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ABSTRACT
We consider a generalization of the well-known multivehicle rout-

ing problem: given a network, a set of agents occupying a subset

of its nodes, and a set of tasks, we seek a minimum cost sequence

of movements subject to the constraint that each task is visited

by some agent at least once. The classical version of this problem

assumes a central computational server that observes the entire

state of the system perfectly and directs individual agents according

to a centralized control scheme. In contrast, we assume that there

is no centralized server and that each agent is an individual proces-

sor with no a priori knowledge of the underlying network, including
the locations of tasks and other agents. Moreover, our agents pos-

sess strictly local communication and sensing capabilities (restricted
to a fixed radius), aligning more closely with several real-world

multiagent applications. We present a fully distributed, online, and
scalable reinforcement learning algorithm for this problem whereby

agents self-organize into local clusters to which they independently

apply a multiagent rollout scheme. We demonstrate empirically

via extensive simulations that there exists a critical sensing radius

beyond which the distributed rollout algorithm begins to improve

over a greedy base policy. This critical sensing radius grows pro-

portionally to the log
∗
function of the size of the network and is

therefore a small constant in practice. Our decentralized reinforce-

ment learning algorithm achieves approximately a factor of two cost

improvement over the base policy for a range of radii between two

and three times the critical sensing radius. In addition, we observe

in simulations that our distributed algorithm requires exponentially
fewer computational resources than the centralized approach, at only

a small constant factor detriment in cost. We validate our algorithm

through physical robot experiments in continuous space and show

that the resulting behavior reflects the discrete simulations.
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1 INTRODUCTION
In this work, we consider a generalization of the well-studied mul-

tivehicle routing problem (MVRP). The MVRP involves a set of

agents (vehicles) and a set of tasks each occupying a position on

an underlying network. The objective is to compute a sequence of

movement decisions for each vehicle such that the total number

of vehicle movements is minimized, subject to the constraint that

each task is visited at least once by some agent. Classically, these

sequences are computed by a centralized controller with complete

state information that may freely direct all agents according to the

control sequences it computes.

Our generalization addresses scenarios where the network topol-
ogy, including the initial positions of agents and task locations, is not
known a priori, and where a centralized controller is not available,
as is potentially the case in many real-world scenarios, such as

minefield disarmament [16], post-disaster search and rescue [21],

and unmanned aerial vehicle navigation [5]. In such settings, each

agent must be in turn capable of performing individual compu-

tations and of local sensing and inter-agent communication, both
limited to a radius around the agent’s location in the network (e.g.

as in packet radio networks). Since no centralized computation is

available, local communication between agents is necessary for

coordination and information exchange. Since sensing is limited,

exploration is required to locate the tasks before completing them.

We refer to this as the Unmapped Multivehicle Routing Problem with
Local Constraints (UMVRP-L). Note that MVRP can be viewed as a

special case of UMVRP-L where the sensing radius is infinite.

The UMVRP-L is challenging for agent coordination algorithm

design. Algorithmically, one may consider a reinforcement learning

solution, as has been done with other MVRP variants [33], but as

the underlying network is unknown, methods that require offline

computation such as traditional Q-learning [35], policy approxima-

tion (via the training of parametric architectures) [12], or executing

policy iteration to near convergence [34] may not be applicable.

Moreover, even online Q-learning requires extensive exploration
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over a single trajectory to learn Q-values, and also frequently re-

visits states to ensure convergence [30]. This exploration factors

into the total cost of solving the problem.

This realization suggests rollout [10] as a natural candidate, as

it is a reinforcement learning algorithm that (under certain con-

ditions) admits a fully online solution without requiring precom-

putation or iterative convergence, and produces reliably favorable

results due to its fundamental connections to Newton’s method [9–

11]. However, rollout is a centralized control scheme that typically

assumes information is universally shared among agents and a

central dispatch (see classical information pattern [10]), and hence

we present a decentralized version of rollout to address UMVRP-L.

In general, the rollout algorithm requires a base policy, which pro-

vides a benchmark for comparison. For our distributed modification

of rollout specifically, this comparison allows us to evaluate the

impact of communication and coordination in our distributed frame-

work: Communication refers to agents sharing sensed information,

whereas coordination refers to agents organizing in such a way

that they collectively solve a problem intelligently.

1.1 Our Contributions
We present a distributed (decentralized) version of the Multiagent

Rollout algorithm from [10], which we call Decentralized Multia-

gent Rollout (DMAR). In this approach, we assume each agent runs

DMAR independently and in parallel with other agents. DMAR uses

simple local rules to induce iterative self-organization of the agent

set into temporary clusters of bounded size. These clusters gener-

ate control sequences locally using multiagent rollout (equipped

with a greedy nearest-neighbor base heuristic [10]) and execute

them before systematically dissolving. Agents alternate between

self-organizing into clusters and randomly searching the environ-

ment for tasks not visible to any cluster, making DMAR applicable

to fully unmapped environments, unlike the general multiagent

optimization literature.

We formally prove that DMAR is probabilistically complete [7],
i.e. for any solvable instance, the probability that DMAR correctly
solves UMVRP-L converges to unity as the running time tends to

infinity. We also show that each round of DMAR terminates in con-

stant time and that the expected number of rounds required to solve
the instance is bounded by O(𝑁 2), where 𝑁 is the number of nodes

in the network. Moreover, we conduct extensive simulations that

compare the costs incurred by DMAR with those of a modification

of DMAR that we call the greedy-exploration policy—a base policy
that strictly uses a greedy nearest-neighbor base heuristic (without

application of multiagent rollout) within the clusters generated.

Note that the greedy-exploration policy does not involve coordina-

tion of the control policies within each cluster. In these experiments,

we modulate the sensing radius over a wide variety of network

topologies and sizes, the number of tasks, and agent-to-task ratios.

We show that there is a critical sensing radius beyond which

DMAR begins to improve over the greedy-exploration policy: The

critical sensing radius is closely approximated by log
∗
2
(𝑁 ),1 and is

therefore a small constant in practice regardless of network size.

We show empirically that for sensing radii between 2 log
∗
2
(𝑁 ) and

1
log
∗
2
(𝑁 ) = 1 + log∗

2
(log

2
(𝑁 ) ) , for 𝑁 > 1 and log

∗
2
(𝑁 ) = 0, for 𝑁 ≤ 1. Note that,

e.g, log
∗
2
(𝑁 ) ≤ 5 for any 𝑁 ≤ 10

10000
.

