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Abstract

In this paper, we show that Low Rank Adaptation

(LoRA) as originally introduced in (Hu et al.,

2021) leads to suboptimal finetuning of models

with large width (embedding dimension). This

is due to the fact that adapter matrices A and

B in LoRA are updated with the same learning

rate. Using scaling arguments for large width

networks, we demonstrate that using the same

learning rate for A and B does not allow

efficient feature learning. We then show that this

suboptimality of LoRA can be corrected simply

by setting different learning rates for the LoRA

adapter matrices A and B with a well-chosen

fixed ratio. We call this proposed algorithm

LoRA+. In our extensive experiments, LoRA+
improves performance (1%−2% improvements)

and finetuning speed (up to ∼ 2X SpeedUp), at

the same computational cost as LoRA.

1. Introduction

State-of-the-art (SOTA) deep learning models all share

a common characteristic: they all have an extremely

large number of parameters (10’s if not 100’s of billions

parameters). Currently, only a few industry labs can

pretrain large language models due to their high training

cost. However, many pretrained models are accessible

either through an API (GPT4, (OpenAI, 2023)) or through

open-source platforms (Llama, (Touvron et al., 2023)).

Most practitioners are interested in using such models

for specific tasks and want to adapt these models to a

new, generally smaller task. This procedure is known as

finetuning, where one adjusts the weights of the pretrained

model to improve performance on the new task. However,

due to the size of SOTA models, adapting to down-stream

tasks with full finetuning (finetuning all model parameters)
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is computationally infeasible as it requires modifying the

weights of the pretrained models using gradient methods

which is a costly process. Besides, a model that has already

learned generally useful representations during pretraining

would not require in-principle significant adaptation of all

parameters. With this intuition, researchers have proposed

a variety of resource-efficient finetuning methods which

typically freeze the pretrained weights and tune only a

small set of newly inserted parameters. Such methods

include prompt tuning (Lester et al., 2021) where a “soft

prompt" is learned and appended to the input, the adapters

method (Houlsby et al., 2019) where lightweight “adapter"

layers are inserted and trained, and (IA)3 (Liu et al.,

2022) where activation vectors are modified with learned

scalings. Another resource-efficient method is known as

Low Rank Adaptation (Hu et al., 2021), or simply LoRA.

In LoRA finetuning, only a low rank matrix, called an

adapter, that is added to the pretrained weights is trainable.

The training can be done with any optimizer and in practice

a common choice is Adam (Kingma and Ba, 2014). Since

the trained adapter is low-rank, this effectively reduces the

number of trainable parameters in the fine-tuning process,

significantly decreasing the training cost. On many tasks

such as instruction finetuning, LoRA has been shown

to achieve comparable or better performance compared

with full-finetuning (Wang et al., 2023; Liu et al., 2023),

although on complicated, long form generation tasks, it is

not always as performant. The impressive performance and

the computational savings of LoRA have contributed to it

becoming an industry standard finetuning method.

Efficient use of LoRA requires a careful choice of

hyperparameters: the rank and the learning rate. While

some theoretical guidelines on the choice of the rank in

LoRA exist in the literature (see e.g. Zeng and Lee (2023)),

there are no principled guidelines on how to set the learning

rate, apart from common choices of order 1e-4.

Related Work. Dettmers et al. (2023) introduced a

quantized version of LoRA (or QLoRA), which further

reduces computation costs by quantizing pretrained

weights down to as few as four bits. Using QLoRA enables

fine-tuning Llama-65b (Touvron et al., 2023), on a single

consumer GPU while achieving competitive performance

with full-finetuning. To further improve LoRA training

with quantization, Li et al. (2023) introduced a new
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Efficient Low Rank Adaptation

of analyzing statistical properties of key quantities in the

model (e.g. pre-activations) as n grows and then adjust the

initialization, the learning rate, and the architecture itself

to achieve desirable properties in the limit n → ∞ (Hayou

et al., 2019; Schoenholz et al., 2017b; Yang, 2019; Yang

and Littwin, 2023). This approach is used in this paper to

study feature learning dynamics with LoRA in the infinite-

width limit. This will allow us to derive scaling rules for the

learning rates of LoRA modules. For more details about the

theory of scaling of neural networks, see Appendix A.1.

Notation. Hereafter, we use the following notation to

describe the asymptotic behaviour as the width n grows.

Given sequences cn ∈ R and dn ∈ R
+, we write cn =

O(dn), resp. cn = Ω(dn), to refer to cn < κdn, resp.

cn > κdn, for some constant κ > 0. We write cn = Θ(dn)
if both cn = O(dn) and cn = Ω(dn) are satisfied. For

vector sequences cn = (cin)1≤i≤k ∈ R
k (for some k > 0),

we write cn = O(dn) when cin = O(din) for all i ∈ [k],
and same holds for other asymptotic notations. Finally,

when the sequence cn is a vector of random variables,

convergence is understood to be convergence in second

moment (L2 norm).

3. An Intuitive Analysis of LoRA

Our intuition is simple: the matrices A and B have

“transposed” shapes and one would naturally ask whether

the learning rate should be set differently for the two

matrices. In practice, most SOTA models have large width

(embedding dimension). Thus, it makes sense to study the

training dynamics when the width goes to infinity.

3.1. LoRA with a Toy Model

Consider the following linear model

f(x) = (W ∗ + ba⊤)x, (2)

where W ∗ ∈ R
1×n are the pretrained weights, b ∈ R, a ∈

R
n are LoRA weights,2 x ∈ R

n is the model input.

