Distributed Online Rollout for Multivehicle Routing in
Unmapped Environments

Jamison W Weber
Arizona State University
Tempe, Arizona, United States
jwweber@asu.edu

Dimitri P Bertsekas
Arizona State University
Tempe, Arizona, United States
dbertsek@asu.edu

ABSTRACT

We consider a generalization of the well-known multivehicle rout-
ing problem: given a network, a set of agents occupying a subset
of its nodes, and a set of tasks, we seek a minimum cost sequence
of movements subject to the constraint that each task is visited
by some agent at least once. The classical version of this problem
assumes a central computational server that observes the entire
state of the system perfectly and directs individual agents according
to a centralized control scheme. In contrast, we assume that there
is no centralized server and that each agent is an individual proces-
sor with no a priori knowledge of the underlying network, including
the locations of tasks and other agents. Moreover, our agents pos-
sess strictly local communication and sensing capabilities (restricted
to a fixed radius), aligning more closely with several real-world
multiagent applications. We present a fully distributed, online, and
scalable reinforcement learning algorithm for this problem whereby
agents self-organize into local clusters to which they independently
apply a multiagent rollout scheme. We demonstrate empirically
via extensive simulations that there exists a critical sensing radius
beyond which the distributed rollout algorithm begins to improve
over a greedy base policy. This critical sensing radius grows pro-
portionally to the log* function of the size of the network and is
therefore a small constant in practice. Our decentralized reinforce-
ment learning algorithm achieves approximately a factor of two cost
improvement over the base policy for a range of radii between two
and three times the critical sensing radius. In addition, we observe
in simulations that our distributed algorithm requires exponentially
fewer computational resources than the centralized approach, at only
a small constant factor detriment in cost. We validate our algorithm
through physical robot experiments in continuous space and show
that the resulting behavior reflects the discrete simulations.

KEYWORDS

Reinforcement Learning; Distributed Computing; Multivehicle Rout-
ing

@ This work is licensed under a Creative Commons Attribution
By, International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 — 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

Dhanush R Giriyan
Arizona State University
Tempe, Arizona, United States
dgiriyan@asu.edu

Devendra R Parkar
Arizona State University
Tempe, Arizona, United States
dparkarl@asu.edu

Andréa W Richa
Arizona State University
Tempe, Arizona, United States
aricha@asu.edu

ACM Reference Format:

Jamison W Weber, Dhanush R Giriyan, Devendra R Parkar, Dimitri P Bert-
sekas, and Andréa W Richa. 2024. Distributed Online Rollout for Multivehi-
cle Routing in Unmapped Environments. In Proc. of the 23rd International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2024),
Auckland, New Zealand, May 6 — 10, 2024, IFAAMAS, 9 pages.

1 INTRODUCTION

In this work, we consider a generalization of the well-studied mul-
tivehicle routing problem (MVRP). The MVRP involves a set of
agents (vehicles) and a set of tasks each occupying a position on
an underlying network. The objective is to compute a sequence of
movement decisions for each vehicle such that the total number
of vehicle movements is minimized, subject to the constraint that
each task is visited at least once by some agent. Classically, these
sequences are computed by a centralized controller with complete
state information that may freely direct all agents according to the
control sequences it computes.

Our generalization addresses scenarios where the network topol-
ogy, including the initial positions of agents and task locations, is not
known a priori, and where a centralized controller is not available,
as is potentially the case in many real-world scenarios, such as
minefield disarmament [16], post-disaster search and rescue [21],
and unmanned aerial vehicle navigation [5]. In such settings, each
agent must be in turn capable of performing individual compu-
tations and of local sensing and inter-agent communication, both
limited to a radius around the agent’s location in the network (e.g.
as in packet radio networks). Since no centralized computation is
available, local communication between agents is necessary for
coordination and information exchange. Since sensing is limited,
exploration is required to locate the tasks before completing them.
We refer to this as the Unmapped Multivehicle Routing Problem with
Local Constraints (UMVRP-L). Note that MVRP can be viewed as a
special case of UMVRP-L where the sensing radius is infinite.

The UMVRP-L is challenging for agent coordination algorithm
design. Algorithmically, one may consider a reinforcement learning
solution, as has been done with other MVRP variants [33], but as
the underlying network is unknown, methods that require offline
computation such as traditional Q-learning [35], policy approxima-
tion (via the training of parametric architectures) [12], or executing
policy iteration to near convergence [34] may not be applicable.
Moreover, even online Q-learning requires extensive exploration

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

over a single trajectory to learn Q-values, and also frequently re-
visits states to ensure convergence [30]. This exploration factors
into the total cost of solving the problem.

This realization suggests rollout [10] as a natural candidate, as
it is a reinforcement learning algorithm that (under certain con-
ditions) admits a fully online solution without requiring precom-
putation or iterative convergence, and produces reliably favorable
results due to its fundamental connections to Newton’s method [9-
11]. However, rollout is a centralized control scheme that typically
assumes information is universally shared among agents and a
central dispatch (see classical information pattern [10]), and hence
we present a decentralized version of rollout to address UMVRP-L.
In general, the rollout algorithm requires a base policy, which pro-
vides a benchmark for comparison. For our distributed modification
of rollout specifically, this comparison allows us to evaluate the
impact of communication and coordination in our distributed frame-
work: Communication refers to agents sharing sensed information,
whereas coordination refers to agents organizing in such a way
that they collectively solve a problem intelligently.

1.1 Our Contributions

We present a distributed (decentralized) version of the Multiagent
Rollout algorithm from [10], which we call Decentralized Multia-
gent Rollout (DMAR). In this approach, we assume each agent runs
DMAR independently and in parallel with other agents. DMAR uses
simple local rules to induce iterative self-organization of the agent
set into temporary clusters of bounded size. These clusters gener-
ate control sequences locally using multiagent rollout (equipped
with a greedy nearest-neighbor base heuristic [10]) and execute
them before systematically dissolving. Agents alternate between
self-organizing into clusters and randomly searching the environ-
ment for tasks not visible to any cluster, making DMAR applicable
to fully unmapped environments, unlike the general multiagent
optimization literature.

We formally prove that DMAR is probabilistically complete [7],
i.e. for any solvable instance, the probability that DMAR correctly
solves UMVRP-L converges to unity as the running time tends to
infinity. We also show that each round of DMAR terminates in con-
stant time and that the expected number of rounds required to solve
the instance is bounded by O(N?), where N is the number of nodes
in the network. Moreover, we conduct extensive simulations that
compare the costs incurred by DMAR with those of a modification
of DMAR that we call the greedy-exploration policy—a base policy
that strictly uses a greedy nearest-neighbor base heuristic (without
application of multiagent rollout) within the clusters generated.
Note that the greedy-exploration policy does not involve coordina-
tion of the control policies within each cluster. In these experiments,
we modulate the sensing radius over a wide variety of network
topologies and sizes, the number of tasks, and agent-to-task ratios.

