
Multiprime Strategies for Serial Evaluation of
eSIDH-Like Isogenies

Jason T. LeGrow1⋆, Brian Koziel2, Reza Azarderaskhsh2

1 Department of Mathematics, Virginia Polytechnic Instutite and State University,
Blacksburg, Virginia, USA

jlegrow@vt.edu
2 Department of Electrical Engineering and Computer Science, Florida Atlantic

University, Boca Raton, Florida, USA
{bkoziel2017,razarderakhsh}@fau.edu

Abstract. We present new results and speedups for the large-degree
isogeny computations within the extended supersingular isogeny Diffie-
Hellman (eSIDH) key agreement framework. As proposed by Cervantes-
Vázquez, Ochoa-Jiménez, and Rodŕıguez-Henŕıquez, eSIDH is an ex-
tension to SIDH and fourth round NIST post-quantum cryptographic
standardization candidate SIKE. By utilizing multiprime large-degree
isogenies, eSIDH and eSIKE are faster than the standard SIDH/SIKE
and amenable to parallelization techniques that can noticeably increase
their speed with multiple cores. Here, we investigate the use of multi-
prime isogeny strategies to speed up eSIDH and eSIKE in serial im-
plementations. These strategies have been investigated for other isogeny
schemes such as CSIDH. We apply them to the eSIDH/eSIKE scenario to
speed up the multiprime strategy by about 10%. When applied to eSIDH,
we achieve a 7-8% speedup for Bob’s shared key agreement operation.
When applied to eSIKE, we achieve a 3-4% speedup for key decapsula-
tion. Historically, SIDH and SIKE have been considerably slower than
its competitors in the NIST PQC standardization process. These results
continue to highlight the various speedups achievable with the eSIKE
framework to alleviate these speed concerns. Though eSIDH and eSIKE
are susceptible to the recent devastating attacks on SIKE, our analysis
applies to smooth degree isogeny computations in general, and isogeny-
based signature schemes which use isogenies of smooth (not necessarily
powersmooth) degree.

Keywords: Isogeny-based cryptography · large-degree isogeny · post-
quantum cryptography

⋆ Jason T. LeGrow is funded in part by New Zealand’s Ministry of Business, In-
novation, and Employment fund UOAX1933 and the Commonwealth of Virginia’s
Commonwealth Cyber Initative (CCI), an investment in the advancement of cyber
R&D, innovation, and workforce development. For more information about CCI,
visit www.cyberinitiative.org. This work was partially performed while the first
author was in the Department of Mathematics at the University of Auckland.



1 Introduction

The impending implementation of large-scale quantum computers necessitates
the development of post-quantum cryptosystems to ensure the continued safety
of our communications systems. One family of post-quantum primitives are su-
persingular isogeny-based protocols, whose security is based on the presumed
hardness of finding isogenies between supersingular elliptic curves (and many
variants of this problem). One such protocol was Supersingular Isogeny Diffie-
Hellman (SIDH) [12] key exchange, which underlies the NIST post-quantum
cryptography (PQC) competition fourth round alternate candidate supersingu-
lar isogeny key encapsulation (SIKE) [2] mechanism which was recently bro-
ken [5, 16, 18]. Among post-quantum cryptosystems, SIDH and SIKE were ap-
pealing because of their small key sizes, which reduce both the communication
and storage components when transferring or storing public keys, respectively.
Unfortunately, SIDH and SIKE suffered from slow speeds, but these concerns
continue to be alleviated as more applied research accelerated them.

In both SIDH and SIKE, the most time-consuming computational task that
each party must perform is to determine the codomain of an isogeny which is of
cryptographically-large but smooth degree. This is a large-degree isogeny com-
putation. For the SIKE parameter sets which were considered for standardiza-
tion [2, Section 1.6], Alice computes isogenies of degree 2eA for eA approximately
between 200 and 400, while Bob computes isogenies of degree 3eB for eB approx-
imately between 130 and 230. More exotic protocols built on SIDH have parties
construct isogenies of the form ℓe where ℓ is a small prime and e is a small
exponent which depends on the desired security level; for instance, 3-party key
establishment of the kind given in [1, 13] uses isogenies of degree 5eC for a third
party, Charlie.

Any isogeny ψ of degree N = ℓe11 ℓ
e2
2 · · · ℓenn defined on an elliptic curve E

defined over a field F of characteristic coprime to ℓ1, ℓ2, . . . , ℓn factors as

ψ = ψ1,1 ◦ · · · ◦ ψ1,e1 ◦ ψ2,1 ◦ · · · ◦ ψ2,e2 ◦ · · · ◦ ψn,1 ◦ · · · ◦ ψn,en (1)

where for each 1 ≤ j ≤ n and 1 ≤ k ≤ ej we have degψj,k = ℓj . The best
known algorithms for computing the codomain of an isogeny of prime degree
ℓ requires time fully exponential in ℓ (cf. Vélu’s formulas [19] and the recent
improved Vélu’s formulas [4]); however, for isogenies of degrees of the form used
in SIKE or CSIDH, the factorization given in Equation (1) naturally yields a
polynomial-time algorithm for computing the required isogenies, for constant
values of ℓ1, ℓ2, . . . , ℓn and polynomially-sized e1, e2, . . . , en.

The isogenies of small prime degree which are chained together to construct
the isogenies of cryptographically-large degree in SIKE and CSIDH are typically
computed using Vélu’s formulas; to compute an isogeny of degree ℓi, a point
Pi ∈ E(Fp2) of order ℓi is required, and exactly which point Pi is required at
each step depends on the protocol being used and the user’s secret key. In the
case of SIKE, Alice’s secret key is an integer 0 ≤ mA ≤ ℓeAA − 1, and (part of)
her public ephemeral key is ψA(E0), where E0 is a global public curve and ψA

is the unique (up to composition with an isomorphism) isogeny whose kernel is

2



kerψA = ⟨PA +mAQA⟩, for some global public points PA, QA which generate
E(Fp2)[2eA ]. This isogeny factors as ψA = ψeA

A ◦ ψeA−1
A ◦ · · · ◦ ψ1

A where for each

1 ≤ j ≤ eA, we have kerψ
j
A = ⟨[2eA−j ]ψj−1

A ◦ψj−2
A ◦ · · · ◦ψ1

A(PA+mAQA)⟩. This
suggests a straightforward method to compute ψA from R

(0)
A = PA+mAQA: first

construct [2eA−1]R
(0)
A , which generates kerψ1

A. Using Vélu’s formulas, construct

R
(1)
A = ψ1

A(R
(0)
A ). Now construct [2eA−2]R

(1)
A , which generates kerψ2

A. Continue

in this fashion, alternately multiplying by [2eA−j ] and applying ψj
A, until you

have performed all eA isogenies. This simple technique requires the application
of eA − 1 = O(eA) 2-isogeny evaluations, and

