 70 in the second one.

Proof of Theorem 1. From Lemma B.1, we know that ϕ(X0) ≥ ϕ(X1) ≥ · · · ≥ ϕ(XL) ≥ 0, for
any layer 0 ≤ ℓ ≤ L. Thus, we get using equation 60:

E
[
ϕ(Xℓ+1)

∣∣∣∣Xℓ, ϕ(Xℓ) >
1

16d

]
≤ ϕ(Xℓ)− 1

32d3
(74)

=

(
1− 1

32d3ϕ(Xℓ)

)
ϕ(Xℓ) (75)

≤
(
1− 1

32d3ϕ(X0)

)
ϕ(Xℓ), (76)

where in the last step we have used the fact that ϕ(Xℓ) ≤ ϕ(X0).
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Thus, we can combine equation 59 and equation 60 and obtain:

E[ϕ(Xℓ+1)|Xℓ] = E
[
ϕ(Xℓ+1)

∣∣∣∣Xℓ, ϕ(Xℓ) ≤ 1

16d

]
1ϕ(Xℓ)≤ 1

16d
(77)

+ E
[
ϕ(Xℓ+1)

∣∣∣∣Xℓ, ϕ(Xℓ) >
1

16d

]
1ϕ(Xℓ)> 1

16d
(78)

≤ max

(
E
[
ϕ(Xℓ+1)

∣∣∣∣Xℓ, ϕ(Xℓ) ≤ 1

16d

]
,E
[
ϕ(Xℓ+1)

∣∣∣∣Xℓ, ϕ(Xℓ) >
1

16d

])
(79)

≤ max

(
1− 1

2d2
, 1− 1

32d3ϕ(X0)

)
ϕ(Xℓ) (80)

=

(
1−min

(
1

2d2
,

1

32d3ϕ(X0)

))
ϕ(Xℓ) (81)

=

(
1− 1

max(2d2, 32d3ϕ(X0))

)
ϕ(Xℓ) (82)

≤ exp

− 1

max(2d2, 32d3ϕ(X0))︸ ︷︷ ︸
k

ϕ(Xℓ) (83)

= exp

(
−1

k

)
ϕ(Xℓ) . (84)

By iterated expectations over Xℓ we get:

E[ϕ(Xℓ+1)] ≤ exp

(
−1

k

)
E[ϕ(Xℓ)] ≤ exp

(
− ℓ

k

)
ϕ(X0) . (85)

Note that since max(2d2, 32d3ϕ(X0)) ≤ 2d2(1 + 16dϕ(X0)), we can conclude the proof.
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D GRADIENT NORM BOUND

In the following section, we denote by Hℓ = W ℓXℓ the pre-normalization values. Moreover,
we define as FL : Rd×d → RC×d, where C is the number of output classes, as the functional
composition of an L layers MLP, following the update rule defined in equation 3, i.e.:

FL(XL) = BN(WLFL−1(XL−1)) . (86)

Let us restate the theorem for completeness of the appendix:
Theorem D.1 (Restated Thm. 5). For any O(1)-Lipschitz loss function L and non-degenerate input
X0, we have:

log

∥∥∥∥ ∂L
∂W ℓ

∥∥∥∥ ≲ d5
(
ϕ(X0)

3 + 1− e−
L

32d4

)
(87)

holds for all ℓ ≤ L, where possibly L → ∞.

In particular, the following lemma guarantees that the Lipschitz conditions are met for practical loss
functions:
Lemma D.2. In a classification setting, cross entropy and mean squared error losses are O(1)-
Lipschitz.

The main idea for the feasibility of this theorem is the presence of perfectly isometric weight ma-
trices that are orthonormal, and the linear activation that does not lead to vanishing or exploding
gradients. The only remaining layers to be analyzed are the batch normalization layers. Thus, our
main goal is to show that the sum of log-norm gradient of BN layers remains bounded even if the
network has infinite depth. To do so, we shall relate the norm of the gradient of those layers to the
isometry gap of representations, and use the bounds from the previous section to establish that the
log-norm sum is bounded.

Proof of Thm. D.1. Now, considering an L layer deep model, where L can possibly be L → ∞,
we can finalize the proof of Theorem 5. Consider an MLP model as defined in equation 3. Let
HL = WLXL be the logits of the model, where HL ∈ RC×d, WL ∈ RC×d, WL is an orthogonal
matrix and C is the number of output classes. Denote as L(HL, y) the loss of model for an input
matrix, with ground truth y. Then, applying the chain rule, we have:

∂L
∂W ℓ

=
∂L
∂HL

∂HL

∂XL

∂XL

∂XL−1
. . .