This setup corresponds to n1 = 1, n2 = n, r = 1 in

Definition 1. We assume that the weights W ∗ are fixed

(from pretraining). The goal is to minimize the loss L(θ) =
1
2 (f(x)−y)2 where θ = (a, b) and (x, y) is an input-output

datapoint.3 We assume that x = Θn(1) which means that

input coordinates remain of the same order as we increase

width. In the following, we analyze the behaviour of the

finetuning dynamics as model width n grows.

2Here, we consider n2 = 1 to simplify the analysis. All the
conclusions remain essentially valid when n2 = n1 = n.

3For simplicity, we assume that the finetuning dataset consists
of a single sample. Our analysis is readily generalizable to
multiple samples.

Initialization. We consider a Gaussian initialization of

the weights as follows: ai ∼ N (0, σ2
a), b ∼ N (0, σ2

b ).
4

With LoRA, we generally want to initialize the product ba⊤

to be 0 so that finetuning starts from the pretrained model.

This implies at least one of the weights a and b is initialized

to 0. If both are initialized to 0, it is trivial that no learning

occurs in this case since this is a saddle point. Thus, we

should initialize one of the parameters a and b to be non-

zero and the other to be zero. If we choose a non-zero

initialization for a, then following standard initialization

schemes (e.g., He Init (He et al., 2016), LeCun Init (LeCun

et al., 2002)), one should set σ2
a = Θ(n−1) to ensure a⊤x

does not explode with width. This is justified by the Central

Limit Theorem (CLT).5 On the other hand, if we choose

a non-zero initialization for b, one should make sure that

σ2
b = Θ(1). This leaves us with two possible schemes:

• Init[1]: σ2
b = 0, σ2

a = Θ(n−1).

• Init[2]: σ2
b = Θ(1), σ2

a = 0.

Our analysis will only consider these two initialization

schemes for LoRA modules, although the results should

in-principle hold for other schemes, providing that stability

(as discussed above) is satisfied.

Learning rate. WLOG, we can simplify the analysis by

assuming that W ∗ = 0. This can be achieved by setting

ỹ = y −W ∗x. The gradients are given by

∂L

∂b
= a⊤x(f(x)− y),

∂L

∂a
= b(f(x)− y)x.

We use subscript t to denote the finetuning step. Let Ut =
(ft(x)− y). At step t with learning rate η > 0, we have

∆ft
def
= ft(x)− ft−1(x) = −ηb2t−1Ut−1∥x∥

2

︸ ︷︷ ︸

δ1
t

− η(a⊤t−1x)
2Ut−1

︸ ︷︷ ︸

δ2
t

+ η2U2
t−1bt−1(a

⊤
t−1x)∥x∥

2

︸ ︷︷ ︸

δ3
t

.

The update in model output is driven by the three terms

(δit)i∈{1,2,3}. The first two terms represent “linear”

contributions to the update, i.e. change in model output

driven by fixing b and updating a and vice-versa. These

terms are order one in η. The third term δ3t represents a

multiplicative update, compounding the updates in a and b,
and is an order two term in η. As n grows, a desirable

property is that ∆ft = Θ(1). Intuitively, this means

4The Gaussian distribution can be replaced by any other
distribution with finite variance.

5Technically, the CLT only ensures the almost sure
convergence, the L2 convergence follows from the Dominated
Convergence Theorem. We omit these technical details in this
paper.
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Efficient Low Rank Adaptation

that as we scale the width, feature updates do not ‘suffer’

from this scaling (see Appendix A.1 for more details). An

example of a scenario where feature learning is affected

by scaling is the lazy training regime (Jacot et al., 2018),

where feature updates are of order Θ(n−1/2) which implies

that no feature learning occurs in the limit n → ∞. The

condition ∆ft = Θ(1) also implies that the update does

not explode with width, which is also a desirable property.

Having ∆ft = Θ(1) satisfied implies that at least one of

the three terms (δit)i∈{1,2,3} is Θ(1). Ideally, we want both

δ1t and δ2t to be Θ(1) because otherwise it means that either

a or b is not efficiently updated. For instance, if δ1t = o(1),
it means that as n → ∞, the model acts as if a is fixed

and only b is trained. Similar conclusions hold when δ2t =
o(1). Having both δ1t and δ2t being Θ(1) in width means

that both a and b parameter updates significantly contribute

to the change in ft(x), and we say that feature learning with

LoRA is efficient when this is the case, i.e. δti = Θ(1) for

i ∈ {1, 2} and all t > 1. We will formalize this definition

of efficiency in the next section. The reader might wonder

why we do not require that δ3t be Θ(1). We will see that

when both δ1t and δ2t are Θ(1), the term δ3t is also Θ(1).

Efficiency Analysis. Let us assume that we train the

model with gradient descent with learning rate η = Θ(nc)
for some c ∈ R, and suppose that we initialize the model

with Init[1]. Sine the training dynamics are mainly

matrix vector products, sum of vectors/scalars etc (see

(Yang et al., 2022)),6 it is easy to see that any quantity

in the training dynamics should be of order nγ for some

γ ∈ R. For any quantity v in the training dynamics, we

write v = Θ(nγ[v]). When v is a vector, we use the same

notation when all entries of v are Θ(nγ[v]). The γ notation

is formally defined in Appendix A.