∑eA
j=1(eA − j) =

(
eA
2

)
= O(e2A)

point doublings, which is clearly polynomial-time in eA.
Strategies have been proposed (first in [12] for SIDH and SIKE, and in [15] for

CSIDH [6]) as faster alternatives to this näıve method. Formally, a strategy is a
Steiner arborescence in a directed grid graph with particular root and terminals
(depending on the degree of the isogeny to be computed) and with edge weights
which encode the cost of two basic operations: prime-degree isogeny evaluation
and scalar multiplication. A strategy corresponds to an algorithm for construct-
ing an isogeny codomain by associating to each vertex a point on an elliptic
curve and to each edge a basic operation. A strategy of minimal total weight
thus corresponds to a fastest algorithm (from the class of algorithms which are
in correspondence with strategies) for constructing the codomain of an isogeny.
The straightforward algorithm of the previous paragraph corresponds to the
“multiplication-based” strategy; generally, other strategies are more efficient.

Extended SIDH (eSIDH) [8] is a protocol derived from SIDH, in which
Bob’s prime-power-degree isogenies are replaced by isogenies whose degrees are
a product of powers of small primes (3 and 5, for all proposed parameter sets
in [8]). The most obvious benefit of this change is that Bob’s computations
are more amenable to parallelization; in particular, the kernel of an 3eB5eC

isogeny can be generated by a point RB = PB + mBQB of order 3eB and
a point of RC = PC + mCQC of order 5eC , and these points can be con-
structed in parallel. To yield the same security level as Alice’s 2eA -isogeny, it
suffices to take eB , eC such that eB log2 3 + eC log2 5 ≈ eA; in particular, taking
eB log2 3 ≈ eC log2 5 ≈ eA

2 , constructing RB and RC in parallel takes approxi-
mately half as long as computing RA, which saves a significant amount of time
over a parallel implementation of SIDH. Aside from parallelization, this method
allows Bob to compute his isogeny using two small strategies rather than one
large strategy; this is more efficient even in the serial setting than the corre-
sponding computation in SIDH. We refer to the technique of using multiple
small strategies as the “split prime” setting.

Unfortunately, this split prime optimization only yields a net benefit in the
first round of eSIDH. In contrast, in the second round, expensive scalar mul-
tiplications are required to generate the necessary “auxiliary points” used in
constructing the corresponding kernel generators. However, as the authors note
in [8, Section 3.3], Bob can instead construct a single point R′

BC which generates
the kernel of his full 3eB5eC -isogeny, and construct that isogeny using a single
strategy of size eB + eC which is formed from the smaller strategies from round
1. The authors of [8] refer to this as the “CRT-based” (Chinese Remainder The-

3



orem) approach; more broadly, we refer to a single strategy which is used to
compute an isogeny of non-prime-power degree as a “multiprime strategy.”

Contributions. In this work we consider multiprime strategies of a more gen-
eral form than those of [8], as well as permutations of the multisets of small
primes associated to the strategy, as in [15]. Using these more general strate-
gies along with different techniques for secret key selection and kernel generator
construction we accelerate Bob’s large-degree isogeny by about 10% over the
eSIDH implementations of [8] in the serial setting. In eSIDH, this equates to
a 7-8% performance boost for Bob’s shared secret generation. In eSIKE, this
equates to a 3-4% performance boost for key decapsulation. We note that these
performance boosts are achieved simply through pre-computation; the rest of
the eSIDH/eSIKE algorithm remains the same. Next, we searched for other
eSIDH/eSIKE-friendly primes, proposing new primes that our estimates suggest
would provide a further 3% improvement in the isogeny computation. Lastly,
we implement our multiprime stategies for some eSIDH primes in the eSIDH li-
brary to confirm these performance gains. We stress that these techniques apply
to eSIDH variants of SIDH-based signatures based on zero-knowledge proofs of
isogeny knowledge [11], such as those of [14], which remain secure despite the
recent attacks on SIDH-based key establishment.

The rest of this paper is organized as follows: in Section 2 we give the neces-
sary mathematical background for SIDH and eSIDH, which we then describe in
Section 3. In Section 4 we discuss strategies abstractly, and then their applica-
tions to isogeny-based protocols. Finally, we present our implementation results
in Section 5 and conclude in Section 6.

2 Mathematical Background: Isogenies

In this section we give a brief introduction to isogenies and how they are repre-
sented in SIDH and eSIDH. The contents of this section are adapted from [12,
Section 2]. Note that SIKE and eSIKE are variants of SIDH and eSIDH, respec-
tively, where the order of isogenies (among other things) is modified to achieve
IND-CCA2 security. SIKE and eSIKE functions include key generation, key en-
capsulation, and key decapsulation.

Let E1 and E2 be elliptic curves defined over a finite field Fq. An isogeny
from E1 to E2 defined over Fq is a surjective rational map ψ : E1 → E2 which

is also a group homomorphism of E1(Fq) to E2(Fq). When an isogeny from E1

to E2 defined over Fq exists we say that E1 and E2 are Fq-isogenous. Since each

isogeny ψ : E1 → E2 has a dual isogeny ψ̂ : E2 → E1, the property of being
isogenous is an equivalence relation on the set of elliptic curves defined over Fq.

An endomorphism of an elliptic curve E defined over Fq is an isogeny ψ : E →
E defined over Fqe for some e ∈ N. The set of endomorphisms E, together with
the zero map, forms a ring, called the endomorphism ring of E, and denoted
End(E). The endomorphism ring is isomorphic to an order either in a quadratic
number field—in which case we say that E is ordinary—or in a quaternion
algebra, in which case we say that E is supersingular.

4



3 eSIDH Protocol Description

Here we present eSIDH, to give context for the use of strategies in Section 4.
Concisely, eSIDH is constructed from SIDH [12] (described in Appendix A)

by having Bob compute isogenies of non-prime-power degree. The protocol flow
is much the same; the necessary changes are:

1. Fix ℓA = 2, and choose distinct odd primes ℓ1, ℓ2, . . . , ℓn.
2. The prime takes the form p = 2eAℓe11 · · · ℓenn f − 1 with 2eA ≈ ℓe11 · · · ℓenn
3. We require torsion bases {Pi, Qi} for E[ℓeii ] for i = 1, 2, . . . , n, along with

a basis {PA, QA} for E[2eA ]. As well, set PB = P1 + P2 + · · · + Pn and
QB = Q1 +Q2 + · · ·+Qn.