We show that there is a critical sensing radius beyond which
DMAR begins to improve over the greedy-exploration policy: The
critical sensing radius is closely approximated by logs (N),! and is
therefore a small constant in practice regardless of network size.
We show empirically that for sensing radii between 2log}(N) and

ogj (N) = 1+1logy(log,(N)), for N > 1 and logy(N) =0, for N < 1. Note that,
e.g, log; (N) < 5 forany N < 1010000,

3log; (N) (we call those the effective radii), DMAR generates trajec-
tories of roughly a half the cost of those produced by the base policy
on average. We compare the costs of DMAR to that of the central-
ized multiagent rollout algotithm [10]. For the effective radii range,
DMAR shows an exponential improvement in computational costs
over the centralized multiagent rollout algorithm, while incurring
just a constant factor (approximately 3) increase in movement costs.

Lastly, we validate our algorithm through physical robot experi-
ments in continuous space using the Robotarium platform [39] as a
proof-of-concept. The results reflect what we observed in discrete-
space simulations, demonstrating the algorithm’s robustness to
sensor noise, which would underscore the potential for actual de-
ployments of the algorithm in scenarios where it is not reasonable
to assume that a complete mapping of tasks and agents exists.

1.2 MVRP and Other Related Work

A discussion on reinforcement learning techniques already ap-
peared in the introduction, so here we focus more on the MVRP
literature and agent-based distributed systems. As the MVRP is NP-
hard [36] (even when the network is planar [20]), several heuristics
have been proposed (e.g., [10, 28]). Researchers have considered
many fully observable and centralized variants that introduce fur-
ther constraints and complexities such as limited vehicle capacity,
heterogeneous capacities, route length limits, time windows when
tasks may be completed, multiple depots, multi-criteria objective
functions, stochastic time and transition variants, and demand con-
strained and weighted MVRP, e.g. [14, 23, 24].

Most relevant to UMVRP-L is probably the dynamic MVRP vari-
ant [24, 31], where certain input information such as the network,
vehicle availability, or task locations may not be known in ad-
vance, but becomes available over time (perhaps probabilistically).
Dynamic MVRP assumes a single centralized dispatcher with in-
stantaneous access to information as it becomes available, instant
communication with all vehicles, and persistent access to all pre-
viously available information—all of which we do not assume in
this work. Although UMVRP-L has commonalities with dynamic
MVRP, it is fundamentally different due to its decentralized nature
and strict local constraints. To the best of our knowledge, variants
of vehicle routing where a centralized planner is not available have
not yet been considered by researchers, and hence, no benchmark
algorithms for UMVRP-L exist in the literature.

Al researchers have also considered multiagent problems where
the full state is not directly observable to the agents, but the pro-
posed solutions in this domain require centralized computation—
often executed offline (e.g. [6, 13, 19, 22, 25]). A formulation known
as a decentralized partially observable Markov decision process (Dec-
POMDP) was introduced in [8] that combines notions from dis-
tributed computing and optimal control in partially observable
environments, but optimally solving Dec-POMDPs was shown to
be intractable. In these formulations, the environment is partially
observable to each agent, but the information sensed by each agent
is not universally shared. Approximate solutions to Dec-POMDPs
were explored in [1-3], but ultimately relied on intensive offline
and centralized simulations.

More broadly, there have been several recent advances in the
field of distributed computing on engineering collective behavior

for systems of agents. Such agents are typically restricted to only
local computations and interactions with other agents to achieve a
desired system-wide behavior, as in population protocols [4] and
programmable matter (e.g. [15, 17, 37, 40, 41]).

2 MODEL AND PRELIMINARIES

In general, one assumes a regular discretization of 2D space for the
MVRP, such as a 2-dimensional rectangular grid graph (as in [34]),
as we do in this work. An instance of the MVRP consists of a
rectangular grid graph G(V,E) (e.g. in Figure 1) on N nodes, a
set S of m agents, where each agent occupies a node in the graph
(co-location is permitted), and a subset 7 of nodes that represent
task locations in G. We also assume there is a subset O of nodes
that agents may not occupy, which allows us to represent obstacles
in the environment (represented by the black squares in Figure 1).
Moreover, each agent has a unique ID. This model operates in
discrete time steps, during which an agent may move to a node
adjacent to its current location. Whenever an agent visits a task
node, that task is considered completed, and is removed from the
network. At each time step, a unit cost is incurred for each agent
that moves from one node to an adjacent node. A control sequence
Y; for agent i is given by the sequence of nodes v(;1),0(;2), - - -
visited by the agent. A solution Y is given by m sequences Y1, ..., Y,
of controls corresponding to each agent in S. The cost C(Y) of a
solution Y is the sum of the m control sequence lengths, i.e. C(Y) =
2v,ey |Yil. A solution Y is optimal whenever C(Y) is minimum.

The UMVRP-L is a generalization of MVRP where G, O, S, 7, are
not known a priori and no centralized computation is permitted. We
assume that each agent has some on-board computational capability
and enforce that any computation must be executed by some agent,
as opposed to a central controller. At any given time, each agent a
occupies a position p(a) € V. We also define the view of an agent
a, denoted as v(a), to be the subgraph of the grid induced by p(a)
and all nodes (including obstacles) within at most k hops of p(a),
where k is an integral radius parameter. An agent’s view describes
what it is able to sense from its location (i.e. obstacles, neighboring
nodes, agents, and tasks). Depending on the application context,
there may be other (more appropriate) choices for the definition of
a view, such as those where obstacles restrict what an agent can
observe. We provide a discussion of the impact of various view
definitions in Appendix-A [38]. Let v(S") = Uges v(a), and refer
to this as the view of an agent set S’ C S.

Our distributed model operates under parallel synchronous time
steps. That is, at each discrete time step ¢, all agents are activated
simultaneously in parallel, and thus may only act upon information
communicated at time ¢ — 1. An agent activation may consist of
either moving, performing some computation, or simply waiting.
For an agent a, the input of a computation performed by a is limited
to v(a) (including the memories of the agents therein), and any
agent b € v(a) (including a) may have their memory modified
directly by a as an output to that computation.

Rollout and Multiagent Rollout. From a centralized perspec-
tive, one can view an instance of MVRP as an infinite horizon
dynamic programming problem that can be solved approximately
in an online setting using approximation in value space, of which
the rollout algorithm is a special case [10]. That is, we approximate

the cost-to-go terms of the Bellman equations via online heuris-
tics. Denote Q as the state space representing all possible agent
and task configurations over G, plus an absorbing terminal state
representing the completion of all tasks. Let U(x) denote the set
of m-dimensional control vectors permissible at state x € Q. A
system dynamics function f(x, u) returns the resulting state ob-
tained from application of control u € U(x) at state x € Q. Lastly,
denote g(x, u) as the cost function indicating the total number of
vehicle movements at state x given control u. Rollout generates an
approximately optimal state and control sequence xo, @, x1, U1, . - -
where each successive control i at state x; is determined by

Ug € arg I%ljl(n){!](xs, u) +I:I(f(xs,u))} (1)

and results in arrival at state xs41. Here H(f(xs,u)) refers to the
approximate cost-to-go obtained from simulation of a heuristic
(also known as a base policy).