∂Xℓ+2

∂Xℓ+1

∂Xℓ+1

∂Hℓ

∂Hℓ

∂W ℓ
. (88)

By taking the logarithm of the norm of each factor and applying Lemma D.12, we get:

log

∥∥∥∥ ∂L
∂W ℓ

∥∥∥∥ ≤ log

∥∥∥∥ ∂L
∂HL

∥∥∥∥+ log

∥∥∥∥∂HL

∂XL

∥∥∥∥︸ ︷︷ ︸
∥WL∥

+

L∑
k=ℓ+1

log

∥∥∥∥∂Xk+1

∂Xk

∥∥∥∥+ log

∥∥∥∥∂Xℓ+1

∂Hℓ

∥∥∥∥︸ ︷︷ ︸
∥JBN(Hℓ)∥

+ log

∥∥∥∥ ∂Hℓ

∂W ℓ

∥∥∥∥
(89)

≤ log

∥∥∥∥ ∂L
∂HL

∥∥∥∥+ L∑
k=ℓ

log
∥∥JBN(H

k)
∥∥+ log

∥∥∥∥ ∂Hℓ

∂W ℓ

∥∥∥∥ . (90)

where log

∥∥∥∥∂HL

∂XL

∥∥∥∥︸ ︷︷ ︸
∥WL∥

= log
∥∥WL

∥∥ = 0, since the orthogonal matrix WL has operator norm 1.

Since ∂Hℓ

∂W ℓ = Xℓ and Xℓ = BN(Hℓ−1) is batch normalized, this means that
∥∥∥ ∂Hℓ

∂W ℓ

∥∥∥ ≤ d. Thus,
the main part is to bound the Jacobian log-norms, which is provided by the following lemma:
Lemma D.3. We have

L∑
k=1

log
∥∥JBN(H

k)
∥∥ ≲ d5(ϕ(X0)

3 + 1− e−
L

32d4 ) . (91)
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Finally, we can plug the bound from Lemma D.3 in equation 90 and obtain the conclusion:

log

∥∥∥∥ ∂L
∂W ℓ

∥∥∥∥ ≲ log

∥∥∥∥ ∂L
∂HL

∥∥∥∥+ log d+ d5
(
ϕ(X0)

3 + 1− e−
L

32d4

)
. (92)

Note that, for L → ∞, we get:

log

∥∥∥∥ ∂L
∂W ℓ

∥∥∥∥ ≲ log

∥∥∥∥ ∂L
∂HL

∥∥∥∥+ log d+ d5(ϕ(X0)
3 + 1) . (93)

In order to conclude the bound, it suffices to show that the norm of the gradient of the loss with
respect to the logits is bounded, which is the objective of Lemma D.2.

Proof of Lemma D.3. The proof of this lemma is chiefly relying on the following bound on the
Jacobian of batch normalization layers, which we will state and prove beforehand.
Lemma D.4 (Log-norm bound). If X ∈ Rd×d is the input to a BN layer, its Jacobian operator
norm is bounded by

log ∥JBN(X)∥op ≤ dϕ(X) + 1 . (94)

Furthermore, if ϕ(X) ≤ 1
16d , then we have

log ∥JBN(X)∥op ≤ 2
√

dϕ(X) . (95)

Based on the lemma above, we shall define S as the hitting time, corresponding to the first layer in
our case, that the isometry gap drops below the critical value of 1

16d :

S = min

{
ℓ : ϕ(Xℓ) ≤ 1

16d

}
. (96)

So, we first bound the total log-grad norm for layers 1 up to S, and subsequently S + 1 up to L:

log ∥JFL
(X)∥op ≤

L∑
ℓ=1

log ∥JBN(X
ℓ)∥op (97)

≤
S∑

ℓ=1

(dϕ(Xℓ) + 1) + 2

L∑
ℓ=S+1

√
dϕ(Xℓ) (98)

≤
S∑

ℓ=1

(dϕ(X0) + 1) + 2
L∑

ℓ=S+1

√
dϕ(Xℓ) (99)

= S(dϕ(X0) + 1) + 2
L∑

ℓ=S+1

√
dϕ(Xℓ), (100)

where we have used that ϕ(X0) as an upper bound on ϕ(Xℓ).

Thus, taking expectation we get:

E log ∥JFL
(X)∥op ≤ (dϕ(X0) + 1)E[S] + 2

L∑
ℓ=S+1

E
√
dϕ(Xℓ) . (101)

Note that S is a random variable, which is why the expectation over the number of layers appears at
the last line. Thus, we can bound the log-norm by bounding E[S] and the summation separately.
Lemma D.5 (stopping time bound). We have E[S] ≲ 512d4ϕ(X0)2 if ϕ(X0) >

1
16d , and E[S] = 0

if ϕ(X0) ≤ 1
16d .

Lemma D.6 (second phase bound). We have
L∑

ℓ=S+1

E
√
dϕ(Xℓ) ≤ 32d4.5ϕ(X0)

0.5
(
1− e−

L
32d4

)
.
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Thus, we have the following 2 cases, based on whether ϕ(X0) is below or over the 1
16d threshold. If

we plug the bounds in equation 101 we get the following.