Starting from initialization, we have f0(x) = 0. LoRA

finetuning is efficient when δ1t = Θ(1) and δ2t = Θ(1) for

all t > 1,7 and ft(x) = Θ(1) for t > 1. This translate to







c+ 2γ[bt−1] + 1 = 0 (δ1t = Θ(1))

c+ 2γ[a⊤t−1x] = 0 (δ2t = Θ(1))

γ[bt−1] + γ[a⊤t−1x] = 0 (ft−1(x) = Θ(1))

Solving this equation yields c = −1/2, i.e. the learning

6A crucial assumption for this to hold is also to have that for
any matrix/vector product in the training dynamics, the product
dimension (the dimension along which the matrix/vector product
is calculated) is Θ(nα) for some α > 0. For instance, in the
case of Transformers, this is satisfied since the MLP embedding
dimension is generally k × n. However, this condition would be
violated if for instance one considers MLP embedding dimension
kn log(n). Such non-standard scaling choices require a particular
treatment, but the conclusions remain the same.

7Here we use the t > 1 instead of t > 0 because at t ≤ 1, at
least one the terms δ11 or δ21 will be zero.

rate should scale as η = Θ(n−1/2) in order to achieve

efficient feature learning. At initialization, b0 = 0 and

a⊤0 x = Θ(1) (by Central Limit Theorem). Through

an inductive argument, for t > 0, bt will be of order

Θ(n−1/2) and a⊤t x will be of order Θ(1), yielding ft(x) =
Θ(n−1/2). Indeed, at each iteration the update to bt will be

of order Θ(ηya⊤t−1x) = Θ(n−1/2) and the updates to at
are of order Θ(ηbt−1yx) = Θ(n−1). As ft = Θ(n−1/2),
this yields a contradiction towards learning Θ(1) features.

This shows that we cannot have both δ1t and δ2t to be Θ(1)
with this parametrization (also true with Init[2]). We

formalize this result in the next proposition and refer the

reader to Appendix A for further technical details.

Proposition 1 (Inefficiency of LoRA fine-tuning). Assume

that LoRA weights are initialized with Init[1] or

Init[2] and trained with gradient descent with learning

rate η = Θ(nc) for some c ∈ R. Then, it is impossible to

have δit = Θ(1) for i ∈ {1, 2} for any t > 0, and therefore,

fine-tuning with LoRA in this setup is inefficient.

In conclusion, efficiency cannot be achieved with this

parametrization of the learning rate. This suggests

that standard LoRA finetuning as currently used by

practitioners is suboptimal, especially when model width

is large, which is a property that is largely satsified

in practice (n ≈ 700 for GPT2 and n ≈ 4000 for

LLama). This analysis suggests that we are missing crucial

hyperparameters in the standard LoRA setup. Indeed, we

show that by decoupling the learning rate for a and b, we

can have δit = Θ(1) for i ∈ {1, 2, 3}. We write ηa, ηb to

denote the learning rates. The analysis conducted above

remains morally the same with the only difference being in

the learning rates. Let ηa = Θ(nca) and ηb = Θ(ncb),
and assume that weights are initialized with Init[1].

A similar analysis to the one conducted above show that

having ft(x) = Θ(1) and δit = Θ(1) for i ∈ {1, 2} and

t > 0 implies that for all t > 1







ca + 2γ[bt−1] + 1 = 0 (δ1t = Θ(1))

cb + 2γ[a⊤t−1x] = 0 (δ2t = Θ(1))

γ[bt−1] + γ[a⊤t−1x] = 0 (ft−1(x) = Θ(1))

which, after simple calculations, implies that ca+cb = −1.

This is only a necessary condition. In the next result, taking

also some elements of stability into consideration, we fully

characterize the choice of ηa and ηb to ensure efficient

LoRA fine-tuning.

Proposition 2 (Efficient Fine-Tuning with LoRA). In the

case of model (2), with ηa = Θ(n−1) and ηb = Θ(1), we

have for all t > 1, i ∈ {1, 2, 3}, δit = Θ(1).

We refer the reader to Appendix A for more details on the

proof of Proposition 2. In conclusion, scaling the learning

4





Efficient Low Rank Adaptation

BAZ . At fine-tuning step t, we use the superscript t
to denote the value of LoRA features Zt

A, Z
t
B , and the

subscript t to denote the weights At, Bt.

LoRA layers are 2-layers linear networks with a

“bottleneck” in the middle (since generally r ≪ n). This

bottleneck shape might induce some numerical challenges

in training stability and efficiency (Definition 3 and

Definition 5).

Finetuning Dataset. To simplify the analysis, we assume

that the finetuning dataset comprises a single sample

(x, y),10 and the goal is to minimize the loss L(θ, (x, y))
computed with the underlying model where the adjusted

weights are given by W ∗ + BA for all LoRA layers

(here θ = {A,B, for all LoRA layers in the model}). At

training step t, and for any LoRA layer in the model, Zt

is the input to the LoRA layer, computed with data input

x. Similarly, we write dZ̄t to denote the gradient of the

loss function with respect to the layer output features Z̄
evaluated at data point (x, y).

The notion of stability of LoRA as discussed in Section 3

can be generalized to any neural network model as follows.

Definition 3 (Stability). We say that LoRA finetuning is

stable if for all LoRA layers in the model, and all training

steps t, we have Z, ZA, ZB = O(1) as n goes to infinity.