3 log
∗
2
(𝑁 ) (we call those the effective radii), DMAR generates trajec-

tories of roughly a half the cost of those produced by the base policy
on average. We compare the costs of DMAR to that of the central-

ized multiagent rollout algotithm [10]. For the effective radii range,

DMAR shows an exponential improvement in computational costs
over the centralized multiagent rollout algorithm, while incurring

just a constant factor (approximately 3) increase in movement costs.
Lastly, we validate our algorithm through physical robot experi-

ments in continuous space using the Robotarium platform [39] as a

proof-of-concept. The results reflect what we observed in discrete-

space simulations, demonstrating the algorithm’s robustness to

sensor noise, which would underscore the potential for actual de-

ployments of the algorithm in scenarios where it is not reasonable

to assume that a complete mapping of tasks and agents exists.

1.2 MVRP and Other Related Work
A discussion on reinforcement learning techniques already ap-

peared in the introduction, so here we focus more on the MVRP

literature and agent-based distributed systems. As the MVRP is NP-

hard [36] (even when the network is planar [20]), several heuristics

have been proposed (e.g., [10, 28]). Researchers have considered

many fully observable and centralized variants that introduce fur-

ther constraints and complexities such as limited vehicle capacity,

heterogeneous capacities, route length limits, time windows when

tasks may be completed, multiple depots, multi-criteria objective

functions, stochastic time and transition variants, and demand con-

strained and weighted MVRP, e.g. [14, 23, 24].

Most relevant to UMVRP-L is probably the dynamic MVRP vari-

ant [24, 31], where certain input information such as the network,

vehicle availability, or task locations may not be known in ad-

vance, but becomes available over time (perhaps probabilistically).

Dynamic MVRP assumes a single centralized dispatcher with in-

stantaneous access to information as it becomes available, instant

communication with all vehicles, and persistent access to all pre-

viously available information—all of which we do not assume in

this work. Although UMVRP-L has commonalities with dynamic

MVRP, it is fundamentally different due to its decentralized nature

and strict local constraints. To the best of our knowledge, variants

of vehicle routing where a centralized planner is not available have

not yet been considered by researchers, and hence, no benchmark

algorithms for UMVRP-L exist in the literature.

AI researchers have also considered multiagent problems where

the full state is not directly observable to the agents, but the pro-

posed solutions in this domain require centralized computation—

often executed offline (e.g. [6, 13, 19, 22, 25]). A formulation known

as a decentralized partially observable Markov decision process (Dec-
POMDP) was introduced in [8] that combines notions from dis-

tributed computing and optimal control in partially observable

environments, but optimally solving Dec-POMDPs was shown to

be intractable. In these formulations, the environment is partially

observable to each agent, but the information sensed by each agent

is not universally shared. Approximate solutions to Dec-POMDPs

were explored in [1–3], but ultimately relied on intensive offline

and centralized simulations.

More broadly, there have been several recent advances in the

field of distributed computing on engineering collective behavior



for systems of agents. Such agents are typically restricted to only

local computations and interactions with other agents to achieve a

desired system-wide behavior, as in population protocols [4] and

programmable matter (e.g. [15, 17, 37, 40, 41]).

2 MODEL AND PRELIMINARIES
In general, one assumes a regular discretization of 2D space for the

MVRP, such as a 2-dimensional rectangular grid graph (as in [34]),

as we do in this work. An instance of the MVRP consists of a

rectangular grid graph 𝐺 (𝑉 , 𝐸) (e.g. in Figure 1) on 𝑁 nodes, a

set 𝑆 of𝑚 agents, where each agent occupies a node in the graph

(co-location is permitted), and a subset 𝜏 of nodes that represent

task locations in 𝐺 . We also assume there is a subset 𝑂 of nodes

that agents may not occupy, which allows us to represent obstacles
in the environment (represented by the black squares in Figure 1).

Moreover, each agent has a unique ID. This model operates in

discrete time steps, during which an agent may move to a node

adjacent to its current location. Whenever an agent visits a task

node, that task is considered completed, and is removed from the

network. At each time step, a unit cost is incurred for each agent

that moves from one node to an adjacent node. A control sequence

𝑌𝑖 for agent 𝑖 is given by the sequence of nodes 𝑣 (𝑖,1) , 𝑣 (𝑖,2) , . . .
visited by the agent. A solution𝑌 is given by𝑚 sequences𝑌1, . . . , 𝑌𝑚
of controls corresponding to each agent in 𝑆 . The cost 𝐶 (𝑌 ) of a
solution 𝑌 is the sum of the𝑚 control sequence lengths, i.e.𝐶 (𝑌 ) =∑
𝑌𝑖 ∈𝑌 |𝑌𝑖 |. A solution 𝑌 is optimal whenever 𝐶 (𝑌 ) is minimum.

The UMVRP-L is a generalization of MVRP where 𝐺,𝑂, 𝑆, 𝜏, are

not known a priori and no centralized computation is permitted. We

assume that each agent has some on-board computational capability

and enforce that any computation must be executed by some agent,

as opposed to a central controller. At any given time, each agent 𝑎

occupies a position 𝜌 (𝑎) ∈ 𝑉 . We also define the view of an agent

𝑎, denoted as 𝜈 (𝑎), to be the subgraph of the grid induced by 𝜌 (𝑎)
and all nodes (including obstacles) within at most 𝑘 hops of 𝜌 (𝑎),
where 𝑘 is an integral radius parameter. An agent’s view describes

what it is able to sense from its location (i.e. obstacles, neighboring

nodes, agents, and tasks). Depending on the application context,

there may be other (more appropriate) choices for the definition of

a view, such as those where obstacles restrict what an agent can

observe. We provide a discussion of the impact of various view

definitions in Appendix-A [38]. Let 𝜈 (𝑆 ′) = ⋃
𝑎∈𝑆 ′ 𝜈 (𝑎), and refer

to this as the view of an agent set 𝑆 ′ ⊆ 𝑆 .
Our distributed model operates under parallel synchronous time

steps. That is, at each discrete time step 𝑡 , all agents are activated
simultaneously in parallel, and thus may only act upon information

communicated at time 𝑡 − 1. An agent activation may consist of

either moving, performing some computation, or simply waiting.

For an agent 𝑎, the input of a computation performed by 𝑎 is limited

to 𝜈 (𝑎) (including the memories of the agents therein), and any

agent 𝑏 ∈ 𝜈 (𝑎) (including 𝑎) may have their memory modified

directly by 𝑎 as an output to that computation.

