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Abstract

In recent years, work has gone into developing

deep interpretable methods for image classifica-

tion that clearly attributes a model’s output to

specific features of the data. One such of these

methods is the prototypical part network (ProtoP-

Net), which attempts to classify images based on

meaningful parts of the input. While this archi-

tecture is able to produce visually interpretable

classifications, it often learns to classify based

on parts of the image that are not semantically

meaningful. To address this problem, we pro-

pose the reward reweighing, reselecting, and re-

training (R3) post-processing framework, which

performs three additional corrective updates to a

pretrained ProtoPNet in an offline and efficient

manner. The first two steps involve learning a

reward model based on collected human feedback

and then aligning the prototypes with human pref-

erences. The final step is retraining, which re-

aligns the base features and the classifier layer of

the original model with the updated prototypes.

We find that our R3 framework consistently im-

proves both the interpretability and the predictive

accuracy of ProtoPNet and its variants.

1. Introduction

With the widespread use of deep learning, making large

models interpretable has become an increasingly important

goal for the machine learning community. As these models

continue to see use in high-stakes situations, practitioners

hoping to justify a decision need to understand how a deep

model makes a prediction, and trust that those explanations

are valuable and correct (Rudin et al., 2021). One such

proposed method for image classification is the prototypical

part network (ProtoPNet), which classifies a given image

based on its similarities to prototypical parts of different
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classes (Chen et al., 2019). This model aims to combine the

power of deep learning with an intuitive reasoning module

similar to humans.

While ProtoPNet aims to learn meaningful prototypical con-

cepts, in practice, learned prototypes suffer from learning

spurious features, such as the background of an image, and

inconsistent concepts, such as learning both the head and

the wing of a bird (Bontempelli et al., 2023). Problems like

these are highly detrimental to the transparency and efficacy

of these models, and thus make the models less likely to

be utilized by a human user. Various methods have been

proposed to improve such questionable visual explanations

(Nauta et al., 2021; Barnett et al., 2021; Bontempelli et al.,

2023; Huang et al., 2023; Ma et al., 2023), but none of

them have attempted to explicitly quantify the human user’s

preference for the prototypes.

Thus, in addition to improve the model performance itself,

the main goal of this work is to prompt the model to produce

prototypes that are more aligned with human preferences,

which is a crucial step towards model interpretability (Lage

et al., 2018). These two objectives also correspond to the

predictive accuracy and relevancy within the well-known

predictive,descriptive, relevant (PDR) interpretable machine

learning framework (Murdoch et al., 2019).

Towards this end, we propose the reward reweighing, rese-

lecting, and retraining (R3) concept-level debugging frame-

work which improves the original ProtoPNet by using a

learned reward model to improve the quality of the proto-

types. Our method doesn’t need to train the model from

scratch, and we call the debugged model R3-ProtoPNet. The

human feedback R3 requires is a small number of rating

data of prototype quality with multiple scales, given by users

when they are shown visualizations of image-prototype pairs.

With limited human feedback data on the Caltech-UCSD

Birds-200-2011 (CUB-200-211) dataset (Welinder et al.,

2010), we are able to train a high-quality reward model that

achieves 90.1% test accuracy when ranking human prefer-

ences, serving as a strong measure for prototype quality.

Two distinct advantages of having an external reward model

The source code of this work is available at https://github.
com/aaron-jx-li/R3-ProtoPNet.
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that faithfully captures human preferences are:

• The debugging process becomes efficient, because the

reward model is pretrained and it doesn’t require online

feedback on the explanations generated by the current

model.

• The metric for prototype quality becomes more ma-

neuverable, as different reward models could capture

slightly different user preferences.

We train this reward model from a small pairwise human

preference dataset (further explained in sections 3.2 and

3.3). Then, the R3 framework evaluates and updates the

prototypes to maximize their induced rewards, and these

debugging steps are followed by a retraining step to restore

the predictive performance. Empirically, the R3 debugging

procedure is able to reduce model’s dependence on spurious

features and make the visual explanations more favorable to

users. When used either individually or as base learners

in an ensemble, R3-ProtoPNet outperforms the original

ProtoPNet on a held-out test dataset in terms of predictive

accuracy. In general, our proposed framework improves

upon a class of widely used inherently interpretable deep

learning models (i.e. prototype-based models) by efficiently

utilizing their own interpretations.