If ϕ(X0) ≤ 1
16d , then:

E log ∥JFL
(X)∥op ≤ 32d4.5ϕ(X0)

0.5
(
1− e−

L
32d4

)
(102)

≲ d4.5ϕ(X0)
0.5
(
1− e−

L
32d4

)
, (103)

and if ϕ(X0) >
1

16d then:

E log ∥JFL
(X)∥op ≤ 512d4ϕ(X0)

2(1 + dϕ(X0)) + 32d4
(
1− e−

L
32d4

)
(104)

≲ d5ϕ(X0)
3 + d4

(
1− e−

L
32d4

)
(105)

≲ d4
(
dϕ(X0)

3 + 1− e−
L

32d4

)
. (106)

In fact, the maximum of the two bounds is

E log ∥JFL
(X)∥op ≲ d5

(
ϕ(X0)

3 + 1− e−
L

32d4

)
. (107)

Proof of Lemma D.6. By the bound in Lemma C.2, we have

E
[
ϕ(Xℓ+1)

∣∣∣∣ϕ(Xℓ) ≤ 1

16d

]
≤ ϕ(Xℓ)

(
1− 1

2d2

)
. (108)

Since we assumed ℓ ≥ S, the conditional inequality always holds and thus we have the Markov
bound

ℓ ≥ S =⇒ q := Pr

{
ϕ(Xℓ+1) ≥

(
1− 1

4d2

)
ϕ(Xℓ)

}
≤

1− 1
2d2

1− 1
4d2

≤ 1− 1

4d2
. (109)

We define as failure the event Ā = {ϕ(Xℓ+1) ≥ (1− 1
4d2 )ϕ(X

ℓ)} with probability q, and conversely
as success the event A with probability 1− q. In other words, the probability that ϕ(Xℓ+1) does not
decrease by at least a factor of 1− 1

4d2 is bounded by the failure probability 1− 1
4d2 .

Since ϕ(Xℓ+1) ≤ ϕ(Xℓ), then under the assumption that ℓ ≥ S we can upper bound
√
ϕ(Xℓ+1)

with
√
ϕ(Xℓ) in case of failure with probability q, and with

√
(1− 1

4d2 )ϕ(Xℓ) in case of success
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with probability 1− q:

E
[√

ϕ(Xℓ+1)|ϕ(Xℓ)

]
(110)

= E
[√

ϕ(Xℓ+1)|ϕ(Xℓ), Ā

]
q + E

[√
ϕ(Xℓ+1)|ϕ(Xℓ), A

]
(1− q) (111)

≤
√
ϕ(Xℓ)q +

√
ϕ(Xℓ)

(
1− 1

4d2

)
(1− q) (112)

=
√
ϕ(Xℓ)

(
q +

√
1− 1

4d2
(1− q)

)
(113)

=
√
ϕ(Xℓ)

(√
1− 1

4d2
+

(
1−

√
1− 1

4d2

)
q

)
monotonic in q (114)

≤
√
ϕ(Xℓ)

(√
1− 1

4d2
+

(
1−

√
1− 1

4d2

)(
1− 1

4d2

))
plug q ≤ 1− 1

4d2

(115)

=
√
ϕ(Xℓ)

(
1− 1

4d2
+

√
1− 1

4d2
1

4d2

)
rearranging terms (116)

≤
√
ϕ(Xℓ)

(
1− 1

4d2
+

(
1− 1

8d2

)
1

4d2

) √
1− x ≤ 1− x

2
for x ≥ 0

(117)

=
√
ϕ(Xℓ)

(
1− 1

32d4

)
. (118)

Thus, for ℓ ≥ S, we have

E
√
ϕ(Xℓ+1) = EXℓE

[√
ϕ(Xℓ+1)|ϕ(Xℓ)

]
≤ E

√
ϕ(Xℓ)

(
1− 1

32d4

)
. (119)

The summation starts from below
√
dϕ(XS), and will decay by rate 1 − 1

32d4 , which is upper
bounded by the geometric series:

√
dϕ(XS)

L∑
k=0

(
1− 1

32d4

)k

≤
√
dϕ(X0)32d

4

(
1−

(
1− 1

32d4

)L+1
)

(120)

≤ 32d4.5ϕ(X0)
0.5
(
1− e−

L
32d4

)
. (121)

Proof of Lemma D.5. By Lemma C.2 we have

Pr

{
ϕ(Xℓ) ≥ 1

16d

}
≤ exp

(
− ℓ

max(2d2, 32d3ϕ(X0))

)
16dϕ(X0) . (122)

Thus, we have

Pr{S ≥ ℓ} ≤ exp

(
− ℓ

max(2d2, 32d3ϕ(X0))

)
16dϕ(X0) . (123)
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Since S is a non-negative integer valued random variable, we can thus bound E[S] as:

E[S] =
∞∑
ℓ=1

P{S ≥ ℓ} (124)

≤ 16dϕ(X0)
∞∑
ℓ=1

exp

(
−ℓ

k

)
(125)

= 16dϕ(X0)
1

exp( 1k )− 1
(126)

≤ 16dϕ(X0)k (127)

= 16dϕ(X0)max(2d2, 32d3ϕ(X0)) (128)

≲ 512d4ϕ(X0)2 . (129)

1 PROOF OF LEMMA D.4: BOUNDING BN GRAD-NORM WITH ISOMETRY GAP

The proof of the Lemma relies on two main observations that are crystallized in the following lem-
mas that first establish a bound on Jacobian operator norm based on the inverse of smallest eigen-
value, and then establish a lower bound for the smallest eigenvalue using the isometry gap.
Lemma D.7. Let X ∈ Rd×d and let {λi}di=1 be the eigenvalues of XX⊤. Then, we have that:

∥JBN(X)∥2op ≤ 1

λd
, (130)

where JBN is the Jacobian of the BN(·) operator.