4. In Bob’s key generation round, he chooses secrets βi ∈ {0, 1, . . . , ℓeii −1} and
constructs the points Ri = Pi + βiQi. He will construct n isogenies, whose
kernels are given by

kerψ1 = ⟨R1⟩
kerψi = ⟨ψi−1 ◦ · · · ◦ ψ1(Ri)⟩ for i ≥ 2.

He also sets ψB = ψn ◦ · · · ◦ ψ1. His secret key is skB = (β1, . . . , βn) and his
public key is pkB = (ψB(E), ψB(PA), ψB(QA)).

5. In Bob’s key establishment round, he constructs the points

R′
i =

∏
j ̸=i

ℓ
ej
j (SA + βiTA) for i = 1, 2, . . . , n

(where SA = ψA(PB) and TA = ψA(QB)) and uses them to construct
isogenies ψ′

1, . . . , ψ
′
n, ψ

′
B as in his key generation round. His key is KB =

j(ψB(EA)).

The structure of Bob’s computations in eSIDH. As the authors note in [8, Section
3.3], Bob’s isogeny construction does not need to be decomposed into prime-
power-order isogenies; instead, he can construct a generator RB of kerψB by
“combining” his secret values β1, . . . , βn using the Chinese remainder theorem.
This is valuable in the second round of eSIDH, since constructing the points R′

i

requires many costly point multiplications. This would allow Bob to use a single
strategy (which we describe in the next section) to construct his key KB .

Note that this idea works “in reverse” as well; rather than choosing β1, . . . , βn,
Bob can choose β ∈ {0, 1, . . . , ℓe11 · · · ℓenn − 1} and then set each βi = β mod ℓeii .

4 Strategies and their Applications to (e)SIDH

Strategies were first introduced in [12, Section 4.2.2] (as “full, well-formed”
strategies) as a method to define algorithms for computing prime-power-degree
isogenies. They were later slightly reformulated in [15, Section 2.1] to be more
compatible with certain optimization techniques relevant to CSIDH—we present
(a slightly modified version of) that formulation here.

5



Definition 1 (The Triangle Graphs Tn). For n ∈ N, we denote by Tn the
directed graph whose vertices and edges are

V(Tn) = {x⃗ ∈ Z2 : x1 + x2 ≤ n− 1 and x1, x2 ≥ 0}
E(Tn) =

{
(x⃗, y⃗) ∈ V(Tn)2 : y⃗ − x⃗ ∈

{
(1, 0), (0, 1)

}}
We call Tn the triangle graph of side n.

Definition 2 (Steiner Arborescence). Let G be a graph, and let r ∈ V(G)
and L ⊆ V(G) \ {r}. A Steiner arboresence for (G, r, L) is a subgraph S of G
such that:

1. For each t ∈ L, S contains a directed path from r to t, and;
2. S contains no undirected cycles.

We call r the root of the arborescence, and L the terminals.

Definition 3 (Strategy). A strategy S of size n is a Steiner arborescence for
(Tn, r, Ln), where r = (0, 0) and Ln = {x⃗ ∈ V(Tn) : x1 + x2 = n− 1}.

Definition 4 (The Join Operator). Given two strategies S1, S2 of sizes n1
and n2, respectively, we define their join, denoted S1#S2 to be the strategy of
size n1 + n2 whose edges are

E(S1#S2) =
{(
x⃗+ (0, n2), y⃗ + (0, n2)

)
: (x⃗, y⃗) ∈ E(S1)

}
⊔
{(
x⃗+ (n1, 0), y⃗ + (n1, 0)

)
: (x⃗, y⃗) ∈ E(S2)

}
⊔
{(

(x, 0), (x+ 1, 0)
)
: x = 0, 1, . . . , n1 − 1

}
⊔
{(

(0, y), (0, y + 1)
)
: y = 0, 1, . . . , n2 − 1

}
More intuitively, S1#S2 is the subgraph of Tn1+n2

which contains: A path from
(0, 0) to (n1, 0); A path from (0, 0) to (0, n2); A copy of S1, shifted n2 units up,
and; A copy of S2, shifted n1 units right. We note that the join operator is both
non-commutative and non-associative.

Of particular interest are so-called canonical strategies :

Definition 5 (Canonical Strategy). A strategy S of size n is canonical if:
n = 1, or S = S1#S2, where S1 and S2 are canonical strategies.

When S is a canonical strategy we let SL = S1 and SR = S2 denote its left and
right substrategies, respectively.

Figure 1 depicts a canonical strategy in T9 and highlights its left and right
substrategies.

For optimization purposes we will need to assign weights to the edges of a
strategy, which will be inherited from an assignment of weights to a triangle
graphs. In this work weights are assigned to triangle graphs by measures.

Definition 6 (Measure). A measure of size n is a tripleM = ({ℓi}ni=1, fH , fV )
where {ℓi}ni=1 is a sequence of positive numbers, and fH , fV : R+ → R+ are a
pair of weight functions.

6



SL

SR

Fig. 1. A canonical strategy S of size 9 (black edges) and its left and right substrategies
(blue and red shaded regions, respectively) embedded in T9 (vertices, black edges, and
dashed grey edges).

A measure M = ({ℓi}ni=1, fH , fV ) assigns weights to Tn as follows:

– Each edge of the form e = ((x− 1, y), (x, y)) has weight w
(M)
e = fH(ℓx).

– Each edge of the form e = ((x, y − 1), (x, y)) has weight w
(M)
e = fV (ℓn−y+1).

A strategy S is assigned by M the weights it inherits from Tn. The cost of a
strategy S with respect to measure M is denoted (S)M , defined as

(S)M =
∑

e∈E(S)

w(M)
e .

4.1 Applying Strategies and Measures to Isogeny-Based Protocols

In isogeny-based protocols, strategies are used to define algorithms for comput-
ing the codomain of and evaluating smooth-degree isogenies. In this section we
discuss the connection between strategies and isogeny algorithms in the contexts
of SIDH and CSIDH. We also discuss the relevance of measures in this context.