The contributions of this work can be summarized as fol-

lows:

• We propose using the learned reward model as a quan-

tified metric of prototypical visual explanation quality

and model interpretability

• We introduce the R3 framework and R3-ProtoPNet,

which use efficient reward-guided debugging to im-

prove both prototype meaningfulness and predictive

performance.

2. Related Work

2.1. Example-based Models and Prototypical Part

Networks

There are many explainability and interpretability methods

available to the user within the field of interpretable machine

learning (Rudin et al., 2021), and the two main goals for the

community are (1) to come up with inherently interpretable

machine learning paradigms (Agarwal et al., 2022) and (2)

to propose reliable explanation methods for model outputs

(Ribeiro et al., 2016; Lundberg & Lee, 2017; Murdoch et al.,

2018). To ground the discussion, we focus primarily on

example-based models, one such example being ProtoP-

Net. While other example-based methods exist, such as the

non-parametric xDNN (Angelov & Soares, 2019) or SITE

(Wang & Wang, 2021), which performs predictions directly

from interpretable prototypes, we focus on the ProtoPNet

due to its intuitive reasoning structure and explicit visual

explanations.

Since ProtoPNet’s first introduced by Chen et al. (2019),

many iterations of follow-up works have been proposed.

Work has explored extending the ProtoPNet to different

architectures such as transformers (Xue et al., 2022), or

sharing class information between prototypes (Rymarczyk

et al., 2021). Donnelly et al. (2022) increase the spatial flex-

ibility of ProtoPNet, allowing prototypes to change spatial

positions depending on the pose information available in

the image. ProtoPNets and variations have seen success in

high-stakes applications, such as kidney stone identification

(Flores-Araiza et al., 2022) and mammography (Barnett

et al., 2021).

Many works have also worked on addressing the original

ProtoPNet’s overemphasis on spurious features. Nauta et al.

(2021) introduce an explainability interface to ProtoPNet,

allowing users to see the dependence of the prototype on

certain image attributes. Barnett et al. (2021) introduce a

variation of the ProtoPNet, IAIA-BL, which biases proto-

types towards expert labelled annotations of classification-

relevant parts of the image. Other works such as Huang

et al. (2023) and Ma et al. (2023) incorporate new mod-

ules and constraints into ProtoPNet to improve its empirical

performance without using human feedback.

Similar to how we provide human feedback at the interpreta-

tion level, Bontempelli et al. (2023) introduce ProtoPDebug,

which first asks for binary user feedback on prototypes as

”forbidden” or ”valid”, and then uses a fine-tuning step that

includes the collected feedback as a supervised constraint

into the ProtoPNet loss function.

Compared with previous approaches, our R3 framework

allows users to efficiently collect high-quality human feed-

back data and train a robust reward model that could be used

to both evaluate and debug the original prototypes.

2.2. Learning from Human Feedback

As the term interpretability lacks a mathematical quantifi-

cation, practitioners have argued that evaluating it well re-

quires human feedback (Doshi-Velez & Kim, 2017). Our

method starts from learning a reward model from human

feedback, and then use it as an interpretability measure.

Since the success of InstructGPT (Ouyang et al., 2022), Re-

inforcement Learning from Human Feedback (RLHF) has

attracted a lot of attention. But before that, incorporating

human feedback into reinforcement learning methods via a

learned reward model also has a deep history in reward learn-

ing (Christiano et al., 2017; Jeon et al., 2020). Some prior

works incorporate the reward function as a way to weigh the

2
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likelihood term (Stiennon et al., 2022; Ziegler et al., 2019).

While works taking inspiration from InstructGPT have used

proximal policy optimization (PPO) to fine-tune networks

with human feedback (Bai et al., 2022), it is unclear to the

extent that formal reinforcement learning is necessary to

improve models via learned reward functions (Lee et al.,

2023), or if the human feedback needs to follow a particular

form (Askell et al., 2021).