Using the above lemma we have log ∥JBN(X)∥op ≤ − log λd. The following lemma upper bounds
this quantity using isometry gap:
Lemma D.8. The minimum eigenvalue of a Gram matrix that is trace-normalized is lower-bounded
by the isometry gap as − log λd ≤ dϕ(X) + 1. Furthermore, if ϕ(X) ≤ 1

16d , then − log λd ≤
2
√

dϕ(X).

Plugging these two values we have the bounds

log ∥JBN(X)∥op ≤ dϕ(X) + 1, (131)

ϕ(X) ≤ 1

16d
=⇒ log ∥JBN(X)∥op ≤ 2

√
dϕ(X) . (132)

Now we can turn our attention to the proof of the Lemmas used in the proof. The proof of re-
lationship between minimum eigenvalue and isometry gap is obtained by merely a few numerical
inequalities:

Proof of Lemma D.8. Let {λi}di=1 be the eigenvalues of X⊤X . Since the matrix is trace-
normalized, we have

∑d
k=1 λk = d.

The arithmetic mean of the top d− 1 values can be written as

1

d− 1

d−1∑
k=1

λk = 1 +
1− λd

d− 1
. (133)

Thus, we have that their geometric mean is bounded by the same value. Therefore, we have the
following bound:

d∏
k=1

λk ≤ λd

(
1 +

1− λd

d− 1

)d−1

(134)

=⇒ d log I(X) ≤ log(λd) + (d− 1) log

(
1 +

1− λd

d− 1

)
, (135)
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where in the second inequality we have taken logarithm of both sides. Now, we can apply the
numerical inequality log(1 + x) ≤ x to conclude:

−dϕ(X) ≤ log λd + 1− λd . (136)

Since λd is non-negative, this clearly implies the first inequality: − log λd ≤ dϕ(X) + 1.

For the second inequality first we use the numerical inequality log(x)+1−x ≤ − (x−1)2

2 , ∀x ∈ [0, 1]
to conclude

(1− λd)
2

2
≤ dϕ(X) (137)

=⇒ λd ≥ 1−
√
2dϕ(X) (138)

=⇒ − log λd ≤ − log(1−
√

2dϕ(X)) . (139)

We can now use the inequality − log(1− x) ≤
√
2x for 0 ≤ x ≤ 1

2 to conclude that

− log λd ≤ 2
√
dϕ(X) (140)

when 2
√
dϕ(X) ≤ 1

2 , which is equivalent to ϕ(X) ≤ 1
16d .

For proving Lemma D.4, we first analyze BN operator on a row, and then invoke this bound and the
special structure JBN to derive the main proof.
Lemma D.9. Let f : Rd → Rd defined as f(x) = x

∥x∥ be the elementwise normalization of the x.
Then:

Jf (x) =
1

∥x∥
Id2 − 1

∥x∥3
x⊗ x, (141)

where ⊗ is the outer product.

Proof. To begin, notice that for x ∈ Rd we have ∂∥x∥
∂x = x

∥x∥ . Denote by yi := [f(x)]i = xi

∥x∥ .
Then the Jacobian entries become:

∂yi
∂xi

=
∥x∥ − xi

∥x∥xi

∥x∥2
=

1

∥x∥
− 1

∥x∥3
xixi, (142)

∂yi
∂xj

=
− xj

∥x∥xi

∥x∥2
= − 1

∥x∥3
xixj . (143)

Assembling the equations into matrix form, we obtain:

Jf (x) =
1

∥x∥
Id2 − 1

∥x∥3
x⊗ x . (144)

Corollary D.10. The Jf (x) has the eigenvalue 1
∥x∥ with multiplicity d2 − 1 and 0 with multiplicity

1.
Lemma D.11. Let XX⊤ =

∑d
i=1 λiuiu

⊤
i , where XX⊤ = UΛU⊤ is the eigendecomposition of

XX⊤. Then, we have that minj ∥Xj·∥2 ≥ mink λk.

Proof.

∥Xj·∥2 = (XX⊤)jj =
d∑

i=1

λiu
2
ji ≥ min

k
λk

d∑
i=1

u2
ji = min

k
λk, (145)

where in the last equality we have used the fact that U orthogonal. Since this is true for all rows j,
we get minj ∥Xj·∥2 ≥ mink λk.
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Having established the above properties, we are equipped to prove that the Jacobian of a BN layer
is bounded by the inverse of the minimum eigenvalue of its input Gram matrix.

Proof of Lemma D.7. To begin, notice that since BN : Rd2 → Rd2

, implies that JBN(X) ∈ Rd2×d2

.
Denote X ′ = BN(X). Since the normalization happens on each row independently of the other
rows, the only non-zero derivatives in the Jacobian correspond to changes in output row i with
regards to the same input row i, i.e.:

∂X ′
ik

∂Xjl
= 0, ∀i ̸= j, ∀k, l . (146)

This creates a block-diagonal structure in JBN(X), with d blocks on the main diagonal, where each
block has size d × d and is equal to Jf (Xi·), where f is as defined in Lemma D.9. Therefore, due
to the block-diagonal structure, we know that:

λ [JBN(X)] =
d⋃

i=1

λ [Jf (Xi·)] , (147)

where λ[·] denotes the eigenvalue spectrum. From Corollary D.10, we know that

λ [JBN(X)] =

{
1

∥Xi·∥

}d

i=1

∪ {0} (148)

with their respective multiplicites. Finally, using Lemma D.11, this implies:

∥JBN(X)∥22 =

[
max

i

1

∥Xi·∥

]2
=

[
1

mini ∥Xi·∥

]2
≤ 1

mink λk
. (149)

Proof of Lemma D.2. Assuming the the logits are passed through a softmax layer, we analyze the
case of Cross Entropy Loss for one sample i in a C-classes classification problem. Denoting zi =
HL

i· , we have:

L(zi, yi) = −
C∑
i=1

yi log pi, (150)

where pi =
ezi∑C

j=1 ezj
is the probability vector for sample i after passing through the softmax func-

tion.