Stability implies that no quantity in the network explodes

as width grows, a desirable property as we scale the

model.11 Naturally, in order to ensure stability, one has

to scale hyperparameters (initialization, learning rate) as

n grows. Scaling rules for initialization are fairly easy to

infer and were already discussed in Section 3 where we

obtained two plausible initialization schemes (Init[1]

and Init[2]). More importantly, if we arbitrarily scale

the learning rate with width, we might end up with

suboptimal learning as width grows even if the finetuning is

stable. This is the case for instance when we aggressively

downscale the learning rate with width, or inadequately

parameterize the network (e.g. Neural Tangent Kernel

parametrization which leads to the kernel regime in the

infinite width limit, (Jacot et al., 2018)). To take this into

account, we define a notion of feature learning with LoRA.

Definition 4 (Stable Feature Learning with LoRA). We say

10This assumption on the finetuning dataset is for simplification
purposes only. All our analysis can be re-written with ‘batched’
gradients and the conclusions remain the same. However, some
additonal assumptions are required to make the analysis rigorous.

11It is possible to define stability as Z, ZB = O(1) and exclude
ZA from the condition. This would allow scenarios where for
instance the entries of A explode with width but their magnitude
is compensated with a smaller magnitude of B. This system has
one degree of freedom because of the homogeneity of the product
BA, and by imposing that ZA = O(1), we avoid having such
scenarios.

that LoRA finetuning induces stable feature learning if it is

stable (Definition 3), and for all LoRA layers and finetuning

step t, we have ∆Zt
B

def
= Zt+1

B − Zt
B = Θ(1).

A similar definition of feature learning was introduced in

(Yang and Littwin, 2023) for pretraining. This definition

ensures that the network is not ‘stuck’ in a kernel regime

where feature updates are of order O(n−ϵ) in the infinite-

width limit for some ϵ > 0, which implies that no feature

learning occurs in the limit. The authors introduced the

µ-parameterization (or maximal update parametrization), a

specific network parameterization (initialization + learning

rate scaling), that ensures that feature updates are Θ(1).
Note that here we added stability in the definition, but in

principle, one could define feature learning with Ω instead

of Θ. The latter covers unstable scenarios (e.g. when

∆Zt
B = Θ(n) due to improper scaling of initialization

and learning rate), so we omit it here and focus on stable

feature learning. Also, notice that we only consider

finetuning dynamics and not the pretraining dynamics.

However, since our analysis depends on weights W ∗ from

pretraining, we assume that pretraining parameterization

ensures stability and feature learning as width grows (see

Appendix A for more details).12

At finetuning step t, the gradients are given by

∂Lt

∂B
=

α

r
dZ̄t−1 ⊗At−1Zt−1

∂Lt

∂A
= dZt−1

A ⊗ Zt−1 =
α

r
B⊤

t−1dZ̄
t−1 ⊗ Zt−1,

where u⊗ v denotes the outer product uv⊤ of vectors u, v,

and the weights are updated as follows

At = At−1 − ηAg
t−1
A , Bt = Bt−1 − ηBg

t−1
B ,

where gA, gB are processed gradients (e.g. normalized

gradients with momentum as in AdamW etc). Hereafter,

we assume that the gradients are processed in a way that

makes their entries Θ(1). This is generally satisfied in

practice (with Adam for instance) and has been considered

in (Yang and Littwin, 2023) to derive the µ-parametrization

for general gradient processing functions.

Unlike the linear model in Section 3, LoRA feature updates

are not only driven by the change in the A,B weights, but

also Z, dZ̄ which are updated as we finetune the model

(assuming there are multiple LoRA layers). To isolate the

contribution of individual LoRA layers to feature learning,

12When taking the infinite width limit, we assume that
pretraining parameterization is µP. This is just a technicality for
the infinite-width limit and does not have any implications on
practical scenarios where the width is finite. The most important
implications of this assumption is that in the pretrained network
(before introducing LoRA layers), we have Z = Θ(1), Z̄ =
Θ(1), which holds for a general input-output pair (x, y).

6



Efficient Low Rank Adaptation

we assume that only a single LoRA layer is trainable and all

other LoRA layers are frozen.13. In this setting, considering

the only trainable LoRA layer in the model, the layer input

Z is fixed and does not change with t, while dZ̄ changes

with step t (because Z̄t = (W ∗ + α
rBtAt)Z). After step t,

ZB is updated as follows

∆Zt
B = Bt−1∆Zt

A
︸ ︷︷ ︸

δ1
t

+∆BtZ
t−1
A

︸ ︷︷ ︸

δ2
t

+∆Bt∆Zt
A

︸ ︷︷ ︸

δ3
t

As discussed in Section 3, the terms δ1t , δ
2
t represent

the ‘linear’ feature updates that we obtain if we fix one

weight matrix and only train the other, while δ3t represents

the ‘multiplicative’ feature update which captures the

compounded update due to updating both A and B.

Analysis of the Role of A and B. As discussed above,

we want to ensure that δ1t = Θ(1) and δ2t = Θ(1) which

means that both weight matrices contribute to the update in

ZB . To further explain why this is a desirable property, let

us analyze how changes in matrices A and B affect LoRA

feature ZB = BAZ.