Strategies and Measures in SIDH. Without loss of generality let us consider
Alice’s computations only; Bob’s computations are analogous. For simplicity of
notation, we will omit the subscript A in Alice’s computations. In SIDH, Alice
must construct the codomain of an isogeny ψ of degree ℓe (in SIKE standard-
ization candidate parameter sets we always have ℓ = 2, but this is not strictly
necessary) whose kernel is kerψ = ⟨P +mQ⟩ where P,Q are public and gen-
erate E[ℓe], and m is chosen by Alice. As discussed in Section 1, this is done
by constructing the generators of the kernels of e ℓ-isogenies, whose kernels are
given by

kerψj =
〈 Rj︷ ︸︸ ︷
[ℓe−j ]ψj−1 ◦ ψj−2 ◦ · · · ◦ ψ1(P +mQ)

〉
.

7



For 0 ≤ j ≤ e, let Ej denote the curve ψj ◦ψj−1 ◦ · · · ◦ ψ1(E0). We decorate the
graph Te by assigning:

– To each horizontal edge e = ((x− 1, y), (x, y)) the map P 7→ [ℓ]P ;
– To each vertical edge e = ((x, y − 1), (x, y)) the map P 7→ ψy(P );
– To the vertex (0, 0) the point R0,0 = P +mQ, and;
– To each vertex (x, y) a point Rx,y on Ey, obtained by applying the maps

corresponding to the edges in any path from (0, 0) to (x, y) to the point
R0,0.

We note that since isogenies are group homomorphisms the maps ψi commute
with mutlipltication-by-ℓ, and so any two paths from (0, 0) to (x, y) will yield
the same point Rx,y, so this decoration is well-defined. Any strategy S of size
e inherits these decorations from Te. By [12, Lemma 4.2], this decoration corre-
sponds to an algorithm to compute the isogeny ψ with kerψ = ⟨P +mQ⟩, by
first constructing the point R0,0, and then applying the maps corresponding to
the edges of S, in depth-first, bottom-first order, noting that the points Re−y,y−1

generate the kernels of the ψy. This decoration is depicted in Figure 2.

[ℓ]
ψ1

[ℓ]

ψ2

[ℓ]

ψ3

[ℓ]

ψ4

[ℓ]

ψ5

[ℓ]

ψ6

[ℓ]

ψ7

[ℓ]

ψ8

[ℓ] [ℓ] [ℓ] [ℓ]

ψ1

ψ2

ψ3

[ℓ]

ψ5

ψ6

ψ1

ψ2
[ℓ]

ψ5

R0,0

R0,8

R1,7

R2,6

R3,5

R4,4

R5,3

R6,2

R7,1

R8,0

Fig. 2. A strategy decorated in the SIDH style. The root point R0,0 is labelled and
highlighted in red, and the terminals Re−y,y−1 for y = 1, 2, . . . , e are labelled and
highlighted in blue.

If we assign weights to a strategy S by the measure M = ({ℓj}ej=1, fH , fV ),
where ℓj = ℓ for all j, and fH(ℓ) and fV (ℓ) are the cost of evaluating P 7→ [ℓ]P
and P 7→ ψj(P ) for any j (this cost does not depend on j, only on the degree
of the isogeny, which is ℓ), then (S)M is precisely the cost of computing Alice’s
isogeny ψ. Thus the authors of [12] use strategies which have minimal weight
with respect to this measure to construct their isogeny construction algorithms.

Adapting measures to eSIDH. Taking e = e1 + e2 + · · · + en and the sequence
{ℓi}ei=1 to be (some permutation of) ℓ1, ℓ1, . . . ℓ1︸ ︷︷ ︸

e1

, ℓ2, ℓ2, . . . ℓ2︸ ︷︷ ︸
e2

, . . . , ℓn, ℓn, . . . ℓn︸ ︷︷ ︸
en

as

8



Table 1. Cost of functions in SIDH in quadratic extension field arithmetic

Operation M S a
Normalized Cost

(S = 0.66M , a = 0.05M )

Ladder Step 7 4 8 10.04
xTPL 7 5 10 10.8
xQPL 11 6 14 15.66

eval3Iso 4 2 4 5.52
eval5Iso 8 2 8 9.72
get3Iso 2 3 13 4.63
get5Iso 6 6 0 9.96

described in Section 3, then (S)M is the cost of constructing Bob’s isogeny in
eSIDH for a prime p of the form p = 2eAℓe11 · · · ℓenn f − 1.

4.2 Optimized Strategies for Multiprime Large-Degree Isogenies

We propose new multiprime strategies for large-degree isogenies in the eSIDH
landscape. In particular, this only applies to Bob’s large-degree isogeny, which
is of the form ℓe11 ℓ

e2
2 · · · ℓenn . In eSIDH [8], Bob’s large-degree isogeny is of the

form 3eB5eC , where 3eB ≈ 5eC and 2eA ≈ 3eB5eC . In the first case, 3eB ≈ 5eC

so that the eSIDH kernel generations RB = PB + nBQB and RC = PC + nCQC

can be efficiently parallelized into 2 cores to reduce kernel generation latency.
The second case, 2eA ≈ 3eB5eC so that Alice and Bob perform approximately
the same magnitude of isogeny.

eSIDH proposes efficient primes with a similar security as the SIKE param-
eter levels [2]. These correspond to NIST security levels, ranging from 1 to 5,
where SIKE has parameter sets at levels 1, 2, 3, and 5. NIST security level 1
is conjectured to be as hard to break as a brute-force attack on AES128, NIST
security level 2 is conjectured to be as hard to break as finding a hash collision
in SHA256, NIST security level 3 is conjectured to be as hard to break as a
brute-force attack on AES192, and NIST security level 5 is conjectured to be
as hard to break as a brute-force attack on AES256. For an initial experiment,
we compared the cost of multiprime large-degree isogenies for eSIDH primes
p443 = 2222373545 − 1 and p765 = 23913119581 − 1.

Building a cost model for the isogeny operations. Similar to computing optimal
strategies for SIDH/SIKE, one must first identify the weights of the edges in
the strategy graphs. For this purpose, we used the fastest formulas for 3 and
5-isogenies as available in the literature. Luckily, these formulas were available
in the literature as they were essential for speeding up CSIDH isogenies of any
odd prime. In general, the optimized 3-isogeny formulas come from [9] and 5-
isogeny formulas (and higher degree) come from [7]. We summarize the cost
of these formulas in terms of finite field arithmetic multiplication, squaring,
and addition in Table 1. In the realm of SIDH and SIKE, these finite field
operations are in quadratic extension field Fp2 . To give a normalized cost of

9



operations, we assumed that the cost of Fp2 squaring is approximately 2/3 the
cost of Fp2 multiplication, and Fp2 addition is approximately 1/20 the cost of
Fp2 multiplication. This generates a single value with which we can compare the
cost of a strategy. Other cost models can be made, depending on the selected
device. We chose S = 0.66M because there are 2 Fp multiplication operations
in Fp2 squaring and 3 Fp multiplication operations in Fp2 multiplication.