Computing the partial derivatives, we obtain:
∂pi
∂zi

= pi(1− pk), i = k (151)

∂pi
∂zk

= −pipk, i ̸= k . (152)

Finally, we can compute the gradient of the loss with respect to the logits:

∇zkL =
C∑
i=1

(
−yi

∂ log(pi)

∂zk

)
(153)

=
C∑
i=1

(
−yi

1

pi

∂pi
∂zk

)
(154)

=
∑
i̸=k

(yipk) + (−yk(1− pk)) (155)

= pk
∑
i̸=k

yi − yk(1− pk) (156)

=⇒ ∥∇zkL∥ ≤

∥∥∥∥∥∥pk
∑
i̸=k

yk

∥∥∥∥∥∥+ ∥yk(1− pk)∥ ≤ 2 . (157)
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Since the gradient of the loss with regard to each sample is bounded, we can conclude that the
operator norm of the Jacobian of the loss with regards to the logits matrix HL is also bounded.

In a similar analysis, we now shift our attention towards the Mean Squared Error (MSE) loss:

L(zi, yi) =
1

C

C∑
i=1

(yi − pi)
2 .

We want to compute the gradient of the loss with respect to each logit zk:

∥∇zkL∥ =
1

C

C∑
i=1

2(yi − pi)
∂(−pi)

∂zk
(158)

=⇒ ∥∇zkL∥ ≤ 2

C

C∑
i=1

∣∣∣∣(yi − pi)
∂pi
∂zk

∣∣∣∣ ≤ 2

C

C∑
i=1

|yi − pi| ·
∣∣∣∣ ∂pi∂zk

∣∣∣∣ ≤ 2 . (159)

By substituting these derivatives into the gradient equation, we can derive the gradient for each logit
with respect to the MSE loss.

Lemma D.12. Let Xℓ ∈ Rd×d be the hidden representations of layer ℓ > 0 as defined in equation 3.
Then, we have that:

log

∥∥∥∥∂Xℓ+1

∂Xℓ

∥∥∥∥ ≤ log
∥∥JBN(H

ℓ)
∥∥ . (160)

Proof of Lemma D.12. By definition, we have that:

Hℓ = W ℓXℓ, (161)

Xℓ+1 = BN(Hℓ) . (162)

Therefore, applying the chain rule, we get:

∂Xℓ+1

∂Xℓ
=

∂Xℓ+1

∂Hℓ

∂Hℓ

∂Xℓ
= JBN(H

ℓ)W ℓ . (163)

Taking the logarithm of the norm of this quantity, we reach the conclusion:

log

∥∥∥∥∂Xℓ+1

∂Xℓ

∥∥∥∥ ≤ log
∥∥JBN(H

ℓ)
∥∥+ log

∥∥W ℓ
∥∥ = log

∥∥JBN(H
ℓ)
∥∥ , (164)

where we have used the fact that the spectrum of the orthogonal matrix W ℓ contains only the singular
value 1 with multiplicity d.
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E LINEAR INDEPENDENCE IN COMMON DATASETS

In this section, we empirically verify the assumption that popular datasets do not suffer from rank
collapse in most practical settings.

We provide empirical evidence for CIFAR10, MNIST, FashionMNIST and CIFAR100. We test this
assumption by randomly sampling 100 input batches of sizes n = 16, 32, 64, 128, 256, 512 from
each of these datasets and then measuring the rank of the Gram matrix of these randomly sampled
batches using the matrix rank() function provided in PyTorch. We stop at size 512 since we
approach the dimensionality of some datasets, i.e. FashionMNIST, MNIST. We show in Table E1
the average rank with the standard deviation for each n, over 100 randomly sampled batches.

Table E1: Average rank of Gram matrix of input batches of size n from different datasets. Mean and
standard deviation are computed over 100 randomly selected input batches, where the samples are
chosen without replacement.

Dataset n = 16 n = 32 n = 64 n = 128 n = 256 n = 512
CIFAR10 16.0 ± 0.0 32.0 ± 0.0 64.0 ± 0.0 127.99 ± 0.09 221.06 ± 2.89 203.70 ± 3.58
MNIST 16.0 ± 0.0 32.0 ± 0.0 64.0 ± 0.0 128.00 ± 0.00 250.48 ± 1.53 318.04 ± 2.82
FashionMNIST 16.0 ± 0.0 32.0 ± 0.0 64.0 ± 0.0 128.00 ± 0.00 238.19 ± 3.27 275.37 ± 4.20
CIFAR100 16.0 ± 0.0 32.0 ± 0.0 64.0 ± 0.0 127.92 ± 0.27 218.11 ± 3.69 201.51 ± 3.95

We would like to remark that these datasets are fairly simple in terms of dimensionality and seman-
tics, which can lead to correlated samples. Furthermore, the rank degeneracy can be alleviated even
in the larger batch sizes through various data augmentations techniques. Note that these datasets
have a high degree of correlation between samples. Most notably, the average cosine similarity be-
tween samples in a 512 size batch is 0.81, 0.40, 0.58, 0.81 for CIFAR10, MNIST, FashionMNIST
and CIFAR100 respectively.
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F ACTIVATION SHAPING

In this section, we explain the full procedure for shaping the activation, as well as expand on the
heuristic we use to choose the pre-activation gain. Under the functional structure of the MLP in
equation 11, let αℓ be the pre-activation gain.