Different from RLHF, our work doesn’t rely on any formal

RL algorithms, and instead simply uses reward values as

a supervisory signal to guide the search of semantically

meaningful prototypes.

3. Reward Reweighed, Reselected, and

Retrained Prototypical Part Network

(R3-ProtoPNet)

In this section, we first describe the basics of ProtoPNet

(Chen et al., 2019), and then present our R3 debugging

framework in detail, which includes the collection of high-

quality human feedback data, our reward model, and the

incorporation of the reward model into debugging via a

three-step update procedure.

Algorithm 1 Reward Reweighed, Reselected, and Retrained

Prototypical Part Network (R3-ProtoPNet)

1: Initialize: Collect high-quality human feedback data

and train a reward model.

2: Reward Reweighing: Perform the reward-reweighed

update for the ProtoPNet, defined in Equation 1. Opti-

mize the loss function, which leads to locally maximal

solutions, improving the prototypes.

3: Prototype Reselection: Run the reselection procedure

based on a reward threshold.

If 1
nk

∑

i∈I(pj)
r(xi, pj) < α, reselect the prototype

by sampling from patch candidates and temporarily

setting the prototype to a new candidate that passes the

acceptance threshold and is unique from other current

prototypes.

4: Retraining: Retrain the model with the same loss func-

tion used in the original ProtoPNet update, to realign

the prototypes and the rest of the model.

3.1. Preliminaries on ProtoPNet

Here we adopt the notation used in Chen et al. (2019). The

ProtoPNet architecture builds on a base convolutional neu-

ral network f , which is then followed by a prototype layer

denoted gp, and a fully connected layer h. Typically, the con-

volutional features are taken pretrained models like VGG-19,

ResNet-34, or DenseNet-121.

The ProtoPNet injects interpretability into these convolu-

tional architectures with the prototype layer gp, consisting

of m prototypes P = {pj}
m
j=1 typically of size 1× 1×D,

where D is the shape of the convolutional output f(x). By

keeping the depth the same as the output of the convolu-

tional layer, but restricting the height and width to be smaller

than that of the convolutional output, the learned prototypes

select a patch of the convolutional output. Reversing the

convolution leads to recovering a prototypical patch of the

original input image x. Using upsampling, the method con-

structs an activation pattern per prototype pj .

To use the prototypes to make a classification given a con-

volutional output z = f(x), ProtoPNet’s prototype layer

computes a max pooling over similarity scores: gpj
(z) =

maxz̃∈patches(z) log((∥z̃ − pj∥
2
2 + 1)(∥z̃ − pj∥

2
2 + ϵ)), for

some small ϵ < 1. This function is monotonically de-

creasing with respect to the distance, with small values

of ∥z̃ − pj∥
2
2 resulting in a large similarity score gpj

(z).
Assigning mk prototypes for all K classes, such that
∑K

k=1 mk = m, the prototype layer outputs a vector of

similarity scores that matches parts of the latent representa-

tion z to prototypical patches across all classes. The final

layer in the model is a linear layer connecting similarities to

class predictions.

In order to ensure that the prototypes match specific parts

of training images, during training the prototype vectors are

projected onto the closest patch in the training set. For the

final trained ProtoPNet, every pj corresponds to some patch

of a particular image.

3.2. Human Feedback Collection

As mentioned earlier, while ProtoPNet is capable of provid-

ing interpretable classifications, the naive training described

in (Chen et al., 2019) results in prototypes that focus on

spurious and inconsistent features (Barnett et al., 2021; Bon-

tempelli et al., 2023).

A crucial aspect behind the success of learning faithful

reward models is the collection of high quality human feed-

back data. Unclear or homogeneous feedback may result in

a poor performing reward model (Christiano et al., 2017).

The design of human feedback collection is vitally important

to the training of a useful reward model.