Let (B:,i)1≤i≤r denote the columns of B. We can express

ZB as ZB =
∑r

i=1(AZ)iB:,i, where (AZ)i is the ith

coordinate of AZ. This decomposition suggests that the

direction of ZB is a weighted sum of the columns of B,

and A modulates the weights. With this, we can also write
{

δ1t =
∑r

i=1(∆AtZ)i(B:,i)t−1

δ2t =
∑r

i=1(At−1Z)i(∆B:,i)t−1,

where (B:,i)t refers to the columns of B at time step t.
Having both δ1t and δ2t of order Θ(1) means that both A and

B are ‘sufficiently’ updated to induce a change in weights

(AZ)i and directions B:,i. If one of the matrices A,B is

not efficiently updated, we might end up with suboptimal

finetuning, leading to either non updated directions B
or direction weights (At−1Z). For instance, assuming

that the model is initialized with Init[2], and that B
is not efficiently updated, the direction of ZB will be

mostly determined by the vector (sub)space of dimension

r generated by the columns of B at initialization. This

analysis leads to the following definition of efficient

learning with LoRA.

Definition 5 (Efficient Learning). We say that LoRA fine-

tuning is efficient if it is stable (Definition 3), and for all

LoRA layers in the model, all steps t > 1, and i{1, 2}, we

have δit = Θ(1).

Note that it is possible to achieve stable feature learning

(Definition 4) without necessarily having efficient learning.

13This is equivalent to having only a single LoRA layer in the
model since LoRA layers are initialized to zero. In this way, we
can quantify feature learning induced by the LoRA layer as we
finetune the model.

This is the case when for instance B is not updated (fixed

to a non-zero init with Init[2]) and only A is updated,

which corresponds to simply setting ηB = 0. This is a

trivial case, but other non-trivial cases of inefficiency are

common in practice, such as the use of the same learning

rate for A and B which is a standard practice. In the next

theorem, we characterize the optimal scaling of learning

rates ηA and ηB , a conclusion similar to that of Section 3.

Theorem 1 (Efficient LoRA (Informal)). Assume that

weight matrices A and B are trained with Adam with

respective learning rates ηA and ηB . Then, it is impossible

to achieve efficiency with ηA = ηB . However, LoRA

Finetuning is efficient with ηA = Θ(n−1) and ηB = Θ(1).

The result of Theorem 1 suggests that efficiency can only

be achieved with ηB/ηA = Θ(n). In practice, this

translates to setting ηB ≫ ηA, but does not provide a

precise ratio ηB/ηA to be fixed while tuning the learning

rate (the constant in ‘Θ’ is generally intractable), unless

we tune both ηB and ηA which is not efficient from

a computational perspective as it becomes a 2D tuning

problem. It is therefore natural to set a fixed ratio ηB/ηA
and tune only ηA (or ηB), which would effectively reduce

the tuning process to a 1D grid search, achieving the same

computational cost of standard LoRA where the learning

rate is the same for A and B. We call this method LoRA+.

LoRA+ : set the learning rates for A,B such that

ηB = ληA with λ > 1 fixed and tune ηA.

In the next section, through extensive empirical

evaluations, we first validate our theoretical result

and show that optimal pairs (ηA, ηB) (in terms of test

accuracy) generally satisfy ηB ≫ ηA. We then investigate

the optimal ratio λ for LoRA+ and suggest a default

ratio that was empirically found to generally improve

performance compared to standard LoRA. Although the

conclusions of Theorem 1 and Proposition 2 are similar,

the proof techniques are different. In Proposition 2, the

linear model is trained with gradient descent, while in

Theorem 1, the training algorithm is Adam-type in the

sense that it normalizes the gradients before updating the

weights. The formal statement of Theorem 1 requires an

additional assumption on the alignment of the processed

gradients gA with LoRA input Z. This technical detail is

introduced and discussed in Appendix A.

5. Experiments with Language Models

We report our empirical results using LoRA to finetune a

set of language models on different benchmarks. Details

about the experimental setup and more empirical results

are provided in Appendix C. We also identify a default

value for the ratio λ = ηB/ηA that generally improves

7
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A. Proofs

In this section, we provide proofs for Proposition 1, Proposition 2, Theorem 1, and some technical details used in the

proofs.

A.1. Scaling of Neural Networks

Scaling refers to the process of increasing the size of one of the ingredients in the model to improve performance (see e.g.

(Hoffmann et al., 2022)). This includes model capacity which can be increased via width (embedding dimension) or depth

(number of layers) or both, compute (training data), number of training steps etc. In this paper, we are interested in scaling

model capacity via the width n. This is motivated by the fact that most state-of-the-art language and vision models have

large width.

It is well known that as the width n grows, the network initialization scheme and the learning should be adapted to avoid

numerical instabilities and ensure efficient learning. For instance, the initialization variance should scale 1/n to prevent

arbitrarily large pre-activations as we increase model width n (e.g. He init (He et al., 2016)). To derive such scaling rules,

a principled approach consist of analyzing statistical properties of key quantities in the model (e.g. pre-activations) as n
grows and then adjust the initialization, the learning rate, and the architecture itself to achieve desirable properties in the

limit n → ∞ (Hayou et al., 2019; Schoenholz et al., 2017b; Yang, 2019).