More formally, since the gradient norm has an exponential growth in depth, as shown in Figure H5,
we can compute the linear growth rate of log-norm of gradients in depth. We define the rate of
explosion for a model of depth L and gain α at layer ℓ as the slope of the log norm of the gradients:

R(ℓ, αℓ) =
log ∥∇Wℓ

L∥ − log ∥∇Wℓ−10
L∥

10
. (165)

Since the rate function is not perfectly linear and has noisy peaks, we measure the slope with a 10
layer gap in order to capture the true behaviour instead of the noise.

Our goal is to choose α such that the sum of the rates across the layers in depth is bounded by a
constant that does not depend on the depth of the model, i.e. R(ℓ, αℓ) ≤ β, where β is independent
of L. One choice to achieve this is to pick a gain such that the sum of the rates behaves like a
decaying harmonic sum in depth.

To this end, we measure the rate of explosion at multiple layers in a 1000 layer deep model, for
various gains α which are constant across the layers in Figure F1 and notice that it behaves as
R(ℓ) = c1α

c
2. In order to have the sum of rates across layers behave like a bounded harmonic series

in depth, we must choose the gain such that it decays roughly as αc2 = ℓ−k where k > 1 results in
convergence. Therefore, we can obtain a heuristic for picking a gain such that the gradients remain
bounded in depth as αℓ = ℓ−k/c2 , where we refer to k/c2 as the gain exponent.
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Figure F1: Explosion rate of the log norm of the gradients at initialization for an MLP model with
orthogonal weights and batch normalization, for sin and tanh nonlinearities measured for a 1000
layer deep model at layers ℓ as a function of gain α. The black trace shows the fitted function c1α

c
2.

Traces are averaged over 10 independent runs, with the shades showing the 95% confidence interval.

This reduces the problem to picking the exponent such that the sum stays bounded. We show how the
behaviour of the explosion rate at the early layers, for various models, is impacted by the exponent
in Figure F2. Note that for several exponent values, we able to reduce the exponential explosion rate
and obtain trainable models, which we show in Appendix H.
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Figure F2: Explosion rate of the log norm of the gradients at initialization for an MLP model
with orthogonal weights and batch normalization, for sin and tanh nonlinearities at depths
100, 200, 500, 1000 as a function of the gain exponent. Traces are averaged over 10 independent
runs, where the shade shows the 95% confidence interval. Rate is measured at ℓ = 10 to avoid the
any transient effects of the function

G IMPLICIT ORTHOGONALITY DURING TRAINING

In this section, we provide empirical evidence that our architecture during training maintains orthog-
onality across depths, while maintaining bounded gradients. Figure G1 shows the evolution of the
isometry gap of the weight matrices Wℓ during training, for models at different depths and different
nonlinearities. In order to show that these weights are updated gradient descent, we also show the
evolution of the norm of the loss gradients with regards to matrices Wℓ in Figure G2.

These experiments are performed on an MLP with orthogonal weight matrices and batch normaliza-
tion, with sin and tanh activations. The width is set to 100, batch size 100 and learning rate 0.001.
The gain exponent is set to a fixed value for all experiments. The measurements are performed on a
single batch of size 100 from CIFAR10, after each epoch of training on the same dataset.
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Figure G1: Contrasting the isometry gap of weight matrices during training for MLPs of depth 100
(top), 500 (middle), 1000 (bottom). The middle layers become increasingly more orthogonal with
depth, while maintaining a small isometry gap. During training, the isometry gap also remains low,
suggesting the matrices remain close to being orthogonal.
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Figure G2: Contrasting the Frobenius norm of the gradients of the loss with respect to the weights
during training for MLPs of depth 100 (top), 500 (middle), 1000 (bottom). The gradients do not
vanish during training and across different depths for all layers, suggesting that the orthogonality
evidenced in Figure G1 is not due to the weights not being updated during SGD.
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H OTHER EXPERIMENTS

In this section we provide the train and test accuracies of deep MLPs on 4 popular image datasets,
namely MNIST, FashionMNIST, CIFAR10, CIFAR100. Hyperparameters and measurements pro-
cedure are described in Section 4.

1 SUPPLEMENTARY TRAIN AND TEST RESULTS ON MNIST, FASHIONMNIST, CIFAR10,
CIFAR100
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Figure H1: Contrasting the train and test accuracy of MLPs with gained sin, tanh and identity acti-
vations on MNIST. The identity activation performs much worse than the nonlinearities, indicating
the fact that the sin and tanh networks are not operating in the linear regime. The network is trained
with vanilla SGD and the hyperparameters are width 100, batch size 100, learning rate 0.001.