The inherent interpretability of ProtoPNet is particularly

useful for reward learning. Given a trained ProtoPNet, it

is possible for a user, who doesn’t have to be an expert,

to directly critique the learned prototypes. In the case of

classifying birds in the CUB-200-2011 dataset, it is clear

that if a prototype gives too much weight to the background

of the image (spurious), or if the prototype corresponds to

different parts of the bird when looking at different images

(inconsistent). Given these prototypes that fail to contribute

to prediction, a lay person trying to classify birds would be

3







Improving Prototypical Visual Explanations with Reward Reweighing, Reselection, and Retraining

diversity and less computation time.

While we do not use a traditional reinforcement learning

algorithm to fine-tune our model as is typically done in

RLHF (Askell et al., 2021), pairing the reselection/reward-

reweighing (R2 update) and retraining steps together resem-

bles the typical explore-exploit trade-off in RL problems:

the R2 update serves as a form of exploration, drastically

increasing the quality of uninformative prototypes by break-

ing their dependence on spurious features, while retraining

with the updated prototypes resembles exploit behavior, im-

proving upon already high-quality prototypes.

3.4.3. RETRAINING

A critical step missing in the R2 update is a connection to

prediction accuracy. As discussed in Section 4, without

incorporating predictive information, performing the reward

update alone results in lowered test accuracy. Since the

above updates only act on the prototypes themselves, not the

rest of the network, the result is a misalignment between the

prototypes and the model’s base features and final classifier

layer. The reward update guides the model towards more

interpretable prototypes, but the reward update alone fails

to use the higher quality prototypes for better prediction.

To account for the lack of predictive performance, the final

step of R3-ProtoPNet is retraining. With the updated proto-

types, simply retraining using the same loss function used

in the original ProtoPNet training results in the realignment

of the prototypes and the rest of the model. Although one

could worry that predictive accuracy would reduce the in-

terpretability of the model (Rudin et al., 2021), we find that

retraining increases predictive accuracy while maintaining

the quality increases of the R2 update. The result is a high

accuracy model with higher-quality prototypes. We explore

evidence of this phenomenon and why this is the case in the

following section.

4. Experiments

4.1. Bird Species Identification

Here we discuss the results of training the R3-ProtoPNet

on the CUB-200-2011 dataset, the same dataset as used in

Chen et al. (2019).

4.1.1. DATA PREPROCESSING

R3-ProtoPNet requires the original dataset for the initial

training, as well as additional scalar ratings of the selected

activation patterns produced by image-prototype pairs. Com-

bined, this results in the dataset described in Section 3. To

offer better comparison against the original ProtoPNet, we

use the same dataset for initial training that was used in

Chen et al. (2019), the CUB-200-2011 dataset (Wah et al.,

2011). The CUB-200-2011 dataset consists of roughly 30

images of 200 different bird species. We employ the same

data augmentation scheme used in Chen et al. (2019), which

adds additional training data by applying a collection of ro-

tation, sheer, and skew perturbations to the images, resulting

in a larger augmented dataset.

For the collection of the activation pattern ratings, we only

provided the activation patterns overlaid on the original

images to the raters. Using Amazon Mechanical Turk to

recruit six workers per prototype-image pair, we take the

average as the user-provided rating for that pair. We also

exclude the entries with |ri,j − ri′,j′ | < 0.5 to increase the

contrast between pairs. In total, 700 rated prototype-image

pairs are collected according to the scale approach described

in Figure 1, and we randomly selected 500 of them (the rest

were used as a held-out test set to evaluate the robustness)

to train the reward model.

4.1.2. IMPLEMENTATION

Similar to Chen et al. (2019), we study the performance of

R3-ProtoPNet across five different base architectures: VGG-

19, ResNet-34, ResNet-50, DenseNet-121, and DenseNet-

161. While the original ProtoPNet sets the number of proto-

types per class at mk = 10, we additionally run the VGG-19

architecture with mk = 5 prototypes to explore model per-

formance when the number of prototypes is limited. No

other modifications were made to the original ProtoPNet

architecture. At most 50 epochs are needed in this initial

training step.