Table 1 lists the costs of large subroutines in SIDH and SIKE. The large-
degree isogeny operation uses small point multiplication operations (xTPL for
Q = 3P , xQPL for Q = 5P ), small isogeny evaluations where a point is pushed
from one elliptic curve to an isogenous curve (eval3Iso for pushing a point
through a 3-isogeny mapping, eval5Iso for pushing a point through a 5-isogeny
mapping), and small isogeny computations where you compute an isogenous
mapping of a small degree (get3Iso for computing an isogeny mapping of degree
3 from a point of order 3, get5Iso for computing an isogeny mapping from a
point of order 5). In order to create a multiprime strategy, the cost of point
multiplication and isogeny evaluation creates the weighting of the large-degree
isogeny graph. In particular, a horizontal edge is a point multiplication by ℓ and
a vertical edge is an ℓ−degree isogeny evaluation. The isogeny computations are
computed at the leaf nodes, which is done regardless of strategy.

Finding Multiprime Strategies. As in CSIDH, when constructing strategies in the
multiprime setting there are two orthogonal algorithmic concepts to optimize:
the strategy itself, and the permutation of the list of primes, which determines
the order in which the small prime degree isogenies are computed. As shown
in [15] for CSIDH, there are efficient techniques to construct optimal strategies
for fixed permutations (using dynamic programming, as in [12]) and to con-
struct an optimal permutation of the primes for fixed strategies (using linear
programming); however, it is not presently known how to construct globally op-
timal (permutation, strategy) pairs. For the purposes of this work, we construct
(permutation, strategy) pairs using a straightforward randomized alternating
algorithm: we choose a random starting permutation, and then alternately op-
timize our strategy (fixing the permutation) and our permutation (fixing the
strategy) until the (permutation, strategy) pair stabilizes. The resulting pair is
not globally optimal, in general, so we run 10 trials with different random start-
ing permutations, and then choose the best resulting (permutation, strategy)
pair for implementation.

4.3 Evaluating the Costs of Multiprime Strategies

Based on the cost models that we proposed in the previous section and the
obtained multiprime strategies, we can evaluate the cost of these new strategies
and compare them to the state-of-the-art. We note that the implementation is
slightly different in the split-prime and multiprime strategy. First, the split-prime
uses a different method to generate the secret kernels. In split-prime eSIDH,
Bob initially computes two kernel generators RB = PB + nBQB and RC =
PC + nCQC , which have order 3eB and 5eC , respectively. Thus, the split-prime
strategy will first compute a large-degree isogeny of degree 3eB over kernel RB

10



Table 2. SIDH large operation costs for Bob’s round functions

SIDH
Operation

Split Multi Single

Round Prime Prime Prime

p443 = 2222373545 − 1 p434 = 22163137 − 1

Round 1

Kernel 2,219 2,209 2,179

Isogeny 10,479 11,027 10,757

Total 12,698 13,236 12,935

Round 2

Kernel 3,712 2,209 2,179

Isogeny 7,958 8,506 8,488

Total 11,670 10,715 10,667

p765 = 23913119581 − 1 p751 = 23723239 − 1

Round 1

Kernel 3,795 3,775 3,795

Isogeny 19,297 20,392 20,345

Total 23,092 24,168 24,141

Round 2

Kernel 6,349 3,775 3,795

Isogeny 14,965 16,060 16,388

Total 21,313 19,835 20,183

and then a second large-degree isogeny of degree 5eC over kernel RC (this order
could be flipped if it is faster). The caveat here is that whichever large-degree
isogeny is computed first, you have to apply the small degree isogeny evaluations
to the other kernel. The multiprime strategy is different in that you compute
only a single kernel, RBC = PBC + nBCQBC . This single kernel is then used to
compute a large-degree isogeny of order 3eB5eC using a strategy.

We summarize the total cost of Bob’s large-degree isogeny operations over
the split prime strategy, multiprime strategy, as well as baseline SIDH/SIKE
single prime strategy in Table 2. These are provided for the smallest and largest
SIKE parameter sets. The two largest operations are kernel generation, where
a double-point multiplication generates the secret kernel, and then the large-
degree isogeny where you compute the isogeny over that secret kernel. The split
prime strategy generates 2 kernels. This is based on the calculated number of
functions used in each of the strategies, where each function cost is taken from
Table 1. This estimate does not include the cost of some other functions, such as
the finite field inversion or setup, which is expected to be a similar cost amongst
SIDH/SIKE primes.

We further break down the cost of operations in Table 3. Here, we list the
major SIDH/SIKE operations as well as the functions that are used many times
within. For each function, we also specify whether its cost is included in the first
or second round of Bob’s large-degree isogeny operation. In the first round, Bob
can use the public parameters to generate the kernel, whereas the second round
uses Alice’s public key to generate the kernel. As is specified in the split prime

11



Table 3. SIDH round breakdown of costs in Bob’s large operations

Op Function SIDH Round Split Multi Single

R1? R2? Prime Prime Prime

p443 p434

Kernel

Ladder Step ✓ ✓ 221 220 217

xTPL ✓ 73 0 0

xQPL ✓ 45 0 0

Isogeny

xTPL ✓ ✓ 175 176 466

xQPL ✓ ✓ 94 154 0

eval3Iso ✓ ✓ 382 399 511

eval5Iso ✓ ✓ 175 124 0

get3Iso ✓ ✓ 73 73 137

get5Iso ✓ ✓ 45 45 0

R1 eval3Iso ✓ 219 219 411

R1 eval5Iso ✓ 135 135 0

p765 p751

Kernel

Ladder Step ✓ ✓ 378 376 378

xTPL ✓ 119 0 0

xQPL ✓ 81 0 0

Isogeny

xTPL ✓ ✓ 315 316 913

xQPL ✓ ✓ 220 306 0

eval3Iso ✓ ✓ 684 721 982

eval5Iso ✓ ✓ 307 259 0

get3Iso ✓ ✓ 119 119 239

get5Iso ✓ ✓ 81 81 0

R1 eval3Iso ✓ 357 357 717

R1 eval5Iso ✓ 243 243 0

strategy in eSIDH [8], Bob’s first round can efficiently compute kernels of order
3eB and 5eC because the public parameters include generator points of these
orders. For public key size efficiency, Alice applies her large-degree isogeny only
over public torsion points of order 3eB5eC . Thus, Bob’s second round with the
multiprime strategy requires a significant number of point triplings and quin-
tuplings to convert his computed secret kernel of order 3eB5eC into two secret
kernels of order 3eB and 5eC . For serial implementations, the magnitude of the
Montgomery ladder steps is approximately the same between the three types of
strategies. The split strategy suffers significantly in the second round to generate
the kernels of correct order.