Note that the minimization operation in Equation 1 is exponen-
tial in m, however, a recent reformulation of a multiagent problem
to an equivalent problem with a larger state space, but simpler con-
trol space was described by Bertsekas in [10]. This reformulation
was the basis for substantial simplification of rollout and policy iter-
ation algorithms for multiagent problems. The resulting algorithm
(called multiagent rollout) dramatically reduces the computational
complexity of each minimization operation of the standard rollout
algorithm (from exponential to linear in the number of agents),
while maintaining its cost improvement properties. This exponen-
tial gain arises from a sequential rollout control computation on
an agent-by-agent basis, where the control for each agent is com-
puted based on a partial list of controls computed for each agent
earlier in the sequence, hence greatly restricting the number of
multi-component controls considered. Specifically, the control u¢
for each agent a is computed in a sequence u®, u®, ..., u%m such
that when u“% is computed, each u% for 1 < j < i has been de-
termined, and for any u% where i < j < m, and for all future
controls, a base policy is used to estimate the cost-to-go in Equa-
tion 1. See [10] for a comprehensive description.

3 DECENTRALIZED MULTIAGENT ROLLOUT

In this section, we present and analyze our Decentralized Multia-
gent Rollout Algorithm (DMAR), described as a series of phases that,
when executed in sequence and repeated, will solve the UMVRP-L.
DMAR is a fully distributed and local algorithm that applies multia-
gent rollout from [10] locally, and therefore can handle unmapped
environments. In addition to their (unique) IDs, DMAR assumes
that the agents know a constant parameter ¢/ (common to all agents),
which will determine an upper bound on the size of the clusters
formed by DMAR. During its execution, the algorithm will build
trees of agents, each of which corresponds to a current cluster, and
so each agent also maintains a parent pointer, a constant number ¢
of child pointers, and various flags with values T,F used for message
passing. At a high level, a round of DMAR consists of the following
sequence of phases, which the agents collectively repeat:

(1) Self-Organizing Agent Clusters (SOAC): Agents self-or-
ganize into clusters of constant size c@W) _For each cluster
K, the agents in K will locally form a tree 7x, whose root

will become the cluster leader. If two agents share an edge
in 7k, then they appear in their respective views.

(2) Local Map Aggregation (LMA): For each cluster K, agents
in K route their views through 7k to the cluster leader.

(3) Team-Restricted Multiagent Rollout (TMAR)/Execute
Movement (EM): For each cluster K, the leader computes a
set R of control sequences (one for each agent in K) using
multiagent rollout on the assembled view information. R
is then broadcast over 7. If an agent does not belong to a
cluster, it follows a random trajectory of bounded length.
Else, each agent moves along its assigned control trajectory,
after which it unassigns itself from its cluster.

We will show that each round of DMAR terminates in constant
time, and that the number of rounds required for DMAR to solve
an instance of UMVRP-L is polynomially bounded in expectation
(Theorem 3.4). A pseudocode description of a round of DMAR is
given in Algorithm 1. We denote L(¢) = %(1,// —2) as the maximum
possible height of any agent tree (see Lemma 3.1) and reference the
function MR(M), which takes an instance M of MVRP and returns
a set of control sequences R as computed by multiagent rollout
(see Section 2). Note that each agent runs DMAR individually on
their respective processor, but all agents remain synchronized in
their execution of DMAR. We achieve this by ensuring that each
phase is executed using exactly the same number (a function of /) of
operations regardless of which agent is performing the computation.
For example, an agent that is not in a cluster will wait approximately
2 - L(¢) time steps for Lines 29-42 before continuing.

Self-Organizing Agent Clusters (Algorithm 1, Lines 2-28). To
achieve the clustering, agents that see tasks become temporary
cluster leaders via a local leader election scheme. The clusters then
grow by iteratively appending nearby agents (limited by parameter
). At the start of SOAC, each agent sets a leader flag (IdrFlag) to
TRUE (T) if it sees a task. Then, if an agent a sees a task while si-
multaneously seeing other agents that each see tasks, a disqualifies
itself from becoming a leader if any such agent has a larger ID value
than a’s by setting its leader flag to FALSE (F). Any remaining agents
after the above process form leaders of new unique clusters. Next,
SOAC iteratively appends agents to existing clusters over multiple
time steps. At iteration i of the loop beginning in Line 6, if there
exists an agent a that does not belong to a cluster, a searches its
view for any agent a’ that already belongs to some cluster K’ and
joins K’ by becoming a child of a’. Consequently, as each cluster
K grows, a bi-directional (through parent and child pointers) tree
structure 7k is maintained that manages the flow of messages in K.
Moreover, when a joins a cluster K, it obtains K’s cluster ID from
its parent in 7x, which corresponds to the ID of the leader of K.

We found in preliminary simulations that communication be-
tween adjacent clusters generally leads to significantly better solu-
tions. As such, for adjacent clusters, SOAC employs a mechanism
to combine them into potentially larger clusters called cluster-join
(Lines 13-27). For any agent a that is not in a cluster at iteration i
after the appending process (Lines 9-11), if a sees other agents in
distinct clusters, a becomes the leader of a new (possibly larger)
cluster that attempts to include all agents in neighboring clusters.
Agent a sends messages (joinMessage) to all such agents in its view,
which are then broadcast throughout the respective agent trees.

Algorithm 1 Local DMAR round protocol for agent a

1: Set a.msgFlag <« aldrFlag < F; Set a.clusterID «
a.joinMessage < a.children < a.parent < NULL.

2: if there is a task in v(a), set a.ldrFlag < T. » begin SOAC
3. if a.ldrFlag and 3x € v(a) : x.ldrFlag and x.ID > a.ID then
4 set a.ldrFlag < F.
5. if a.ldrFlag then set a.clusterID « a.ID.
6: repeat > form initial clusters
7: if a.clusterID = NuLL then
8: if there is an agent x € v(a) with x.clusterID # NULL
9: and |x.children| < ¢ then

10: Append a to x.children; set a.parent « x.

11: Set a.clusterID « x.clusterID.

12: else

13: if there are agents x1, x2, . . ., X, € v(a) from distinct

clusters, where r < ¢ then > cluster-join

14: Set a.ClusterID « a.ID.

15: for each x; do

16: try set x;.joinMessage < a.ID.

17: > Note that x; may reject the join request.
18: repeat

19: if a.joinMessage = x.ID then

20: Set a.ClusterID « x.ClusterID.

21: for each child b of a do

22: if x # b, try set b.joinMessage < a.ID.

23: if a.parent # x then

24: try set a.parent.joinMessage < a.ID.

25: Set a.parent « x; append a to x.children.

26: Set a.children < a.joinMessage <— NULL.

27: until £(1) (synchronized) iterations
28: until [log, /] (synchronized) iterations
29: if a.clusterID # NuULL then

30: Construct map M = v(a).

31 If a.parent.clusterID = a.parent.ID, set a.msgFlag < T.
32: repeat

> begin LMA

33: if a.msgFlag then

34: Set M(a) « M(a) U M(a.parent), preserving
coordinates relative to M (a.parent).

35: if a.children # NULL, set a.msgFlag < F.

36: for each child b, set b.msgFlag < T.

37: until £(1) (synchronized) iterations

38: repeat

39: if a.msgFlag and a.clusterID # a.ID then

40: Set M(a.parent) «— M(a) U M(a.parent).

41: Set a.parent.msgFlag < T; a.msgFlag < F.

42: until £(y) (synchronized) iterations

43: if a is the leader of a cluster K then > begin TMAR/EM
44: Compute R < MR(M(K)) and send R to each child.