The reward model r(xi, hi) is similar to the base architec-

ture of the ProtoPNet. Two ResNet-50 base CNNs take in

the input image xi and the associated acticvation pattern

hi separately, and both have two additional convolutional

layers. The outputs of the convolutional layers are con-

catenated and fed into a final linear layer with sigmoid

activation to predict the Bradley-Terry ranking. Predicted

rewards are therefore bound in the range (0, 1). We train

the reward model for 5 epochs on a synthetic comparison

dataset of 49K paired images and preference labels derived

from 500 human ratings, and evaluate on 14K testing pairs.

The reward model achieves 90.09% test accuracy. We ad-

ditionally analyze the sensitivity of the reward model and

R3-ProtoPNet to the amount of human feedback used for

reward model training (see Appendix C), and the results

suggest that the performance gain of R3-ProtoPNet can

be achieved with even fewer human ratings (around 300

image-prototype pairs).

4.1.3. EVALUATION METRICS

To evaluate the performance of R3-ProtoPNet, we compare

it to ProtoPNet on three metrics: test accuracy, reward, and

activation precision (AP). We use test accuracy to measure
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the predictive performance of the models. As the above

section demonstrates, the learned reward model achieves

high accuracy in predicting which prototype ranks above

another in accordance with human preferences, so we there-

fore use it as a measure of prototype quality. The final

metric, activation precision, is a common metric that has

been used in prior work to evaluate the overlap between

a prototype’s activations and the pixels associated with a

given bird (Barnett et al., 2021), which provides another

metric of interpretability independent of our method. In

our work, we report a modified version of AP introduced in

(Bontempelli et al., 2023) to consider the specific value of

the activation at each single pixel, not just the overlap alone.

4.1.4. RESULTS

After training ProtoPNet, running the R2 update step, and

then performing retraining, we see several trends across

multiple base architectures. In Table 1, we report the test

accuracy of the different base architectures across stages of

R3-ProtoPNet training. Generally, the test accuracy from

ProtoPNet temporarily decreases after applying the R2 up-

date, but retraining could effectively recover the predictive

loss, in most cases notably improving test accuracy.

In Table 2 and Table 3, we report the average reward and

the activation precision metrics. Compared with ProtoPNet,

R3-ProtoPNet increases the average reward and activation

precision across all prototypes, test images, and base archi-

tectures by 27.66% and 18.59%, respectively. Here we note

that the average reward and AP serve as complementary

interpretability metrics, as in a single stage the reward and

AP values across different base architectures could have

different patterns - this is because AP only considers the

overlap between top 5% activated regions and the bird body,

while the reward model/human user takes into account a

much larger activated regions with warm colors. However,

the increasing patterns for each architecture across different

R3 stages are highly consistent, which demonstrate R3’s

success in aligning with human preference and improving

model interpretability.

4.1.5. DISCUSSION

Given the above results, we can observe that although test ac-

curacy experiences a substantial drop during the R2 update,

when both reward and AP increase significantly, the model’s

predictive power is later restored after retraining and in most

cases even further improved compared to the original Pro-

toPNet. On the other hand, the retraining stage doesn’t hurt

either reward or AP, but instead result in a slight increase of

both. This phenomenon suggests that there doesn’t exist a

long-term trade-off between accuracy and interpretability:

this trade-off only temporarily occurs when the spurious

feature attributions haven’t been removed by our debugging

Model Accuracy

Model Interpretability

Time

ProtoPNet R2 R3

Figure 3. Trade-off curves between model accuracy and model

interpretability. The plot is qualitative.

procedure; and once those predictive short-cuts (which tends

to have some but limited predictive power) are detected and

eliminated, there should be a positive correlation between

predictive accuracy and model interpretability. Figure 3 il-

lustrates this empirical trade-off across different ProtoPNet

pretraining and R3 debugging stages.

4.2. Car Model Identification

In addition to bird species classification, we also conduct

experiments on the Stanford Cars dataset (Krause et al.,

2013). This dataset contains 196 different classes with a

train/test split of 8144/8041 images. With the implementa-

tion remains the same, we found that R3-ProtoPNet outper-

forms ProtoPNet in a very similar way to the CUB-200-2011

dataset. We include the empirical results of test accuracies

and average rewards in Appendix D.