Rollout and Multiagent Rollout. From a centralized perspec-

tive, one can view an instance of MVRP as an infinite horizon

dynamic programming problem that can be solved approximately

in an online setting using approximation in value space, of which
the rollout algorithm is a special case [10]. That is, we approximate

the cost-to-go terms of the Bellman equations via online heuris-

tics. Denote Ω as the state space representing all possible agent

and task configurations over 𝐺 , plus an absorbing terminal state

representing the completion of all tasks. Let 𝑈 (𝑥) denote the set
of 𝑚-dimensional control vectors permissible at state 𝑥 ∈ Ω. A
system dynamics function 𝑓 (𝑥,𝑢) returns the resulting state ob-

tained from application of control 𝑢 ∈ 𝑈 (𝑥) at state 𝑥 ∈ Ω. Lastly,
denote 𝑔(𝑥,𝑢) as the cost function indicating the total number of

vehicle movements at state 𝑥 given control 𝑢. Rollout generates an

approximately optimal state and control sequence 𝑥0, 𝑢̃0, 𝑥1, 𝑢̃1, . . .

where each successive control 𝑢̃𝑠 at state 𝑥𝑠 is determined by

𝑢̃𝑠 ∈ arg min

𝑢∈𝑈 (𝑥𝑠 )
{𝑔(𝑥𝑠 , 𝑢) + 𝐻̃ (𝑓 (𝑥𝑠 , 𝑢))} (1)

and results in arrival at state 𝑥𝑠+1. Here 𝐻̃ (𝑓 (𝑥𝑠 , 𝑢)) refers to the

approximate cost-to-go obtained from simulation of a heuristic

(also known as a base policy).
Note that the minimization operation in Equation 1 is exponen-

tial in𝑚, however, a recent reformulation of a multiagent problem

to an equivalent problem with a larger state space, but simpler con-

trol space was described by Bertsekas in [10]. This reformulation

was the basis for substantial simplification of rollout and policy iter-

ation algorithms for multiagent problems. The resulting algorithm

(called multiagent rollout) dramatically reduces the computational

complexity of each minimization operation of the standard rollout

algorithm (from exponential to linear in the number of agents),

while maintaining its cost improvement properties. This exponen-

tial gain arises from a sequential rollout control computation on

an agent-by-agent basis, where the control for each agent is com-

puted based on a partial list of controls computed for each agent

earlier in the sequence, hence greatly restricting the number of

multi-component controls considered. Specifically, the control 𝑢𝑎

for each agent 𝑎 is computed in a sequence 𝑢𝑎1 , 𝑢𝑎2 , . . . , 𝑢𝑎𝑚 such

that when 𝑢𝑎𝑖 is computed, each 𝑢𝑎 𝑗 for 1 ≤ 𝑗 < 𝑖 has been de-

termined, and for any 𝑢𝑎 𝑗 where 𝑖 < 𝑗 ≤ 𝑚, and for all future

controls, a base policy is used to estimate the cost-to-go in Equa-

tion 1. See [10] for a comprehensive description.

3 DECENTRALIZED MULTIAGENT ROLLOUT
In this section, we present and analyze our Decentralized Multia-

gent Rollout Algorithm (DMAR), described as a series of phases that,

when executed in sequence and repeated, will solve the UMVRP-L.

DMAR is a fully distributed and local algorithm that applies multia-

gent rollout from [10] locally, and therefore can handle unmapped

environments. In addition to their (unique) IDs, DMAR assumes

that the agents know a constant parameter𝜓 (common to all agents),

which will determine an upper bound on the size of the clusters

formed by DMAR. During its execution, the algorithm will build

trees of agents, each of which corresponds to a current cluster, and

so each agent also maintains a parent pointer, a constant number 𝑐

of child pointers, and various flags with values T,F used for message

passing. At a high level, a round of DMAR consists of the following

sequence of phases, which the agents collectively repeat:

(1) Self-Organizing Agent Clusters (SOAC): Agents self-or-
ganize into clusters of constant size 𝑐O(𝜓 ) . For each cluster

𝐾 , the agents in 𝐾 will locally form a tree T𝐾 , whose root



will become the cluster leader. If two agents share an edge

in T𝐾 , then they appear in their respective views.

(2) Local Map Aggregation (LMA): For each cluster 𝐾 , agents

in 𝐾 route their views through T𝐾 to the cluster leader.

(3) Team-Restricted Multiagent Rollout (TMAR)/Execute
Movement (EM): For each cluster 𝐾 , the leader computes a

set R of control sequences (one for each agent in 𝐾) using

multiagent rollout on the assembled view information. R
is then broadcast over T𝐾 . If an agent does not belong to a

cluster, it follows a random trajectory of bounded length.

Else, each agent moves along its assigned control trajectory,

after which it unassigns itself from its cluster.

We will show that each round of DMAR terminates in constant

time, and that the number of rounds required for DMAR to solve

an instance of UMVRP-L is polynomially bounded in expectation

(Theorem 3.4). A pseudocode description of a round of DMAR is

given in Algorithm 1. We denote L(𝜓 ) = 3

2
(𝜓 − 2) as the maximum

possible height of any agent tree (see Lemma 3.1) and reference the

functionMR(M), which takes an instanceM of MVRP and returns

a set of control sequences R as computed by multiagent rollout

(see Section 2). Note that each agent runs DMAR individually on

their respective processor, but all agents remain synchronized in

their execution of DMAR. We achieve this by ensuring that each

phase is executed using exactly the same number (a function of𝜓 ) of

operations regardless of which agent is performing the computation.

For example, an agent that is not in a cluster will wait approximately

2 · L(𝜓 ) time steps for Lines 29-42 before continuing.

Self-Organizing Agent Clusters (Algorithm 1, Lines 2-28). To
achieve the clustering, agents that see tasks become temporary

cluster leaders via a local leader election scheme. The clusters then

grow by iteratively appending nearby agents (limited by parameter

𝜓 ). At the start of SOAC, each agent sets a leader flag (𝑙𝑑𝑟𝐹𝑙𝑎𝑔) to

true (T) if it sees a task. Then, if an agent 𝑎 sees a task while si-

multaneously seeing other agents that each see tasks, 𝑎 disqualifies

itself from becoming a leader if any such agent has a larger ID value

than 𝑎’s by setting its leader flag to false (F). Any remaining agents

after the above process form leaders of new unique clusters. Next,

SOAC iteratively appends agents to existing clusters over multiple

time steps. At iteration 𝑖 of the loop beginning in Line 6, if there

exists an agent 𝑎 that does not belong to a cluster, 𝑎 searches its

view for any agent 𝑎′ that already belongs to some cluster 𝐾 ′ and
joins 𝐾 ′ by becoming a child of 𝑎′. Consequently, as each cluster

𝐾 grows, a bi-directional (through parent and child pointers) tree

structure T𝐾 is maintained that manages the flow of messages in 𝐾 .