12



For the large-degree isogeny operation, we note that the split prime strategy
outperforms the multi prime and single prime strategy by about 5% in both
rounds 1 and 2. In the view of the strategy, this is to be expected as the split
prime strategy begins with a head-start as many of the point multiplications are
already computed to get the two kernels. The multiprime strategy is approxi-
mately on-par with the single prime strategy, which shows that the inclusion of
5-isogeny operations were efficiently interleaved with the 3-isogeny operations.
We note that the R1 eval3Iso and R1 eval5Iso function count is the number of
isogeny evaluations applied to the other party’s torsion basis, which is only done
for the first round.

When we consider the entire round function for SIDH, the split prime strategy
is superior for round 1 (key generation), but the multiprime and single prime
strategies are superior for round 2 (shared secret generation). The first round’s
split prime strategy is faster primarily as a result of its more efficient isogeny.
However, the second round split prime strategy suffers as it is expensive to
generate the kernels. The split prime strategy is about 5% faster for the first
round, but the multiprime strategy is about 10% faster for the second round.

4.4 Expanding eSIDH to More Primes

In [8], the authors searched for eSIDH-friendly primes by the following criteria:

1. eSIDH primes of the form p = 4eA3eB5eCf − 1, where eA is the number
of 4-isogenies that Alice performs, eB is the number of 3-isogenies that Bob
performs, eC is the number of isogenies that Bob performs, and f is a number
that makes the number prime.

2. 4eA ≈ 3eB5eC ,
3. 3eB ≈ 5eC ,
4. p ≡ ±mod 2γw, i.e. the prime has many words that are “0xFFFF. . . ” such

as for w = 64 for efficient modular multiplication.

The first criterion is necessary to guarantee that the E[4eA ], E[3eB ], E[5eC ] ⊆
E(Fp2) (ensuring that the isogenies can be computed using arithmetic in Fp2 ,
rather than a higher degree extension), while the second is required for the
protocol to be secure. The third criterion is a heuristic for optimality in the
parallel setting, while the fourth yields only minor computational improvements
for software processors; in this paper we experiment with how eSIDH performs
with multiprime strategies in the serial setting, so we simplify the search for
eSIDH serial-efficient primes by removing the third and fourth criteria above.
In addition, instead of limiting to only two primes for Bob, we also experiment
with the base prime 7.

Another benefit of the eSIDH framework is that it opens up a vast number
of primes that can be used and optimized. For instance, the chance of an odd
number of the form p = 4eA3eBf − 1 is approximately 2/ln p. For a 434-bit
number as is used as a prime to specify SIKE’s NIST level 1 parameter set,
there is approximately a 1 in 150 chance that the number is actually prime.
With the prime search criterion that 4eA ≈ 3eB , this further limits the pool of

13



Table 4. Costs of NIST Security Level 1 multiprime strategies considered in this paper
in terms of field multiplications, under three standard cost models. In the SIDH/eSIDH
landscape, this cost is the “second round” cost.

Isogeny degree

Cost Model

S = 0.8M

a = 0M

S = 0.8M

a = 0.05M

S = 0.66M

a = 0.05M

373545 8858.4 9230.9 8752.3

397527 8535.2 8915.1 8430.8

313253 8388.2 8794.1 8289.5

39152575 8614.2 8990.6 8506.3

39352574 8610.2 8988.4 8502.7

310951573 8500.4 8888.4 8396.5

good parameters. If one isogeny graph is significantly larger than the other, then
one party’s computations will be asymptotically more expensive.

By changing the form of the number to p = 4eA3e15e2 . . . ℓenn f − 1, and using
the stipulation 4eA ≈ 3e15e2 . . . ℓenn , we greatly increase the pool of numbers that
can potentially be used as parameter sets. We used this relaxed methodology
to find many different eSIDH primes. We highlight some NIST Security Level 1
parameter sets we found in Table 4. Among the three different cost models, we
see that the fastest large-degree isogeny 313253 uses the most 3-isogenies. This
is to be expected as the larger isogeny formulas are not nearly as optimized as
the 3-isogeny formulas.

For our recommended prime parameter sets, we chose 3- and 5-isogeny primes
with a preference for more 3-isogenies. We were also able to ensure that the
magnitude of the large-degree isogeny is approximately the same as Alice’s large-
degree isogeny. In the SIKE parameter set, this is especially imbalanced for
p751 = 23723237, where 3237 is over 100 times larger than 2372. Our proposed
eSIDH primes are shown in Table 4.4. Across the board, we achieve about a 3%
performance improvement by going with a multiprime strategy-friendly prime.

5 Software Implementation

As a further investigation to the effectiveness of our multiprime strategy, we
implemented our multiprime strategies on top of the eSIDH version 2.0 library⋆.
This library was based on the SIKE team’s implementation, SIDH Library v3.2.
This eSIDH library features support for SIKE parameter sets p434 = 22163137−1
and p751 = 23723239−1, and eSIDH/eSIKE parameter sets p443 = 2222373545−1
and p765 = 23913119581 − 1. We applied no modifications to the lower-level finite
field arithmetic. We ran our modified code on an Intel i7-8650u processor running
at 1.9 GHz. All tests were run on a single core with turbo boost disabled.

⋆ Commit b8f4486 at https://github.com/dcervantesv/eSIDH

14



Table 5. eSIDH/eSIKE timing results on Intel i7-8650u processor.

Scheme Operation
Timings (Mcycles)

Improvement
Split Prime Multiprime

p443 = 2222373545 − 1

eSIDH
Bob R1 7.44 7.75 -4.03%

Bob R2 7.00 6.47 8.24%

eSIKE
Keygen 7.43 7.74 -4.01%

Decap 13.71 13.17 4.10%

p765 = 23913119581 − 1

eSIDH
Bob R1 27.14 28.37 -4.34%

Bob R2 25.56 23.90 6.96%

eSIKE

Keygen 27.14 28.39 -4.42%

Decap 50.47 48.83 3.36%

Our eSIDH and eSIKE timing results are summarized in Table 5. These
results summarize the affected SIDH and SIKE operations (only Bob’s large-
degree isogeny is affected by the changes). As we can see, the multiprime strategy
results in a 4% slowdown for Bob’s first round, but an 8% speedup for Bob’s
second round, when considering p443. For p765, Bob’s first round is again 4%
slower and his second round is 7% faster. For the SIKE operations, key generation
is almost identical to Bob’s round 1 in SIDH, resulting in about a 4% slowdown.
SIKE key decapsulation then uses Bob’s round 2 in SIDH, where we see a 4%
speedup for p443 and a 3% speedup for p765.