5. Generalizability of the R3 Framework

To test whether the debugging effects of our R3 framework

on ProtoPNet could generalize to other models, we incor-

porate R3 into two other recent models ProtoPFormer (Xue

et al., 2022) and ProtoPNet with shallow-deep feature align-

ment (SDFA) and score aggregation (SA) modules (Huang

et al., 2023). With similar experiment setup, we find that

although these two models already perform better than Pro-

toPNet before debugging, our R3 framework is still able to

slightly improve them both in terms of accuracy and inter-

pretability. This suggests that our R3 framework could bring

forth incremental performance gain to other prototype-based

variants. The detailed experiment results can be found in

Appendix E.
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Table 1. R3 updates tend to increase the test accuracy. Average accuracies and standard deviations are reported across five runs, where mk

is the number of prototypes per class.

BASE (mk) PROTOPNET R2-PROTOPNET R3-PROTOPNET

VGG-19 (5) 76.33± 0.12 62.76± 1.18 77.80± 0.18
VGG-19 (10) 77.58± 0.22 50.41± 1.36 79.60± 0.25
RESNET-34 (10) 78.73± 0.13 58.11± 2.71 80.21± 0.22
RESNET-50 (10) 78.52± 0.17 56.36± 2.40 80.25± 0.22
DENSENET-121 (10) 79.64± 0.23 54.67± 2.29 80.42± 0.26
DENSENET161 (10) 79.75± 0.27 62.75± 2.43 79.48± 0.36
ENSEMBLE OF ABOVE 82.92± 0.09 70.46± 0.82 84.37± 0.20

Table 2. R3-ProtoPNet outperforms the original ProtoPNet in terms of the image-prototype rewards estimated by our reward model.

Values are averaged over the entire test dataset. We divide the R2 update into two columns Reselected and Reweighed to better show

individual effect of each step. We omit the standard deviations as the values are small.

BASE (mk) PROTOPNET RESELECTED REWEIGHED R3-PROTOPNET

VGG19 (5) 0.61 0.66 0.70 0.71
VGG19 (10) 0.46 0.55 0.64 0.67
RESNET-34 (10) 0.40 0.47 0.51 0.54
RESNET-50 (10) 0.36 0.45 0.50 0.54
DENSENET-121 (10) 0.48 0.53 0.58 0.58
DENSENET-161 (10) 0.48 0.51 0.57 0.56
AVERAGE 0.47 0.53 0.58 0.60

Table 3. Average Activation Precision (AP) over the test dataset are increased across different stages of R3 updates.

BASE (mk) PROTOPNET RESELECTED REWEIGHED R3-PROTOPNET

VGG19 (5) 70.31 79.81 85.64 86.61
VGG19 (10) 63.12 75.95 82.72 81.62
RESNET-34 (10) 85.63 88.81 90.33 92.23
RESNET-50 (10) 71.45 79.29 83.69 83.52
DENSENET-121 (10) 66.22 81.64 86.73 89.38
DENSENET-161 (10) 82.56 85.24 87.55 87.60
AVERAGE 73.22 81.79 86.11 86.83

6. Limitations and Future Work

While R3 succeeds in bringing forth interpretability and

predictive performance gains, there’s still room for improve-

ment. For example, the reward model is trained on ratings

of individual image-prototype pairs, mostly focusing on

overlap and single-image consistency (i.e. whether the pro-

totype simultaneously focuses on multiple body parts in

that image), while ignoring cross-image preferences, such

as whether the prototype focuses on different parts across

images. We also note that R3-ProtoPNet fails to completely

eliminate duplicate prototypes, with several high-reward

prototypes converge to the same part of the image. To

address these issues, it’s promising to extend ratings to mul-

tiple image-prototype pairs and create more diverse reward

models, possibly using them in ensemble. Meanwhile, simi-

lar to many other human preference learning scenarios, our

ratings to be collected also rely on certain level of subjective

individual judgement calls, and this would inevitably lead

to noises in the reward labels, which should be further min-

imized, according to the predictability, computability, and

stability (PCS) framework for veridical data science (Yu,

2020).