Moreover, when 𝑎 joins a cluster 𝐾 , it obtains 𝐾 ’s cluster ID from

its parent in T𝐾 , which corresponds to the ID of the leader of 𝐾 .

We found in preliminary simulations that communication be-

tween adjacent clusters generally leads to significantly better solu-

tions. As such, for adjacent clusters, SOAC employs a mechanism

to combine them into potentially larger clusters called cluster-join
(Lines 13-27). For any agent 𝑎 that is not in a cluster at iteration 𝑖

after the appending process (Lines 9-11), if 𝑎 sees other agents in

distinct clusters, 𝑎 becomes the leader of a new (possibly larger)

cluster that attempts to include all agents in neighboring clusters.

Agent 𝑎 sends messages ( 𝑗𝑜𝑖𝑛𝑀𝑒𝑠𝑠𝑎𝑔𝑒) to all such agents in its view,

which are then broadcast throughout the respective agent trees.

Algorithm 1 Local DMAR round protocol for agent 𝑎

1: Set 𝑎.𝑚𝑠𝑔𝐹𝑙𝑎𝑔 ← 𝑎.𝑙𝑑𝑟𝐹𝑙𝑎𝑔 ← F; Set 𝑎.𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝐷 ←
𝑎. 𝑗𝑜𝑖𝑛𝑀𝑒𝑠𝑠𝑎𝑔𝑒 ← 𝑎.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← 𝑎.𝑝𝑎𝑟𝑒𝑛𝑡 ← null.

2: if there is a task in 𝜈 (𝑎), set 𝑎.𝑙𝑑𝑟𝐹𝑙𝑎𝑔← T. ⊲ begin SOAC

3: if 𝑎.𝑙𝑑𝑟𝐹𝑙𝑎𝑔 and ∃𝑥 ∈ 𝜈 (𝑎) : 𝑥 .𝑙𝑑𝑟𝐹𝑙𝑎𝑔 and 𝑥 .𝐼𝐷 > 𝑎.𝐼𝐷 then
4: set 𝑎.𝑙𝑑𝑟𝐹𝑙𝑎𝑔← F.

5: if 𝑎.𝑙𝑑𝑟𝐹𝑙𝑎𝑔 then set 𝑎.𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝐷 ← 𝑎.𝐼𝐷 .

6: repeat ⊲ form initial clusters

7: if 𝑎.𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝐷 = null then
8: if there is an agent 𝑥 ∈ 𝜈 (𝑎) with 𝑥 .𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝐷 ≠ null

9: and |𝑥 .𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 | < 𝑐 then
10: Append 𝑎 to 𝑥 .𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛; set 𝑎.𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑥 .

11: Set 𝑎.𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝐷 ← 𝑥 .𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝐷 .

12: else
13: if there are agents 𝑥1, 𝑥2, . . . , 𝑥𝑟 ∈ 𝜈 (𝑎) from distinct

clusters, where 𝑟 ≤ 𝑐 then ⊲ cluster-join

14: Set 𝑎.𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝐷 ← 𝑎.𝐼𝐷 .

15: for each 𝑥𝑖 do
16: try set 𝑥𝑖 . 𝑗𝑜𝑖𝑛𝑀𝑒𝑠𝑠𝑎𝑔𝑒 ← 𝑎.𝐼𝐷 .

17: ⊲ Note that 𝑥𝑖 may reject the join request.

18: repeat
19: if 𝑎. 𝑗𝑜𝑖𝑛𝑀𝑒𝑠𝑠𝑎𝑔𝑒 = 𝑥 .𝐼𝐷 then
20: Set 𝑎.𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝐷 ← 𝑥 .𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝐷 .

21: for each child 𝑏 of 𝑎 do
22: if 𝑥 ≠ 𝑏, try set 𝑏. 𝑗𝑜𝑖𝑛𝑀𝑒𝑠𝑠𝑎𝑔𝑒 ← 𝑎.𝐼𝐷 .

23: if 𝑎.𝑝𝑎𝑟𝑒𝑛𝑡 ≠ 𝑥 then
24: try set 𝑎.𝑝𝑎𝑟𝑒𝑛𝑡 . 𝑗𝑜𝑖𝑛𝑀𝑒𝑠𝑠𝑎𝑔𝑒 ← 𝑎.𝐼𝐷 .

25: Set 𝑎.𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑥 ; append 𝑎 to 𝑥 .𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛.

26: Set 𝑎.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← 𝑎. 𝑗𝑜𝑖𝑛𝑀𝑒𝑠𝑠𝑎𝑔𝑒 ← null.

27: until L(𝜓 ) (synchronized) iterations
28: until ⌈log

2
𝜓 ⌉ (synchronized) iterations

29: if 𝑎.𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝐷 ≠ null then ⊲ begin LMA

30: Construct mapM = 𝜈 (𝑎).
31: If 𝑎.𝑝𝑎𝑟𝑒𝑛𝑡 .𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝐷 = 𝑎.𝑝𝑎𝑟𝑒𝑛𝑡 .𝐼𝐷 , set 𝑎.𝑚𝑠𝑔𝐹𝑙𝑎𝑔← T.

32: repeat
33: if 𝑎.𝑚𝑠𝑔𝐹𝑙𝑎𝑔 then
34: SetM(𝑎) ← M(𝑎) ∪M(𝑎.𝑝𝑎𝑟𝑒𝑛𝑡), preserving

coordinates relative toM(𝑎.𝑝𝑎𝑟𝑒𝑛𝑡).
35: if 𝑎.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ≠ null, set 𝑎.𝑚𝑠𝑔𝐹𝑙𝑎𝑔← F.

36: for each child 𝑏, set 𝑏.𝑚𝑠𝑔𝐹𝑙𝑎𝑔← T.

37: until L(𝜓 ) (synchronized) iterations
38: repeat
39: if 𝑎.𝑚𝑠𝑔𝐹𝑙𝑎𝑔 and 𝑎.𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝐷 ≠ 𝑎.𝐼𝐷 then
40: SetM(𝑎.𝑝𝑎𝑟𝑒𝑛𝑡) ← M(𝑎) ∪M(𝑎.𝑝𝑎𝑟𝑒𝑛𝑡).
41: Set 𝑎.𝑝𝑎𝑟𝑒𝑛𝑡 .𝑚𝑠𝑔𝐹𝑙𝑎𝑔← T; 𝑎.𝑚𝑠𝑔𝐹𝑙𝑎𝑔← F.