In this context, (Yang et al., 2022) introduces the Maximal Update Parameterization (or µP), a set of scaling rules for the

initialization scheme, the learning rate, and the network architecture that ensure stability and maximal feature learning in

the infinite width limit. Stability is defined by Y i
l = Θ(1) for all l and i where the asymptotic notation ‘Θ(.)’ is with respect

to width n (see next paragraph for a formal definition), and feature learning is defined by ∆Yl = Θ(1), where ∆ refers

to the feature update after taking a gradient step. µP guarantees that these two conditions are satisfied at any training step

t. Roughly speaking, µP specifies that hidden weights should be initialized with Θ(n−1/2) random weights, and weight

updates should be of order Θ(n−1). Input weights should be initialized Θ(1) and the weights update should be Θ(1) as

well. While the output weights should be initialized Θ(n−1) and updated with Θ(n−1). These rules ensure both stability

and feature learning in the infinite-width limit, in contrast to standard parameterization (exploding features if the learning

rate is well tuned), and kernel parameterizations (e.g. Neural Tangent Kernel parameterization where ∆Yl = Θ(n−1/2),
i.e. no feature learning in the limit).

A.2. The Gamma Function (γ[.])

In the theory of scaling of neural networks, one usually tracks the asymptotic behaviour of key quantities as we scale some

model ingredient. For instance, if we scale the width, we are interested in quantifying how certain quantities in the network

behave as width n grows large and the asymptotic notation becomes natural in this case. This is a standard approach for

(principled) model scaling and it has so far been used to derive scaling rules for initialization (Schoenholz et al., 2017b),

activation function (Hayou et al., 2019), network parametrization (Yang et al., 2023), amongst other things.

With Init[1] and Init[2], the weights are initialized with Θ(n−β) for some β ≥ 0. Assuming that the learning rates

also scale polynomially with n, it is straightforward that preactivations, gradients, and weight updates are all asymptotically

polynomial in n. It is therefore natural to introduce the Gamma function, and we write v = Θ(γ[v]) to capture this

polynomial behaviour. Now, let us introduce some elementary operations with the Gamma function.

Multiplication. Given two real-valued variables v, v′, we have γ[v × v′] = γ[v] + γ[v′].

Addition. Given two real-valued variables v, v′, we generally have γ[v + v′] = max(γ[v], γ[v′]). The only case where

this is violated is when v′ = −v. This is generally a zero probability event if v and v′ are random variables that are not

perfectly correlated, which is the case in most situations where we make use of this formula (see the proofs below).

A.3. Proof of Proposition 1

Proposition 1. [Inefficiency of LoRA fine-tuning] Assume that LoRA weights are initialized with Init[1] or Init[2]

and trained with gradient descent with learning rate η = Θ(nc) for some c ∈ R. Then, it is impossible to have δit = Θ(1)
for all i for any t > 0, and therefore, fine-tuning with LoRA in this setup is inefficient.
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Proof. Assume that the model is initialized with Init[1]. Since the training dynamics are mainly simple linear algebra

operation (matrix vector products, sum of vectors/scalars etc), it is easy to see that any vector/scaler in the training dynamics

has a magnitude of order nγ for some γ ∈ R (for more details, see the Tensor Programs framework, e.g. (Yang, 2019)).

For any quantity v in the training dynamics, we write v = Θ(nγ[v]). When v is a vector, we use the same notation when

all entries of v are Θ(nγ[v]). Efficiency is defined by having δti = Θ(1) for i ∈ {1, 2} and t > 1. Note that this implies

ft(x) = Θ(1) for all t > 1. Let t > 1 and assume that learning with LoRA is efficient. We will show that this leads to a

contradiction. Efficiency requires that δit = Θ(1) for all t, i ∈ {1, 2}. Using the elementary formulas from Appendix A.2,

this implies that for all t






γ[η] + 2γ[bt−1] + 1 = 0

γ[η] + 2γ[a⊤t−1x] = 0

γ[bt−1] + γ[a⊤t−1x] = 0.

Solving this equation yields γ[η] = −1/2, i.e. LoRA finetuning can be efficient only if the learning rate scales as η =
Θ(n−1/2). Let us now show that this yields a contradiction. From the gradient updates and the elementary operations from

Appendix A.2, we have the following recursive formulas

{

γ[bt] = max(γ[bt−1],−1/2 + γ[a⊤t−1x])

γ[a⊤t x] = max(γ[a⊤t−1x], 1/2 + γ[bt−1])

Starting from t = 1, with Init[1] we have γ[b1] = γ[η(a⊤0 x)y] = −1/2 and γ[a⊤1 x] = γ[a⊤0 x] = 0, we have γ[b2] = −1/2
and γ[a⊤2 x] = 0. Trivially, this holds for any t. However, this implies that γ[ft] = γ[bt] + γ[a⊤t x] = −1/2 which means

that ∆ft cannot be Θ(1). With Init[2], we have γ[b1] = γ[b0] = 0 and γ[a⊤1 ] = γ[ηb0y∥x∥
2] = −1/2 + 1 = 1/2. From

the recursive formula we get γ[b2] = 0 and γ[a⊤2 x] = 1/2 which remains true for all t. In this case we have γ[ft] = 1/2
which contradicts ∆ft = Θ(1).

In both cases, this contradicts our assumption, and therefore efficiency cannot be achieved in this setup.

A.4. Proof of Proposition 2

Proposition 2. [Efficient Fine-Tuning with LoRA] In the case of Toy model Equation (2), with ηa = Θ(n−1) and ηb =
Θ(1), we have for all t > 1, ∈ {1, 2, 3}, δit = Θ(1).