45: repeat
46: if a.clusterID # NULL and a has received R from parent,
then send R to each child of a.
47: until £(¢) (synchronized) iterations
48: if a.clusterID # NuLL then move a according to
49: else a executes at most A(¢) controls, each selected uniformly
at random until there is a task in v(a).

Ra.ID‘

These messages request that its recipients adopt the new cluster ID
(that of agent a) and reconfigure their tree pointer structure such
that their tree is rooted at a. If an agent receives multiple cluster
reassignment messages simultaneously, it will disregard all but one
(chosen arbitrarily, see line 16). Note that because of the possibility
that an agent may receive multiple cluster reassignment requests
simultaneously, not all agents of these trees may join the new clus-
ter rooted at a, since some may join other clusters in this manner.
However, in simulations we observed this generally resulted in
larger clusters, which led to greatly improved performance. Each
agent continues propagating join messages for L(i) time steps
per iteration. After a SOAC run terminates, the process yields a
collection of clusters (and possibly some agents that belong to no
clusters). Generally, if the would-be parent of an agent a attempting
to join a cluster has no available child pointers, then a simply does
not join the cluster. Figure 1 provides a visualization of a SOAC
execution. Lemma 3.1 guarantees properties of the tree structure
of each cluster formed by SOAC, and bounds the running time.

LEmMA 3.1. Let K C S be an arbitrary cluster of agents in G
obtained at the end of a round of SOAC. Then (i) K forms an agent tree
Tk rooted at a leader £ with height at most L() = O(y) and |Tx| =
0Ly agents; (ii) all agents in Ti associate their membership in
K with ¢; and (iii) SOAC terminates in O(log, {) time steps.

Proor. (i) Each tree is formed around a single leader. An unas-
signed agent appends itself as a child of a single parent node already
in 7, for some current cluster K, adopting the cluster ID K of its
parent (which can be traced back to the leader of K). Thus 7x
will form a single acyclic connected component, for each K. In the
cluster-join process (initiated by an agent b), the parent pointer of
an agent a will always point to the agent from which it received
(and accepted) a join request, which can likewise be traced back
to b. As agent a removes its child pointers after propagating the
request, it becomes a leaf of the new tree, and any of its former
children may undergo the same process in the next loop iteration.
At aloop iteration i, we claim that the height of the largest cluster
tree first increases by at most one (Lines 9-11) and then at most
doubles (plus one for the joining agent b) during the cluster-join
process. This follows since for any agent x in 7k, the neighbor-
hood of x in 7k (i.e. not including b) after the cluster-join process
is an induced subgraph of x’s previous neighborhood, and any
neighbors it loses are no longer in 7. As x does not gain new
neighbors in 7k, the longest path in 7 is either the same or some
shorter path (in the case where not all of K remains in the tree)
after pointer reassignment. The longest possible path in any undi-
rected rooted tree 7~ is at most twice the height of 7. Thus, the
maximum tree height at iteration i is given by £(i) = 0if i = 1, and
L(i) <2(L(i—1)+1)+1fori > 1. The solution of this relation is
%(Zi —2) =028 Y) = O(¢). The maximum number of agents in
Tx is Zf:(l‘//) o = % < ¢9(LWY)) The height bound on an
agent tree implies waiting £ (/) time steps per iteration is enough
time for join messages to propagate through the tallest tree, and so
all agents in 7 will agree on the leader ID, implying (ii). Counting
shows that SOAC terminates in O (¢ log /) time steps. O

Local Map Aggregation (Algorithm 1, Lines 29-42). At the end
of SOAC, a subset of the agents is organized into clusters, for each

Figure 1: SOAC Execution. Read left to right, top to bottom:
Cars represent agents. Gray crosses are tasks. Agent colors in-
dicate cluster membership; gray agents are in no cluster. IDs
are indicated below each agent. Flags indicate which agents
see tasks. Assume k = 2, ¥ = 4. (top left) No agent is in a
cluster; 1,2,3,5,7 see tasks. (top right) 1,2,5 see agents with
larger IDs who see tasks, so disqualify themselves. 3,7 become
leaders of new clusters. (middle left) Iteration 1 begins. 2,4,5
join clusters, colored arrows indicate tree pointers. 8 sees
agents in different clusters and initiates a join with messages.
(middle right) 3,7 join the purple cluster, send messages to
children to request reassignment. 2 rejects simultaneous re-
quest from 3. 6 initiates cluster join, 4 rejects request. (bottom
left) Iteration 2 begins. 2 joins the green cluster. 4 favors the
purple cluster, 5 joins the purple cluster. 2 sends request to 1.
(bottom right) 1 joins green cluster. 9 was too distant.

of which there exists a respective leader. In the second phase, the
objective is that for each independent cluster K with leader ¢, agent
¢ obtains a map of K, which reflects the collective view of the
cluster (v(K)). Moreover, this map has a relative coordinate labelling
scheme whereby the coordinates of ¢ are (0,0). At a high level,
agents in K convey their views to their neighbors in 7g. These
views then aggregate until ¢ obtains a view of the entire cluster.
An agent a possesses a map structure M(a) that includes v(a),
as well as possibly the views of other agents (initially M(a) = v(a)).
Note that their may be agents in the view of a that do not belong to
the cluster of which a is a member, but a disregards these. A complete
map M(K) of a cluster K includes the union of views of every agent
in K, i.e. M(K) = v(K). For two maps M and M’, we use MU M’
to denote the component-wise union of the maps. Agent ¢ will

initiate the propagation of messages down to the leaves of 7g. Agent
¢ generates a map M(?) = v(£), which has nodes labelled with
relative coordinates such that p(£) = (0,0). Agent £ passes this map
to each child a, and agent a sets M(a) < M(a) U M(¢). During
this union operation, agent a extends the relative coordinates of
M(¢) to M(a) U M(£). This message passing process from parent
to child repeats using a message flag (msgFlag). After a sufficient
amount of time passes, each leaf a sends M (a) (which represents
a union of maps obtained from the path from ¢ to a in) to its
respective parent b, and updates its map M(b) «— M(b) U M(a)
(again preserving relative coordinates). This process then iterates
L (1) times from child to parent where then ¢ receives a complete
map. Agents repeatedly propagate messages long enough for the
height of the tallest tree to be traversed twice (down then up) to
preserve a relative coordinate scheme that is common to all agents
in K. If M(K) contains tasks that are unreachable by some agent, ¢
disregards their respective components, and if this results in a map
without tasks, the cluster is dissolved via broadcast of messages
that cause agents to reset their cluster associations and pointers.
We omit this description from Algorithm 1 for brevity. The lemma
below guarantees correctness and running time.

LEmMMA 3.2. Given Tk, local map aggregation provides the leader
¢ of the cluster K with a complete map M(K) = v(K) with all nodes
labelled relative to p(£) = (0,0) in O(y)) time steps.