42: until L(𝜓 ) (synchronized) iterations
43: if 𝑎 is the leader of a cluster 𝐾 then ⊲ begin TMAR/EM

44: Compute R ← MR(M(𝐾)) and send R to each child.

45: repeat
46: if 𝑎.𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝐷 ≠ null and 𝑎 has received R from parent,

then send R to each child of 𝑎.

47: until L(𝜓 ) (synchronized) iterations
48: if 𝑎.𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝐷 ≠ null then move 𝑎 according to R𝑎.𝐼𝐷 .
49: else 𝑎 executes at most 𝜆(𝜓 ) controls, each selected uniformly

at random until there is a task in 𝜈 (𝑎).



These messages request that its recipients adopt the new cluster ID

(that of agent 𝑎) and reconfigure their tree pointer structure such

that their tree is rooted at 𝑎. If an agent receives multiple cluster

reassignment messages simultaneously, it will disregard all but one

(chosen arbitrarily, see line 16). Note that because of the possibility

that an agent may receive multiple cluster reassignment requests

simultaneously, not all agents of these trees may join the new clus-

ter rooted at 𝑎, since some may join other clusters in this manner.

However, in simulations we observed this generally resulted in

larger clusters, which led to greatly improved performance. Each

agent continues propagating join messages for L(𝜓 ) time steps

per iteration. After a SOAC run terminates, the process yields a

collection of clusters (and possibly some agents that belong to no

clusters). Generally, if the would-be parent of an agent 𝑎 attempting

to join a cluster has no available child pointers, then 𝑎 simply does

not join the cluster. Figure 1 provides a visualization of a SOAC

execution. Lemma 3.1 guarantees properties of the tree structure

of each cluster formed by SOAC, and bounds the running time.

Lemma 3.1. Let 𝐾 ⊆ 𝑆 be an arbitrary cluster of agents in 𝐺
obtained at the end of a round of SOAC. Then (i)𝐾 forms an agent tree
T𝐾 rooted at a leader ℓ with height at most L(𝜓 ) = O(𝜓 ) and |T𝐾 | =
𝑐O(L(𝜓 ) ) agents; (ii) all agents in T𝐾 associate their membership in
𝐾 with ℓ ; and (iii) SOAC terminates in O(𝜓 log

2
𝜓 ) time steps.

Proof. (i) Each tree is formed around a single leader. An unas-

signed agent appends itself as a child of a single parent node already

in T𝐾 , for some current cluster 𝐾 , adopting the cluster ID 𝐾 of its

parent (which can be traced back to the leader of 𝐾). Thus T𝐾
will form a single acyclic connected component, for each 𝐾 . In the

cluster-join process (initiated by an agent 𝑏), the parent pointer of

an agent 𝑎 will always point to the agent from which it received

(and accepted) a join request, which can likewise be traced back

to 𝑏. As agent 𝑎 removes its child pointers after propagating the

request, it becomes a leaf of the new tree, and any of its former

children may undergo the same process in the next loop iteration.

At a loop iteration 𝑖 , we claim that the height of the largest cluster

tree first increases by at most one (Lines 9-11) and then at most

doubles (plus one for the joining agent 𝑏) during the cluster-join

process. This follows since for any agent 𝑥 in T𝐾 , the neighbor-

hood of 𝑥 in T𝐾 (i.e. not including 𝑏) after the cluster-join process

is an induced subgraph of 𝑥 ’s previous neighborhood, and any

neighbors it loses are no longer in T𝐾 . As 𝑥 does not gain new

neighbors in T𝐾 , the longest path in T𝐾 is either the same or some

shorter path (in the case where not all of 𝐾 remains in the tree)

after pointer reassignment. The longest possible path in any undi-

rected rooted tree T is at most twice the height of T . Thus, the
maximum tree height at iteration 𝑖 is given by L(𝑖) = 0 if 𝑖 = 1, and

L(𝑖) ≤ 2(L(𝑖 − 1) + 1) + 1 for 𝑖 > 1. The solution of this relation is

3

2
(2𝑖 − 2) = O(2log2𝜓 ) = O(𝜓 ). The maximum number of agents in

T𝐾 is

∑L(𝜓 )
𝑗=1

𝑐 𝑗 = 𝑐L(𝜓 )+1−1
𝑐−1 ≤ 𝑐O(L(𝜓 ) ) . The height bound on an

agent tree implies waiting L(𝜓 ) time steps per iteration is enough

time for join messages to propagate through the tallest tree, and so

all agents in T𝐾 will agree on the leader ID, implying (ii). Counting

shows that SOAC terminates in O(𝜓 log𝜓 ) time steps. □

Local Map Aggregation (Algorithm 1, Lines 29-42). At the end
of SOAC, a subset of the agents is organized into clusters, for each

Figure 1: SOAC Execution. Read left to right, top to bottom:
Cars represent agents. Gray crosses are tasks. Agent colors in-
dicate cluster membership; gray agents are in no cluster. IDs
are indicated below each agent. Flags indicate which agents
see tasks. Assume 𝑘 = 2, 𝜓 = 4. (top left) No agent is in a
cluster; 1,2,3,5,7 see tasks. (top right) 1,2,5 see agents with
larger IDswho see tasks, so disqualify themselves. 3,7 become
leaders of new clusters. (middle left) Iteration 1 begins. 2,4,5
join clusters, colored arrows indicate tree pointers. 8 sees
agents in different clusters and initiates a join with messages.
(middle right) 3,7 join the purple cluster, send messages to
children to request reassignment. 2 rejects simultaneous re-
quest from 3. 6 initiates cluster join, 4 rejects request. (bottom
left) Iteration 2 begins. 2 joins the green cluster. 4 favors the
purple cluster, 5 joins the purple cluster. 2 sends request to 1.
(bottom right) 1 joins green cluster. 9 was too distant.

of which there exists a respective leader. In the second phase, the

objective is that for each independent cluster 𝐾 with leader ℓ , agent

ℓ obtains a map of 𝐾 , which reflects the collective view of the

cluster (𝜈 (𝐾)). Moreover, this map has a relative coordinate labelling

scheme whereby the coordinates of ℓ are (0, 0). At a high level,

agents in 𝐾 convey their views to their neighbors in T𝐾 . These
views then aggregate until ℓ obtains a view of the entire cluster.