2 SUPPLEMENTAL FIGURES

We present empirical results in Figure 2 showing that degenerate input batches are a hard constraint
for orthogonalization without gradient explosion. For MLPs with different depths, we show that by
repeating samples in a batch of size 10 we get an exponential gradient explosion, which is unavoid-
able theoretically.

Furthermore, we show how non-linearities affect the gradient explosion rate in Figure H5. Using
standard batch normalization and fully connected layers from PyTorch we show that non-linearities
maintain a large isometry gap. This is a critical issue for our theoretical framework, since we take
advantage of the fact that the identity activation achieves perfect orthogonality in order to prove that
the gradients remain bounded in depth.

3 INFLUENCE OF MEAN REDUCTION ON THE GRADIENT BOUND

In this section, we compare whether adding mean reduction and the additional factor of 1
n in the

denominator of the batch normalization module influences our gradient bound. As expected, we
show in Figure H6 that in both cases, for the identity activation, the result remains similar, with the
gradients remaining bounded in depth.
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Figure H2: Contrasting the train and test accuracy of MLPs with gained sin, tanh and identity
activations on FashionMNIST. The identity activation performs much worse than the nonlinearities,
indicating the fact that the sin and tanh networks are not operating in the linear regime. The networks
are trained with vanilla SGD and the hyperparameters are width 100, batch size 100, learning rate
0.001.
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Figure H3: Contrasting the train and test accuracy of MLPs with gained sin, tanh and identity
activations on CIFAR100. The identity activation performs much worse than the nonlinearities,
indicating the fact that the sin and tanh networks are not operating in the linear regime. The networks
are trained with vanilla SGD and the hyperparameters are width 100, batch size 100, learning rate
0.001.

36



Published as a conference paper at ICLR 2024

101 103

Epoch

0.1

0.2

0.3

0.4
T

es
t

ac
cu

ra
cy

sin

101 103

Epoch

0.1

0.2

0.3

0.4

tanh

101 103

Epoch

0.1

0.2

0.3

0.4

identity

Depth

100

500

1000

Figure H4: Contrasting the train test accuracy of MLPs with gained sin, tanh and identity activations
on CIFAR10. The identity activation performs much worse than the nonlinearities, indicating the
fact that the sin and tanh networks are not operating in the linear regime. The networks are trained
with vanilla SGD and the hyperparameters are width 100, batch size 100, learning rate 0.001.
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Figure H5: Left: average log-norm of gradients (log-scale y-axis) at the first layer for networks
with different depths, evaluted on CIFAR10. Right: Isometry gap (log-scale y-axis) at the last layer
for networks with different depths, evaluted on CIFAR10. The MLP is initialized with orthogonal
weights and batch normalization, with standard modules, with sin, tanh, identity non-linearities.
After stabilizing the isometry gap, the non-linearities have an exponential gradient explosion.
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Figure H6: Comparing the gradient explosion rate in networks with standard batch normalization
(blue) and networks with the simplified batch normalization operator from our theoretical framework
(orange). Notice that the 2 traces are similar in terms of gradient explosion. Traces are averaged over
10 runs with the shaded regions showing the 95% confidence interval. Samples are from CIFAR10.

I HIGH PROBABILITY LOG-GRADIENT BOUND

Theorem I.1. In the same conditions as Theorem D.1, it there is constant C such that:

Pr
(
log ∥∇Wℓ

L∥op ≥ C log(1/δ)d6(ϕ(X0)3 + 1)
)
≤ 2δ

for any δ ∈ (0, 1).

For example for δ = 1/2, we we have ∥∇Wℓ
L∥op ≲ d6(ϕ(X0)3 + 1) with at most 1/2 probability.
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Proof. We follow the same proof as Theorem D.1 by decomposing the log gradient to sum of log
gradients of each layer. Note that Lemma D.4 holds deterministically, as it is valid by construction.
Thus, what remains is to derive a probabilistic version of Lemma D.3. We start from equation 100
which holds deterministically, to arrive at a probabilistic bound:

L∑
k=1

log
∥∥JBN(H

k)
∥∥ ≤ S(dϕ(X0)) + 2

L∑
ℓ=S+1

√
dϕ(Xℓ), S := min

{
ℓ : ϕ(Xℓ) ≤ 1

16d2

}
(166)

We derive a probabilistic bound for each term.

First term. Based on Lemma D.5 we have E[S] ≲ d4ϕ(X0)2. Thus, there is C0 such that

∃C0 : E[S] ≤ C0

2
d4ϕ(X0)2.

Thus, by Markov inequality we have

P (S ≥ B) ≤ E[S]
B

≤ 1

2
, B := C0d

4ϕ(X0)2.

First, we discretize the layers into blocks of size B, where B is defined above. With a slight abuse
of notation, define Bi as the end of the ith block of size B, and let Ei be the event Ei = {ϕ(XBi

) >
1

16d2 }, which is the event of failure for ϕ to drop below the threshold of 1
16d2 after the last layer from

block i.

By the inequality established above, we know that in each block, ϕ can either fall below the thresh-
old, or stay above, with probability at most 1/2. Moreover, knowing that ϕ is non-increasing, we
know that P (Ei|E<i) ≤ 1/2.