Another limitation with R3-ProtoPNet and other methods

that rely on human feedback is that the model itself might

be learning features that, while seemingly confusing to a

human, are helpful and meaningful for prediction. Barnett

et al. (2021) argue that the ProtoPNet can predict with non-

obvious features like texture and contrast, which might be

penalized via a learned reward function. An interesting

line of future work is to investigate how certain ProtoPNet

8
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variants could critique human feedback, and argue against a

human-biased reward model.

While this work focuses on improving the performance of

ProtoPNet, a major benefit of reward-based finetuning is its

flexibility in application. With proper adaptations, we expect

our R3 debugging framework could generalize to many other

prototype-based or interpretable machine learning models

and serve as a useful concept-level debugging tool.

7. Conclusion

In this work, we present the R3 debugging framework, an

efficient and generalizable human-in-the-loop approach to

improve the class of prototype-based deep learning mod-

els. Our work is the first method that uses a learned reward

model to quantify the qualitative prototypical visual expla-

nations and use them to improve the model itself. Our

experiments show both increased model performance and

improved model interpretability. It’s demonstrated by our

work that the ability of reward learning to quantify quali-

tative human preferences make reward-based fine-tuning a

promising direction for the improvement of interpretable

deep models.
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Our proposed R3 framework is an effective debugging tool

for interpretable prototype-based neural networks in the

field of Computer Vision, and users could incorporate it
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A. Pairwise Loss Function for the Reward Model

For completeness, here is the explicit formulation of the loss function described in Section 4.2:

Lreward =−
∑

i ̸=i′ or j ̸=j′

[

1ciji′j′=−1 log

(

exp(r(xi, hij))

exp(r(xi, hij)) + exp(r(xi′ , hi′j′))

)

+ 1ciji′j′=1 log

(

exp(r(xi′ , hi′j′))

exp(r(xi, hij)) + exp(r(xi′ , hi′j′))

)]

where ci,j,i′,j′ refers to the comparison value associated with the column indexed by i, j, i′, j′ in the synthetic dataset

Dpaired, which is explained in section 3.3. The architecture of the reward model is detailed in section 4.1.2.

B. Thresholds and the Number of Updated Prototypes

As described in Section 3.4, for each base architecture, the various thresholds for reweighing, reselection, and acceptance.

These thresholds were chosen by examining the reward distribution of the base architectures to see if prototypes with low

reward cluster around any particular values. Across models, a reweighing threshold of 0.4 or 0.35 sufficed, but further tuning

was needed for the reselection and acceptance thresholds. We present the final thresholds used for each R2 step in Table 4.

Table 4. Thresholds used across base architectures during R2 step for the CUB dataset.

BASE (mk) RESELECTION THRESHOLD REWEIGH THRESHOLD ACCEPTANCE THRESHOLD

VGG-19 (5) 0.35 0.40 0.50
VGG-19 (10) 0.25 0.40 0.43
RESNET-34 (10) 0.22 0.35 0.40
RESNET-50 (10) 0.18 0.35 0.40
DENSENET-121 (10) 0.25 0.35 0.45
DENSENET-161 (10) 0.25 0.35 0.43

Using the reselection thresholds above, we report the total number of updated prototypes for each architecture in Table 5.

Table 5. Total number of prototypes updated across the two R2 steps, divided by the total number of prototypes for that network.

BASE (mk) #RESELECTED PROTOTYPES #REWARD-REWEIGHED PROTOTYPES

VGG-19 (5) 107 / 1000 432 / 1000
VGG-19 (10) 384 / 2000 644 / 2000
RESNET-34 (10) 349 / 2000 702 / 2000
RESNET-50 (10) 365 / 2000 749 / 2000
DENSENET-121 (10) 294 / 2000 662 / 2000
DENSENET-161 (10) 276 / 2000 598 / 2000

C. Sensitivity to Amount of Human Feedback

To evaluate the influence of the amount of human feedback on our R3 framework, we experiment using fewer human ratings

to train a reward model and then perform the R3 updates. The results are in Table 6. Although we used 500 ratings to reach

the peak performance in the main experiments, it’s observed that the R3 framework starts to improve the original ProtoPNet

when the number of collected ratings reaches 300.