An agent 𝑎 possesses a map structureM(𝑎) that includes 𝜈 (𝑎),
as well as possibly the views of other agents (initiallyM(𝑎) = 𝜈 (𝑎)).
Note that their may be agents in the view of 𝑎 that do not belong to

the cluster of which𝑎 is amember, but𝑎 disregards these. A complete
mapM(𝐾) of a cluster𝐾 includes the union of views of every agent

in 𝐾 , i.e.M(𝐾) = 𝜈 (𝐾). For two mapsM andM′, we useM∪M′
to denote the component-wise union of the maps. Agent ℓ will



initiate the propagation of messages down to the leaves ofT𝐾 . Agent
ℓ generates a mapM(ℓ) = 𝜈 (ℓ), which has nodes labelled with

relative coordinates such that 𝜌 (ℓ) = (0, 0). Agent ℓ passes this map

to each child 𝑎, and agent 𝑎 setsM(𝑎) ← M(𝑎) ∪M(ℓ). During
this union operation, agent 𝑎 extends the relative coordinates of

M(ℓ) toM(𝑎) ∪M(ℓ). This message passing process from parent

to child repeats using a message flag (𝑚𝑠𝑔𝐹𝑙𝑎𝑔). After a sufficient

amount of time passes, each leaf 𝑎 sendsM(𝑎) (which represents

a union of maps obtained from the path from ℓ to 𝑎 in T𝐾 ) to its

respective parent 𝑏, and updates its mapM(𝑏) ← M(𝑏) ∪M(𝑎)
(again preserving relative coordinates). This process then iterates

L(𝜓 ) times from child to parent where then ℓ receives a complete

map. Agents repeatedly propagate messages long enough for the

height of the tallest tree to be traversed twice (down then up) to

preserve a relative coordinate scheme that is common to all agents

in 𝐾 . IfM(𝐾) contains tasks that are unreachable by some agent, ℓ

disregards their respective components, and if this results in a map

without tasks, the cluster is dissolved via broadcast of messages

that cause agents to reset their cluster associations and pointers.

We omit this description from Algorithm 1 for brevity. The lemma

below guarantees correctness and running time.

Lemma 3.2. Given T𝐾 , local map aggregation provides the leader
ℓ of the cluster 𝐾 with a complete mapM(𝐾) = 𝜈 (𝐾) with all nodes
labelled relative to 𝜌 (ℓ) = (0, 0) in O(𝜓 ) time steps.

Proof. As the size of any cluster is constant, and an agent 𝑎 in

cluster 𝐾 will disregard any agent not in 𝐾 ,M(𝑎) has constant
size and is generated in constant time. By Lemma 3.1, the maxi-

mum height of T𝐾 is L(𝜓 ), and so O(L(𝜓 )) is a sufficient time

so that the leaves of T𝐾 receive partial cluster maps from ℓ . Like-

wise, the broadcast of map information from the farthest leaf to

the root requires O(L(𝜓 )) time steps. As each message pass from

an agent 𝑎 to an agent 𝑏 produces a union of M(𝑎) and M(𝑏),
after O(L(𝜓 )) = O(𝜓 ) time steps, ℓ possesses a complete map of

𝐾 . Note that the number of messages passed from a parent to its

children is constant since 𝑐 is constant. By the labelling scheme

given in LMA, the complete map obtained by leader ℓ is labelled

with coordinates relative to 𝜌 (ℓ) = (0, 0). This follows since the
map originates from ℓ , where it is labelled with relative coordinates

to 𝜌 (ℓ) = (0, 0), and every map union operation appends nodes to

a map that contains the original map of ℓ , so the relative labelling

scheme is preserved in the complete map. □

Team-Restricted Multiagent Rollout and Execute Movement
(Algorithm 1, Lines 43-49). TMAR describes how to applymultiagent

rollout from [10] to an independent cluster 𝐾 while respecting all

of the local sensing and communication restrictions of our model.

After the sequential execution of SOAC followed by LMA, each

cluster 𝐾 is structured as a spanning tree T𝐾 rooted at the leader

agent ℓ , who possesses a complete mapM(𝐾). Agent ℓ executes
multiagent rollout onM(𝐾) with a greedy nearest-neighbor base

policy (i.e. each agent moves toward its respective nearest task)

to obtain control sequences for each agent in 𝐾 , which terminates

in constant time since the size ofM(𝐾) is bounded by a constant

due to the constant height and branching factor of any agent tree.

Agent ℓ then initiates a broadcast of these sequences (via parent-

to-child message passing in T𝐾 ), each of which is associated with

a specific agent ID. After enough iterations have passed for each

agent 𝑎 to receive its corresponding control sequence, 𝑎 will simply

execute its control sequence via movement (EM). To maintain syn-

chronization between all clusters, 𝑎 will wait an additional number

of time steps until it reaches a maximum control sequence length

𝜆(𝜓 ) = O([L(𝜓 )]4)—a function on𝜓 that returns a bound on the

maximum route length for a greedy nearest-neighbor heuristic ap-

plied toM(𝐾). For any agent 𝑎 not in a cluster, instead of following

a computed control sequence, 𝑎 executes a (non-empty) sequence

of controls generated uniformly at random of length at most 𝜆(𝜓 )
and waits as soon as it sees a task, thereby exploring the network.

The theorem below shows that, in constant time, a round of

DMAR separates a subset of the agents into clusters, for each of

which control sequences are generated from multiagent rollout lo-

cally and executed. Agents that are not members of clusters perform

random walks of at most constant length in each run of EM.

Theorem 3.3. During a round 𝑟 of DMAR, the agent set is par-
titioned into members of clusters and non-members. Within O(𝜓 )
time steps, each agent 𝑥 that is in a cluster 𝐾 executes a control se-
quence R𝑥 that is generated from multiagent rollout with a greedy
base policy applied toM(𝐾), and executes R𝑥 within O(𝜓4) time
steps. If 𝑥 is not in a cluster, 𝑥 performs a random walk of length at
most 𝜆(𝜓 ) = O(𝜓4). Lastly, round 𝑟 terminates in constant time.