Thus, by the non-increasing property of ϕ, the probability of failure after k blocks of size B is at
most the probability that ϕ did not fall below the threshold in any of the k successive blocks:

P (Ek) ≤ P (E1 ∧ · · · ∧ Ek−1) (167)
= P (E1)P (E2|E1) . . . P (Ek|Ek−1 . . . E1) (168)

≤
(
1

2

)k

(169)

Thus, we obtain the probability:

P (S ≥ kB) = P (S ≥ kC0d
4ϕ(X0)

2) ≤ 2−k (170)

Thus, connecting back to gradients, we obtain:

Pr
( S∑

ℓ=0

∥JBN(H
ℓ)∥op ≥ kC0d

5ϕ(X0)3
)
≤ 2−k. (171)

Second term Starting from equation 109, we have

ℓ ≥ S =⇒ Pr
{
ϕ(Xℓ+1) ≥ (1− 1/4d2)ϕ(Xℓ)

}
≤ 1− 1

4d2

Let Eℓ denote the event that ϕ(Xℓ+1) does not decrease by 1 − 1/4d2 compared to its previous
layer: Eℓ = 1

{
ϕ(Xℓ+1) ≥ (1−1/4d2)ϕ(Xℓ)

}
. Due to the non-increasing property of ϕ, we know

that Pr(Eℓ) = Pr(Eℓ|Eℓ−1). Repeating this for s steps, we obtain:

ℓ ≥ S =⇒ Pr
{
ϕ(Xℓ+s) ≥ (1− 1/4d2)ϕ(Xℓ)

}
=

ℓ+s−1∏
i=ℓ

Pr{Ei+1|Ēi} ≤ (1− 1

4d2
)s (172)
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Inspired by this, consider the sequence ℓ0, ℓ1, . . . defined as
ℓ0 = S, ℓk = ℓk−1 + 4ckd2

Thus, we get:

Pr
{
ϕ(Xℓk+1) ≥ (1− 1

4d2
)ϕ(Xℓk)

}
≤ (1− 1

4d2
)4ckd

2

≤ e−ck

Thus, we have the union bound

Pr
{ ∞∨

k=0

ϕ(Xℓk+1) ≥ (1− 1

4d2
)ϕ(Xℓk)

}
≤

∞∑
k=1

e−ck =
e−c

1− e−c

=⇒ Pr
{ ∞∧

k=0

ϕ(Xℓk+1) ≤ (1− 1

4d2
)ϕ(Xℓk)︸ ︷︷ ︸

Q:=

}
≥ 1− e−c

1− e−c
=

1− 2e−c

1− e−c

Note that in the event that Q holds, we can the isometry gaps in each [ℓk−1, ℓk] interval as:

Q =⇒ ϕ(Xℓ) ≤
1

16d
(1− 1

4d2
)k−1 for all ℓ ∈ [ℓk−1, ℓk)

We can upper bound
∑∞

ℓ=S+1

√
dϕ(Xℓ) by using the numbers of items and upper bound on each

block. Thus, assuming for all k we have ϕ(Xℓk+1) ≤ (1− 1
4d2 )ϕ(X

ℓk), we can derive

Q =⇒
∞∑

ℓ=S+1

√
dϕ(Xℓ) ≤

∞∑
k=1

(ℓk − ℓk−1)

√
d

1

16d
(1− 1

4d2
)k

= cd2
∞∑
k=1

k(1− 1

4d2
)k/2

≤ cd2
∞∑
k=1

k(1− 1

8d2
)k using (1 + x)1/2 ≤ 1 + x/2

= cd2
1− 8/d2

(1/8d2)2
using

∞∑
k=1

kαk = α/(1− α)2.

≤ 64cd6

Thus we have:

Pr

( ∞∑
ℓ=S+1

√
dϕ(Xℓ) ≤ 64cd6

)
≥ Pr

{
Q
}
≥ 1− 2e−c

1− e−c

which yields

Pr

( ∞∑
ℓ=S+1

log ∥JBN (Hℓ)∥op ≥ 64cd6

)
≤ Pr(Q) =

e−c

1− e−c

Combining first and second term bounds for the Jacobian log-norms we have

Pr
( S∑

l=ℓ

log ∥JBN(H
l)∥op > kC0d

5ϕ(X0)3
)
≤ 2−k (173)

P

( ∞∑
ℓ=S+1

log ∥JBN(H
l)∥op ≥ 64cd6

)
≤ e−c

1− e−c
(174)

And thus we have

Pr
( L∑

l=ℓ

log ∥JBN (H l)∥op ≥ kC0d
5ϕ(X0)3 + 64cd6

)
≤ 2−k +

e−c

1− e−c

Thus, we can find C such that

Pr
(
log ∥∇Wℓ

L∥op ≥ kCd6(ϕ(X0)3 + 1)
)
≤ 2−k+1

We can finish the proof by defining δ = 2−k and change of variables k = log(1/δ).
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J GRADIENTS IN RESIDUAL NETWORKS
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Figure J1: Logarithmic plot for the gradient norm of the first layer for residual networks with batch
normalization initialized with Gaussian weights at different depths, evaluated on CIFAR10. The
traces show that the gradients do not remain bounded in depth for different activations.
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