D. Performance of R3-ProtoPNet on Stanford Cars Dataset

Here we report the test accuracies and average rewards of R3-ProtoPNet on the Stanford Cars dataset in Table 7 and Table

8. Note that although the reward values for this dataset tend to be higher than that of CUB-200-2011, which is due to the
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Table 6. Test accuracies of the trained reward models and the debugged R3-ProtoPNets (ensembled) given different amount of human

ratings (CUB dataset).

Metric

#Ratings
100 ratings 200 ratings 300 ratings 400 ratings 500 ratings

Reward Model Acc. 69.50± 0.25 77.34± 0.25 83.27± 0.27 88.67± 0.16 90.09± 0.20
R3-ProtoPNet Acc. 77.69± 0.30 80.15± 0.22 83.06± 0.28 84.03± 0.21 84.37± 0.20

fact that we need to train a new reward model for this new dataset, the general trends are the same. We don’t include the

activation precision result because a fine-grained segmentation mask for this dataset is not available.

Table 7. R3 updates tend to increase the test accuracy for the Stanford Cars dataset. Average accuracies and standard deviations are

reported across five runs, where mk is the number of prototypes per class.

BASE (mk) PROTOPNET R2-PROTOPNET R3-PROTOPNET

VGG-19 (5) 85.10± 0.15 69.61± 1.23 86.75± 0.18
VGG-19 (10) 87.25± 0.18 66.11± 2.10 88.71± 0.27
RESNET-34 (10) 85.62± 0.08 58.73± 2.36 87.18± 0.14
RESNET-50 (10) 85.27± 0.21 62.66± 2.77 87.25± 0.19
DENSENET-121 (10) 86.03± 0.18 63.49± 1.88 86.59± 0.25
DENSENET161 (10) 88.19± 0.29 60.75± 2.23 89.48± 0.31
ENSEMBLE OF ABOVE 90.39± 0.14 73.42± 0.81 91.57± 0.24

Table 8. Average rewards during different R3 debugging stages (Stanford Cars dataset).

BASE (mk) PROTOPNET RESELECTED REWEIGHED R3-PROTOPNET

VGG19 (5) 0.78 0.87 0.91 0.92
VGG19 (10) 0.73 0.82 0.87 0.87
RESNET-34 (10) 0.69 0.75 0.82 0.85
RESNET-50 (10) 0.66 0.74 0.79 0.81
DENSENET-121 (10) 0.75 0.80 0.83 0.86
DENSENET-161 (10) 0.72 0.80 0.82 0.84
AVERAGE 0.72 0.80 0.84 0.86

E. Debugging Effects of R3 on Other ProtoPNet Variants

To test the generalizability of our R3 framework, we first apply our R3 framework to ProtoPFormer (Xue et al., 2022), which

is another ProtoPNet extension that uses vision transformer (ViT) backbones. In ProtoPFormer, two types of prototypes

are used: the global prototypes are able to provide holistic views of the objects and eliminate confounding effects of the

background, while the local prototypes capture the fine-grained visual features that are useful for classification. Empirically

we found success applying our R3 framework to update both global and local prototypes. The results are summarized in

Table 9.

Huang et al. (2023) propose to improve the stability and consistency of the original ProtoPNet by adding 1) a shallow-deep

feature alignment (SDFA) module, which helps preserve the spatial information of deep feature maps by incorporating

spatial information from shallow layers into deep layers, and 2) a score aggregation (SA) module, which improves the

model by aggregating activation values only into corresponding categories. We apply our R3 framework to this augmented

ProtoPNet, and the results are included in Table 10.

These two experiments show that the R3 debugging procedure could generalize well toward other prototype-based models.
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