Proof. The proof is similar in flavor to that of Proposition 1. In this case, the set of equations that should be satisfied so

that δit = Θ(1) are given by






γ[ηa] + 2γ[bt−1] + 1 = 0

γ[ηb] + 2γ[a⊤t−1x] = 0

γ[ηa] + γ[ηb] + γ[bt−1] + γ[a⊤t−1x] + 1 = 0,

where we have used the elementary formulas from Appendix A.2. Simple calculations yield γ[ηa] + γ[ηb] = −1. Using

the gradient update expression with the elementary addition from Appendix A.2, the recursive formulas controlling γ[bt]
and γ[a⊤t x] are given by

{

γ[bt] = max(γ[bt−1], γ[ηb] + γ[a⊤t−1x])

γ[a⊤t x] = max(γ[a⊤t−1x], γ[ηa] + γ[bt−1] + 1).

Starting from t = 1, with Init[1], we have γ[b1] = γ[ηb(a
⊤
0 x)y] = γ[ηb] and γ[a⊤1 x] = γ[a⊤0 x] = 0. Therefore

γ[b2] = max(γ[ηb], γ[ηb] + 0) = γ[ηb], and γ[a⊤2 x] = max(0, γ[ηa] + γ[ηb] + 1) = max(0, 0) = 0. By induction, this

holds for all t ≥ 1. With Init[2], we have γ[b1] = γ[b0] = 0, and γ[a⊤1 x] = γ[−ηab
2
0y∥x∥

2] = γ[ηa] + 1. At step

t = 2, we have γ[b2] = max(0, γ[ηb] + γ[ηa] + 1) = 0 and γ[a⊤2 x] = max(γ[ηa] + 1, γ[ηa] + 0 + 1) = γ[ηa] + 1, and

this holds for all t by induction. In both cases, to ensure that γ[ft] = γ[bt] + γ[a⊤t x] = 0, we have to set γ[ηb] = 0 and

γ[ηa] = −1 (straightforward from the equation γ[ηb] + γ[ηa] = −1). In conclusion, setting ηa = Θ(n−1) and ηb = Θ(1)
ensures efficient fine-tuning with LoRA.
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A.5. Proof of Theorem 1

In this section, we give a non-rigorous but intuitive proof of Theorem 1. The proof relies on the following assumption on

the processed gradient gA.

Assumption 1. With the same setup of Section 4, at training step t, we have gtAZ = Θ(n).

To see why Assumption 1 is sound in practice, let us study the product gtAZ in the simple case of Adam with no momentum,

a.k.a SignSGD which is given by

gA = sign

(
∂L

∂A

)

,

where the sign function is applied element-wise. At training step t, we have

∂Lt

∂A
=

α

r
B⊤

t−1dZ̄
t−1 ⊗ Z,

Let St = α
rB

⊤
t−1dZ̄

t−1. Therefore we have

gA = sign(St ⊗ Z) = (sign(St
iZj))1≤i,j≤n.

However, note that we also have

sign(St
iZj) = sign(St

i )sign(Zj),

and as a result

gtA = sign(St)⊗ sign(Z).

Hence, we obtain

gtAZ = (sign(Z)⊤Z)sign(St) = Θ(n),

where we used the fact that sign(Z)⊤Z = Θ(n).

This intuition should in-principle hold for the general variant of Adam with momentum as long as the gradient processing

function (a notion introduced in (Yang et al., 2013)) roughly preserves the sign(Z) direction. This reasoning can be made

rigorous for general gradient processing function using the Tensor Program framework and taking the infinite-width limit

where the components of gA,Z, dZ̄ all become iid. However this necessitates an intricate treatment of several quantities in

the process, which we believe is an unnecessary complication and does not serve the main purpose of this paper.

Let us now give a proof for the main claim.

Theorem 1. Assume that weight matrices A and B are trained with Adam with respective learning rates ηA and ηB and

that Assumption 1 is satisifed with the Adam gradient processing function. Then, it is impossible to achieve efficiency with

ηA = ηB . However, LoRA Finetuning is efficient with ηA = Θ(n−1) and ηB = Θ(1).

Proof. With the same setup of Section 4, at step t, we have







δ1t = Bt−1∆Zt
A = −ηABt−1g

t−1
A Z

δ2t = ∆BtZ
t−1
A = −ηBg

t−1
B At−1Z

δ3t = ∆Bt∆Zt
A = ηAηBg

t−1
B gt−1

A Z

The key observation here is that gt−1
A Z has entries of order Θ(n) as predicted and justified in Assumption 1. Having

δit = Θ(1) for i ∈ {1, 2} and Zt
B = Θ(1) for t > 1 translate to







γ[ηA] + γ[Bt−1] + 1 = 0

γ[ηB ] + γ[At−1Z] = 0

γ[Bt−1] + γ[At−1Z] = 0,
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which implies that γ[ηA] + γ[ηB ] = −1.

With the gradient updates, we have

Bt = Bt−1 − ηBg
t−1
B

AtZ = At−1Z − ηAg
t−1
A Z

which implies that

γ[Bt] = max(γ[Bt−1], γ[ηB ])

γ[AtZ] = max(γ[At−1Z], γ[ηA] + 1),

Now assume that the model is initialized with Init[1]. We have γ[B1] = γ[ηB ] and therefore for all t, we have

γ[Bt] = γ[ηB ]. We also have γ[A1Z] = γ[A0Z] = 0 (because A1 = A0, and we use the Central Limit Theorem to

conclude). Hence, if we choose the same learning rate for A and B, given by η, we obtain γ[η] = −1/2, and therefore

γ[Zt−1
A ] = γ[At−1Z] = 1/2 which violates the stability condition. A similar behaviour occurs with Init[2]. Hence,

efficiency is not possible in this case. However, if we set γ[ηB ] = 0 and γ[ηA] = −1, we get that γ[Bt] = 0, γ[AtZ] = 0,

and δit = Θ(1) for all i ∈ {1, 2, 3} and t ≥ 1. The same result holds with Init[2].