PRrOOF. As the size of any cluster is constant, and an agent a in
cluster K will disregard any agent not in K, M(a) has constant
size and is generated in constant time. By Lemma 3.1, the maxi-
mum height of 7x is L(¢), and so O(L(¥)) is a sufficient time
so that the leaves of 7k receive partial cluster maps from ¢. Like-
wise, the broadcast of map information from the farthest leaf to
the root requires O(L(y)) time steps. As each message pass from
an agent a to an agent b produces a union of M(a) and M(b),
after O(L(y)) = O(y) time steps, £ possesses a complete map of
K. Note that the number of messages passed from a parent to its
children is constant since c is constant. By the labelling scheme
given in LMA, the complete map obtained by leader 7 is labelled
with coordinates relative to p(£) = (0,0). This follows since the
map originates from ¢, where it is labelled with relative coordinates
to p(£) = (0,0), and every map union operation appends nodes to
a map that contains the original map of ¢, so the relative labelling
scheme is preserved in the complete map. O

Team-Restricted Multiagent Rollout and Execute Movement
(Algorithm 1, Lines 43-49). TMAR describes how to apply multiagent
rollout from [10] to an independent cluster K while respecting all
of the local sensing and communication restrictions of our model.
After the sequential execution of SOAC followed by LMA, each
cluster K is structured as a spanning tree 7k rooted at the leader
agent £, who possesses a complete map M(K). Agent ¢ executes
multiagent rollout on M(K) with a greedy nearest-neighbor base
policy (i.e. each agent moves toward its respective nearest task)
to obtain control sequences for each agent in K, which terminates
in constant time since the size of M(K) is bounded by a constant
due to the constant height and branching factor of any agent tree.
Agent ¢ then initiates a broadcast of these sequences (via parent-
to-child message passing in 7k), each of which is associated with

a specific agent ID. After enough iterations have passed for each
agent a to receive its corresponding control sequence, a will simply
execute its control sequence via movement (EM). To maintain syn-
chronization between all clusters, a will wait an additional number
of time steps until it reaches a maximum control sequence length
A) = O([L(¥)]*)—a function on ¢ that returns a bound on the
maximum route length for a greedy nearest-neighbor heuristic ap-
plied to M(K). For any agent a not in a cluster, instead of following
a computed control sequence, a executes a (non-empty) sequence
of controls generated uniformly at random of length at most A(y))
and waits as soon as it sees a task, thereby exploring the network.
The theorem below shows that, in constant time, a round of
DMAR separates a subset of the agents into clusters, for each of
which control sequences are generated from multiagent rollout lo-
cally and executed. Agents that are not members of clusters perform
random walks of at most constant length in each run of EM.

THEOREM 3.3. During a round r of DMAR, the agent set is par-
titioned into members of clusters and non-members. Within O(y))
time steps, each agent x that is in a cluster K executes a control se-
quence R* that is generated from multiagent rollout with a greedy
base policy applied to M(K), and executes R* within O(y*) time
steps. If x is not in a cluster, x performs a random walk of length at
most A() = O(y*). Lastly, round r terminates in constant time.

Proor. As O(y) additional time is required for message broad-
cast in the event K is dissolved at the end of LMA (due to the tree
height), by Lemmas 3.1 and 3.2, the agent set is partitioned into
agents that are members of clusters and those who are not in con-
stant time. Those that are in a cluster K are associated with an
agent tree T, the root of which possesses a map M(K) of K. By
Lemma 3.1(i) and since k is constant, the radius of M(K) is bounded
by O(1/), and hence the area of M(K) is bounded by O (¢?) = O(1).
The number of agents in K is bounded by a constant (0L,
As the area of M(K) is of constant size, it can contain at most a
constant number of tasks (i.e. at most one per node). Hence, any
multiagent rollout computation on a map M(K) will terminate
in constant time. Consequently, by Lemma 3.1(i) and according
to TMAR, each agent in a cluster K obtains a control sequence
computed from multiagent rollout applied to M(K) in a constant
number of time steps and moves accordingly.

In the worst case, there may be a task at every node, and a route
may visit every task with a cost incurred proportional to the di-
ameter of the cluster. This implies the longest route for a cluster
K is bounded by A(y) = O(*) = O(1) since the diameter of the
cluster is bounded by its area. Since the base policy is greedy, multi-
agent rollout can perform no worse than it (see cost-improvement
properties [10]), and hence can never produce a trajectory longer
than A(1)). As each agent spends a constant number of time steps in
TMAR, and exactly A(1)) time steps in EM, these phases terminate
constant time. If an agent x is not in a cluster, then x executes a
non-empty random walk of length at most A(y/) = O(1) according
to TMAR, hence, r terminates in constant time. [m}

Until now, we have considered DMAR only on a per-round ba-
sis, but it remains to show that the number of rounds before an
instance of UMVRP-L is solved is also bounded. The following anal-
ysis demonstrates this and will rely on Theorem 3.3 and a known

result about random walks. The cover time of a random walk on
a connected, undirected graph G(V, E) (denoted C(G)) represents
the worst-case expected time to visit every node of G starting at
any initial node. It is known that C(G) < 2|E|(|V| - 1) [29]. We
now show that the number of time steps before DMAR solves any
solvable instance of UMVRP-L is bounded in expectation.

THEOREM 3.4. For a solvable instance G(V,E), O, S, on N nodes,
DMAR completes all tasks in O(N?) time steps in expectation.

Proor. During a round of DMAR, if there are clusters in the
TMAR phase, then some task will be completed in constant time by
Theorem 3.3 since the multiagent rollout algorithm is guaranteed
to complete all tasks with our chosen heuristic [10]. Otherwise,
each agent follows a random walk of length at least one. In the
worst case, an agent may need to visit every node in the network to
locate a task via random exploration. Consequently, by Theorem 3.3,
the cover time bound, and since |E| < 4N, we conclude that the
total number of time steps required to solve the instance is at most
directly proportional to 8N(N — 1) = O(N?) in expectation. O

Although we have bounded the number of time steps required for
DMAR to solve an instance of UMVRP-L in expectation, it is critical
for any motion planner to show that it is probabilistically complete,
i.e. for any solvable instance I of UMVRP-L, the probability that
DMAR solves I tends to unity as the number of rounds tends to
infinity [7]. The following theorem demonstrates this.

THEOREM 3.5. DMAR is a probabilisitically complete planner.

Proor. We argue from the squeeze principle. Let random vari-
able Tppr4g be the length of an execution of DMAR in time steps
given an arbitrary solvable instance of UMVRP-L. As E[Tpap4r] is
finite and positive by Theorem 3.4, the sequence (E[Tpamar]/t);2,
converges to zero, as does the sequence (0);2 . We use these facts to
show the sequence (Pr [Tpmar 2 t]);2, also converges to zero. Let
€ > 0 be an arbitrary positive real number. It suffices to show that
there exits some ¢’ € Z* such that if t > ¢’ then Pr [Tpajar > t] <
€. Choose t’ such that E[Tppar]/t < e forall t > t’. Such a t’
must exist since (E[Tpamar]/t);2; is decreasing and tends to zero.
By the Markov inequality, 0 < Pr [Tpaar = t] < E[Tpmar]/t <
€,Vt € Zy, and so (Pr [Tpmar 2 t]);2, also tends to zero. Hence,
under an execution of DMAR the probability that a reachable non-
completed task persists tends to zero as the number of time steps
tends to infinity, and so DMAR is probabilistically complete. O

4 EXPERIMENTAL RESULTS

We consider eight classes of instances of UMVRP-L; namely 10 x
10, ..., 80 x 80 grid graphs. For each class, we uniformly sample ten
grids with 20% of the nodes randomly designated as obstacles. For
each VN x VN grid, we consider a range of k-values (recall sens-
ing radius), and three agent-to-task ratios (1:2,1:1, 2:1). Agents and
tasks are distributed uniformly at random over each instance for
each ratio, and the number of agents is always VN. Moreover, we
disregard any topology that contains geographically isolated tasks,
i.e. where the expected length of a random walk to visit any task is
@(N). For all simulations, we fixed / = 8, as preliminary simula-
tions suggested this yields the best results. We run ten independent
runs per instance to account for randomness. For each grid size

and k-value combination, we report movement costs, wall-clock
running times and number of clusters formed averaged over ten
runs of ten instances for each of the three agent-to-task ratios.