Proof. As O(𝜓 ) additional time is required for message broad-

cast in the event 𝐾 is dissolved at the end of LMA (due to the tree

height), by Lemmas 3.1 and 3.2, the agent set is partitioned into

agents that are members of clusters and those who are not in con-

stant time. Those that are in a cluster 𝐾 are associated with an

agent tree T𝐾 , the root of which possesses a mapM(𝐾) of 𝐾 . By
Lemma 3.1(i) and since𝑘 is constant, the radius ofM(𝐾) is bounded
by O(𝜓 ), and hence the area ofM(𝐾) is bounded by O(𝜓2) = O(1).
The number of agents in 𝐾 is bounded by a constant (𝑐O(L(𝜓 ) ) ).
As the area ofM(𝐾) is of constant size, it can contain at most a

constant number of tasks (i.e. at most one per node). Hence, any

multiagent rollout computation on a mapM(𝐾) will terminate

in constant time. Consequently, by Lemma 3.1(i) and according

to TMAR, each agent in a cluster 𝐾 obtains a control sequence

computed from multiagent rollout applied toM(𝐾) in a constant

number of time steps and moves accordingly.

In the worst case, there may be a task at every node, and a route

may visit every task with a cost incurred proportional to the di-

ameter of the cluster. This implies the longest route for a cluster

𝐾 is bounded by 𝜆(𝜓 ) = O(𝜓4) = O(1) since the diameter of the

cluster is bounded by its area. Since the base policy is greedy, multi-

agent rollout can perform no worse than it (see cost-improvement

properties [10]), and hence can never produce a trajectory longer

than 𝜆(𝜓 ). As each agent spends a constant number of time steps in

TMAR, and exactly 𝜆(𝜓 ) time steps in EM, these phases terminate

constant time. If an agent 𝑥 is not in a cluster, then 𝑥 executes a

non-empty random walk of length at most 𝜆(𝜓 ) = O(1) according
to TMAR, hence, 𝑟 terminates in constant time. □

Until now, we have considered DMAR only on a per-round ba-

sis, but it remains to show that the number of rounds before an

instance of UMVRP-L is solved is also bounded. The following anal-

ysis demonstrates this and will rely on Theorem 3.3 and a known



result about random walks. The cover time of a random walk on

a connected, undirected graph 𝐺 (𝑉 , 𝐸) (denoted C(𝐺)) represents
the worst-case expected time to visit every node of 𝐺 starting at

any initial node. It is known that C(𝐺) ≤ 2|𝐸 | ( |𝑉 | − 1) [29]. We

now show that the number of time steps before DMAR solves any

solvable instance of UMVRP-L is bounded in expectation.

Theorem 3.4. For a solvable instance 𝐺 (𝑉 , 𝐸),𝑂, 𝑆, 𝜏 on 𝑁 nodes,
DMAR completes all tasks in O(𝑁 2) time steps in expectation.

Proof. During a round of DMAR, if there are clusters in the

TMAR phase, then some task will be completed in constant time by

Theorem 3.3 since the multiagent rollout algorithm is guaranteed

to complete all tasks with our chosen heuristic [10]. Otherwise,

each agent follows a random walk of length at least one. In the

worst case, an agent may need to visit every node in the network to

locate a task via random exploration. Consequently, by Theorem 3.3,

the cover time bound, and since |𝐸 | ≤ 4𝑁 , we conclude that the

total number of time steps required to solve the instance is at most

directly proportional to 8𝑁 (𝑁 − 1) = O(𝑁 2) in expectation. □

Althoughwe have bounded the number of time steps required for

DMAR to solve an instance of UMVRP-L in expectation, it is critical

for any motion planner to show that it is probabilistically complete,
i.e. for any solvable instance 𝐼 of UMVRP-L, the probability that

DMAR solves 𝐼 tends to unity as the number of rounds tends to

infinity [7]. The following theorem demonstrates this.

Theorem 3.5. DMAR is a probabilisitically complete planner.

Proof. We argue from the squeeze principle. Let random vari-

able 𝑇𝐷𝑀𝐴𝑅 be the length of an execution of DMAR in time steps

given an arbitrary solvable instance of UMVRP-L. As E[𝑇𝐷𝑀𝐴𝑅] is
finite and positive by Theorem 3.4, the sequence (E[𝑇𝐷𝑀𝐴𝑅]/𝑡)∞𝑡=1
converges to zero, as does the sequence (0)∞

𝑡=1
. We use these facts to

show the sequence (Pr [𝑇𝐷𝑀𝐴𝑅 ≥ 𝑡])∞𝑡=1 also converges to zero. Let
𝜖 > 0 be an arbitrary positive real number. It suffices to show that

there exits some 𝑡 ′ ∈ Z+ such that if 𝑡 ≥ 𝑡 ′ then Pr [𝑇𝐷𝑀𝐴𝑅 ≥ 𝑡] <
𝜖 . Choose 𝑡 ′ such that E[𝑇𝐷𝑀𝐴𝑅]/𝑡 < 𝜖 for all 𝑡 ≥ 𝑡 ′. Such a 𝑡 ′

must exist since (E[𝑇𝐷𝑀𝐴𝑅]/𝑡)∞𝑡=1 is decreasing and tends to zero.

By the Markov inequality, 0 ≤ Pr [𝑇𝐷𝑀𝐴𝑅 ≥ 𝑡] ≤ E[𝑇𝐷𝑀𝐴𝑅]/𝑡 <
𝜖,∀𝑡 ∈ Z≥𝑡 ′ , and so (Pr [𝑇𝐷𝑀𝐴𝑅 ≥ 𝑡])∞𝑡=1 also tends to zero. Hence,
under an execution of DMAR the probability that a reachable non-

completed task persists tends to zero as the number of time steps

tends to infinity, and so DMAR is probabilistically complete. □

4 EXPERIMENTAL RESULTS
We consider eight classes of instances of UMVRP-L; namely 10 ×
10, . . . , 80× 80 grid graphs. For each class, we uniformly sample ten

grids with 20% of the nodes randomly designated as obstacles. For

each

√
𝑁 ×
√
𝑁 grid, we consider a range of 𝑘-values (recall sens-

ing radius), and three agent-to-task ratios (1:2,1:1, 2:1). Agents and

tasks are distributed uniformly at random over each instance for

each ratio, and the number of agents is always

√
𝑁 . Moreover, we

disregard any topology that contains geographically isolated tasks,

i.e. where the expected length of a random walk to visit any task is

𝜔 (𝑁 ). For all simulations, we fixed 𝜓 = 8, as preliminary simula-

tions suggested this yields the best results. We run ten independent

runs per instance to account for randomness. For each grid size

and 𝑘-value combination, we report movement costs, wall-clock

running times and number of clusters formed averaged over ten

runs of ten instances for each of the three agent-to-task ratios.