B. Efficiency from a Loss Perspective.

Consider the same setup of Section 4. At step t, the loss changes as follows

∆L = L((BA)t)− L((BA)t−1)

≈ ⟨dZ̄t−1 ⊗ Z, (BA)t − (BA)t−1⟩F

= ⟨dZ̄t−1,∆Zt
B⟩,

where ⟨., .⟩F is the Frobenius inner product in R
n×n, and ⟨., .⟩ is the euclidean product in R

n. Since the direction of the

feature updates are significantly correlated with dZ̄t−1, it should be expected that having δit = Θ(1) for all i results in

more efficient loss reduction.

C. Additional Experiments

This section complements the empirical results reported in the main text. We provide the details of our experimental setup,

and show the acc/loss heatmaps for several configurations.

C.1. Empirical Details

C.1.1. TOY EXAMPLE

In Figure 2, we trained a simple MLP with LoRA layers to verify the results of the analysis in Section 3. Here we provide

the empirical details for these experiments.

Model. We consider a simple MLP given by

f(x) = Woutϕ(BAϕ(Winx)),

where Win ∈ R
n×d,Wout ∈ R

1×n, A ∈ R
r×n, B ∈ R

n×r are the weights, and ϕ is the ReLU activation function. Here,

we used d = 5, n = 100, and r = 4.

Dataset. Synthetic dataset generated by X ∼ N (0, Id), Y = sin(d−1
∑d

i=1 Xi) with d = 5. The number of training

examples is Ntrain = 1000, and the number of test examples is Ntest = 100.

Training. We train the model with gradient descent for a range for values of (ηA, ηB). The weights are initialized as

follows: Win ∼ N (0, 1.),Wout ∼ N (0, 1/n), A ∼ N (0, 1/n), B ∼ N (0, 1.). Only the weight matrices A,B are trained

and Win,Wout are fixed to their initial value.
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C.1.2. GLUE TASKS WITH GPT2/ROBERTA

For our experiments with GPT2/Roberta-base models, finetuned on GLUE tasks, we use the following setup:

Tasks. MNLI, QQP, SST2, QNLI

Models. GPT2, Roberta-base

Training Alg. AdamW with β1 = 0.9, β2 = 0.99, ϵ = 1e-8, linear schedule, no warmup.

Learning rate grid. ηA ∈ {4e-3, 2e-3, 1e-3, 5e-4, 2e-4, 1e-4}, ηB ∈ { 8e-4, 4e-4, 2e-4, 1e-4, 5e-5, 2e-5, 1e-5 }.

Targert Modules for LoRA. For Roberta-base, we add LoRA layers to ‘query’ and ‘value’ weights. For GPT2, we add

LoRA layers to ‘c_attn, c_proj, c_fc’.

Other Hyperparameters. Sequence length T = 128, train batch size bs = 32, number of train epochs E = 3 (E = 10
for SST2), number of random seeds s = 3.

GPUs. Nvidia V100, Nvidia A10.

C.1.3. LLAMA MNLI

For our experiments using the Llama-7b model, finetuned on MNLI, we use following setup

Training Alg. AdamW with β1 = 0.9, β2 = 0.999, ϵ = 1e-6, constant schedule.

Learning rate grid. ηA ∈ {1e-6, 5e-6, 1e-5, 2.5e-5, 5e-5, 1e-4}, ηB ∈ {1e-6, 5e-6, 1e-5, 2.5e-5, 5e-5, 1e-4}, ηB ≥ ηA

LoRA Hyperparameters. LoRA rank r = 8, α = 16, and dropout 0.1. LoRA target modules ‘q_proj, k_proj, v_proj,

o_proj, up_proj, down_proj, gate_proj’.

Other Hyperparameters. Sequence length T = 128, train batch size bs = 32, number of train epochs E = 1, number

of random seeds s = 2 for ηA = ηB and ηA, ηB near test optimal, s = 1 otherwise. Precision FP16.

GPUs. Nvidia V100.

C.1.4. LLAMA FLAN-V2

For our experiments using the Llama-7b model, finetuned on a size 100k random subset flan-v2, we use following setup

Training Alg. AdamW with β1 = 0.9, β2 = 0.999, ϵ = 1e-6, constant schedule.

Learning rate grid. ηA ∈ {1e-6, 5e-6, 1e-5, 2.5e-5, 5e-5, 1e-4}, ηB ∈ {1e-6, 5e-6, 1e-5, 2.5e-5, 5e-5, 1e-4}, ηB ≥ ηA

LoRA Hyperparameters. LoRA rank r = 64, α = 16, and dropout 0.1. LoRA target modules ‘q_proj, k_proj, v_proj,

o_proj, up_proj, down_proj, gate_proj’.

Other Hyperparameters. Sequence length Tsource = 1536, Ttarget = 512, train batch size bs = 16, number of epochs

E = 1, number of random seeds s = 2 for ηA = ηB and ηA, ηB near test optimal, s = 1 otherwise. Precision BF16.

MMLU Evaluation. We evaluate average accuracy on MMLU using 5-shot prompting.

GPUs. Nvidia A10.
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