For each of these combinations we run DMAR and a correspond-
ing base policy (BP) called the greedy-exploration policy. Note that
the algorithm that generates this policy differs from DMAR only
in Line 44 of Algorithm 1, where instead of multiagent rollout, a
greedy nearest-neighbor heuristic is used to compute a policy for
each agent in K over M(K). That is, the base policy still involves
random exploration and mandates SOAC and LMA, but does not
induce coordination. The combinations described above result in
approximately 50,000 individual simulations over 5,000 instances.
In this work we present results from 4040, 60X 60 and 80 x 80 grids,
but comprehensive results can be found in Appendix-C [38]. Note
that these experiments simulate the constraints of a distributed en-
vironment, and are not themselves decentralized. Simulator source
code can be found in Appendix-F [38].

We observe from Figure 2 (rows 1-3, left) that for each grid on
N € {40?,602, 802} nodes there exists a critical radius k*(N) such
that for all k > k*(N), rollout outperforms the greedy-exploration
base policy. As k decreases, we see that the performance of rollout
degrades gracefully; and as k increases, the total average running
time seems to increase exponentially to account for increased online
planning, illustrating the trade-off between scalability and solution
quality. From Figure 2 (rows 1-3) we see that an effective range
of radii exists that contains a special radius for which there are
multiple clusters generated and the relative cost improvement is
a factor of approximately two. At this special radius we achieve
an average wall-clock running time that is a small fraction of the
average time corresponding to the largest k values we considered.
Note that the average running time for DMAR on an instance at
any k value is no larger than the running time of the centralized
multiagent rollout algorithm, hence the observed improvement in
running time over the largest k values represents a lower bound
when comparing DMAR to centralized MVRP. For k values consid-
ered beyond the effective range, we only observe a further constant
factor relative cost improvement (approximately 3), even when the
number of clusters generated approaches one (as in centralized
MVRP), and hence only a small benefit is gained at the expense of
significantly higher running times. In Figure 2 (bottom), we plot an
approximation of k*(N) as obtained from our samples, and juxta-
pose several slow-growing functions. We see that k*(N) is closely
approximated by log}(N). Consequently, we mark our effective
range bounds in Figure 2 (rows 1-3) (indicated by the shaded box)
as 21og}(N) to 3log;(N) (ie. 8-12).

Physics-based Simulations and Robotics Experiments. To
address the question of whether DMAR is applicable to real-world
scenarios, we have created a proof-of-concept implementation that
adapts DMAR to continuous space using the Robotarium plat-
form [39]. These simulations capture the dynamics of differential
drive-based robots; that is, each robot’s movement is generated by
actuation of motors, the dynamics of which are described by a set
of ordinary differential equations. In this adaptation, planning by
each robot occurs in discrete space (9x9 grids), however, once a
discrete control sequence is computed, each control is then mapped
to a continuous space velocity vector, after which the new robot

s000
)

3000

Total Number of Mo

2000

1000

12000

10000

8000

6000

Total Number of Moves

25000

40x40

40x40

-+ DMARRUNTIME

BP-RUNTIME

35000

¢ 30000

10000 X 15

5000 »

N

DMAR-RUNTIME

e BPRUNTIME

5 R
Agent View Radius (k)

80x80

- DMARRUNTIME

BPRUNTIME

]

k6 7 8 o
‘Agent View Radius (k)

PR

60x60

350000
300000

250000

200000 €
1500
100000 <

50000

o

— oww
— e

350000

© 6

N 0 o 1 1
‘Agent View Radius (k)

80x80

— owr
—

< aoonoo 0
20000 : :
H 3 2500005
&
15000 : 200

150000
10000

Total Number of M

100000

5000 0000 20

o
2 PR 5 1w 1 w1 2 LS & 10 12 18 s
Agent View Radius (k)

Figure 2: (Rows 1-3, left) Left vertical axes show the average
cost of greedy-exploration base policy vs average cost of
DMAR. Right vertical axes show average running time in
seconds for DMAR and base policy. Critical radii are marked
as k*; shaded orange boxes show effective ranges. (Rows 1-3,
right) Show average number of clusters from base policy vs
those from DMAR. 95% confidence intervals are shown by
shaded regions around respective means. (Bottom) Sampled
critical radii function k*(N).

position is realized by the actuators. We took measures to avoid
collisions and simulated the distributed constraints of our model
on a centralized server (see Appendix-D [38]).

Due to the size constraints on the arena, we limit our simulations
to 30 randomly generated environments of size 2 mXx2 m, each with
avarying number of tasks and 7 agents. For each instance, we ran 10
executions and obtained average costs. In addition, we also varied
the sensing radius k as 20, 40, 60, 80 cm and oo. For all simulations,
we fixed i = 4. The results of these experiments are presented in
Figure 3 (left). Here DMAR outperforms the greedy-exploration
policy regardless of k, although its performance degrades as k
decreases. We see that as the radius increases, the number of clusters
decreases. We also ran experiments on physical robots using the
Robotarium platform on many instances (Figure 3 (right)).

-~ DMAR-AVG-CLUSTERS

BP-AVG-CLUSTERS

=

‘%
e

p
¥
)
3
Il
g
H
__-----.“
a
' $

5

60
‘Agent View Radius (in cm)

f

E—

Figure 3: (Left) Physics-based simulation on 2 mx2 m environ-
ments. Left vertical axis shows average solution cost, right
axis shows average number of clusters. 95% confidence inter-
vals are given by shaded regions. (Right) DMAR execution in
Robotarium. Small dots are tasks, boxes are obstacles. Star,
diamond, hexagon indicate cluster membership.

5 DISCUSSION

We have presented a distributed computing approach for applying
rollout to a generalization of the multivehicle routing problem
where agents operate with limited local sensing capabilities and
possess no a priori knowledge of the network. This study allowed
us to examine the role of communication in rollout, and the effect
that limiting it has on performance. Our approach produces quality
solutions already for small local sensing radii. We have shown
that there exists an (effectively constant) critical sensing radius
beyond which rollout outperforms a greedy strategy for all larger
radii. Moreover, there exists a range of effective radii where the
relative cost improvement over the base policy is approximately a
factor of two, but communication is still significantly limited. In
this effective range we also observed radii where the running time
of DMAR was exponentially smaller with only a constant factor
performance detriment as compared to larger radii. This implies
the superior scalability of our approach, and illustrates its trade-off
with performance. We conclude that the user may choose a radius
between 8 and 12 and expect substantial relative cost improvement
and fast execution without knowledge of the network size, and that
our approach is conceptually adaptable to continuous space and
robust to sensor noise, augmenting its real-world applicability.
Regarding the limitations of this work, real-world distributed
systems rarely behave synchronously, which we do not address
here. Moreover, arbitrary physical environments may be noisy or
change over time. As such, future work includes adapting DMAR
to stochastic and dynamic environments, and to weaker distributed
models. Nevertheless, our approach may apply more broadly to
other such decentralized multiagent problems, as vehicle rout-
ing is a fundamental primitive of many multiagent algorithms,
e.g. [5, 18, 26, 27, 32]. Lastly, our target applications (recall mine-
field disarmament and post-disaster search and rescue) suggest that
DMAR may produce a considerable positive societal impact.