Implementing Multiprime Strategies. When implementing the multiprime strat-
egy, we used a very similar algorithm as that of SIDH/SIKE. A strategy describes
the order in which we traverse from the root of the large-degree isogeny strategy
graph to its leaves. The primary difference is that we define a prime list that
includes the order in which isogenies are performed. In the single prime strategy
this is unnecessary, but is needed in the multiprime isogenies as you are mixing
the order of prime isogenies. We defined this list as the order they are to be used
in the corresponding strategy. In particular, primes are listed in the order that
they are multiplied into the starting point by a strategy. For instance, if we had
a small strategy using only 3s and 5s, and we had the sublist [5,3,3,5,3], this
would mean that the first isogeny would be of degree 3, since we would multiply
out 5, then 3, then 3, and then 5, leaving a point of degree 3. The next isogeny
would be of degree 5, then degree 3, degree 3, and finally degree 5. In short, the
order of the isogenies is the reverse of this list.

We then decomposed the strategy into a single list specifying how many
point multiplications by small-degree primes are required to perform to generate
a pivot point. Since the prime list is ordered, a strategy may dictate a mix of
primes to multiply by to create a pivot point. In Fig. 1, a pivot point is created

15



Algorithm 1: Computing and evaluating a multiprime ℓe11 ℓ
e2
2 · · · ℓenn -

isogeny with a strategy

function multiprime iso
Static Parameters: Small prime numbers ℓ1, ℓ2, . . . ℓn and Integers

e1, e2, . . . en, eS = (e1 + e2 + . . .+ en) from public
parameters, a list describing an order of point
multiplications by small prime
M = (m1, . . . ,meS ) ∈ (N+)eS , a strategy
(s1, . . . , seS−1) ∈ (N+)eS−1

Input: Curve E0 and point S on E0 with exact order ℓe11 ℓe22 · · · ℓenn
Output: Curve E = E0/⟨S⟩

1 Initialize empty deque D
2 push(D, (eS , S))
3 E ← E0, i← 1, h← eS , k = eS
4 while D not empty do
5 (h,R)←pop(D)

6 if h = 1
7 (E′, ϕ)← compute ℓ iso(E,R, ℓ = mk)

8 Initialize empty deque D′

9 while D not empty do
10 (h,R)← pull(D)

11 R← evaluate ℓ iso(E′, ϕ, R, ℓ = mk)

12 push(D′, (h− 1, R))

13 D ← D′, E ← E′, k ← k − 1

14 elif 0 < si < h
15 push(D, (h,R))
16 for j ← eS − h to eS − h+ si do
17 R← mult by ℓ(R,E, ℓ = mj)

18 push(D, (h− si, R)), i← i+ 1

19 else
20 Error: Invalid strategy

21 return E = E0/⟨S⟩

and stored whenever there is a vertical edge. These points are then pushed
through isogeny evaluations after each isogeny computation. Upon reaching a
leaf node, an isogeny would be computed as is specified in the prime list.

Algorithm 1 shows our algorithm for performing a multiprime large-degree
isogeny. This is generalized from the SIKE submission’s [2] algorithm for com-
puting an ℓe isogeny. In terms of parameters, the primary difference here is that
we have multiple small primes to use. Thus, we have one summation term, eS to
denote the total number of isogenies to perform. Then, the order of the isogenies
matter, so this is represented by a list describing the order of the strategy. In
total, there are eS isogenies that need to be performed, so the point multiplica-

16



tion ordered list should have eS entries, which can further be broken down into
eB entries of ℓB , eC entries of ℓC , and so on.

In terms of the algorithm flow, we only include one more variable, k, which
represents the next isogeny to perform. This acts as a reverse iterator of the
list M , so after computing an ℓ-isogeny and evaluating each stored pivot point,
we decrement the counter in line 13. Otherwise, we now have to identify which
ℓ we are using at each isogeny operation or point multiplication. For isogeny
computation and evaluation, this is variable k. For the point multiplication, we
are still using the same strategy flow. By this, we mean that say si = 5. This
means that we will perform 5 point multiplications starting at some index in
the point multiplication list and iterating through the next 5 entries. We have
represented this index by updating the for loop to start at eS − h as is shown in
line 16. h represents the current number of point multiplications that have been
applied to the current point, so we subtract this amount from the total number
of isogenies to get the current index into the multiplication list.

Co-Implementing Multiprime and Split-Prime Strategies. As our results show in
Table 5, the split prime approach is ideal for SIDH round 1 operations and the
multiprime approach is ideal for SIDH round 2 operations. It is simple to use
different large-degree isogeny algorithms for both rounds. The only caveat is that
you must calculate a different representation of the private key for each round.
For instance, if you start with two private keys to generate the two kernels as part
of round 1, then you need to use the Chinese Remainder Theorem to combine
these keys. If you start with a single large private key, then you must generate the
two smaller keys by performing modulus operations, such as nB = nBC mod ℓeBB
and nC = nBC mod ℓeCC . These can be done efficiently using Montgomery or
Barrett reduction [17, 3] (with precomputed values), but special care should be
taken here to prevent side-channel attacks.

6 Conclusions

We applied the concept of multiprime large-degree isogeny strategies to the ex-
tended SIDH framework. We see that multiprime strategies can be used to accel-
erate Bob’s large-degree isogeny by about 10% for the balanced eSIDH primes in
the serial setting. We applied multiprime strategies to generalized prime forms
for Bob, finding new primes that could further accelerate Bob’s large-degree
isogeny by a further 3%. The beauty of eSIDH is that the generalized form of
prime allows for a variety of optimization targets, including parallelization and a
prime of a target size. This work continues to push the envelope for performance
gains when (e)SIDH parameters are chosen well.

References

[1] Reza Azarderakhsh et al. Practical Supersingular Isogeny Group Key Agree-
ment. Cryptology ePrint Archive, Report 2019/330. 2019.