For each of these combinations we run DMAR and a correspond-

ing base policy (BP) called the greedy-exploration policy. Note that
the algorithm that generates this policy differs from DMAR only

in Line 44 of Algorithm 1, where instead of multiagent rollout, a

greedy nearest-neighbor heuristic is used to compute a policy for

each agent in 𝐾 overM(𝐾). That is, the base policy still involves

random exploration and mandates SOAC and LMA, but does not

induce coordination. The combinations described above result in

approximately 50,000 individual simulations over 5,000 instances.

In this work we present results from 40×40, 60×60 and 80×80 grids,
but comprehensive results can be found in Appendix-C [38]. Note

that these experiments simulate the constraints of a distributed en-

vironment, and are not themselves decentralized. Simulator source

code can be found in Appendix-F [38].

We observe from Figure 2 (rows 1-3, left) that for each grid on

𝑁 ∈ {402, 602, 802} nodes there exists a critical radius 𝑘∗ (𝑁 ) such
that for all 𝑘 ≥ 𝑘∗ (𝑁 ), rollout outperforms the greedy-exploration

base policy. As 𝑘 decreases, we see that the performance of rollout

degrades gracefully; and as 𝑘 increases, the total average running

time seems to increase exponentially to account for increased online

planning, illustrating the trade-off between scalability and solution

quality. From Figure 2 (rows 1-3) we see that an effective range

of radii exists that contains a special radius for which there are

multiple clusters generated and the relative cost improvement is

a factor of approximately two. At this special radius we achieve

an average wall-clock running time that is a small fraction of the

average time corresponding to the largest 𝑘 values we considered.

Note that the average running time for DMAR on an instance at

any 𝑘 value is no larger than the running time of the centralized

multiagent rollout algorithm, hence the observed improvement in

running time over the largest 𝑘 values represents a lower bound

when comparing DMAR to centralized MVRP. For 𝑘 values consid-

ered beyond the effective range, we only observe a further constant

factor relative cost improvement (approximately 3), even when the

number of clusters generated approaches one (as in centralized

MVRP), and hence only a small benefit is gained at the expense of

significantly higher running times. In Figure 2 (bottom), we plot an

approximation of 𝑘∗ (𝑁 ) as obtained from our samples, and juxta-

pose several slow-growing functions. We see that 𝑘∗ (𝑁 ) is closely
approximated by log

∗
2
(𝑁 ). Consequently, we mark our effective

range bounds in Figure 2 (rows 1-3) (indicated by the shaded box)

as 2 log
∗
2
(𝑁 ) to 3 log

∗
2
(𝑁 ) (i.e. 8-12).

Physics-based Simulations and Robotics Experiments. To
address the question of whether DMAR is applicable to real-world

scenarios, we have created a proof-of-concept implementation that

adapts DMAR to continuous space using the Robotarium plat-

form [39]. These simulations capture the dynamics of differential

drive-based robots; that is, each robot’s movement is generated by

actuation of motors, the dynamics of which are described by a set

of ordinary differential equations. In this adaptation, planning by

each robot occurs in discrete space (9×9 grids), however, once a
discrete control sequence is computed, each control is then mapped

to a continuous space velocity vector, after which the new robot



Figure 2: (Rows 1-3, left) Left vertical axes show the average
cost of greedy-exploration base policy vs average cost of
DMAR. Right vertical axes show average running time in
seconds for DMAR and base policy. Critical radii are marked
as 𝑘∗; shaded orange boxes show effective ranges. (Rows 1-3,
right) Show average number of clusters from base policy vs
those from DMAR. 95% confidence intervals are shown by
shaded regions around respective means. (Bottom) Sampled
critical radii function 𝑘∗ (𝑁 ).

position is realized by the actuators. We took measures to avoid

collisions and simulated the distributed constraints of our model

on a centralized server (see Appendix-D [38]).

Due to the size constraints on the arena, we limit our simulations

to 30 randomly generated environments of size 2m×2m, each with

a varying number of tasks and 7 agents. For each instance, we ran 10

executions and obtained average costs. In addition, we also varied

the sensing radius 𝑘 as 20, 40, 60, 80 cm and∞. For all simulations,

we fixed𝜓 = 4. The results of these experiments are presented in

Figure 3 (left). Here DMAR outperforms the greedy-exploration

policy regardless of 𝑘 , although its performance degrades as 𝑘

decreases.We see that as the radius increases, the number of clusters

decreases. We also ran experiments on physical robots using the

Robotarium platform on many instances (Figure 3 (right)).

Figure 3: (Left) Physics-based simulation on 2m×2m environ-
ments. Left vertical axis shows average solution cost, right
axis shows average number of clusters. 95% confidence inter-
vals are given by shaded regions. (Right) DMAR execution in
Robotarium. Small dots are tasks, boxes are obstacles. Star,
diamond, hexagon indicate cluster membership.

5 DISCUSSION
We have presented a distributed computing approach for applying

rollout to a generalization of the multivehicle routing problem

where agents operate with limited local sensing capabilities and

possess no a priori knowledge of the network. This study allowed

us to examine the role of communication in rollout, and the effect

that limiting it has on performance. Our approach produces quality

solutions already for small local sensing radii. We have shown

that there exists an (effectively constant) critical sensing radius

beyond which rollout outperforms a greedy strategy for all larger

radii. Moreover, there exists a range of effective radii where the

relative cost improvement over the base policy is approximately a

factor of two, but communication is still significantly limited. In

this effective range we also observed radii where the running time

of DMAR was exponentially smaller with only a constant factor

performance detriment as compared to larger radii. This implies

the superior scalability of our approach, and illustrates its trade-off

with performance. We conclude that the user may choose a radius

between 8 and 12 and expect substantial relative cost improvement

and fast execution without knowledge of the network size, and that

our approach is conceptually adaptable to continuous space and

robust to sensor noise, augmenting its real-world applicability.

Regarding the limitations of this work, real-world distributed

systems rarely behave synchronously, which we do not address

here. Moreover, arbitrary physical environments may be noisy or

change over time. As such, future work includes adapting DMAR

to stochastic and dynamic environments, and to weaker distributed

models. Nevertheless, our approach may apply more broadly to

other such decentralized multiagent problems, as vehicle rout-

ing is a fundamental primitive of many multiagent algorithms,

e.g. [5, 18, 26, 27, 32]. Lastly, our target applications (recall mine-

field disarmament and post-disaster search and rescue) suggest that

DMAR may produce a considerable positive societal impact.
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