ACKNOWLEDGMENTS

Special thanks to Ted Pavlic for guidance, and to Anya Chaturvedi
and Joseph Briones for technical and organizational support. Re-
search partially supported under NSF CCF-1637393 and CCF-1733680
and DoD-ARO MURI No.W911NF-19-1-0233 awards.

REFERENCES

(1]

[2

[

3

=

[10]

[11

[12]

=
&

[14]

[15]

[16

(17

(18

[19]

[20]

Christopher Amato, George Konidaris, Ariel Anders, Gabriel Cruz, Jonathan P
How, and Leslie P Kaelbling. 2016. Policy Search for Multi-Robot Coordination
under Uncertainty. Int. J. Rob. Res. 35, 14 (dec 2016), 1760-1778.

Christopher Amato, George Konidaris, Gabriel Cruz, Christopher A. Maynor,
Jonathan P. How, and Leslie P. Kaelbling. 2015. Planning for decentralized control
of multiple robots under uncertainty. In 2015 IEEE International Conference on
Robotics and Automation (ICRA). 1241-1248.

Chris Amato, George Dimitri Konidaris, Leslie Pack Kaelbling, and Jonathan P.
How. 2019. Modeling and Planning with Macro-Actions in Decentralized
POMDPs. The journal of artificial intelligence research 64 (2019), 817-859.

Dana Angluin, James Aspnes, Zoé Diamadi, Michael J. Fischer, and René Per-
alta. 2004. Computation in Networks of Passively Mobile Finite-State Sen-
sors. In Proceedings of the Twenty-Third Annual ACM Symposium on Princi-
ples of Distributed Computing (St. John’s, Newfoundland, Canada) (PODC ’04).
Association for Computing Machinery, New York, NY, USA, 290-299. https:
//doi.org/10.1145/1011767.1011810

G Balamurugan,] Valarmathi, and V P S Naidu. 2016. Survey on UAV navigation
in GPS denied environments. In 2016 International Conference on Signal Processing,
Communication, Power and Embedded System (SCOPES). 198-204. https://doi.
org/10.1109/SCOPES.2016.7955787

Yoshua Bengio, Jérome Louradour, Ronan Collobert, and Jason Weston. 2009.
Curriculum Learning. In Proceedings of the 26th Annual International Conference
on Machine Learning (Montreal, Quebec, Canada) (ICML ’09). Association for
Computing Machinery, New York, NY, USA, 41-48. https://doi.org/10.1145/
1553374.1553380

Dmitry Berenson and Siddhartha S. Srinivasaz. 2010. Probabilistically complete
planning with end-effector pose constraints. In 2010 IEEE International Conference
on Robotics and Automation. 2724-2730. https://doi.org/10.1109/ROBOT.2010.
5509694

Daniel S. Bernstein, Shlomo Zilberstein, and Neil Inmerman. 2000. The Complex-
ity of Decentralized Control of Markov Decision Processes. In Proceedings of the
Sixteenth Conference on Uncertainty in Artificial Intelligence (Stanford, California)
(UAI'00). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 32-37.
Dimitri Bertsekas. 2022. Newton’s method for reinforcement learning and model
predictive control. Results in Control and Optimization 7 (June 2022). https:
//doi.org/10.1016/j.ric0.2022.100121 Publisher Copyright: © 2022.

Dimitri P. Bertsekas. 2020. Rollout, Policy Iteration, and Distributed Reinforcement
Learning (1 ed.). Athena Scientific, Belmont, Massachusetts.

Dimitri P. Bertsekas. 2022. Lessons from AlphaZero for Optimal, Model Predictive,
and Adaptive Control. ArXiv abs/2108.10315 (2022). https://api.semanticscholar.
org/CorpusID:237279336

Dimitri P. Bertsekas and John N. Tsitsiklis. 1996. Neuro-Dynamic Programming
(1st ed.). Athena Scientific.

Sushmita Bhattacharya, Siva Kailas, Sahil Badyal, Stephanie Gil, and Dimitri P.
Bertsekas. 2020. Multiagent rollout and policy iteration for POMDP with ap-
plication to multi-robot repair problems. In 4th Conference on Robot Learning.
Cambridge, Massachusetts.

Kris Braekers, Katrien Ramaekers, and Inneke Van Nieuwenhuyse. 2016. The
vehicle routing problem: State of the art classification and review. Computers &
Industrial Engineering 99 (2016), 300-313. https://doi.org/10.1016/j.cie.2015.12.
007

G.S. Chirikjian. 1994. Kinematics of a metamorphic robotic system. In Proceedings
of the 1994 IEEE International Conference on Robotics and Automation. 449-455
vol.1.

Floriano De Rango, Nunzia Palmieri, Xin She Yang, and Salvatore Marano. 2015.
Bio-inspired exploring and recruiting tasks in a team of distributed robots over
mined regions. In 2015 International Symposium on Performance Evaluation of
Computer and Telecommunication Systems (SPECTS). 1-8. https://doi.org/10.1109/
SPECTS.2015.7285279

Zahra Derakhshandeh, Shlomi Dolev, Robert Gmyr, Andréa W. Richa, Chris-
tian Scheideler, and Thim Strothmann. 2014. Amoebot - a New Model for Pro-
grammable Matter. In Proceedings of the 26th ACM Symposium on Parallelism in
Algorithms and Architectures (Prague, Czech Republic) (SPAA ’14). Association
for Computing Machinery, New York, NY, USA, 220-222.

Michael Drexl. 2013. Applications of the vehicle routing problem with trailers and
transshipments. European Journal of Operational Research 227, 2 (2013), 275-283.
https://doi.org/10.1016/j.ejor.2012.12.015

Jakob N. Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli,
and Shimon Whiteson. 2018. Counterfactual Multi-Agent Policy Gradients. In
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and
Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth
AAAI Symposium on Educational Advances in Artificial Intelligence (New Orleans,
Louisiana, USA) (AAAI'18/IAAI'18/EAAI’18). AAAI Press, Article 363, 9 pages.
M. R. Garey, D. S. Johnson, and R. Endre Tarjan. 1976. The Planar Hamiltonian
Circuit Problem is NP-Complete. SIAM J. Comput. 5, 4 (1976), 704-714.

[21

[22

(23]

S
=}

[25

[26

[27

™
&,

[29

[30

(31

[32

@
&

[34

[35

[36

[38

[39

[40

N
fury

Bruce L. Golden, Attila A. Kovacs, and Edward A. Wasil. [n.d.]. Chapter 14: Vehicle
Routing Applications in Disaster Relief. In Vehicle Routing. Society for Industrial
and Applied Mathematics, 409-436. https://doi.org/10.1137/1.9781611973594.
ch14

Jayesh K. Gupta, Maxim Egorov, and Mykel Kochenderfer. 2017. Cooperative
Multi-agent Control Using Deep Reinforcement Learning. In Autonomous Agents
and Multiagent Systems, Gita Sukthankar and Juan A. Rodriguez-Aguilar (Eds.).
Springer International Publishing, Cham, 66-83.