17



[2] Reza Azarderakhsh et al. Supersingular Isogeny Key Encapsulation. Tech.
rep. Available online at https://www.sike.org. 2020.

[3] Paul Barrett. “Implementing the Rivest Shamir and Adleman Public Key
Encryption Algorithm on a Standard Digital Signal Processor”. In: Ad-
vances in Cryptology — CRYPTO’ 86. Ed. by Andrew M. Odlyzko. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1987, pp. 311–323.

[4] Daniel Bernstein et al. “Faster computation of isogenies of large prime
degree”. In: Open Book Series 4 (Dec. 2020), pp. 39–55.

[5] Wouter Castryck and Thomas Decru. An efficient key recovery attack on
SIDH. Cryptology ePrint Archive, Paper 2022/975. 2022.

[6] Wouter Castryck et al. “CSIDH: An Efficient Post-Quantum Commutative
Group Action”. In: Advances in Cryptology – ASIACRYPT 2018. Ed. by
Thomas Peyrin and Steven Galbraith. Springer International Publishing,
2018, pp. 395–427.

[7] Daniel Cervantes-Vázquez and Francisco Rodŕıguez-Henŕıquez. A note on
the cost of computing odd degree isogenies. Cryptology ePrint Archive,
Report 2019/1373. 2019.

[8] Daniel Cervantes-Vázquez et al. eSIDH: the revenge of the SIDH. Cryp-
tology ePrint Archive, Report 2020/021. 2020.

[9] Craig Costello and Huseyin Hisil. “A Simple and Compact Algorithm
for SIDH with Arbitrary Degree Isogenies”. In: Advances in Cryptology
– ASIACRYPT 2017. Ed. by Tsuyoshi Takagi and Thomas Peyrin. Cham:
Springer International Publishing, 2017, pp. 303–329.

[10] Whitfield Diffie and Martin E. Hellman. “New Directions in Cryptogra-
phy”. In: IEEE Transactions on Information Theory 22.6 (), pp. 644–654.

[11] Luca De Feo et al. SIDH Proof of Knowledge. Cryptology ePrint Archive,
Paper 2021/1023. 2021.

[12] Luca De Feo et al. “Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies”. In: Journal of Mathematical Cryptology
8.3 (2014), pp. 209–247.

[13] Satoshi Furukawa et al. “Multi-party Key Exchange Protocols from Su-
persingular Isogenies”. In: 2018 International Symposium on Information
Theory and Its Applications (ISITA). 2018, pp. 208–212.

[14] Wissam Ghantous et al. Efficiency of SIDH-based signatures (yes, SIDH).
Cryptology ePrint Archive, Paper 2023/433. 2023.

[15] Aaron Hutchinson et al. “Further Optimizations of CSIDH: A Systematic
Approach to Efficient Strategies, Permutations, and Bound Vectors”. In:
Applied Cryptography and Network Security. Ed. by Mauro Conti et al.
Cham: Springer International Publishing, 2020, pp. 481–501.

[16] Luciano Maino and Chloe Martindale. An attack on SIDH with arbitrary
starting curve. Cryptology ePrint Archive, Paper 2022/1026. 2022.

[17] Peter L. Montgomery. “Modular multiplication without trial division”. In:
Mathematics of Computation 44.170 (1985), pp. 519–521.

[18] Damien Robert. Breaking SIDH in polynomial time. Cryptology ePrint
Archive, Paper 2022/1038. 2022.

[19] Jacques Vélu. “Isogénies entre courbes elliptiques”. In: C. R. Acad. Sci.
Paris Sér. A-B 273 (1971), A238–A241.

18



A SIDH Protocol Description

Supersingular Isogeny Diffie-Hellman (SIDH) was introduced by De Feo, Jao,
and Plût in 2011 [12]. Superficially the protocol resembles the classical Diffie-
Hellman protocol [10], with the base group replaced by a set of elliptic curves,
and the group operation replaced with isogeny codomain construction.

Setup: We require the following global parameters:

1. A prime p = ℓeAA ℓeBB f ± 1 where ℓA and ℓB are prime, and ℓeAA ≈ ℓeBB ;
2. A supersingular elliptic curve E/Fp2 ; and,
3. Four points PA, PB , QA, QB ∈ E(Fp2) such that E[ℓeAA ] = ⟨PA, QA⟩ and
E[ℓeBB ] = ⟨PB , QB⟩.

One party (Alice) will use the ℓeAA -torsion subgroup, and the other (Bob)
will use the ℓeBB -torsion subgroup.

Key Generation: Alice:
1. Selects α ∈ Z/ℓeAA Z uniformly at random;
2. Constructs the isogeny ψA : E → EA = E/ ⟨PA + αQA⟩; and,
3. Constructs the auxiliary points SA = ψA(PB) and TA = ψA(QB).
Alice’s private/public keypair is

skA = α and pkA = (EA, SA, TA).

Bob proceeds analogously.
Communication: The parties exchange their public keys.
Key Establishment: Alice computes

KA = j (EB/⟨SB + αTB⟩)

Bob proceeds analogously to find his key KB . We have KA = KB .

The protocol is depicted in Figure 3.

E

EA

EB

EAB
∼= EBA

kerψA = ⟨PA + αQA⟩

kerψB = ⟨PB + βQB⟩

kerψA,BA = ⟨SA + βTA⟩

kerψB,AB = ⟨SB + αTB⟩

Fig. 3. The computations involved in SIDH. Alice follows the solid blue arrows by
finding the codomain curve of the indicated isogeny, and follows the dashed blue arrow
by reading the message she receives from Bob. Bob analogously follows the red arrows.

The underlying hard problem of SIDH is the following:

19



Problem 1 (Supersingular Decisional Diffie-Hellman Problem). Let ϕA : E →
EA be an isogeny with kernel ⟨PA + αQA⟩ where α is chosen uniformly at random
from Z/ℓeAA Z. Similarly, let ϕB : E → EB be an isogeny with kernel ⟨PB + βQB⟩
where β is chosen uniformly at random from Z/ℓeBB Z. Given a tuple

(E,EA, EB , ϕA(PB), ϕA(QB), ϕB(PA), ϕB(QA), EC)

where either EC = EAB = E/ ⟨PA + αQA, PB + βQB⟩ or EC is sampled uni-
formly at random from the set of all curves of the form

E/ ⟨PA + yAQA, PB + yBQB⟩

where yA and yB are chosen with the same conditions as α and β, respectively,
each with probability 1

2 , the supersingular decisional Diffie-Hellman problem
(SSDDH) is to determine which is the case.

20