Ming Han and Yabin Wang. 2018. A Survey for Vehicle Routing Problems and Its
Derivatives. IOP Conference Series: Materials Science and Engineering 452, 4 (dec
2018), 042024. https://doi.org/10.1088/1757-899X/452/4/042024

Stefan Irnich, Paolo Toth, and Daniele Vigo. 2014. Chapter 1: The Family of
Vehicle Routing Problems. 1-33. https://doi.org/10.1137/1.9781611973594.ch1
arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9781611973594.ch1

Soummya Kar, José M. F. Moura, and H. Vincent Poor. 2013. Q D-Learning:
A Collaborative Distributed Strategy for Multi-Agent Reinforcement Learning
Through Consensus + Innovations. IEEE Transactions on Signal Processing 61, 7
(2013), 1848-1862.

Veronika Lesch, Martin Breitbach, Michele Segata, Christian Becker, Samuel
Kounev, and Christian Krupitzer. 2022. An Overview on Approaches for Coordi-
nation of Platoons. IEEE Transactions on Intelligent Transportation Systems 23, 8
(2022), 10049-10065. https://doi.org/10.1109/TITS.2021.3115908

Shengbo Eben Li, Yang Zheng, Keqiang Li, and Jianqiang Wang. 2015. An
overview of vehicular platoon control under the four-component framework. In
2015 IEEE Intelligent Vehicles Symposium (IV). 286-291. https://doi.org/10.1109/
1VS.2015.7225700

Fei Liu, Chengyu Lu, Lin Gui, Qingfu Zhang, Xialiang Tong, and Mingxuan Yuan.
2023. Heuristics for Vehicle Routing Problem: A Survey and Recent Advances.
arXiv:2303.04147 [cs.Al]

Rajeev Motwani and Prabhakar Raghavan. 1995. Randomized Algorithms. Cam-
bridge University Press. https://doi.org/10.1017/CB0O9780511814075

Dheeraj Nagaraj, Naman Agarwal, Praneeth Netrapalli, Prateek Jain, and Syoman-
tak Chaudhari (Eds.). 2022. Online Target Q-learning with Reverse Experience
Replay: Efficiently finding the Optimal Policy for Linear MDPs.

Harilaos N. Psaraftis, Min Wen, and Christos A. Kontovas. 2016.
Dynamic vehicle routing problems: Three decades and counting.
Networks 67, 1 (2016), 3-31. https://doi.org/10.1002/net.21628

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/net.21628

Alberto Quattrini Li. 2020. Exploration and Mapping with Groups of Robots:
Recent Trends. Current Robotics Reports 1 (12 2020), 1-11. https://doi.org/10.
1007/s43154-020-00030-5

Syed Mohib Raza, Mohammad Sajid, and Jagendra Singh. 2022. Vehicle Routing
Problem Using Reinforcement Learning: Recent Advancements. In Advanced
Machine Intelligence and Signal Processing, Deepak Gupta, Koj Sambyo, Mukesh
Prasad, and Sonali Agarwal (Eds.). Springer Nature Singapore, Singapore, 269—
280.

Stuart Russell and Peter Norvig. 2009. Artificial Intelligence: A Modern Approach
(3rd ed.). Prentice Hall Press, USA.

Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

Paolo Toth and Daniele Vigo. 2002. The Vehicle Routing Problem. Monographs on
Discrete Mathematics and Applications. Vol. 9. Philadelphia: Society for Industrial
and Applied Mathematics.

J.E. Walter, E.M. Tsai, and N.M. Amato. 2005. Algorithms for fast concurrent
reconfiguration of hexagonal metamorphic robots. IEEE Transactions on Robotics
21, 4 (2005), 621-631.

Jamison W. Weber, Dhanush R. Giriyan, Devendra R. Parkar, Andréa W. Richa,
and Dimitri P. Bertsekas. 2023. Distributed Online Rollout for Multivehicle
Routing in Unmapped Environments. arXiv:2305.15596 [cs.DC]

Sean Wilson, Paul Glotfelter, Siddharth Mayya, Gennaro Notomista, Yousef Emam,
Xiaoyi Cai, and Magnus Egerstedt. 2021. The Robotarium: Automation of a
Remotely Accessible, Multi-Robot Testbed. IEEE Robotics and Automation Letters
6,2 (2021), 2922-2929.

Damien Woods, Ho-Lin Chen, Scott Goodfriend, Nadine Dabby, Erik Winfree,
and Peng Yin. 2013. Active Self-Assembly of Algorithmic Shapes and Patterns
in Polylogarithmic Time. In Proceedings of the 4th Conference on Innovations in
Theoretical Computer Science (Berkeley, California, USA) (ITCS °13). Association
for Computing Machinery, New York, NY, USA, 353-354. https://doi.org/10.
1145/2422436.2422476

Mark Yim, Wei-min Shen, Behnam Salemi, Daniela Rus, Mark Moll, Hod Lipson,
Eric Klavins, and Gregory S. Chirikjian. 2007. Modular Self-Reconfigurable Robot
Systems [Grand Challenges of Robotics]. IEEE Robotics and Automation Magazine
14, 1 (2007), 43-52.

https://doi.org/10.1145/1011767.1011810
https://doi.org/10.1145/1011767.1011810
https://doi.org/10.1109/SCOPES.2016.7955787
https://doi.org/10.1109/SCOPES.2016.7955787
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1109/ROBOT.2010.5509694
https://doi.org/10.1109/ROBOT.2010.5509694
https://doi.org/10.1016/j.rico.2022.100121
https://doi.org/10.1016/j.rico.2022.100121
https://api.semanticscholar.org/CorpusID:237279336
https://api.semanticscholar.org/CorpusID:237279336
https://doi.org/10.1016/j.cie.2015.12.007
https://doi.org/10.1016/j.cie.2015.12.007
https://doi.org/10.1109/SPECTS.2015.7285279
https://doi.org/10.1109/SPECTS.2015.7285279
https://doi.org/10.1016/j.ejor.2012.12.015
https://doi.org/10.1137/1.9781611973594.ch14
https://doi.org/10.1137/1.9781611973594.ch14
https://doi.org/10.1088/1757-899X/452/4/042024
https://doi.org/10.1137/1.9781611973594.ch1
https://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611973594.ch1
https://doi.org/10.1109/TITS.2021.3115908
https://doi.org/10.1109/IVS.2015.7225700
https://doi.org/10.1109/IVS.2015.7225700
https://arxiv.org/abs/2303.04147
https://doi.org/10.1017/CBO9780511814075
https://doi.org/10.1002/net.21628
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/net.21628
https://doi.org/10.1007/s43154-020-00030-5
https://doi.org/10.1007/s43154-020-00030-5
https://arxiv.org/abs/2305.15596
https://doi.org/10.1145/2422436.2422476
https://doi.org/10.1145/2422436.2422476

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 MVRP and Other Related Work

	2 Model and preliminaries
	3 Decentralized Multiagent Rollout
	4 Experimental results
	5 Discussion
	Acknowledgments
	References

